Thomas Caridroit
email: caridroit@cril.fr

Jean-Marie Lagniez
email: lagniez@cril.fr

Daniel Le Berre
email: leberre@cril.fr

Tiago De Lima
email: delima@cril.fr

Valentin Montmirail
email: montmirail@cril.fr

A SAT-Based Approach for Solving the Modal Logic S5-Satisfiability Problem

 for more details). Since SAT solvers became a quite efficient practical NP-oracle for many problems, we are interested in studying SAT encoding for the S5-SAT problem from a practical perspective.

Introduction

Over the last twenty years, modal logics have been used in various areas of artificial intelligence like formal verification [START_REF] Fairtlough | An Intuitionistic Modal Logic with Applications to the Formal Verification of Hardware[END_REF], game theory [START_REF] Lorini | A modal logic of epistemic games[END_REF], database theory [START_REF] Fitting | Modality and databases[END_REF] and distributed computing [START_REF] Vii | Distributed control flow with classical modal logic[END_REF] for example. More recently, the modal logic S5 was used for contingent planning [START_REF] Niveau | Efficient Representations for the Modal Logic S5[END_REF] and in knowledge compilation [START_REF] Bienvenu | Knowledge compilation in the modal logic S5[END_REF]. For this reason, automated reasoning in modal logics has been vastly studied (e.g. [START_REF] Sebastiani | Sat-based decision procedures for normal modal logics: A theoretical framework[END_REF] Using a SAT-oracle in the context of modal logic is not new: a comprehensive overview of previous works can be found for example in [START_REF] Sebastiani | SAT Techniques for Modal and Description Logics[END_REF]. However, most of them tackle the satisfiability of modal logic K. *SAT [START_REF] Giunchiglia | The sat-based approach for classical modal logics[END_REF]Giunchiglia and Tacchella 2000;Giunchiglia et al. 2000;[START_REF] Giunchiglia | SAT-Based Decision Procedures for Classical Modal Logics[END_REF] uses a SAToracle to decide the satisfiability of 8 different modal logics, including K, but not S5. In the same spirit as our work, a translation of modal logic K to SAT has been proposed in Km2SAT (Giunchiglia and Sebastiani 2000;[START_REF] Sebastiani | Automated Reasoning in Modal and Description Logics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability[END_REF]. More recently, the solver InKreSAT [START_REF] Kaminski | InKreSAT: Modal Reasoning via Incremental Reduction to SAT[END_REF] proposed an innovative SAT-based system where the SAT solver drives the development of a tableaux method. Theoretically, an approach based on Satisfiability Modulo Theory [START_REF] Areces | Modal satisfiability via SMT solving[END_REF] has also been proposed. None of those methods are applicable to modal logic S5.

The number of variables required to reduce S5-SAT to SAT depends on an upper bound of the number of possible worlds to be considered in the S5-model. Minimizing that upper bound is thus crucial to obtain CNF formulas of reasonable size. We propose a new upper bound based on a syntactical property of the formula, that we call "diamond degree". We provide some experimental evidences that our approach improves significantly the state-of-the-art S5 solvers.

The remainder of the paper is organized as follows: we first present the modal logic S5 and the different bounds on the size of a S5-models; then we detail the reduction from S5-SAT to SAT, parameterized by the number of worlds to consider. We present two improvements to reduce the size of the SAT encoding: a better upper bound on the number of worlds to consider and structural caching. Finally, we compare experimentally the efficiency of our approach to stateof-the-art S5 solvers.

Preliminaries

Let P be a finite non-empty set of propositional variables. The language L of the modal logic S5 is the set of formulas φ defined by the following grammar in BNF:

φ ::= | p | ¬φ | φ ∧ φ | φ ∨ φ | φ | φ
where p ranges over P. A formula of the form φ (box phi) means φ is necessarily true. A formula of the form φ (di-amond phi) means φ is possibly true. Any formula φ ∈ L may be translated to an equivalent formula in negation normal form (NNF), that is, negations appear only in front of propositional variables (see the definition in (Robinson and Voronkov 2001)), noted nnf(φ). This can be done in polynomial time. Formulas in L are interpreted using pointed S5-models. A S5-model is a pair (W, V), where W is a nonempty set of possible worlds and V is a valuation function with signature W → (P → {0, 1}). A pointed S5-model is a triplet (W, V, w), where (W, V) is a S5-model and w ∈ W. The satisfaction relation | = between formulas in L and pointed S5-models is recursively defined as follows:

(W, V, w) | = (W, V, w) | = p iff V(w)(p) = 1 (W, V, w) | = ¬φ iff (W, V, w) | = φ (W, V, w) | = φ 1 ∧ φ 2 iff (W, V, w) | = φ 1 and (W, V, w) | = φ 2 (W, V, w) | = φ 1 ∨ φ 2 iff (W, V, w) | = φ 1 or (W, V, w) | = φ 2 (W, V, w) | = φ iff for all w ∈ W we have (W, V, w) | = φ (W, V, w) | = φ iff there is w ∈ W s.t. (W, V, w) | = φ
Validity and satisfiability are defined as usual. A formula φ ∈ L is valid, noted | = φ, if and only if, for all pointed S5-models (W, V, w), we have (W, V, w) | = φ. Moreover, φ is satisfiable if and only if | = ¬φ.

From S5-SAT to SAT

It was shown in [START_REF] Ladner | The Computational Complexity of Provability in Systems of Modal Propositional Logic[END_REF] that if an S5 formula φ with n modal connectives is satisfiable, then there is an S5-model satisfying φ with at most n + 1 worlds. As a consequence, we know that there exists an algorithm running in polynomial time able to transform the S5-SAT problem into the SAT problem. However, to the best of our knowledge, no one evaluated this approach in practice. It has not been compared against state-of-the-art solvers until now. Yet SAT-based approaches are known to be quite efficient in practice.

A SAT encoding is represented here by a translation function tr, which takes as input an S5-formula φ and a number of worlds n in the S5-model and produces a propositional formula. This is inspired by the standard translation to FOL [START_REF] Patrick Blackburn | Handbook of Modal Logic[END_REF]. Note that the accessibility relation does not need to be represented in an S5model, because it is an equivalence relation.

tr(φ, n) = tr (nnf(φ), 1, n) tr (, i, n) = tr (¬ , i, n) = ¬ tr (p, i, n) = p i tr (¬p, i, n) = ¬p i tr ((φ ∧ • • • ∧ δ), i, n) = tr (φ, i, n) ∧ • • • ∧ tr (δ, i, n) tr ((φ ∨ • • • ∨ δ), i, n) = tr (φ, i, n) ∨ • • • ∨ tr (δ, i, n) tr (φ, i, n) = n j=1 (tr (φ, j, n)) tr (φ, i, n) = n j=1 (tr (φ, j, n))
The translation adds fresh Boolean variables p i to the formula, denoting the truth value of p in the world w i . In such function, the i parameter represents the index of the world. The function is defined over a Negative Normal Form (NNF) formula for sake of simplicity.

Example 1. Let φ = (a ∧ b), Figure 1 shows the effect of applying tr to the formula φ with n = 2.

∧ a b ∨ ∧ a 1 ∧ b 1 b 2 ∧ a 2 ∧ b 1 b 2 Figure 1: From S5 φ (left) to propositional logic with n=2 (right).
If the value of n is an upper-bound of the number of worlds in the model, then the translation is equi-satisfiable to the original S5 formula. In particular, it is the case for the upper-bound shown in [START_REF] Ladner | The Computational Complexity of Provability in Systems of Modal Propositional Logic[END_REF]:

Definition 1. Let φ be in L, nm(φ) denotes the number of modal connectives in the formula φ. Theorem 1. φ ∈ L is satisfiable if and only if tr(φ, nm(φ)+1) is satisfiable.
Proof. Theorem 1 is proved in the same way as the standard translation to FOL plus Lemma 6.1 in [START_REF] Ladner | The Computational Complexity of Provability in Systems of Modal Propositional Logic[END_REF].

Note that the result of the translation is not in CNF. As such, classical translation into CNF such as [START_REF] Tseitin | On the Complexity of Derivation in Propositional Calculus[END_REF]) is needed to use a SAT oracle.

Improvements on the upper-bound

The size of the encoding depends on nm(φ). In practice, such upper bound produces unreasonably large formulas. As such, a first step is to improve that upper bound. We propose to use a new metric called the diamond degree as a new upper bound.

Definition 2 (Diamond-Degree). The diamond degree of φ ∈ L, noted dd(φ), is defined recursively, as follows:

dd(φ) = dd (nnf(φ)) dd () = dd (¬) = dd (p) = dd (¬p) = 0 dd (φ ∧ ψ) = dd (φ) + dd (ψ) dd (φ ∨ ψ) = max(dd (φ), dd (ψ)) dd (φ) = dd (φ) dd (φ) = 1 + dd (φ)
The computation of the diamond degree requires to convert φ in NNF. As mentioned in the previous section, this operation can always be performed in both polynomial time and space. Then, the diamond degree of any formula can be computed in polynomial time. Without loss of generality, we will assume that φ ∈ NNF and consider dd instead of dd.

Informally, the diamond degree represents an upper bound of the number of diamonds to be taken into account to satisfy the formula. To show that the diamond degree is a valid upper bound for our SAT encoding, we will use a tableau method. Therefore, we need some additional definitions. Let φ be a formula in NNF and let sub(φ) be the set of all sub-formulas of φ. A tableau for φ is a non-empty set T = {s 0 , s 1 , . . . , s n } such that each s i ∈ T is a subset of sub(φ) and φ ∈ s 0 . In addition, each set s i ∈ T satisfies the following conditions: 1. ¬ s.

2. if p ∈ s then ¬p s.

3. if ¬p ∈ s then p s.

4. if ψ 1 ∧ ψ 2 ∈ s then ψ 1 ∈ s and ψ 2 ∈ s. 5. if ψ 1 ∨ ψ 2 ∈ s then ψ 1 ∈ s or ψ 2 ∈ s. 6. if ψ 1 ∈ s then ∀s ∈ T we have ψ 1 ∈ s . 7. if ψ 1 ∈ s then ∃s ∈ T s.t. ψ 1 ∈ s.
Lemma 1. Let φ be in NNF. There is a tableau for φ if and only if φ is satisfiable.

Proof. Direct from the definition of the NNF (which preserves the satisfiability) and from the definition of the tableau method (there will be a tableau for φ if and only if φ is satisfiable).

Lemma 2. Let φ be in NNF. The number of elements of the set T created by constructing its tableau is bounded by dd (φ) + 1.

Proof. Let ψ ∈ sub(φ). Let g(ψ) be the number of sets s added to T because of ψ. That is, g(ψ) is the number of times the condition involving operator is triggered for subformulas of ψ. We show that, for all ψ ∈ sub(φ) we have g(ψ) ≤ dd (ψ). We do so by induction on the structure of ψ. Induction base. We consider four cases: (1) ψ = , (2) ψ = ¬ , (3) ψ = p and (4) ψ = ¬p. In all cases, the condition involving will never be triggered for formulas in sub(ψ). Then g(ψ) = 0 ≤ dd (ψ).

Induction step. We consider four cases:

1. ψ = ψ 1 ∧ ψ 2 . Assume ψ ∈ s, for some s ∈ T . In this case, the algorithm adds ψ 1 and ψ 2 to s. Therefore, g(ψ) is bounded by g(ψ 1) + g(ψ 2). The latter is bounded by dd (ψ 1) + dd (ψ 2) (by the induction hypothesis). Then g(ψ) ≤ dd (ψ). 2. ψ = ψ 1 ∨ ψ 2 . Assume ψ ∈ s, for some s ∈ T . In this case, the algorithm adds either ψ 1 or ψ 2 to s. Therefore, g(φ) is bounded by max(g(ψ 1), g(ψ 2)). The latter is bounded by max(dd (ψ 1), dd (ψ 2)) (by the induction hypothesis).

Then g(ψ) ≤ dd (ψ). 3. ψ = ψ 1 . Assume ψ ∈ s, for some s ∈ T . In this case, the algorithm adds ψ 1 to all s ∈ T . Therefore, g(ψ) is bounded by g(ψ 1). The latter is bounded by dd (ψ 1) (by the induction hypothesis). Then g(ψ) ≤ dd (ψ).

4. ψ = ψ 1 . Assume ψ ∈ s, for some s ∈ T . In this case, if there is no s containing ψ 1 then the algorithm adds a new s to T and adds ψ 1 to s . Therefore, g(ψ) is bounded by 1 + g(ψ 1). The latter is bounded by 1 + dd (ψ 1) (by the induction hypothesis). Then g(ψ) ≤ dd (ψ).

Therefore, we have

|T | = 1 + g(φ) ≤ 1 + dd (φ).
Thus, for any φ ∈ L, each s i of the tableau T corresponds to a w i ∈ W in the S5-model, |T | ≤ dd(φ) + 1 means that the number of worlds in the S5-model is bounded by dd(φ) + 1.

Theorem 2. φ ∈ L is satisfiable if and only if tr(φ, dd(φ)+1) is satisfiable.

Structural Caching

Caching is a classical way to avoid redundant work. *SAT performs caching using a "bit matrix" [START_REF] Giunchiglia | A subset-matching size-bounded cache for testing satisfiability in modal logics[END_REF]. Efficient implementation of BDD [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF]) packages also rely in caching, to build an explicit graph. These two examples require additional time and space to search and cache already performed works. Here, our technique is a "simple but efficient" trade-off. It does not memoize the work, so it may not cache all possible formulas, but it only requires a flag to detect redundant work.

In the example depicted in Figure 2.b, sub-formula (b 1 ∧ b 2) appears twice. The translation of the first diamond creates two sub-formulas a 1 ∧ b and a 2 ∧ b, where each b needs to be translated.

Because we are in S5 (all worlds are connected), the translations of b on different worlds are equivalent, so we can reuse the same sub-formula. It means that instead of using a tree, we can work with a DAG, which allows a more efficient translation to CNF.

(• =) then, tr (φ, i, n) = n k=1 (tr (φ, k, n)) -(• =) then tr (φ, i, n) = n k=1 (tr (φ, k, n))
In each case, the result is independent from i, so choosing j as an index gives the exact same result.

Informally, lemma 3 shows the fact that no matter how embedded the modal sub-formula is, its translation will always give the same result (independent from the index i). Therefore, we can start by translating the most embedded sub-formula, tag the corresponding node and backtrack. The resulting formula may contain several nodes with the same tag. This means that these sub-formulas are syntactically identical (see Figure 2.c). Then, we maintain only one occurrence of the sub-formula, transforming the tree in a DAG (see Figure 2.d). Structural caching is thus performed on the fly before translating to CNF. The translation function using this technique is noted tr + .

Experiments

We considered LCKS5TabProver (Abate, Goré, and Widmann 2007) and SPASS 3.7 [START_REF] Weidenbach | SPASS version 3.5[END_REF], which are, to the best of our knowledge, the state-of-the-art in S5-satisfiability solving. We compared them to 4 different configurations of S52SAT: nm, nm+ (with caching), dd, dd+ (with caching) (http://www.cril.univ-artois.fr/ montmirail/s52SAT). In order to evaluate rigorously the solvers, we used the same input for each solver, in InToHyLo format [START_REF] Hoffmann | Tâches de raisonnement en logiques hybrides[END_REF]. For this purpose, we modified the code of LCKS5TabProver to make it able to read that format. The modifications are simple enough to guarantee that the performance of the solver is not affected. We used SPASS 3.7 and not the latest available version 3.9 because the former reads dfg format which can be produced from InToHyLo benchmarks using the tool ftt (Fast Transformation Tool) embedded in Spartacus [START_REF] Götzmann | Spartacus: A tableau prover for hybrid logic[END_REF]. The difference between 3.7 and 3.9 is minimal according to the solver's web site. The translation time is negligible in our experiments. We use Glucose 4.0 [START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF] as backend SAT solver. We also considered MetTel2 [START_REF] Tishkovsky | The Tableau Prover Generator MetTeL2[END_REF] and LoTREC [START_REF] Gasquet | LoTREC: Logical Tableaux Research Engineering Companion[END_REF]) but unfortunately they are not designed to efficiently solve modal logic S5 problems. We evaluated these solvers on well established modal logic benchmarks: 3CNF K (Patel-Schneider and Sebastiani 2003), MQBF K [START_REF] Massacci | Design and results of the tableaux-99 non-classical (modal) systems comparison[END_REF], T ANCS 2000 K [START_REF] Massacci | Design and results of TANCS-2000 non-classical (modal) systems comparison[END_REF] and LW B K,KT,S 4 [START_REF] Balsiger | A Benchmark Method for the Propositional Modal Logics K, KT, S4[END_REF]. Note that they are designed for modal logic K, KT and S4. As a consequence, some of them are trivial in the S5 setting. However, we believe that the results on those benchmarks are still significant. S5-SAT entails K, KT and S4-SAT, so we could envision S5-SAT as a preprocessing step for those modal logics.

∧ a b (a) φ = (a ∧ b) ∨ ∧ a 1 ∨ b 1 b 2 ∧ a 2 ∨ b 1 b 2 (b) tr(φ, dd(φ)) ∨ 2 ∧ a 1 ∨ 1 b 1 b 2 ∧ a 2 ∨ 1 b 1 b 2 (c) tr + (φ, dd(φ)) ∨ 2 ∧ a 1 ∨ 1 b 1 b 2 ∧ ∨ 1 b 1 b 2 a 2 (d) tr + (φ, dd(φ)) with simplification
We set the memory limit to 8GB and the runtime limit to 900 seconds. We rarely reached the timeout (804 times out of 12444 runs). Most unsolved benchmarks are due to lack of memory.

In the following tables, we provide the number of benchmarks solved, in bold the best results of a given row/column (according to the orientation of the Table); and between parenthesis, we provide the number of benchmarks which cannot be solved because of lack of memory, if any.

3CNF K : Caching does not help

The results are displayed in the Table 2: Upper: modKSSS -Lower: modKLadn n represents the number of variables and a represents the number of alternations in the original QBF prefix, see (Massacci 1999) for more details, and # corresponds to the number of benchmarks available for a given pair (n,a).

In this category, we can see that dd and dd+ are much more efficient than SPASS. The formulas in these benchmarks contain a lot of redundancies: it can be seen that enabling caching allows us to solve all modKSSS benchmarks for instance. Here, we can see that these problems can be solved by almost all the solvers. The instances not solved by SPASS 3.7 are due to lack of memory. As pointed out in the following section, by increasing the memory limit to 32GB, these instances are solved by SPASS. The benchmarks are originally separated on SAT/UNSAT formulas for the logics K, KT and S4. Obviously, the satisfiability in S5 may differ so we removed the SAT/UNSAT separation. The results are displayed in the Table 4. Here again, dd+ performs slightly better than SPASS. The benchmarks which cannot be solved are a specific modal logic encoding of the pigeon hole principle [START_REF] Haken | The intractability of resolution[END_REF] in the corresponding logic. Table 5: Overall results on all the benchmarks SPASS is outperformed in part because of its poor results on the modKSSS and modKLadn benchmarks. While the default SAT encoding often exhausts the available memory, each of the two proposed improvements significantly It seems pretty clear that the structural caching is key in our approach to efficiently solve those benchmarks. This is witnessed by the scatter plot in Figure 4. The x-axis corresponds to the time used by dd and the y-axis corresponds to the time used by dd+ to solve the problem. The main reason of the improvement is the reduction of the size of the CNF encoding, as shown by Table 6. We had a median value of 1,100,054 clauses for nm and this value drops down to 27,090 for dd+ on the exact same problems.

Overall results on all the benchmarks

Solver

Importance of the memory

We repeated the experiments with 32GB of RAM. Note that for the SAT based approach, the lack of memory happens during the translation phase, while for the others, the memory is exhausted in the solving phase.

One may wonder what would be the performance with more memory. Table 7 summarizes the number of problems solved with 8GB and 32GB by each solver. Providing 32GB to SPASS does not change the results significantly: it solved 30 additional instances. Our SAT approach also benefits from that increased amount of memory, up to 98 additional benchmarks can be solved by nm without caching. 32 GB is sufficient for LckS5TabProver (no memory-out), however only one additional benchmark can be solved.

Figure 6 compares the memory consumption of SPASS 3.7 and S52SAT dd+ in MB. SPASS usually requires more memory than dd+. The runtime and the memory consumption are roughly correlated (the Pearson product-moment Comparison against the state-of-the-art

Figure 5 shows a detailed runtime comparison between dd+ and SPASS on all benchmarks. In most cases, our approach outperforms SPASS. The two cases where it is less efficient consists in the hard combinatorial UNSAT Pigeon-Hole problems and the so-called "3CNF" benchmarks on which neither the diamond degree nor the caching helps.

Conclusion

We presented a new SAT encoding to solve the S5-SAT problem using a SAT solver. It is based on a reduction from S5-SAT to SAT with two improvements: a better upper bound on the number of required worlds and a structural caching. We compared our approach against solvers representing, to the best of our knowledge, the state-of-the-art for practical S5-SAT solving, on a wide range of classical modal logic benchmarks. The SAT based approach with all improvements enabled outperformed those solvers.

Even if the benchmarks may not be representative of practical S5 benchmarks because they come from other modal logics (K, KT, S4), those results open interesting perspectives. It is indeed the case that proving the satisfiability of a modal logic formula in S5 entails that the formula is also satisfiable on less restrictive systems (i.e. in K, KT, S4). Since our S5-solver provides a S5-model in just a few seconds (2.06s median time), we could perfectly use it as a preprocessing step to solve benchmarks in other modal logics.

Preliminary results on that direction are quite encouraging: on 276 satisfiable benchmarks in logic S5 (thus in K), S52SAT outperforms the state of the art Spartacus [START_REF] Götzmann | Spartacus: A tableau prover for hybrid logic[END_REF] on 158 of them. Another perspective, would be to adapt S52SAT in order to solve KD45-SAT problems given the fact that KD45 is also NP-Complete [START_REF] Fagin | Reasoning About Knowledge[END_REF].

Lemma 3 .

 3 tr (•φ, i, n) = tr (•φ, j, n) ∀i, j and • ∈ { , } Proof of Lemma 3. By definition, there are only 2 cases: -

Figure 2 :

 2 Figure 2: Translation of (a ∧ b) (left), initial translation (middle-left), tagged formula (middle-right), final translation (right)

Figure 3

 3 Figure 3: runtime distribution

Figure 4 :

 4 Figure 4: Runtime of dd with and without caching

Figure 6 :

 6 Figure 6: Memory comparison (32 MB) SPASS 3.7 vs dd+

Table 1 .

 1 dd, dd+ and SPASS are quite close to each other. The formulas consist of big

	Solver	d=2	d=4	d=6	Total
	LckS5TabProver 0 (17) 0 (29) 0 (40)	0
	S52SAT nm	21 (24) 0 (45) 0 (45)	21
	S52SAT nm+	21 (24) 0 (45) 0 (45)	21
	S52SAT dd	45 (0) 8 (27) 0 (45)	53
	S52SAT dd+	45 (0) 8 (27) 0 (45)	53
	SPASS 3.7	45 (0) 5 (40) 0 (45)	50

Table 1 :

 1 #instances solved in 3CNF K conjunctions where each conjunct has modal depth of at most 2,4 or 6. They are constructed in such a way that our caching algorithm could not find redundancies on such formulas. This is why the caching does not provide any benefit on those benchmarks.

	modKSSS and modKLadn : Caching helps
	n,a	#	LckS5...	nm	nm+	dd	dd+	SPASS 3.7
	4,4	40	0 (12)	32	40	40	40	40
	4,6	40	0 (23)	32	40	40	40	32 (8)
	8,4	40	0 (16)	32	40	39 (1)	40	16 (24)
	8,6	40	0 (17)	24	40	40	40	10 (30)
	16,4 40	0 (10)	22	40	40	40	8 (32)
	16,6 40	0 (16)	19	40	39 (1)	40	2 (38)
	total 240	0	161	240	238	240	108
	4,4	40	40	0 (40)	40	0 (40)	40	0 (40)
	4,6	40	14 (0)	0 (40) 32			

Table 3 :

 3 TANCS-2000. Upper: qbfMS -Lower: qbfML

	TANCS-2000 : Memory Demanding		
	n,a	#	LckS5...	nm	nm+ dd dd+ SPASS 3.7
	4,4	40	0 (38)	40	40	40	40	40
	4,6	40	0 (33)	40	40	40	40	40
	8,4	40	0 (38)	40	40	40	40	40
	8,6	40	0 (39)	40	40	40	40	40
	16,4 40	0 (40)	40	40	40	40	40
	16,6 40	0 (40)	40	40	40	40	35 (5)
	total 240	0	240	240 240 240	235
	4,4	40	23 (0)	3 (37) 40	40	40	40
	4,6	40	3 (0)	0 (40) 40	40	40	31 (9)
	total 80	26	3	80	80	80	71

Table 4 :

 4 LWB K, KT, S4 : Both dd and caching help #instances solved in LW B K,KT,S 4

	Solver	Logic K Logic KT Logic S4 Total
	LckS5TabProver 227 (73) 206 (102) 194 (111)	627
	S52SAT nm	307 (66)	344 (33)	292 (86)	943
	S52SAT nm+	351 (21)	363 (12)	349 (28)	1063
	S52SAT dd	333 (40)	355 (23)	337 (40)	1025
	S52SAT dd+	357 (12)	364 (12)	363 (12)	1084
	SPASS 3.7	343 (16)	363 (15)	360 (17)	1066

Table 6 :

 6 Number of clauses in the generated CNF formulas

		avg	median	max
	nm	6 881 821 1 100 054 58 653 264
	nm+	1 619 923	118 040	29 492 779
	dd	2 385 515	169 324	55 813 557
	dd+	269 891	27 090	22 914 442

Table 7 :

 7 3.7 vs dd+ #Solved with 8GB and 32GB

	Solver	8GB 32GB MO with 32GB
	LckS5TabProver 709	710	0
	SPASS 3.7	1530 1560	498
	S52SAT nm	1377 1475	382
	S52SAT nm+	1733 1800	166
	S52SAT dd	1645 1672	317
	S52SAT dd+	1834 1888	96

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

Acknowledgments

We thank the anonymous reviewers for their insightful comments. We thank Renate Schmidt for providing help on finding S5 solvers. Part of this work was supported by the French Ministry for Higher Education and Research and the Nord-Pas de Calais Regional Council through the "Contrat de Plan État Région (CPER)" and by an EC FEDER grant.