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Abstract

We present a SAT-based approach for solving the modal logic
S5-satisfiability problem. That problem being NP-complete,
the translation into SAT is not a surprise. Our contribution is
to greatly reduce the number of propositional variables and
clauses required to encode the problem. We first present a
syntactic property called diamond degree. We show that the
size of an S5-model satisfying a formula φ can be bounded
by its diamond degree. Such measure can thus be used as
an upper bound for generating a SAT encoding for the S5-
satisfiability of that formula. We also propose a lightweight
caching system which allows us to further reduce the size of
the propositional formula. We implemented a generic SAT-
based approach within the modal logic S5 solver S52SAT. It
allowed us to compare experimentally our new upper-bound
against previously known one, i.e. the number of modalities
of φ and to evaluate the effect of our caching technique. We
also compared our solver against existing modal logic S5
solvers. The proposed approach outperforms previous ones
on the benchmarks used. These promising results open inter-
esting research directions for the practical resolution of others
modal logics (e.g. K, KT, S4)

Introduction

Over the last twenty years, modal logics have been used in
various areas of artificial intelligence like formal verification
(Fairtlough and Mendler 1994), game theory (Lorini and
Schwarzentruber 2010), database theory (Fitting 2000) and
distributed computing (VII, Crary, and Harper 2005) for ex-
ample. More recently, the modal logic S5 was used for con-
tingent planning (Niveau and Zanuttini 2016) and in knowl-
edge compilation (Bienvenu, Fargier, and Marquis 2010).
For this reason, automated reasoning in modal logics has
been vastly studied (e.g. (Sebastiani and Villafiorita 1998;
Masssacci 2000; Sebastiani and Vescovi 2009)).

Ladner (Ladner 1977; Fagin et al. 1995) showed that the
satisfiability problem for several modal logics including K,
KT and S4 is PSPACE-Complete while it is NP-Complete
for S5 (see (Halpern and Rêgo 2007) for more details). Since
SAT solvers became a quite efficient practical NP-oracle for
many problems, we are interested in studying SAT encod-
ing for the S5-SAT problem from a practical perspective.
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Using a SAT-oracle in the context of modal logic is not
new: a comprehensive overview of previous works can be
found for example in (Sebastiani and Tacchella 2009). How-
ever, most of them tackle the satisfiability of modal logic
K. *SAT (Giunchiglia, Giunchiglia, and Tacchella 1999;
Giunchiglia and Tacchella 2000; Giunchiglia et al. 2000;
Giunchiglia, Tacchella, and Giunchiglia 2002) uses a SAT-
oracle to decide the satisfiability of 8 different modal log-
ics, including K, but not S5. In the same spirit as our
work, a translation of modal logic K to SAT has been
proposed in Km2SAT (Giunchiglia and Sebastiani 2000;
Sebastiani and Vescovi 2009). More recently, the solver
InKreSAT (Kaminski and Tebbi 2013) proposed an innova-
tive SAT-based system where the SAT solver drives the de-
velopment of a tableaux method. Theoretically, an approach
based on Satisfiability Modulo Theory (Areces, Fontaine,
and Merz 2015) has also been proposed. None of those
methods are applicable to modal logic S5.

The number of variables required to reduce S5-SAT to
SAT depends on an upper bound of the number of possible
worlds to be considered in the S5-model. Minimizing that
upper bound is thus crucial to obtain CNF formulas of rea-
sonable size. We propose a new upper bound based on a syn-
tactical property of the formula, that we call “diamond de-
gree”. We provide some experimental evidences that our ap-
proach improves significantly the state-of-the-art S5 solvers.

The remainder of the paper is organized as follows: we
first present the modal logic S5 and the different bounds on
the size of a S5-models; then we detail the reduction from
S5-SAT to SAT, parameterized by the number of worlds to
consider. We present two improvements to reduce the size
of the SAT encoding: a better upper bound on the number of
worlds to consider and structural caching. Finally, we com-
pare experimentally the efficiency of our approach to state-
of-the-art S5 solvers.

Preliminaries

Let P be a finite non-empty set of propositional variables.
The language L of the modal logic S5 is the set of formulas
φ defined by the following grammar in BNF:

φ ::= � | p | ¬φ | φ ∧ φ | φ ∨ φ | �φ | �φ
where p ranges over P. A formula of the form �φ (box phi)
means φ is necessarily true. A formula of the form �φ (di-
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amond phi) means φ is possibly true. Any formula φ ∈ L
may be translated to an equivalent formula in negation nor-
mal form (NNF), that is, negations appear only in front of
propositional variables (see the definition in (Robinson and
Voronkov 2001)), noted nnf(φ). This can be done in poly-
nomial time. Formulas in L are interpreted using pointed
S5-models. A S5-model is a pair (W,V), where W is a non-
empty set of possible worlds and V is a valuation function
with signature W → (P → {0, 1}). A pointed S5-model is a
triplet (W,V,w), where (W,V) is a S5-model and w ∈ W. The
satisfaction relation |= between formulas in L and pointed
S5-models is recursively defined as follows:

(W,V,w) |= �
(W,V,w) |= p iff V(w)(p) = 1
(W,V,w) |= ¬φ iff (W,V,w) �|= φ
(W,V,w) |= φ1 ∧ φ2 iff (W,V,w) |= φ1 and (W,V,w) |= φ2

(W,V,w) |= φ1 ∨ φ2 iff (W,V,w) |= φ1 or (W,V,w) |= φ2

(W,V,w) |= �φ iff for all w′ ∈ W we have (W,V,w′) |= φ
(W,V,w) |= �φ iff there is w′ ∈ W s.t. (W,V,w′) |= φ

Validity and satisfiability are defined as usual. A formula
φ ∈ L is valid, noted |= φ, if and only if, for all pointed
S5-models (W,V,w), we have (W,V,w) |= φ. Moreover, φ is
satisfiable if and only if �|= ¬φ.

From S5-SAT to SAT

It was shown in (Ladner 1977) that if an S5 formula φ with
n modal connectives is satisfiable, then there is an S5-model
satisfying φ with at most n + 1 worlds. As a consequence,
we know that there exists an algorithm running in polyno-
mial time able to transform the S5-SAT problem into the
SAT problem. However, to the best of our knowledge, no one
evaluated this approach in practice. It has not been compared
against state-of-the-art solvers until now. Yet SAT-based ap-
proaches are known to be quite efficient in practice.

A SAT encoding is represented here by a translation func-
tion tr, which takes as input an S5-formula φ and a number
of worlds n in the S5-model and produces a propositional
formula. This is inspired by the standard translation to FOL
(Patrick Blackburn and Wolter 2007). Note that the acces-
sibility relation does not need to be represented in an S5-
model, because it is an equivalence relation.

tr(φ, n) = tr′(nnf(φ), 1, n)
tr′(�, i, n) = � tr′(¬�, i, n) = ¬�
tr′(p, i, n) = pi tr′(¬p, i, n) = ¬pi

tr′((φ ∧ · · · ∧ δ), i, n) = tr′(φ, i, n) ∧ · · · ∧ tr′(δ, i, n)
tr′((φ ∨ · · · ∨ δ), i, n) = tr′(φ, i, n) ∨ · · · ∨ tr′(δ, i, n)

tr′(�φ, i, n) =
n∧

j=1

(tr′(φ, j, n))

tr′(�φ, i, n) =
n∨

j=1

(tr′(φ, j, n))

The translation adds fresh Boolean variables pi to the for-
mula, denoting the truth value of p in the world wi. In such

function, the i parameter represents the index of the world.
The function is defined over a Negative Normal Form (NNF)
formula for sake of simplicity.

Example 1. Let φ = �(a∧�b), Figure 1 shows the effect of
applying tr to the formula φ with n = 2.

�

∧

a �

b

∨

∧

a1 ∧

b1 b2

∧

a2 ∧

b1 b2

Figure 1: From S5 φ (left) to propositional logic with n=2
(right).

If the value of n is an upper-bound of the number of
worlds in the model, then the translation is equi-satisfiable
to the original S5 formula. In particular, it is the case for the
upper-bound shown in (Ladner 1977):

Definition 1. Let φ be in L, nm(φ) denotes the number of
modal connectives in the formula φ.

Theorem 1. φ ∈ L is satisfiable if and only if tr(φ, nm(φ)+1)
is satisfiable.

Proof. Theorem 1 is proved in the same way as the standard
translation to FOL plus Lemma 6.1 in (Ladner 1977). �

Note that the result of the translation is not in CNF. As
such, classical translation into CNF such as (Tseitin 1983)
is needed to use a SAT oracle.

Improvements on the upper-bound

The size of the encoding depends on nm(φ). In practice,
such upper bound produces unreasonably large formulas. As
such, a first step is to improve that upper bound. We propose
to use a new metric called the diamond degree as a new up-
per bound.

Definition 2 (Diamond-Degree). The diamond degree of φ ∈
L, noted dd(φ), is defined recursively, as follows:

dd(φ) = dd′(nnf(φ))
dd′(�) = dd′(¬�) = dd′(p) = dd′(¬p) = 0

dd′(φ ∧ ψ) = dd′(φ) + dd′(ψ)
dd′(φ ∨ ψ) = max(dd′(φ), dd′(ψ))
dd′(�φ) = dd′(φ) dd′(�φ) = 1 + dd′(φ)

The computation of the diamond degree requires to con-
vert φ in NNF. As mentioned in the previous section, this
operation can always be performed in both polynomial time
and space. Then, the diamond degree of any formula can be
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computed in polynomial time. Without loss of generality, we
will assume that φ ∈ NNF and consider dd′ instead of dd.

Informally, the diamond degree represents an upper bound
of the number of diamonds to be taken into account to sat-
isfy the formula. To show that the diamond degree is a valid
upper bound for our SAT encoding, we will use a tableau
method. Therefore, we need some additional definitions.
Let φ be a formula in NNF and let sub(φ) be the set of
all sub-formulas of φ. A tableau for φ is a non-empty set
T = {s0, s1, . . . , sn} such that each si ∈ T is a subset of
sub(φ) and φ ∈ s0. In addition, each set si ∈ T satisfies
the following conditions:

1. ¬� � s.

2. if p ∈ s then ¬p � s.

3. if ¬p ∈ s then p � s.

4. if ψ1 ∧ ψ2 ∈ s then ψ1 ∈ s and ψ2 ∈ s.

5. if ψ1 ∨ ψ2 ∈ s then ψ1 ∈ s or ψ2 ∈ s.

6. if �ψ1 ∈ s then ∀s′ ∈ T we have ψ1 ∈ s′.
7. if �ψ1 ∈ s then ∃s′ ∈ T s.t. ψ1 ∈ s.

Lemma 1. Let φ be in NNF. There is a tableau for φ if and
only if φ is satisfiable.

Proof. Direct from the definition of the NNF (which pre-
serves the satisfiability) and from the definition of the
tableau method (there will be a tableau for φ if and only
if φ is satisfiable). �

Lemma 2. Let φ be in NNF. The number of elements of
the set T created by constructing its tableau is bounded by
dd′(φ) + 1.

Proof. Let ψ ∈ sub(φ). Let g(ψ) be the number of sets s
added to T because of ψ. That is, g(ψ) is the number of
times the condition involving operator� is triggered for sub-
formulas of ψ. We show that, for all ψ ∈ sub(φ) we have
g(ψ) ≤ dd′(ψ). We do so by induction on the structure of ψ.

Induction base. We consider four cases: (1) ψ = �, (2)
ψ = ¬�, (3) ψ = p and (4) ψ = ¬p. In all cases, the condition
involving � will never be triggered for formulas in sub(ψ).
Then g(ψ) = 0 ≤ dd′(ψ).

Induction step. We consider four cases:

1. ψ = ψ1 ∧ ψ2. Assume ψ ∈ s, for some s ∈ T . In this
case, the algorithm adds ψ1 and ψ2 to s. Therefore, g(ψ)
is bounded by g(ψ1) + g(ψ2). The latter is bounded by
dd′(ψ1) + dd′(ψ2) (by the induction hypothesis). Then
g(ψ) ≤ dd′(ψ).

2. ψ = ψ1 ∨ ψ2. Assume ψ ∈ s, for some s ∈ T . In this case,
the algorithm adds either ψ1 or ψ2 to s. Therefore, g(φ)
is bounded by max(g(ψ1), g(ψ2)). The latter is bounded
by max(dd′(ψ1), dd′(ψ2)) (by the induction hypothesis).
Then g(ψ) ≤ dd′(ψ).

3. ψ = �ψ1. Assume ψ ∈ s, for some s ∈ T . In this case,
the algorithm adds ψ1 to all s′ ∈ T . Therefore, g(ψ) is
bounded by g(ψ1). The latter is bounded by dd′(ψ1) (by
the induction hypothesis). Then g(ψ) ≤ dd′(ψ).

4. ψ = �ψ1. Assume ψ ∈ s, for some s ∈ T . In this case, if
there is no s′ containing ψ1 then the algorithm adds a new
s′′ to T and adds ψ1 to s′′. Therefore, g(ψ) is bounded by
1 + g(ψ1). The latter is bounded by 1 + dd′(ψ1) (by the
induction hypothesis). Then g(ψ) ≤ dd′(ψ).

Therefore, we have |T | = 1 + g(φ) ≤ 1 + dd′(φ). �

Thus, for any φ ∈ L, each si of the tableau T corresponds
to a wi ∈ W in the S5-model, |T | ≤ dd(φ) + 1 means that the
number of worlds in the S5-model is bounded by dd(φ) + 1.

Theorem 2. φ ∈ L is satisfiable if and only if tr(φ, dd(φ)+1)
is satisfiable.

Structural Caching

Caching is a classical way to avoid redundant work. *SAT
performs caching using a “bit matrix” (Giunchiglia and
Tacchella 2001). Efficient implementation of BDD (Bryant
1986) packages also rely in caching, to build an explicit
graph. These two examples require additional time and
space to search and cache already performed works. Here,
our technique is a “simple but efficient” trade-off. It does
not memoize the work, so it may not cache all possible for-
mulas, but it only requires a flag to detect redundant work.

In the example depicted in Figure 2.b, sub-formula (b1 ∧
b2) appears twice. The translation of the first diamond cre-
ates two sub-formulas a1 ∧ �b and a2 ∧ �b, where each �b
needs to be translated.

Because we are in S5 (all worlds are connected), the trans-
lations of �b on different worlds are equivalent, so we can
reuse the same sub-formula. It means that instead of using a
tree, we can work with a DAG, which allows a more efficient
translation to CNF.

Lemma 3. tr′(◦φ, i, n) = tr′(◦φ, j, n) ∀i, j and ◦ ∈ {�,�}
Proof of Lemma 3. By definition, there are only 2 cases:
- (◦ = �) then, tr′(�φ, i, n) =

∧n
k=1(tr′(φ, k, n))

- (◦ = �) then tr′(�φ, i, n) =
∨n

k=1(tr′(φ, k, n))
In each case, the result is independent from i, so choosing j
as an index gives the exact same result. �

Informally, lemma 3 shows the fact that no matter how
embedded the modal sub-formula is, its translation will al-
ways give the same result (independent from the index i).
Therefore, we can start by translating the most embedded
sub-formula, tag the corresponding node and backtrack. The
resulting formula may contain several nodes with the same
tag. This means that these sub-formulas are syntactically
identical (see Figure 2.c). Then, we maintain only one oc-
currence of the sub-formula, transforming the tree in a DAG
(see Figure 2.d). Structural caching is thus performed on the
fly before translating to CNF. The translation function using
this technique is noted tr+.

Experiments

We considered LCKS5TabProver (Abate, Goré, and Wid-
mann 2007) and SPASS 3.7 (Weidenbach et al. 2009), which
are, to the best of our knowledge, the state-of-the-art in
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a1 ∨
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(b) tr(φ, dd(φ))

∨2

∧

a1 ∨1

b1 b2

∧

a2 ∨1

b1 b2

(c) tr+(φ, dd(φ))

∨2

∧

a1 ∨1

b1 b2

∧

∨1

b1 b2

a2

(d) tr+(φ, dd(φ)) with simplification

Figure 2: Translation of �(a∧�b) (left), initial translation (middle-left), tagged formula (middle-right), final translation (right)

S5-satisfiability solving. We compared them to 4 differ-
ent configurations of S52SAT: nm, nm+ (with caching), dd,
dd+ (with caching) (http://www.cril.univ-artois.fr/ montmi-
rail/s52SAT). In order to evaluate rigorously the solvers, we
used the same input for each solver, in InToHyLo format
(Hoffmann 2010). For this purpose, we modified the code of
LCKS5TabProver to make it able to read that format. The
modifications are simple enough to guarantee that the per-
formance of the solver is not affected.

We used SPASS 3.7 and not the latest available version
3.9 because the former reads dfg format which can be pro-
duced from InToHyLo benchmarks using the tool ftt (Fast
Transformation Tool) embedded in Spartacus (Götzmann,
Kaminski, and Smolka 2010). The difference between 3.7
and 3.9 is minimal according to the solver’s web site.
The translation time is negligible in our experiments. We
use Glucose 4.0 (Audemard and Simon 2009) as back-
end SAT solver. We also considered MetTel2 (Tishkovsky,
Schmidt, and Khodadadi 2012) and LoTREC (Gasquet et
al. 2005) but unfortunately they are not designed to ef-
ficiently solve modal logic S5 problems. We evaluated
these solvers on well established modal logic benchmarks:
3CNFK (Patel-Schneider and Sebastiani 2003), MQBFK
(Massacci 1999), T ANCS 2000K (Massacci and Donini
2000) and LWBK,KT,S 4 (Balsiger, Heuerding, and Schwendi-
mann 2000). Note that they are designed for modal logic K,
KT and S4. As a consequence, some of them are trivial in
the S5 setting. However, we believe that the results on those
benchmarks are still significant. S5-SAT entails K, KT and
S4-SAT, so we could envision S5-SAT as a preprocessing
step for those modal logics.

We set the memory limit to 8GB and the runtime limit to
900 seconds. We rarely reached the timeout (804 times out
of 12444 runs). Most unsolved benchmarks are due to lack
of memory.

In the following tables, we provide the number of bench-
marks solved, in bold the best results of a given row/column
(according to the orientation of the Table); and between
parenthesis, we provide the number of benchmarks which
cannot be solved because of lack of memory, if any.

3CNF K : Caching does not help

The results are displayed in the Table 1. dd, dd+ and SPASS
are quite close to each other. The formulas consist of big

Solver d=2 d=4 d=6 Total

LckS5TabProver 0 (17) 0 (29) 0 (40) 0
S52SAT nm 21 (24) 0 (45) 0 (45) 21

S52SAT nm+ 21 (24) 0 (45) 0 (45) 21
S52SAT dd 45 (0) 8 (27) 0 (45) 53

S52SAT dd+ 45 (0) 8 (27) 0 (45) 53

SPASS 3.7 45 (0) 5 (40) 0 (45) 50

Table 1: #instances solved in 3CNFK

conjunctions where each conjunct has modal depth of at
most 2,4 or 6. They are constructed in such a way that our
caching algorithm could not find redundancies on such for-
mulas. This is why the caching does not provide any benefit
on those benchmarks.

modKSSS and modKLadn : Caching helps

n,a # LckS5... nm nm+ dd dd+ SPASS 3.7

4,4 40 0 (12) 32 40 40 40 40

4,6 40 0 (23) 32 40 40 40 32 (8)
8,4 40 0 (16) 32 40 39 (1) 40 16 (24)
8,6 40 0 (17) 24 40 40 40 10 (30)
16,4 40 0 (10) 22 40 40 40 8 (32)
16,6 40 0 (16) 19 40 39 (1) 40 2 (38)
total 240 0 161 240 238 240 108
4,4 40 40 0 (40) 40 0 (40) 40 0 (40)
4,6 40 14 (0) 0 (40) 32 (8) 0 (40) 40 0 (40)
8,4 40 2 (0) 0 (40) 8 (32) 0 (40) 40 0 (40)
8,6 40 0 (0) 0 (40) 0 (40) 0 (40) 8 (32) 0 (40)
16,4 40 0 (0) 0 (40) 0 (40) 0 (40) 0 (40) 0 (40)
16,6 40 0 (0) 0 (40) 0 (40) 0 (40) 0 (40) 0 (40)
total 240 56 0 80 0 128 0

Table 2: Upper: modKSSS — Lower: modKLadn

n represents the number of variables and a represents the
number of alternations in the original QBF prefix, see (Mas-
sacci 1999) for more details, and # corresponds to the num-
ber of benchmarks available for a given pair (n,a).

In this category, we can see that dd and dd+ are much
more efficient than SPASS. The formulas in these bench-
marks contain a lot of redundancies: it can be seen that en-
abling caching allows us to solve all modKSSS benchmarks
for instance.
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TANCS-2000 : Memory Demanding

n,a # LckS5... nm nm+ dd dd+ SPASS 3.7

4,4 40 0 (38) 40 40 40 40 40

4,6 40 0 (33) 40 40 40 40 40

8,4 40 0 (38) 40 40 40 40 40

8,6 40 0 (39) 40 40 40 40 40

16,4 40 0 (40) 40 40 40 40 40

16,6 40 0 (40) 40 40 40 40 35 (5)
total 240 0 240 240 240 240 235
4,4 40 23 (0) 3 (37) 40 40 40 40

4,6 40 3 (0) 0 (40) 40 40 40 31 (9)
total 80 26 3 80 80 80 71

Table 3: TANCS-2000. Upper: qbfMS — Lower: qbfML

Here, we can see that these problems can be solved by
almost all the solvers. The instances not solved by SPASS
3.7 are due to lack of memory. As pointed out in the follow-
ing section, by increasing the memory limit to 32GB, these
instances are solved by SPASS.

LWB K, KT, S4 : Both dd and caching help

Solver Logic K Logic KT Logic S4 Total

LckS5TabProver 227 (73) 206 (102) 194 (111) 627
S52SAT nm 307 (66) 344 (33) 292 (86) 943
S52SAT nm+ 351 (21) 363 (12) 349 (28) 1063
S52SAT dd 333 (40) 355 (23) 337 (40) 1025
S52SAT dd+ 357 (12) 364 (12) 363 (12) 1084

SPASS 3.7 343 (16) 363 (15) 360 (17) 1066

Table 4: #instances solved in LWBK,KT,S 4

The benchmarks are originally separated on SAT/UNSAT
formulas for the logics K, KT and S4. Obviously, the satisfi-
ability in S5 may differ so we removed the SAT/UNSAT sep-
aration. The results are displayed in the Table 4. Here again,
dd+ performs slightly better than SPASS. The benchmarks
which cannot be solved are a specific modal logic encoding
of the pigeon hole principle (Haken 1985) in the correspond-
ing logic.

Overall results on all the benchmarks

Solver # solved # SAT MO TO

LckS5TabProver 709 143 710 655
S52SAT nm 1377 411 667 30

S52SAT nm+ 1733 452 292 49
S52SAT dd 1645 433 412 17

S52SAT dd+ 1834 460 203 37
SPASS 3.7 1530 451 528 16

Table 5: Overall results on all the benchmarks

SPASS is outperformed in part because of its poor re-
sults on the modKSSS and modKLadn benchmarks. While
the default SAT encoding often exhausts the available mem-
ory, each of the two proposed improvements significantly

Figure 3: runtime distribution

reduces the number of memory-out, the best results being
obtained when both are enabled.

It seems pretty clear that the structural caching is key in
our approach to efficiently solve those benchmarks. This is
witnessed by the scatter plot in Figure 4. The x-axis corre-
sponds to the time used by dd and the y-axis corresponds to
the time used by dd+ to solve the problem.

Solver avg median max

nm 6 881 821 1 100 054 58 653 264
nm+ 1 619 923 118 040 29 492 779
dd 2 385 515 169 324 55 813 557
dd+ 269 891 27 090 22 914 442

Table 6: Number of clauses in the generated CNF formulas

The main reason of the improvement is the reduction of
the size of the CNF encoding, as shown by Table 6. We had
a median value of 1,100,054 clauses for nm and this value
drops down to 27,090 for dd+ on the exact same problems.

Importance of the memory

We repeated the experiments with 32GB of RAM. Note that
for the SAT based approach, the lack of memory happens
during the translation phase, while for the others, the mem-
ory is exhausted in the solving phase.

One may wonder what would be the performance with
more memory. Table 7 summarizes the number of prob-
lems solved with 8GB and 32GB by each solver. Providing
32GB to SPASS does not change the results significantly: it
solved 30 additional instances. Our SAT approach also ben-
efits from that increased amount of memory, up to 98 ad-
ditional benchmarks can be solved by nm without caching.
32 GB is sufficient for LckS5TabProver (no memory-out),
however only one additional benchmark can be solved.

Figure 6 compares the memory consumption of SPASS
3.7 and S52SAT dd+ in MB. SPASS usually requires more
memory than dd+. The runtime and the memory consump-
tion are roughly correlated (the Pearson product-moment
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Figure 4: Runtime of dd with and without caching Figure 5: Runtime of SPASS 3.7 vs dd+

Solver 8GB 32GB MO with 32GB

LckS5TabProver 709 710 0
SPASS 3.7 1530 1560 498
S52SAT nm 1377 1475 382
S52SAT nm+ 1733 1800 166
S52SAT dd 1645 1672 317
S52SAT dd+ 1834 1888 96

Table 7: #Solved with 8GB and 32GB

Figure 6: Memory comparison (32 MB) SPASS 3.7 vs dd+

correlation coefficient for dd+ is equal to 0.58 and for
SPASS it is 0.57). In the category ModKLadn, SPASS runs
out of memory even with 32 GB.

Comparison against the state-of-the-art

Figure 5 shows a detailed runtime comparison between dd+
and SPASS on all benchmarks. In most cases, our approach
outperforms SPASS. The two cases where it is less effi-
cient consists in the hard combinatorial UNSAT Pigeon-
Hole problems and the so-called ”3CNF” benchmarks on

which neither the diamond degree nor the caching helps.

Conclusion

We presented a new SAT encoding to solve the S5-SAT
problem using a SAT solver. It is based on a reduction
from S5-SAT to SAT with two improvements: a better up-
per bound on the number of required worlds and a structural
caching. We compared our approach against solvers repre-
senting, to the best of our knowledge, the state-of-the-art
for practical S5-SAT solving, on a wide range of classical
modal logic benchmarks. The SAT based approach with all
improvements enabled outperformed those solvers.

Even if the benchmarks may not be representative of prac-
tical S5 benchmarks because they come from other modal
logics (K, KT, S4), those results open interesting perspec-
tives. It is indeed the case that proving the satisfiability of a
modal logic formula in S5 entails that the formula is also sat-
isfiable on less restrictive systems (i.e. in K, KT, S4). Since
our S5-solver provides a S5-model in just a few seconds
(2.06s median time), we could perfectly use it as a prepro-
cessing step to solve benchmarks in other modal logics.

Preliminary results on that direction are quite encour-
aging: on 276 satisfiable benchmarks in logic S5 (thus in
K), S52SAT outperforms the state of the art Spartacus
(Götzmann, Kaminski, and Smolka 2010) on 158 of them.
Another perspective, would be to adapt S52SAT in order to
solve KD45-SAT problems given the fact that KD45 is also
NP-Complete (Fagin et al. 1995).
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