
HAL Id: hal-01893660
https://hal.univ-cotedazur.fr/hal-01893660

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WAP: Ideas for a Web Audio Plug-in Standard
Michel Buffa, Jerome Lebrun, Jari Kleimola, Oliver Larkin, Guillaume

Pellerin, Stéphane Letz

To cite this version:
Michel Buffa, Jerome Lebrun, Jari Kleimola, Oliver Larkin, Guillaume Pellerin, et al.. WAP: Ideas for
a Web Audio Plug-in Standard. Proceedings of Web Audio Conf 2018, TU Berlin, Sep 2018, Berlin,
France. �hal-01893660�

https://hal.univ-cotedazur.fr/hal-01893660
https://hal.archives-ouvertes.fr

WAP: Ideas for a Web Audio Plug-in Standard

Michel Buffa, Jerome
Lebrun

Université Côte d’Azur
CNRS, INRIA

(buffa, lebrun)@i3s.unice.fr

Jari Kleimola, Oliver Larkin
webaudiomodules.org

(jari, oli)@webaudiomodules.org

Guillaume Pellerin,
Stéphane Letz
IRCAM, GRAME,

guillaume.pellerin@ircam.fr
letz@grame.fr,

ABSTRACT
Several native audio plug-in formats are popular today
including Steinberg’s VST, Apple’s Audio Units, Avid’s AAX
and the Linux audio community’s LV2. Although the APIs are
different, all exist to achieve more or less the same thing -
represent an instrument or audio effect and allow it to be loaded
by a host application. In the Web Audio API such a high-level
audio plug-in entity does not exist. With the emergence of
web-based audio software such as digital audio workstations
(DAWs), it is desirable to have a standard in order to make Web
Audio instruments and effects interoperable. Since there are
many ways of developing for Web Audio, such a standard
should be flexible enough to support different approaches,
including using a variety of programming languages. New
functionality that is enabled by the web platform should be
available to plug-ins written in different ways. To this end,
several groups of developers came together to make their work
compatible, and this paper presents the work achieved so far.
This includes the development of a draft API specification, a
small preliminary SDK, online plug-in validators and a set of
examples written in JavaScript. These simple, proof of concept
examples show how to discover plug-ins from repositories, how
to instantiate a plug-in and how to connect plug-ins together. A
more ambitious host has also been developed to validate the
WAP standard: a virtual guitar “pedal board” that discovers
plug-ins from multiple remote repositories, and allows the
musician to chain pedals and control them via MIDI.

1 - INTRODUCTION

The Web Audio API includes a set of unit generators called
AudioNodes for graph-based audio DSP algorithms. The
standard AudioNodes allow for developing a range of web
applications that require audio engines that go beyond simple
playback. The recent addition of the AudioWorkletNode
provides an efficient way to implement custom low-level
processing, significantly increasing the possibilities of this
technology. There are many different apps created with the
Web Audio API that run independently, however there is no
standard way to make them interoperable i.e. take a drum
machine developed by X, load it into an application developed
by Y and apply audio processing developed by Z. In the native
audio world, these interchangeable units are called "audio
plug-ins" and applications that can use them are known as
"hosts" which are typically DAWs.
The authors of this paper come from different research groups
that have all been developing their own solutions for
implementing audio plug-in-like entities in the browser. This
paper discusses our ideas for a unified “Web Audio plug-in”
standard (WAP) and the infrastructure surrounding such a
standard. Other researchers’ initiatives exist, such as the Web
Audio API extension framework (WAAX) [5] and JSAP [1].
Our proposal differs, in that it aims to bring together several

approaches already utilized by our groups, allowing Web Audio
plug-ins to be developed A) in JavaScript using high-level
AudioNodes, B) in JavaScript via AudioWorklet, C) in C++
(via Emscripten/WebAssembly), or D) by using Domain
Specific Languages (DSLs) (as illustrated in Fig. 1). We would
like to be able to support all approaches with a unifying Web
Audio Plug-in standard. The standard should be flexible and
consider future possibilities such as use in progressive web apps
 (PWA) or in native environments. 1

One of the groups involved created FAUST, a DSL for audio
DSP, which supports targeting Web Audio [4][7]. Another
group created Web Audio Modules (WAMs) - an API for
developing web-based plug-ins using C++ and WebAssembly
[2], another group has been creating a variety of Web Audio
applications including a virtual pedal board plug-in host and
virtual guitar amp simulators [8].
At the time of writing there are relatively few commercial
audio-first products based on the Web Audio API, in
comparison to the wide range of desktop audio software. These
include, for example two web-based DAWs , a hearing test app, 2

and two online music notation packages . This is likely to 3

change since the introduction of the AudioWorklet, which will
facilitate many more pro-audio use cases. Based on the shared
interests of all the authors involved, and our observations about
changes in web-based audio software, we believe there is a
clear need for a high level audio processing/generating unit, as
part of- or to work with the Web Audio API.
2 - CONTEXT
In a previous paper [6] we provided a state of the art of native,
desktop audio plug-in formats, and described what makes the
web platform different. The authors in [2] and [10] have also
presented overviews of the defining characteristics of different
native plug-in APIs. For the work in this paper we decided to go
back and look in detail at the 2003 Generalized Music Plug-in
Interface (GMPI) final draft proposal , which, despite its age, 4

provides a thorough overview of desirable qualities in an audio
plug-in API. The LV2 plug-in API has been compared to the
GMPI document in a categorized table that is published online . 5

We decided to make a similar comparison whilst making our
Web Audio Plug-in specification to guide our work. This 6

enabled us both to identify the most important features a plug-in
API should provide, but also to discard irrelevant specifications,
and to think about the differences afforded by the web platform.
In the next sections we present the main features of our
proposal as well as its current status.

1 Progressive Web Apps enable users to experience native-like experiences along
with web advantages. By installing a PWA, users’ engagement allows to bypass
some of the webapps’ constraints (i.e. PWA can access hard disk storage, etc.)
2 SoundTrap.com and BandLab.com
3 noteflight.com, ultimate-guitar.com
4 https://tinyurl.com/k2wy5ge, now inactive MMA working group.
5 LV2 achievement of GMPI requirements: http://lv2plug.in/gmpi.html
6 WebAudio plug-in vs LV2 vs GMPI: https://tinyurl.com/yd5fedrc

https://healthy-hearing.mimi.io/mimi-hearing-test
https://www.noteflight.com/
https://www.soundtrap.com/
https://www.bandlab.com/
https://www.noteflight.com/
https://www.ultimate-guitar.com/
https://tinyurl.com/k2wy5ge
http://lv2plug.in/gmpi.html
https://tinyurl.com/yd5fedrc

WebAudio Conference 2018 Michel Buffa et al.

2.1 WAP and the GMPI
The GMPI draft proposal lists 114 requirements grouped into
23 categories. We divided the categories further into three
groups based on their relevance to the fundamental
requirements of an audio plug-in.

We decided that the first draft Web Audio plug-in specification
should look at the following categories:

● Host/plug-in Model: We need to define how plug-ins
are loaded, instantiated, and connected together.
Hosting scenarios require mechanisms for plug-in
discovery and host-plug-in interface description. We
must also bear in mind that with web applications
there might not be a dedicated host - a plug-in could
run “standalone” in an embedded browser.

● Events and MIDI: There should be a way to send and
receive note and control events to / from plug-ins and
host, especially through the MIDI protocol which is a
common way to link software as well as hardware
instruments and effects. At the end, it should be
compatible with other protocols like OSC.

● Parameters, Persistence: Plug-ins will need to
expose their parameter set and provide getter/setters

● Plug-in Files: More generally, a way to make the
state persistent so that loading and saving of
presets/banks can be implemented.

● User Interfaces: Although some plug-ins may
operate “headless”, we need to support both generic
and custom GUIs.

The second category group will be targeted in a subsequent API
version. The lower priority categories are: Host Services,
Time, Latency, Copy Protection, Localization, API Issues,
and Wrappers. Finally, some categories are irrelevant for Web
environments, or already defined in the lower level APIs such
as Web Audio and WebRTC. These include Real Time
Threading, Sample Rate, Audio I/O, Control I/O and
Results.
In addition, we need to take into account that GMPI is dated,
and that several modern native plug-in APIs have been
developed since 2003 [10]. The web browser environment also
means that there are additional considerations, that are not
concerns for native plug-ins.

2.2 WAP Uniform Resource Identifier

A Web Audio plug-in standard should be “Web aware” and use
URIs as identifiers for plug-ins and repositories which are first
class Web citizens/resources. Host web apps should be able to
discover remote plug-ins by querying plug-in repositories.
Plug-ins should be usable without the need for manual
installation, and the mixture of different JavaScript libraries and
frameworks, should not cause any naming conflict or
dependency problems.

2.3 Support for different WAP approaches
A Web Audio Plug-in standard should be able to support
multiple approaches in terms of programming language and
programming environment, including pure JavaScript, C++ (via
WebAssembly) and domain specific languages. It should be
possible to port existing code bases across to work as a WAP
and DSLs should be usable for the audio processing part. For

example the authors in [4] have developed the WAM API
which allows the porting of native plug-ins to WAPs, and this
has been demonstrated by porting several desktop plug-ins [6].
WAM support has recently been added to iPlug (a C++ audio
plug-in framework) [10], and could also be added to the JUCE
framework, to allow desktop plug-ins built with those
frameworks to operate on the web. The FAUST creators have
developed a script to compile FAUST .dsp files to WAPs [4,
12]. We hope to support more DSLs in the future (Fig. 1).

Figure 2. FAUST pedals, packaged as WAP plug-ins.

2.4 Support for Multiple Web Execution
Environments
Although the web is the primary target for WAPs, there are use
cases where integration with native applications may be
required. For example, even if web DAWs offer very
compelling features, experienced users may not be easily
persuaded to switch to an online DAW immediately. In this
case, supporting Web technologies in native apps could help
making projects more portable across web and desktop
platforms. Also the ability to test native plug-ins inside a
familiar DAW before making a purchase, but without
installation, might be an interesting use case. Native game
engines and VR frameworks may also benefit from the Web
Audio API which has good support for 3D audio. Options for
bridging the web and native domains are explored in [9].

Fig. 1 shows WAPs as the pivot standard for all sorts of
sources (JS, Faust, C++, etc.) and execution environments
(standard browser, or browser embedded in a native plug-in, or
as Progressive Web Apps or Chromium-based apps).

3 - CURRENT STATE OF OUR PROPOSAL
Our proposal consists of a draft specification, online tools and
set of examples. Our goal is to extend and integrate existing
web APIs, and to keep the proposed API as minimal as
possible.

3.1 A Draft Specification

The goal of our draft Web Audio plug-in API proposal [6] was
to devise a minimal set of mechanisms that allow interoperation
between our independently developed frameworks. A high level
overview of the proposal is given below.
A WAP extends AudioNode (or AudioWorkletNode) and thus
inherits their familiar properties and methods. This ensures
interoperation with standard Web Audio API nodes and
applications built on top of the Web Audio graph. Integration
with Web Midi is provided by MIDIPort members.
WAPs are either composite or custom audio nodes. Composite
nodes encapsulate an audio sub-graph that is built from any 7

number of (elementary) AudioNodes. Custom nodes are

7 https://tinyurl.com/ybwm3bjy

2

http://lv2plug.in/gmpi.html#sec_3.6
http://lv2plug.in/gmpi.html#sec_3.8
http://lv2plug.in/gmpi.html#sec_3.16
http://lv2plug.in/gmpi.html#sec_3.11
http://lv2plug.in/gmpi.html#sec_3.14
http://lv2plug.in/gmpi.html#sec_3.18
http://lv2plug.in/gmpi.html#sec_3.15
http://lv2plug.in/gmpi.html#sec_3.7
http://lv2plug.in/gmpi.html#sec_3.9
http://lv2plug.in/gmpi.html#sec_3.13
http://lv2plug.in/gmpi.html#sec_3.19
http://lv2plug.in/gmpi.html#sec_3.20
http://lv2plug.in/gmpi.html#sec_3.21
http://lv2plug.in/gmpi.html#sec_3.21
http://lv2plug.in/gmpi.html#sec_3.21
http://lv2plug.in/gmpi.html#sec_3.22
http://lv2plug.in/gmpi.html#sec_3.23
https://tinyurl.com/ybwm3bjy

WAP: Ideas for a Web Audio Plug-in Standard Web Audio Conference 2018

AudioWorklets, with a ScriptProcessorNode fallback. Although
implementation details are outside the scope of the proposed
API, a standard (but extensible) communication protocol
between AudioWorkletNode and AudioWorkletProcessor was
considered beneficial for increased reusability: for example, a
generic DSP implementation running in the browser’s realtime
audio thread may be repurposed just by changing its main
thread counterpart.
WAPs are GUI-aware but agnostic about their implementation
strategy. This means that WAPs may be headless, or they may
expose a visual HTML element (e.g., div, canvas, SVG, or
custom element) which can be attached to DOM. The WAP
design will ensure that the GUI code is loaded only if
necessary.
WAP metadata describes implementation specific aspects of the
plug-in. Metadata is available as a separate JSON file and also
as a runtime object. Metadata describes audio and midi IO
configuration, namespace attributes, parameter space, plug-in
type, URIs and so on. WAP repositories may collect JSON files
into aggregates for discovery purposes.
A WAP REST server/repository is described by a URI, which
may point to an online or local filesystem resource. Metadata
may describe separate URIs for headless and GUI equipped
WAPs. We foresee two embedding strategies: a hosting web
page may simply employ one of the URIs in a script/link tag.
More complex WAPs, such as those implemented in WASM
may however require a dynamic loading mechanism.

Figure 3: Loading a headless plug-in from its URI,

and inserting it into the Web Audio graph 8

3.2 Online Tools, Tutorials and Examples

Along with the online documentation, we propose simple
examples/tutorials both for the “host side” and “plug-in side” of
our proposal, as well as online tools such as validators/testers.
Some are presented in the different figures that follow. Each
legend contains a footnote with the link to the runnable web
app.

Host loading a headless plug-in: Fig. 3 shows extracts of a
minimal host implementation that loads a headless plug-in and
connects it to the Web Audio graph. Behind the scenes, a
JSON metadata file is loaded from the plug-in URI. A
<script src="..."></script> HTML tag is added if
needed. Following that, the plug-in is initialized. Since it may
load assets such as image files or a WASM module
asynchronously, the load method returns a JavaScript
promise. In this example, the name of the plug-in class is
hard-coded but it could have been built dynamically from the
content of the plug-in metadata JSON file (further examples
show how to do this, such as the online plug-in tester from Fig
5). From a host’s point of view, the plug-in might be of any
kind: a Web Audio graph in a CompositeNode or a single
CustomNode (AudioWorklet) node, written in JavaScript or in

8 https://jsbin.com/xevahu/edit?html,js,console,output

WebAssembly, etc.

Figure 4: The same plug-in, with a GUI.
GUI code and resources are downloaded

only when they are needed . 9

Figure 5. Online plug-in tester : enter the plug-in URI to 10

validate the plug-in before publishing to a repository.

Host loading a plug-in with GUI: Fig. 4 shows the same
example but this time, we also load asynchronously the GUI
code (HTML, CSS, JS). The loadGUI method returns a single
HTML element that contains the whole plug-in GUI. Here
again, the method is asynchronous and returns a promise as a
plug-in can have to load images for knobs, etc.
The load and loadGUI methods implementations are
inherited by default when you extend the
WebAudioPluginFactory class from the SDK, but can be
overridden by the developer. In our examples, we use Web
Components to package the GUI files in a single HTML file, 11

adding encapsulation and avoiding any naming conflicts.
Behind the scenes the default loadGUI method creates a
<link rel="import" href="main.html"> when
needed. If the developer prefers to use a canvas etc. for the
GUI, they just need to override the loadGUI method.
More detailed examples are available on the documentation
pages of the WAP proposal . Some show in particular how to 12

9 https://jsbin.com/jeretab/edit?js,output
10 https://wasabi.i3s.unice.fr/WebAudioplug-inBank/testers/test2.html
11 The WebComponents W3C standard (now in the HTML 5.2 specification)
defines a way to easily distribute components with encapsulated
HTML/CSS/JS/WASM code without namespace conflicts. See
https://www.webcomponents.org

12 http://wasabihome.i3s.unice.fr/webaudio-plug-in-proposal/

https://jsbin.com/xevahu/edit?html,js,console,output
https://jsbin.com/jeretab/edit?js,output
https://wasabi.i3s.unice.fr/WebAudioPluginBank/testers/test2.html
https://www.webcomponents.org/
http://wasabihome.i3s.unice.fr/webaudio-plug-in-proposal/

WebAudio Conference 2018 Michel Buffa et al.

do real dynamic discovery, without hard coding any class
names in the host code.

Figure 6: repo and plug-in tester . 13

Plug-in online validator: this online tool uses this dynamic
behavior and is provided to plug-in developers to test their
work. Fig. 5 shows an individual online plug-in tester. Copy
and paste a plug-in URI and the code will be downloaded, the
plug-in tested, and if a minimal set of tests passed, the plug-in
will be runnable on the page and its GUI displayed, etc. You
can then publish it on a repository. Notice that not all tests are
mandatory to make the plug-in usable. For example, if a plug-in
does not implement the load/save of its parameter state, it is still
usable.

Figure 7: Loading and chaining multiple plug-ins 14

Plug-in repository online validator: Fig. 6 shows a remote
repository tester: enter the URI of a REST endpoint and the list
of plug-ins (with associated URIs) is fetched, followed by each
plug-in’s metadata file. Each plug-in’s thumbnail image is
displayed on the page and can be clicked to test the
corresponding plug-in. If the mandatory tests passed, then
you’ll be able to try the plug-in online and get a full unit test
report.
A plug-in “loader” utility object: in some cases a developer
might want to be sure that several plug-ins have been loaded
before chaining them. The WAP SDK provides a “plug-in
loader” utility object that can be used with the Promise.all
method from ES6, as shown in Fig. 7.

13 https://wasabi.i3s.unice.fr/WebAudioplug-inBank/testers/explorandtest.html
14 https://tinyurl.com/ydg5vt32

Writing a plug-in, minimal steps: now that we looked at how
a host can discover and use a plug-in, it is easier to illustrate the
different steps necessary to make a plug-in. the SDK provides
multiple classes that can be subclassed, utility classes and
objects. When writing a plug-in, different parts should be
considered:

Part 1 - The main.json metadata descriptor that will
contain a set of key/value pairs. Mandatory: plug-in name,
vendor, version, thumbnail file (Fig. 8). The namespaced main
class name of the plug-in and its relative URI can be inferred
from the vendor and name values. Optionally, the type of
current plugin state can be specified (default is JSON but some
plugins may prefer binary blobs as get/setState payload).

Figure 8: minimal json file for describing a plug-in

Part 2 - The plug-in “main class” that will implement the
Web Audio plug-in API. It should extend either the
WebAudioCustomNode class (i.e if the plug-in is an
AudioWorklet) or the WebAudioPluginCompositeNode class
(if it is made of a set of Web Audio nodes). We opted for a
“convention over configuration approach” : minimal steps are 15

needed to have a runnable plug-in as many default values will
be inherited. For example, the default main file will be
main.js except if indicated in the metadata json file,
getParam/setParam methods will be inherited, etc. Fig. 9
and 10 show source code extracts from the SDK classes that are
provided for creating a CompositeNode plug-in, Fig. 11 shows
a skeleton of what the main class of a plug-in would look like,
and finally, Fig. 12 shows how this plug-in can be used as a
regular Web Audio node. Full example is available online.

Figure 9: The CompositeAudioNode prototype from the

WAP SDK

15 https://en.wikipedia.org/wiki/Convention_over_configuration

4

https://wasabi.i3s.unice.fr/WebAudioPluginBank/testers/explorandtest.html
https://tinyurl.com/ydg5vt32
https://en.wikipedia.org/wiki/Convention_over_configuration

WAP: Ideas for a Web Audio Plug-in Standard Web Audio Conference 2018

Figure 10: The class from the SDK that implements parts of

the WAP API (default values). Meant to be subclassed.

Figure 11: A composite plug-in should extend the
WebAudioPluginCompositeNode class.

Figure 12: Finally, a composite WAP can be used like a

regular Web Audio node . 16

Part 3 - The plug-in “factory” class that will implement (or
inherit) the load and loadGUI methods. Fig. 13 shows an
example of such a factory method.

Figure 13: Plug-in factory class. This is the class used by the

host to instantiate the plug-in.

3.3 The Pedal Board Host Application

Along with our “10-lines of code long example hosts”, a
“virtual pedal board” web app was developed [9] as a more
ambitious host that gives the possibility to interactively chain
plug-ins in order to create more complex sounds and
configurations (Fig. 14). This pedal board host handles the
discovery of plug-ins from multiple repositories (local or

16 https://jsbin.com/wadoqal/edit

distant), global sound card I/O and gain adjustments, plug-ins’
life cycles and interconnections as well as saving and restoring
states/banks/presets.
The user can create instances of plug-ins by dragging and
dropping their thumbnails into the main area. They can then
position them, connect them together, etc. Finally, using the
GUI (knobs, sliders, switches), the user can adjust each plug-in
individually. By assembling an amplifier simulator, a reverb, a
fuzz and a stereo delay, for example, one is able to create a rich
psychedelic sound. We also contributed to the
webaudiocontrols library by adding MIDI control to all the

17

GUI elements it offers (knobs, switches, etc.). Hence, the
plug-ins can have their GUI controlled remotely via any MIDI
controller. Fig. 14 shows a typical screenshot of this host
application, combining plug-ins written in FAUST, in C++
(WAMs) and in JavaScript (guitar amp simulator, FX pedals).
As explained in [9], this app has been also successfully run in
custom browser builds packaged as VST plug-ins, bringing
WAPs into native DAWs.

Figure 14: plug-ins inside a virtual pedal board . 18

4 - FUTURE WORK

For the first draft of the WAP API, we isolated a minimum set
of features for implementation from the GMPI spec. Future
work for the short term concerns enhanced MIDI functionalities
and to look at how we can provide tempo and timeline
synchronisation to plug-ins in a similar way to native plug-ins.
Multiple input and output buses for common features such as
side-chains are also something that must be considered, and
how to provide flexible parameter modulation, when the
plug-ins are integrated into a host with a timeline. Having the
flexibility to support the “intelligent music production”
capabilities offered by JSAP [1] is something we should
investigate. We also plan to further evaluate the performance of
the different approaches, with the latest browsers more
thoroughly in the future, [2][7]. The pedalboard already hosts
more than 20 WAPs, including some which are resource
intensive, however, we need more plugins from independent
vendors to make a solid analysis. This would also serve as an
open invitation for the community to experiment with WAPs.

One more significant area for future work is to investigate how
use in Progressive Web Applications would impact the API.
Offline web apps, local filesystem access and low level access
to hardware are possible developments of this technology. W3C

17 https://github.com/g200kg/webaudio-controls, a WebAudio UI widget lib.
18 https://wasabi.i3s.unice.fr/dynamicPedalboard/

https://jsbin.com/wadoqal/edit
https://github.com/g200kg/webaudio-controls
https://wasabi.i3s.unice.fr/dynamicPedalboard/

WebAudio Conference 2018 Michel Buffa et al.

standards such as the Service Worker and File and FileSystem
APIs enable web apps to run offline, and can give them
privileges such as access to the hard disk when the user grants
permission (e.g. by installing the app). Future relaxed
constraints could include getting exclusive access to the sound
card, for example - improving latency. We will follow the
evolution of these W3C initiatives and will update WAPs
accordingly.

5 - CONCLUSION

We presented a proposal for an open Web Audio Plug-in
standard (WAP), that consists of a draft specification and a
small, preliminary SDK including a tutorial and examples
written in JavaScript. We have also made online plug-in and
repository validators. As of today, FAUST, as well as the Web
Audio Module (WAM) API are compatible with WAPs and we
hope that more languages/environments will be supported soon.
WAPs also use “composite nodes” to unify JavaScript plug-ins
made of multiple AudioNodes and allow plug-ins that are a
single AudioWorkletNode. In addition, we developed a more
ambitious host application (the pedal board) that scans plug-ins
repositories (local or remote) and can be used to assemble
multiple plug-ins into a visual graph. This app has been
evaluated with professional musicians [8] and shows that the
host / plugin model we propose is suitable for use in more
sophisticated applications. So far we have integrated more than
20 web audio plug-ins, including synthesizers and effects that
have been developed using different technologies but are all
complying with our API.

The preliminary WAP SDK is available at:
https://github.com/micbuffa/WebAudioPlugins

6 - ACKNOWLEDGMENTS
French Research National Agency (ANR) and the WASABI
project team (contract ANR-16-CE23-0017-01).
7 - REFERENCES
[1] Jillings, N. and al. 2017. Intelligent audio plug-in framework for the

Web Audio API. In Proc. 3rd Web Audio Conference (WAC 2017),
London, UK.

[2] Kleimola, J. and Larkin, O. 2015. Web Audio modules. In Proc. 12th
Sound and Music Computing Conference (SMC 2015), Maynooth,
Ireland.

[3] Buffa, M. & al. 2017. WASABI: a Two Million Song Database Project
with Audio and Cultural Metadata plus WebAudio enhanced Client
Applications. In Proc. 3rd Web Audio Conference (WAC 2017),
London, UK.

[4] Letz, S., Orlarey, Y., and Fober, D. 2017. Compiling Faust Audio DSP
Code to WebAssembly, In Proc. 3rd Web Audio Conference (WAC
2017), London, UK.

[5] Choi, H. and Berger, J. 2013. WAAX: Web Audio API eXtension. In
Proc. Int. Conf. New Interfaces for Musical Expression (NIME’13),
Daejeon, Korea.

[6] Buffa, M., Lebrun, J., Kleimola, J., Larkin, O., and Letz, S. 2018.
Towards an open Web Audio plug-in standard. In Companion Proc. The
Web Conference 2018 (WWW '18). Lyon, France. (April 23--27, 2018).
759-766. DOI= https://doi.org/10.1145/3184558.3188737

[7] Letz, S., Orlarey, Y., and Fober, D. 2018. FAUST Domain Specific
Audio DSP Language Compiled to WebAssembly. In Companion Proc.
The Web Conference 2018 (WWW '18). Lyon, France. (April 23--27,
2018). DOI=https://doi.org/10.1145/3184558.3185970

[8] Buffa, M. and Lebrun, J. 2018. WebAudio Virtual Tube Guitar Amps
and Pedal Board Design. Accepted to the 4th Web Audio Conference
(WAC 2018), Berlin, Germany.

[9] Kleimola J. and Campbell O. 2018. Native Web Audio API plugins.
Accepted to the 4th Web Audio Conference (WAC 2018), Berlin,
Germany.

[10] Larkin, O., Harker, A., and Kleimola J. 2018. iPlug 2: Desktop Audio
Plug-in Framework Meets Web Audio Modules. Accepted to the 4th
Web Audio Conference (WAC 2018), Berlin, Germany.

6

https://github.com/micbuffa/WebAudioPlugins
http://eecs.qmul.ac.uk/~keno/38.pdf
http://eecs.qmul.ac.uk/~keno/38.pdf

