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Abstract. Recent work on the practical aspects on the modal logic S5 satisfiabil-
ity problem showed that using a SAT-based approach outperforms other existing
approaches. In this work, we go one step further and study the related minimal
S5 satisfiability problem (MinS5-SAT), the problem of finding an S5 model, a
Kripke structure, with the smallest number of worlds. Finding a small S5 model
is crucial as soon as the model should be presented to a user, displayed on a screen
for instance. SAT-based approaches tend to produce S5-models with a large num-
ber of worlds, thus the need to minimize them. That optimization problem can
obviously be solved as a pseudo-Boolean optimization problem. We show in this
paper that it is also equivalent to the extraction of a maximal satisfiable set (MSS).
It can thus be solved using a standard pseudo-Boolean or MaxSAT solver, or a
MSS-extractor. We show that a new incremental, SAT-based approach can be
proposed by taking into account the equivalence relation between the possible
worlds on S5 models. That specialized approach presented the best performance
on our experiments conducted on a wide range of benchmarks from the modal
logic community and a wide range of pseudo-Boolean and MaxSAT solvers. Our
results demonstrate once again that domain knowledge is key to build efficient
SAT-based tools.
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1 Introduction

Over the last twenty years, modal logics have been used in various areas of artificial
intelligence like formal verification [1], database theory [2] and distributed computing
[3] for example. More recently, the modal logic S5 was used for knowledge compilation
[4] and in contingent planning [5]. Different solvers for different modal logics have been
designed to decide the satisfiability of modal formulas since the 90’s [6,7]. Some of
them have been designed quite recently [8,9,10,11]. Despite the variety of techniques
employed, none of them formally guarantees that, when a model is found, it is the
smallest model possible (in number of worlds) for the input formula, in fact many of
them do not even output a model but simply answer yes/no.

Providing a model, a certificate of satisfiability, is important to check the answer
given by the solver. This is true both for the author of the solver or a user of that solver.
This is mandatory nowadays in many solver competitions, among them the SAT com-
petition [12]. It has also been shown that those models can help improving NP-oracle



based procedures [13]: a procedure requiring a polynomial number of calls to a yes/no
oracle can be transformed into a procedure requiring only a logarithmic number of calls
when the oracle can provide a model. Another example of the importance for an oracle
to provide a model may be found in the model rotation technique [14], a method for the
detection of clauses that are included in all MUSes (Minimal Unsatisfiable Sets) of a
given formula via the analysis of models returned by a SAT oracle. Even if the theory
does not guarantee a reduction of the number of oracle calls, in practice it provides a
huge performance gain (up to a factor of 5) [15]. Finding the smallest model may be
even more important in some contexts. The provided model usually has a meaning for
the user, like in Hardware Verification [1] where the model is in fact an explanation of
the bug found in the design of the hardware. The smaller the model, the more precise
could be the location of the bug. It could also be the case that the model should be
inspected by the user or displayed on a screen. Thus, the smaller, the better. There is
a huge literature on minimizing models for SAT [16,17,18]. We are interested here in
minimizing models for S5-SAT.

Our goal in this paper is to propose techniques to compute the smallest S5-model,
in number of worlds, for a given input formula. We call this problem MinS5-SAT. We
focus exclusively on the modal logic S5, for which the satisfiability problem is NP-
complete [19] as for the classical propositional logic (CPL) [20]. We propose and com-
pare different techniques. (1) The first obvious technique is based on a translation into
CPL. The parameter given to the translation is the number n of possible worlds that the
solution model is assumed to have. Linear or dichotomous search can be used to min-
imize the S5-model. (2) The second technique adds to the previous encoding selector-
variables in order to activate or deactivate worlds. Finding a minimal S5-model in this
case amounts to an equivalent MaxSAT problem [21], or, more surprisingly, to a MSS
problem. Thus we can rely on off-the-shelves MaxSAT solvers or MSS-extractors to
solve the original problem. (3) The last technique goes one step further from the two
previous approaches. Thanks to a specific property of modal logic S5, we interpret the
set of selectors causing the inconsistency of the formula to reach the theoretical upper
bound faster. We compare these different techniques and show empirically which one
better suits the benchmarks used. All benchmarks we could find for mono-agent S5
are randomly generated or created automatically following a pattern (“crafted”). (Note
that reasoning about knowledge problems, such as those in [22], are all multi-agents.)
However, we know from the SAT community [12] that the performance of a solver can
be significantly different when the problem is randomly generated, when it is “crafted”
or when it models a “real” problem which has some kind of “structure”. Thus, we
generated new S5 benchmarks translated from planning problems with incomplete in-
formation about the initial state (with sensing and full observability) [23] to complete
the picture. We choose planning problems to obtain structured benchmarks requiering
relatively large Kripke models.

In the reminder of this article, we first present the modal logic S5 and define the
MinS5-SAT problem. Then, we provide a first approach to solve MinS5-SAT using a
SAT-oracle and selector variables. We provide a translation from MinS5-SAT problems
to equivalent MSS-extraction problems. We present a specific property of modal logic



S5 that speed up our initial SAT-based approach. Finally, we present the experimental
results and conclude.

2 Preliminaries

2.1 Modal Logic S5

A central problem associated with any logic is the satisfiability problem, that is to decide
whether a given formula has a model. The first complexity results for satisfiability in
modal logic were achieved by Ladner [19]. He showed that the satisfiability problem in
modal logic K (K-SAT) is in PSPACE and that the satisfiability problem in modal logic
S5 (S5-SAT) is NP-complete. In this paper, we are interested in S5. In what follows, let
P be a countably infinite non-empty set of propositional variables. The language L of
modal logic is the set of formulas φ defined by the following grammar in BNF, where
p ranges over P:

φ ::= > | p | ¬φ | φ ∧ φ | φ ∨ φ | �φ | ^φ

The operators→ and↔, defined by the usual abbreviations, are also used. A formula of
the form �φ (box phi) means ‘φ is necessarily true’. A formula of the form^φ (diamond
phi) means ‘φ is possibly true’.

Example 1. Let P = {a, b}. φ = ((�¬a ∨ ^b) ∧ ^a ∧ �b) is a modal logic formula.

Formulas in L are interpreted using S5-structures [24], which are defined as follows:

Definition 1 (S5-Structure). A S5-structure is a triplet M = 〈W,R,I〉, where:
W is a non-empty set of possible worlds;
R is a binary relation on W which is an equivalence relation (∀w.∀v. (w, v) ∈ R);
I is a function associating, to each p ∈ P, the set of worlds from W where p is true.

Note that because R is an equivalence relation, we will omit it in the rest of this paper.

Definition 2 (Pointed S5-Structure). A pointed S5-structure is a pair 〈M, ω〉, where
M is a S5-Structure and ω, called the actual world, is a possible world in W.

In the remainder of this article, ‘structure’ means ‘pointed S5-structure’. We define the
size of a structure 〈M, ω〉, noted |M|, as its number of worlds. Below, the satisfaction
relation between such structures and formulas in L is defined.

Definition 3 (Satisfaction Relation). Let M = 〈W,R,I〉, an S5-structure. The satis-
faction relation � between formulas and structures is recursively defined as follows:

〈M, ω〉 � > 〈M, ω〉 � p iff ω ∈ I(p)
〈M, ω〉 � ¬φ iff 〈M, ω〉 2 φ

〈M, ω〉 � φ ∧ ψ iff 〈M, ω〉 � φ and 〈M, ω〉 � ψ

〈M, ω〉 � φ ∨ ψ iff 〈M, ω〉 � φ or 〈M, ω〉 � ψ

〈M, ω〉 � �φ iff for all v ∈ W we have 〈M, v〉 � φ

〈M, ω〉 � ^φ iff there exists v ∈ W such that 〈M, v〉 � φ



Definition 4 (Satisfiability). A formula φ is satisfiable if and only if there exists a struc-
ture 〈M, ω〉 that satisfies φ. Such a structure is called a ‘model of φ’.

Example 2. Here is a structure 〈M, ω0〉 satisfying the formula φ from Example 1:
W = {w0,w1,w2}, I = {〈a, {w0}〉, 〈b, {w0,w1,w2}〉}. The size of 〈M, ω0〉 equals 3.

As S5-SAT is NP-complete [19], we proposed a reduction from this problem to SAT in
[10]. The reduction function takes as parameter the number of worlds n and is defined
as follows:

Definition 5 (Translation function tr). Let φ ∈ L.

tr(φ, n) = tr′(φ, 1, n)
tr′(p, i, n) = pi tr′(¬ψ, i, n) = ¬ tr′(ψ, i, n)
tr′(ψ ∧ χ, i, n) = tr′(ψ, i, n) ∧ tr′(χ, i, n) tr′(ψ ∨ χ, i, n) = tr′(ψ, i, n) ∨ tr′(χ, i, n)

tr′(�ψ, i, n) =

n∧
j=1

(tr′(ψ, j, n)) tr′(^ψ, i, n) =

n∨
j=1

(tr′(ψ, j, n))

The function ‘tr’ is satisfiability preserving if n is large enough. Moreover, some addi-
tional simplifications are performed to avoid outputting a very large formula (e.g., the
Tseitin algorithm). See [10] for more details.

Example 3. Let φ the formula in Example 1. Its translation tr(φ, 2) is
((¬a1 ∨ b1 ∨ b2) ∧ (¬a2 ∨ b1 ∨ b2) ∧ (a1 ∨ a2) ∧ (b1 ∧ b2)).

2.2 Unsatisfiable Cores

Recent SAT solvers are incremental, i.e., they are able to check the satisfiability of a
formula “under assumptions” [25] and are able to output a core (a “reason” for the un-
satisfiablity of the formula). The use of unsatisfiable cores is key to many applications,
such as MaxSAT [21], MCS (Minimal Correction Set) [26], MUS (Minimal Unsatisfi-
able Set) [27]. The unsatisfiable core is defined as follows:

Definition 6 (Unsatisfiable Core under Assumptions). Let Σ be a satisfiable CPL
formula in CNF built using Boolean variables from P. Let A be a consistent set of
literals built using Boolean variables from P such that (Σ ∧

∧
a∈A a) is unsatisfiable.

C ⊆ A is an unsatisfiable core (UNSAT core) of Σ under assumptions A if and only if
(Σ ∧

∧
c∈C c) is unsatisfiable.

Definition 7 (SAT Solver under Assumptions). Let Σ be a CPL formula in CNF. A
SAT solver for Σ, given assumptions A, is a procedure which provides a pair 〈r, s〉 with
r ∈ {SAT,UNSAT} such that if r = SAT then s is a model of Σ, else if r = UNSAT then
s is an UNSAT core of Σ under assumptions A.



2.3 MSS and co-MSS

The problem of computing a Maximal Satisfiable Set of clauses (MSS problem) con-
sists of extracting a maximal set of clauses from a formula in CNF that are consistent
together [28]. The minimal correction subset (MCS or co-MSS) is the complement of
its MSS.

Definition 8. Let Σ be a given unsatisfiable formula in CNF. S ⊆ Σ is a Maximal
Satisfiable Subset (MSS) of Σ if and only if S is satisfiable and ∀c ∈ Σ \ S , S ∪ {c} is
unsatisfiable.

Definition 9. Let an unsatisfiable formula Σ in CNF be given. C ⊆ Σ is a Minimal
Correction Subset (MCS or co-MSS) of Σ if and only if Σ \C is satisfiable and ∀c ∈ C,
Σ \ (C \ {c}) is unsatisfiable.

3 The MinS5-SAT problem

As pointed in [10], the necessary number of worlds to S5-satisfy a formula is bound by
dd(φ) + 1, where dd(φ) is given in Definition 10 below.

Definition 10 (Diamond-Degree). The diamond degree of φ ∈ L, noted dd(φ), is de-
fined recursively, as follows:

dd(φ) = dd′(nnf(φ))
dd′(>) = dd′(¬>) = dd′(p) = dd′(¬p) = 0

dd′(φ ∧ ψ) = dd′(φ) + dd′(ψ)
dd′(φ ∨ ψ) = max(dd′(φ), dd′(ψ))

dd′(�φ) = dd′(φ) dd′(^φ) = 1 + dd′(φ)

We denote by nnf(φ) the formula φ in negation normal form (the negation applies
only to propositional variables). Thus, we have that tr(φ, dd(φ) + 1) is equisatisfiable to
φ. Even if, in practice, we obtain very good results using this value as upper-bound, it
seems far from the optimal value in all cases. For instance, in the model of Example 1,
we can see redundancies: two worlds contain the same valuation. In contexts where the
size of the returned model is critical, it makes sense to try to minimize it.

Consequently, in this article, we are interested in finding a model for a formula in
S5 with the smallest number of worlds in its S5-structure. We call this problem the
minimal S5 satisfiability problem and we define it as follows:

Definition 11 (Minimal S5 Satisfiability). A formula φ is min-S5-satisfied by a struc-
ture 〈M, ω〉 (noted 〈M, ω〉 |=min φ) if and only if 〈M, ω〉 |= φ and φ has no model 〈M′, ω′〉
such that |M′| < |M|.

Definition 12 (Minimal S5 Satisfiability Problem). Let a formula φ in L be given.
The minimal S5 satisfiability problem (MinS5-SAT) is the problem of finding a structure
〈M, ω〉 such that 〈M, ω〉 |=min φ.



Let us remark that obtaining the minimal model for φ is not as simple as merging the
worlds with the same valuations into only one world in any model of φ. The minimality
cannot be guaranteed that way. Let us go back to the Example 2 to illustrate this. There,
we have dd(φ) + 1 = 3. If we remove the redundancy, we obtain a model of size 2.
However, φ is also satisfied by the following structure containing only one world: W =

{w0}, I = {〈a, {w0}〉, 〈b, {w0}〉}, which is a minimal model.
A very simple way to tackle this problem is to use the solver S52SAT [10] with a

linear search strategy. Roughly, the procedure starts by trying structures of size b = 1.
If no model is found, it iterates the process, each time increasing the value of b by 1. It
iterates until a model of φ is found or the upper bound dd(φ)+1 is reached. This strategy
is called 1toN. It is of course also possible to do it in reverse order: the procedure starts
with b = dd(φ) + 1 and decreases the value of b by 1 (this is called Nto1). Yet another
possibility is to use a binary search (called Dico).

However, these approaches are very naive. If we take, for instance, 1toN when the
solution is a model of size m, it will perform m translations from S5 to SAT and then m
calls to a SAT solver. The problem here is that such strategy does not take advantage of
the previous UNSAT answer of the SAT solver to solve the new formula.

Modern SAT solvers are able to take advantage of previous calls when they are used
incrementally [29]. The usual way to do that is to add selectors (assumptions) to the
input formula and to get as output, on the suitable cases, some kind of “reason” for its
unsatisfiability, in terms of these selectors. We propose here a way to add such selectors
in the translation from S5 to SAT.

4 Preliminary step: an assumption-based translation

The translation ‘tr’ proposed in [10] is based on a simple, yet effective, idea: let φ be
the input formula, every sub-formula of the form �ψ is translated to

∧n
i=1 tr(ψ, i, n),

whereas sub-formulas of the form ^ψ are translated to
∨n

i=1 tr(ψ, i, n). The number n is
the number of possible worlds of the model being constructed. If we set n = dd(φ) + 1,
we are guaranteed to have an equi-satisfiable formula on the output.

In order to take advantage of the ability of modern SAT solvers to return a reason
for unsatisfiability, we can add selector variables si to enable or disable worlds wi. We
update the translation of �ψ to

∧n
i=1(¬si ∨ tr(ψ, i, n)) and the one of ^ψ to

∨n
i=1(si ∧

tr(ψ, i, n)). Worth noticing that due to the simplifications authorized in S5, the modalities
cannot be embedded modalities. The modal depth equals 1. While the resulting CNF
is be bigger than the original one, the size of the S5-model will now be decided by the
number of satisfied selector variables. The complete translation function is given below:

Definition 13 (Translation with selectors). Let φ ∈ L.

trs(φ, n) = trs
′(φ, 1, n)

trs
′(p, i, n) = pi trs

′(¬ψ, i, n) = ¬ trs
′(ψ, i, n)

trs
′(ψ ∧ δ, i, n) = trs

′(ψ, i, n) ∧ trs
′(δ, i, n) trs

′(ψ ∨ δ, i, n) = trs
′(ψ, i, n) ∨ trs

′(δ, i, n)

trs
′(�ψ, i, n) =

n∧
j=1

(¬s j ∨ (trs
′(ψ, j, n)) trs

′(^ψ, i, n) =

n∨
j=1

(s j ∧ (trs
′(ψ, j, n))



An S5-model has to have at least one possible world (the current world). W.l.o.g.,
we consider that the current world is the world number 1, thus s1 is always set to true. In
the remainder of this article, we denote by trs(φ) the formula (trs(φ, dd(φ) + 1)∧ s1) and
the set of all selectors of trs(φ) is denoted by S(φ) (i.e., S(φ) = {si | 1 ≤ i ≤ dd(φ) + 1}).

Example 4 (Example of ‘trs’). Let us go back to Example 1 and reuse the formula φ =

((�¬a ∨ ^b) ∧ ^a ∧ �b). Its translation trs(φ, 3) is:

(¬s1 ∨ (¬a1 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
(¬s2 ∨ (¬a2 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
(¬s3 ∨ (¬a3 ∨ (s1 ∧ b1) ∨ (s2 ∧ b2) ∨ (s3 ∧ b3))) ∧
((s1 ∧ a1) ∨ (s2 ∧ a2) ∨ (s3 ∧ a3)) ∧ ((¬s1 ∨ b1) ∧ (¬s2 ∨ b2) ∧ (¬s3 ∨ b3)) ∧ s1

Intuitively, every formula with subscript i is a formula that is true at the possible world i.
If the selector si is false, then the world i is not present in the model (and we do not care
about the valuation of the propositions there in). Below, a formula that is equivalent to
trs(φ, 3) but with s1 and s2 activated and s3 deactivated.

(¬> ∨ (¬a1 ∨ (> ∧ b1) ∨ (> ∧ b2) ∨ (⊥ ∧ b3))) ∧
(¬> ∨ (¬a2 ∨ (> ∧ b1) ∨ (> ∧ b2) ∨ (⊥ ∧ b3))) ∧
(¬⊥ ∨ (¬a3 ∨ (> ∧ b1) ∨ (> ∧ b2) ∨ (⊥ ∧ b3))) ∧
((> ∧ a1) ∨ (> ∧ a2) ∨ (⊥ ∧ a3)) ∧ ((¬> ∨ b1) ∧ (¬> ∨ b2) ∧ (¬⊥ ∨ b3)) ∧ >

This formula is equivalent to (¬a1 ∨ b1 ∨ b2) ∧ (¬a2 ∨ b1 ∨ b2) ∧ (a1 ∨ a2) ∧ (b1 ∧ b2),
which is the same as the one presented in Example 3. It corresponds to the problem of
deciding if φ is satisfiable in a model with 2 worlds.

As we can see, the problem of solving the minimal S5 satisfiability problem is now
equivalent to the problem of satisfying trs(φ, n) and minimize the number of si, for
i > 1, assigned to true (or, equivalently, maximize the number of si assigned to false).
Obviously, it can be seen as a pseudo-Boolean optimization problem [30], where the
optimization function to be minimized is the number of selectors assigned to true. This
problem is also often solved nowadays as an instance of the Partial MaxSAT problem
[21], which consists in satisfying all the hard clauses (clauses that MUST be satisfied)
and the maximum number of soft clauses (the clauses that are not mandatory). In our
case, the hard clauses are those generated by the translation function, and the soft-
clauses are the unit clauses {¬si | si ∈ S(φ) and i > 1} built from the selector variables.

We can thus use state-of-the-art Partial MaxSAT solvers. However, it is not the only
way, as we show in the following section. By considering the structure of S5-models,
extracting a MSS can also be used to decide the problem.

W.l.o.g., in the following sections, we represent a set of unit soft clauses as the set
of selectors composing it (eg.: {s2, s3, s4} rather than {¬s2,¬s3,¬s4}).

5 First insight: cardinality optimality equals subset optimality

In the Section 2.3, we defined the MSS problem. It is also possible to define a partial
version of the MSS problem, where the objective is to compute a MSS such that some



given subset of the clauses (the hard clauses) must be satisfied. This problem is related
to the Partial MaxSAT problem. In fact, a solution to a Partial MaxSAT problem is one
of the biggest MSS that satisfies the set of hard-clauses. In general, a partial MSS is not
a solution to a Partial MaxSAT problem but, in the specific case of MinS5-SAT, a partial
MSS is also a solution to its corresponding Partial MaxSAT problem, which means that
in that specific context, subset optimality (MSS) is equivalent to cardinality optimality
(MaxSAT).

Proposition 1. Let Σ = trs(φ, dd(φ) + 1) a CNF, and let χ be the formula
∧dd(φ)+1

i=2 ¬si.
An MSS of (Σ ∧ χ), where Σ is the set of hard clauses, is also a solution to the Partial
MaxSAT problem (Σ ∧ χ).

The proof of Prop. 1 uses the following lemma.

Lemma 1. Let Σ = trs(φ, n), and let χ be the formula
∧

si∈S
′ ¬si, where S′ ⊆ S(φ). If

(Σ ∧ χ) is satisfiable then so is the formula (Σ ∧ χ′), where χ′ is obtained from χ by
replacing the occurrences of one selector s ∈ S′ by another selector s′ ∈ S(φ) \ S′.

Proof (sketch). The proof is done by an induction on the length of the formula φ. In the
induction base, Σ = p, for some p ∈ P. We have Σ = p1, χ = ¬s1 and S(φ) = {s1},
which means that the claim is true (because S(φ) \ S′ = ∅). We have several cases on
the induction step. Since their proofs are all similar, we show only one them here. Let
φ = �φ′. We have Σ =

∧n
i=1(¬si ∨ trs(φ′, i, n)), χ =

∧
si∈S ′ ¬si, and S(φ) = {s1, . . . , sn}.

Now, let χ′ be obtained from χ where si is replaced by s j ∈ S(φ) \ S ′. If (Σ ∧ χ) is
satisfied by a model M then we construct a new model M′, which equals M except
that the truth assignment of all propositional variables with subscript i are the same as
those with subscript j. We immediately have that if M |= χ then M′ |= χ′. We also have
that if M |= ¬si then M′ |= ¬s j. Finally, for each 1 ≤ i ≤ n, if M |= trs(φ′, i, n)) then
M′ |= trs(φ′, j, n)), by the induction hypothesis (since the length of φ′ is strictly smaller
than that of φ). Therefore, M′ |= Σ ∧ χ′.

Proof (of Prop. 1). Towards a contradiction, assume that there exists a MSS δ1 = (Σ ∧
χ1), where χ1 =

∧
s∈S 1
¬s, which is not the biggest one. Thus, there exists another MSS

δ2 = (Σ∧χ2), where χ2 =
∧

s∈S 2
¬s and such that |S 1| < |S 2|. Now, let S 3 = S 2\{s}∪{s′},

where s ∈ S 2 and s′ ∈ S 1. By Lemma 1, the formula δ3 = (Σ∧χ3), where χ3 =
∧

s∈S 3
¬s

is satisfiable, because it is δ2 with one of the selectors of S 2 in χ2 replaced by another
selector. It is easy to see that one can keep replacing selectors in this set until we have
the set S k, such that S 1 ⊆ S k. The formula δk = (Σ ∧ χk), where χk =

∧
s∈S k
¬s, is

satisfiable, by applying Lemma 1 |S 1| times. Then δk a MSS that includes δ1, which
contradicts the assumption. This means that every MSS of the initial formula is one of
the biggest ones. Therefore, any MSS of (Σ∧χ) is also a solution to the partial MaxSAT
problem (Σ ∧ χ). ut

As a direct consequence of Prop. 1, we can always find a MSS such that the indexes
of the selectors inside it are contiguous. This means that we can consider an optimisa-
tion that reduces the search space (breaks the symmetries), by adding the following:

(
n−1∧
i=1

¬si → ¬si+1) (1)



By giving as input trs(φ, n) plus S(φ), we can solve the MinS5-SAT problem with
a MaxSAT solver, or a Pseudo Boolean (PB) solver. If we also add Equation 1 to the
input, we can then use a MSS-extractor. However, we demonstrate in the following
section that we can push the envelope by considering a dedicated approach using an
incremental SAT solver with unsatisfiable cores.

6 Second insight: only core size matters

Consider the following example: let φ be the input formula and let dd(φ) + 1 = 10.
We translate φ using selectors and start looking for a model for it. Assume that, after
some computation, we conclude that 4 worlds cannot be deactivated altogether, i.e., if
the selectors si, s j, sk and sl are set to false, we have an inconsistency. We can infer
from that information that we will need at least 7 worlds in the S5-model for φ. This
comes from the fact that the ‘4 worlds which cannot be deactivated altogether’ can be,
in fact, any group of 4 worlds. Indeed, in the sequel, we demonstrate that if we have a
group of m selectors forming an unsatisfiable core and the upper-bound equals n, then
we need at least (n − m + 1) worlds in the S5-model of the input formula.

Proposition 2. Let φ ∈ L such that dd(φ) + 1 = n. If C is an UNSAT core of φ under
assumptions S(φ) then trs(φ, n′) is unsatisfiable for all n′ ∈ {1, . . . , (n − |C|)}.

Lemma 2. If C is an UNSAT core of φ with assumptions S(φ) then any set of literals
C′ = {¬s | s ∈ S(φ)} such that |C′| = |C| is an UNSAT core of φ.

Proof. Assume that C is an UNSAT core of φ with assumptions S(φ). We have that
(φ∧
∧

l∈C l) is unsatisfiable. Now, towards a contradiction, also assume that there exists
a set C′ = {¬s | s ∈ S(φ)} such that |C′| = |C| and (φ ∧

∧
s∈C ¬s) is satisfiable. By

Lemma 1, we can obtain a new set D from C′ by replacing the selectors in C′ by those
in C such that (φ ∧

∧
s∈D ¬s) is satisfiable. Because D = C, we have a contradiction.

Therefore, any set of literals C′ obtained as such is an UNSAT core of φ. ut

Proof (of Prop. 2). The formula has n worlds. The SAT solver returns a core C of size
m. So one of the selector has to be true. But due to Lemma 2, we have to put at least
one selector to true to all the possible unsatisfiable cores of size m. Said otherwise, we
must have (n − m + 1) selectors to be true together, or the formula will be necessarily
unsatisfiable. This also means that ∀b′ ∈ [1 . . . (n − m)] trs(φ, b′) is unsatisfiable. ut

Using this property, it is possible to construct an iterative algorithm which is based
on incremental SAT. The SAT solver will be able to return an unsatisfiable core, and
by interpreting it in the specific case of S5 as explained in Prop. 2, we can refine the
bound used in the translation. The procedure starts by trying structures of size b = 1.
If no model is found, it iterates the process, each time increasing the value of b by
(dd(φ) + 1 − |s| + 1) (where |s| is the size of the core). It iterates until a model of φ
is found or the upper bound dd(φ) + 1 is reached. Note that |s| strictly decreases at
each step, because we strictly increase the number of satisfied selectors. The approach
Dichoc is similar.



7 Experimental results

We compared several different approaches to the MinS5-SAT problem: S52SAT [10]
with five different strategies: 1toNc, 1toN, Nto1, Dichoc, Dicho. CNF plus MaxSAT
solver: maxHS-b [31], mscg2015b [32], and MSUnCore [33]. Pseudo-Boolean (PB)
translation plus PB solver: NaPS [34], SAT4J-PB [35], SCIP [36]. CNF plus symmetry
breaking plus MCS extraction with the LBX solver [37].

To see the impact of our minimisation, we use the state-of-the-art modal logic S5
solver S52SAT with glucose (4.0) as embedded SAT solver [29] (with its caching ac-
tivated). We selected MaxSAT solver which have shown good performances in the
MaxSAT competition 2016 [38]. We also considered LMHS-2016 [39] but, unfortu-
nately, we did not manage to compile it due its multiple links to other software and our
configuration environment.

Despite our through research, we could not find benchmarks for modal logic S5.
Due to this fact, we chose to use the following benchmarks for modal logics K, KT
and S4: TANCS-2000 modalised random QBF (MQBF) formulae [40] complemented
by additional MQBF formulae provided by [41]; LWB K, KT and S4 formulae [42],
with 56 formulae chosen from each of the 18 parametrized classes, generated from
the script given by the authors of [9]; and Randomly generated 3CNFKS P formulae
[43] of modal depths 1 and 2. The benchmarks are classified as SAT or UNSAT in
[9,42]. However, we kept only the benchmarks satisfied in their original logic to see
the impact of a potential use of a S5-solving as a preprocessor for other modal logics.
We have no interest with the UNSAT benchmarks because the unsatisfiability in K,KT
and S4 implies the unsatisfiability in S5. We also proposed new benchmarks based on
planning with uncertainties in the intial states, to check the performance of the different
approaches on structured benchmarks. In such planning problems, some fluent f may
be initially true, initially false, or neither. I the latter case, two different initial situations
are possible. As a result, instead of a single initial state s0, we may have several different
initial states, which are consistent with available knowledge about the system (see [23]
for more details and applications). By construction, all instances considered here have
a plan to minimize. Modal logic S5 formulas are generated with a CEGAR approach
[44]. We increase the value of the bounded-horizon until we reach the smallest value
for which there exists a plan as explained in [45].

We performed experimental evaluations on a variety of planning benchmarks. It in-
cludes the traditional conformant benchmarks, namely: Bomb-in-the-toilet, Ring, Cube,
Omelet and Safe (see [46] for more details) modeled here as planning with uncer-
tainties in the initial state. We also performed evaluations on classical benchmarks:
Blocksworld, Logistics, and Grid, in which the authors of [47] introduced uncertainty
about the initial state. All the benchmarks are available for download1.

To select the “minimalizable” benchmarks, we set a time-out of 1500 seconds. We
managed to solve 28 benchmarks out of the 119 available. We tried other solvers: Spar-
tacus [48] solved 15 instances and SPASS [49] solved 5, with both being a subset of the
28 solved by S52SAT. Our generator has negligible execution times and is available for

1 https://fai.cs.uni-saarland.de/hoffmann/ff/cff-tests.tgz



Table 1: #Instances solved in LWB
Method K KT S4 Total
# Benchs (185) (279) (160) (624)
1toN 185 279 160 624
Nto1 17 34 2 53
Dicho 119 175 78 372

1toNc 185 279 160 624
Dichoc 135 201 100 436

maxHS 17 25 72 114
MSCG 74 65 103 242
MSUnCore 19 30 80 129

NaPS 126 64 71 261
SAT4J 18 27 58 103
SCIP 104 158 112 374

LBX 118 173 92 383

VBS 185 279 160 624

Fig. 1: Scatter-plot of 1toN vs 1toNc

download2. Each of these benchmarks has a plan of size N (where N can be different
for each benchmark) which has been verified. We then generated modal logic bench-
marks from these instances by fixing the horizon at N, N + 1, . . . , N + 9 having thus
280 benchmarks, all S5-satisfiable, to test our minimisation techniques.

The benchmarks and the different solvers (especially S52SAT, which is the one
translating the formulas into propositional logic) are available3. The experiments ran
on a cluster of Xeon 4 cores, 3.3 GHz, running CentOS 6.4. The memory limit is set
to 32GB and the runtime limit is set to 900 seconds per solver per benchmark. In the
following tables, we provide the number of benchmarks for which a minimal S5 model
is found. In bold face, the best result for each row/column. The VBS (Virtual Best
Solver) represents the union of the benchmarks solved by all the approaches.

7.1 State-of-the-art modal logics benchmarks

Logic WorkBench (LWB) Benchmarks All the results are reported in the Table 1. The
difference in the results between the approaches using S52SAT and the MaxSAT solvers
came from the fact that MaxSAT solvers cannot take into account inherent properties of
modal logic S5. They have embedded cardinality constraints used to count the number
of satisfied/falsified clauses to return the smallest model. By comparing the results of
1toN and 1toNc in number of benchmarks solved, one could think that selectors do not
make much difference. But the runtime provides a different picture, as in the scatter
plot depicted in Figure 1. The x-axis corresponds to the time used by 1toNc while the y-
axis corresponds to the time used by 1toN to solve these problems. As expected, 1toNc

performs less iterations and thus calls the SAT solver fewer times. We remark that the

2 http://www.cril.fr/~montmirail/planning-to-s5/
3 http://www.cril.fr/~montmirail/s52SAT



Table 2: #instances solved 3CNFKS P
Benchs 1toN Nto1 Dicho 1toNc Dichoc maxHS MSCG MSUnCore NaPS SAT4J SCIP LBX VBS

md=1 (62) 55 0 26 62 40 40 30 38 42 35 42 47 62
md=2 (27) 17 0 9 27 17 12 12 12 17 12 20 17 27
Total (89) 72 0 35 89 57 52 42 50 59 47 62 64 89

Table 3: #instances solved in MQBF
Benchs 1toN Nto1 Dicho 1toNc Dichoc maxHS MSCG MSUnCore NaPS SAT4J SCIP LBX VBS
qbf (56) 56 55 56 56 56 56 56 56 55 48 56 56 56

qbfS (171) 171 0 171 171 171 0 156 0 144 140 155 167 171
Total (227) 227 55 227 227 227 56 212 56 199 188 211 223 227

solver took less than 10 seconds for the majority of the instances. It turns out that it
makes sense to consider this approach as a pre-processing for a more generic minimal
modal logic SAT solver (eg., for logics K, KT and S4). Indeed if we find a minimal
model in S5, we obtain in the same way an upper-bound on the size of the minimal
model in K, KT and S4.

3CNFKS P benchmarks The randomly generated 3CNFKS P formulae [43] of depths
1 and 2 consist of 1000 formulae, where 457 are satisfiable in modal logic K and 89
are satisfiable in S5. All the results are reported in the Table 2. As for LWB, 1toN and
Dicho are better than Nto1 because the minimal models found are relatively small. It is
interesting to notice that the modal depth of the formulas influences the result. This is
surprising due to the fact that, in S5, all formulae can be reduced to modal depth 1. In
fact, many instances with modal depth 2, that are SAT in modal logic K, are UNSAT in
modal logic S5.

Randomly Modalized QBF (MQBF) benchmarks Originally, this benchmark set con-
tains 1016 formulas, among them 617 are SAT while 399 are UNSAT in K. All the
results are reported in the Table 3. Dicho, Dichoc, 1toN and 1toNc approaches are bet-
ter than the other ones. Moreover, it is interesting to see that the whole qbf family is
in fact S 5-satisfiable, even though they are normally used to evaluate modal logic K
solvers. It is worth noticing that the performance of a MaxSAT or a PB approach are
globally worse than the MSS-extaction approach. However, if we add the symmetry
breaking from Equation 1 then the performances become equivalent.

Structured Benchmarks: Planning with uncertainties As in the random and crafted
benchmarks before, we can see in Figure. 2c that the use of selectors allows us to solve
more benchmarks. But, surprisingly, here the best approach is to use a dichotomic
search instead of a linear search from 1 to N. This is mainly due to the size of the
smallest model, which is rarely a small number, as it was the case in LWB for example.
Moreover, each call to the SAT solver is more time-consuming because the instances
are harder to solve in practice. This again reminds us that the benchmarks considered
can influence the result obtained.



(a) S52SAT vs S52SAT-1toNc (time) (b) S52SAT vs S52SAT-1toNc (size)

Method block bomb cube omelet ring safe Total
# Benchs (20) (30) (100) (30) (40) (60) 280
1toN 10 25 100 0 40 0 175
Nto1 5 10 20 0 20 0 55
Dicho 20 20 70 0 40 0 150

1toNc 20 25 100 10 40 30 225
Dichoc 20 30 100 18 40 34 242
maxHS 17 22 82 0 40 5 166
MSCG 20 25 72 0 40 4 161
MSUnCore 10 22 68 0 38 0 138

NaPS 20 30 74 2 40 8 174
SAT4J 20 20 58 0 33 0 131
SCIP 20 30 100 5 40 10 200

LBX 12 26 79 0 40 0 157

VBS 20 30 100 18 40 34 242

(c) #instances solved in Planning

(d) Spartacus vs S52SAT-1toNc (size)

Fig. 2: Results on Planning and analysis of the overhead

Minimization overhead We can see on Figure. 2a that it requires only an acceptable
over-head computation to get the smallest model possible instead of the first one re-
turned by the solver (from less than 10s to less than 40s). On the other hand, as we
can see on Figure. 2b the minimization can reduce drastically the size of the returned
model. Moreover, we can also see the structural difference between randomly generated
instances, that can finally be solved with only few worlds, and ‘real-world’ applications
instances that need a larger number of worlds to be solved. There is also a gain against
other solvers able to output a model (Figure 2d), such as Spartacus [48]. Note that we
could only compare Spartacus models on planning problems because Spartacus is ded-
icated to modal logics K, KT and S4, not S5. However, on those specific benchmarks,
since the modal depth is one and all K-models on those benchmarks are S5 models,
we can compare their size. Note also that Spartacus outputs an open-saturated tableau
(which indicates the existence of a model) and not a full model which should be even
larger (see [50] for more details).



8 Conclusion

We defined in this article a new optimisation problem that we call the minimal S5
satisfiability problem (MinS5-SAT). It is the problem of finding the smallest S5-model
w.r.t. the number of possible worlds. We demonstrated that this problem can be reduced
to the problem of extracting a Maximal Satisfiability Set of clauses (MSS) and thus, can
be solved with a MSS-extractor or one of the state-of-the-art PB or MaxSAT solvers. We
also showed that, thanks to an inherent property of modal logic S5, this problem can
also be solved using unsatisfiable cores in an incremental SAT procedure. The latter
approach is the one that obtained the best performance in our experiments.

We applied these different techniques to various benchmarks: randomly generated
formulas and also formulas expressing planning with uncertainties problems. Experi-
mental results showed that the best technique for one set of benchmarks is not nec-
essarily the best technique for the other, reminding us the importance of the choice
of benchmarks in experimental evaluations. The technique used obtained huge gains
in the size of the output models, when compared to the other approaches that do not
try minimisation. In addition, the overhead imposed by the minimisation is acceptable.
Therefore, we believe that finding minimal models for modal logic formulas is an in-
teresting task. We can also mention that smaller models are more user-friendly, they
permit to speedup the model checking phase and, in addition, some real-applications
may prefer “smaller solutions” (smaller plans, for instance).

One possible future work is the application of these techniques to other NP-complete
modal logics such as KD45 which is the belief counterpart of S5. Moreover, one could
also try to solve the Minimal Satisfiability Problem without the use of a SAT solver, e.g.
To compute the auto-bisimilar of a model retured by a Tableau proved such as Spartacus
[48]. Also, one could try to solve the more general Minimal Modal Logic Satisfiabil-
ity Problem (MinML-SAT), for which the standard satisfiability problem is typically
PSPACE-hard. For instance, it would be interesting to try to filter the Minimal modal
logic K satisfiability problem with the Minimal S5 satisfiability problem. It is known
that satisfiability in S5 entails the satisfiability in K. If one finds a minimal S5-model of
size n for a formula φ then the minimal K-model for φ has at most n possible worlds.
This insight may help improving a naive search for the minimal K-model, because the
only known bound b for modal logic K is an exponential function on the length the
input formula.
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