E. Ahusborde, R. Gruber, M. Azaiez, and M. L. Sawley, Physics-conforming constraintsoriented numerical method, Phys. Rev. E, vol.75, p.56704, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01725473

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal, vol.38, pp.2047-2078, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01010373

L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz et al., Computing with hp-adaptative finite elements, vol.1, 2007.

M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput, vol.6, pp.345-390, 1991.

F. X. Giraldo and M. A. Taylor, A diagonal mass matrix triangular spectral element method based on cubature points, J. of Engineering Mathematics, vol.56, pp.307-322, 2006.

W. J. Gordon and C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, Int. J. Num. Methods in Eng, vol.7, pp.461-477, 1973.

B. T. Helenbrook, On the existence of explicit hp-finite element methods using Gauss-Lobatto integration on the triangle, SIAM J. Numer. Anal, vol.47, pp.1304-1318, 2009.

L. Lazar, R. Pasquetti, and F. Rapetti, Fekete-Gauss spectral elements for incompressible Navier-Stokes flows: The two-dimensional case, Comm. in Comput. Phys, vol.13, pp.1309-1329, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00860596

R. Pasquetti, F. Rapetti, and /. Math, Study, x (201x), p.11

Y. Liu, J. Teng, T. Xu, and J. Badal, Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling, J. of Comput. Phys, vol.336, pp.458-480, 2017.

Y. Liu, , 2017.

A. E. Løvgren, Y. Maday, and E. M. Ronquist, Global C 1 maps on general domains, Mathematical Models and Methods in Applied Sciences, vol.19, issue.5, pp.803-832, 2009.

S. Minjeaud and R. Pasquetti, High order C 0-continuous Galerkin schemes for high order PDEs, conservation of quadratic invariants and application to the Korteweg-De Vries model, J. of Sci. Comput, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01946668

W. A. Mulder, New triangular mass-lumped finite elements of degree six for wave propagation, vol.141, pp.671-692, 2013.

R. Pasquetti and F. Rapetti, Spectral element methods on unstructured meshes: comparisons and recent advances, J. Sci. Comp, vol.27, issue.1-3, pp.377-387, 2006.

R. Pasquetti and F. Rapetti, Spectral element methods on simplicial meshes, Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, vol.95, pp.37-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00946866

R. Pasquetti, Comparison of some isoparametric mappings for curved triangular spectral elements, J. of Comput. Phys, vol.316, pp.573-577, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01307076

R. Pasquetti and F. Rapetti, Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial meshes, J. of Comput. Phys, vol.347, pp.463-466, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589136

A. Perronnet, Application to the generation of C 0 or G 1-continuous algebraic meshes, Proc. Int. Conf. Numerical Grid Generation in Computational Field Simulations, pp.467-476, 1998.

P. O. Persson and J. Peraire, Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics, Proc. of the 47th AIAA Aerospace Sciences Meeting and Exhibit, 2009.

M. A. Taylor, B. Wingate, and R. E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal, vol.38, pp.1707-1720, 2000.

T. Warburton, An explicit construction for interpolation nodes on the simplex, J. Eng. Math, vol.56, issue.3, pp.247-262, 2006.

Y. Xu, On Gauss-Lobatto integration on the triangle, SIAM J. Numer. Anal, vol.49, pp.541-548, 2011.