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Abstract
SAT solvers have become efficient for solving NP-complete
problems (and beyond). Usually those problems are solved
by direct translation to SAT or by solving iteratively SAT
problems in a procedure like CEGAR. Recently, a new recur-
sive CEGAR loop working with two abstraction levels, called
RECAR, was proposed and instantiated for modal logic K. We
aim to complete this work for modal logics based on axioms
(B), (D), (T), (4) and (5). Experimental results show that the
approach is competitive against state-of-the-art solvers for
modal logics K, KT and S4.

Introduction
SAT technology has proven to be a very successful practi-
cal approach to solve NP-Complete problems. One of the
main issues is to find the “right” encoding for the problem,
i.e. to find a polynomial reduction from the original problem
into a propositional formula in Conjunctive Normal Form
(CNF) which can be efficiently solved by a SAT solver. Re-
cently, we proposed in (Lagniez et al. 2017), a recursive ver-
sion of CEGAR in a procedure called RECAR (for Recursive
Explore and Check Abstraction Refinement). We instanti-
ated our framework for modal logic K. While the results ob-
tained outperformed the other solvers in terms of instances
solved, the solver was only designed to tackle modal logic
K. Even if the other modal logics are PSPACE-Complete,
in practice, the reductions are not straightforward and struc-
tural information can be lost during the translation process.
In order to extend the scope of our framework to other
modal logics, we propose to take advantage of the corre-
spondence between modal logic axioms and structural con-
straints (Sahlqvist 1973) by encoding the common modal
logic axioms (D), (T), (B), (4) and (5) into CNF. To this end,
we complete the initial over-abstraction function by append-
ing, for each axiom, a structural constraint which forces the
Kripke structure to satisfy those axioms and we experimen-
tally evaluate the proposed approach for modal logics KT
and S4 for which we could find benchmarks.

Preliminaries
To introduce the required notions of modal logic, we define
it, as usual, using Kripke semantics (Chellas 1980).
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Definition 1 (Language of Modal Logic). Let a countably
infinite set of propositional variables P and a non-empty set
of m unary modal operatorsM = {�1, . . . ,�m} be given. The
language of modal logic (notedL) is the set of formulas con-
taining P, closed under the set of propositional connectives
{¬,∧} and the set of modal operators in M. We also use the

standard abbreviations ^aφ
def
= ¬�a¬φ.

Without loss of generality, we only consider modal logic
formulas in negative normal form, noted NNF (negations ap-
pear only in front of propositional variables).

The depth of a formula φ inL, denoted by depth(φ), is the
highest number of nested modalities. The number of propo-
sitional variables in a formula φ in L is denoted by Atom(φ).
Modal logic formulas can be satisfied by Kripke structures
(Chellas 1980). The size of Kripke structures (the number of
worlds) is bounded due to the Finite Model Property and the
upper-bound is specific for each modal logic, as we can see
below.

Lemma 1 (Sebastiani and McAllester 1997). UB(φ) =
Atom(φ)depth(φ) in modal logic K.

Lemma 2 (Nguyen 1999). UB(φ) = |φ|2×|φ|+depth(φ) in modal
logics KT and S4.

RECAR for PSPACE Modal Logics
We redirect the reader to (Lagniez et al. 2017) to under-
stand how works MoSaiC, but the idea behind is to trans-
late a modal logic formula φ into a formula Σ in classical
propositional logic (CPL) (Cook 1971) which addresses the
question “is φ satisfied by a model of size n?”. The n being
bounded by a theoretical upper-bound UB(φ).

Encoding Modal Logic Axioms

It is well known that some axioms correspond to constraints
on Kripke structures (Sahlqvist 1973). (T) is for reflexivity,
(D) for seriality, (B) for symmetry, (4) for transitivity and
(5) for euclideanity. Therefore, to deal with different modal
logics, we simply append to the CPL’s translation the fol-
lowing constraints corresponding to the different axioms (m
corresponds to the number of modal operators and n to the
number of worlds):
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Solver LWBK SAT LWBK UNSAT TotalK LWBKT SAT LWBKT UNSAT TotalKT LWBS 4 SAT LWBS 4 UNSAT TotalS 4

#Instances 504 504 1008 504 504 1008 504 504 1008

Moloss 71 (0) 83 (0) 154 (0) 68 (0) 170 (0) 238 (0) 269 (0) 203 (0) 472 (0)
InKreSAT 192 (24) 247 (0) 439 (24) 155 (9) 193 (0) 348 (9) 248 (0) 304 (0) 552 (0)
BDDTab 248 (5) 277 (4) 525 (9) – – – 211 (0) 270 (0) 481 (0)
FaCT++ 264 (10) 284 (19) 548 (29) 184 (30) 226 (59) 410 (89) 298 (42) 338 (25) 636 (67)
MoSaiC 263 (241) 306 (198) 569 (439) 230 (251) 222 (253) 452 (504) 277 (229) 225 (277) 502 (506)
KS P 249 (4) 328 (3) 577 (7) 130 (2) 93 (0) 223 (2) 223 (0) 205 (0) 428 (0)
Spartacus 331 (33) 320 (10) 651 (43) 207 (74) 251 (59) 458 (133) 273 (17) 350 (13) 623 (30)

VBS 340 328 668 230 251 481 277 352 629

Table 1: Number of LWB instances solved in K, KT and S4

Definition 2 (Translation of Axioms).
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Each ra
i, j meaning that the w j is accessible from wi by the

relation a. Thus, when axiom (T) is considered (i.e. modal
logic KT), the over-abstraction function is (over(φ, n) ∧
over((T ), n)). When both axioms (T) and (4) (i.e. modal
logic S4) are considered, the over-abstraction function is
(over(φ, n) ∧ over((T ), n) ∧ over((4), n)).

Experimental results
We chose to compare the solvers on the classical LWB
benchmarks for modal logics K, KT and S4 (Balsiger,
Heuerding, and Schwendimann 2000). Indeed, we already
saw that MoSaiC was the fastest solver in (Lagniez et al.
2017) on many different benchmarks in K, so we wanted to
close the gap of our weakeness: LWB. The experiments ran
on a cluster of Xeon, 4 cores, 3.3 GHz with CentOS 6.4 with
a memory limit of 32GB and a runtime limit of 900 seconds
per solver per benchmark, no matter the logic considered.

We compared MoSaiC against state-of-the-art solvers for
the modal logics K, KT and S4, namely: Moloss 0.9, KS P
0.1.2, BDDTab 1.0, FaCT++ 1.6.4, InKreSAT 1.0, Sparta-
cus 1.1.3. It is important to notice that KS P (kindly provided
by its authors) is still under development for modal logics
KT and S4. Its results should be considered as preliminary.

We can see on Table 1 that MoSaiC is competitive. In-
deed it is able to solve more satisfiable benchmarks in KT
and S4 and still being competitive on unsatisfiable ones. It is
worth remembering that the approach here is generic com-
pared to other solvers dedicated only to K, KT and S4. The
main weakness of MoSaiC is its memory consumption, it
does not solve problems mainly due to the fact that it goes
above the 32GB limit.

Conclusion
In this article, we presented how MoSaiC can be extended
to deal with other modal logics than K. We show that just
translating the axioms leads to a competitive solver (espe-
cially in KT) but not a better one. In the future, we will work
directly on a new RECAR instantiation which will be axiom-
dependent to solve fastly instances, the drawback of such a
technique is being less generic than the approach presented
here.
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