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Abstract

We show on a counter example that the projection method on full Hilbert space is

not equivalent to the variational method

Let us consider the following Hamiltonian H represented in the basis (ψ1 ∧ ψ̄1, ψ1 ∧ ψ̄2, ψ2 ∧

ψ̄1, ψ2 ∧ ψ̄2), by a matrix parametrized by 3 scalars A,B,C:

H =



A C C 0

C B 0 C

C 0 B C

0 C C A


.

Its 4 eigenpairs are easily found. There is a triplet and three singlet states:

(B,ψ1 ∧ ψ̄2 − ψ2 ∧ ψ̄1),

(A,ψ1 ∧ ψ̄1 − ψ2 ∧ ψ̄2),(
A+B

2
+
√(

A−B
2

)2
+ 4C2, 2C(ψ1 ∧ ψ̄1 + ψ2 ∧ ψ̄2) +

(
B−A

2
+
√(

B−A
2

)2
+ 4C2

)(
ψ1 ∧ ψ̄2 + ψ2 ∧ ψ̄1

))
,(

A+B
2
−
√(

A−B
2

)2
+ 4C2, 2C(ψ1 ∧ ψ̄1 + ψ2 ∧ ψ̄2) +

(
B−A

2
−
√(

B−A
2

)2
+ 4C2

)(
ψ1 ∧ ψ̄2 + ψ2 ∧ ψ̄1

))
.
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1 Hartree-Fock solution

The expectation value of this Hamiltonian for a general wave function

Ψ = aψ1 ∧ ψ̄1 + bψ1 ∧ ψ̄2 + cψ2 ∧ ψ̄1 + dψ2 ∧ ψ̄2 is

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=
(a2 + d2)A+ (b2 + c2)B + 2(a+ d)(b+ c)C

a2 + b2 + c2 + d2
(1)

Let us find the restricted Hartree-Fock (RHF) solution for this Hamiltonian, that is the

single determinantal, singlet wave function that minimizes this expression. From the exact

singlet eigenstate expressions, we see that we can safely assume a 6= 0 for general Hamiltonian

parameter values i.e. provided C 6= 0. Then it is convenient to factor out a as a normalization

and phase factor, and to define three new coefficients β = b
a
, γ = c

a
, δ = d

a
, and because we

are looking for a singlet, we have to impose β = γ. Equation (1) becomes,

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=
(1 + δ2)A+ 2β2B + 4(1 + δ)βC

1 + 2β2 + δ2
. (2)

The wave function Ψ will be a Slater determinantal function if and only if it satisfy the

Plücker relation ad − bc = 0, that is to say, in terms of the new coefficients, δ = β2. So,

finding the RHF solution amounts to minimizing the function,

f(β) =
(1 + β4)A+ 2β2B + 4(1 + β2)βC

1 + 2β2 + β4
=
A+ 4Cβ + 2Bβ2 + 4Cβ3 + Aβ4

1 + 2β2 + β4
. (3)

Its derivative is,

f ′(β) =
4C(1 + β2 − β4 − β6) + 4(A−B)(β5 − β)

(1 + 2β2 + β4)2
=

4(1 + β2)(β − 1)(β + 1) ((A−B)β − C(β2 + 1))

(1 + β2)4
.

(4)

This shows that unless |A−B| ≥ 2|C|, stationnary states will only be obtained for β = ±1

(the Hamiltonian being real, we consider only real coefficients). When |A − B| > 2|C|

two additional solutions show up, β = A−B
2C
±
√

(A−B)2−4C2

2C
. For a give value of β, the
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(unnormalized) corresponding Slater determinantal function is

Ψ(β) = (ψ1 + βψ2) ∧ (ψ̄1 + βψ̄2).

The energy expection values corresponding to the RHF stationnary solutions are (f(β) can

be reexpressed as f(β) = A+ 4C β
1+β2 + 2(B − A)

(
β

1+β2

)2

:

f(±1) =
A+B

2
± 2C (5)

and

f(
A−B

2C
±
√

(A−B)2 − 4C2

2C
) = A+

2C2

A−B
. (6)

The latter value will possibly be a ground state energy approximation in the “small coupling”

case |A−B| > 2|C|, when A < B. The two β-values give the same energy and correspond to

either doubly-occupied ψ1 dominant, mono-excitations negligible, doubly-occupied ψ2 super-

negligible or the reverse doubly-occupied ψ2 dominant, doubly-occupied ψ1 super-negligible.

One of the values β = ±1 will give a ground state energy approximation in the “strong

coupling regime” or when A > B, depending on the sign of C.

2 Solution by projection on the whole Hilbert space

and least square minimization

It can be seen that solving the projected eigenvalue equation on the full Hilbert space by

least square fitting amounts to minimizing the dispersion, since for ΨK ’s running over a

complete set, we have:

∑
K

‖〈ΨK |H − E|Ψ(~p)〉‖2 = 〈Ψ(~p)| (H − E)2 |Ψ(~p)〉 (7)
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and for a stationnary solution E0,Ψ(~p0), the stationnarity with respect to E will give

E0 = 〈Ψ(~p0)|H|Ψ(~p0)〉. (8)

We can study within the same model the function

g(β) = 〈Ψ(β)|H2|Ψ(β)〉 − |〈Ψ(β)|H|Ψ(β)〉|2. (9)

The square of the Hamiltonian is

H2 =



A2 + 2C2 (A+B)C (A+B)C 2C2

(A+B)C B2 + 2C2 2C2 (A+B)C

(A+B)C 2C2 B2 + 2C2 (A+B)C

2C2 (A+B)C (A+B)C A2 + 2C2


For a normalized Ψ(β) we get

〈Ψ(β)|H2|Ψ(β)〉 = A2 + 2C2 + 4(A+B)C
β

1 + β2
+ 2(B2 −A2 + 4C2)

(
β

1 + β2

)2

|〈Ψ(β)|H|Ψ(β)〉|2 = A2 + 8AC
β

1 + β2
+ 4(4C2 + (B −A)A)

(
β

1 + β2

)2

+ 16(B −A)C

(
β

1 + β2

)3

+ 4(B −A)2
(

β

1 + β2

)4

.

Setting θ = β
1+β2 , the g-function in terms of this new θ parameter is:

g(θ) = 2C2 + 4(B − A)Cθ + (2(A−B)2 − 8C2)θ2 − 16(B − A)Cθ3 − 4(B − A)2θ4 (10)

For A = B, the RHF solutions β = ±1 (depending on the sign of C, one will be the ground

state and the other and excited eigenstate) is exact and you do retrieve it by minimizing g,

because actually for exact eigenstates the dispersion is minimal and equal to 0. For A 6= B,

the exact eigenstates cannot be condensed into a single determinantal function, as can be

seen from the Plücker relation, then the RHF solution is only approximate. The derivative
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of g is

g′(θ) = 4(B − A)C + 4((A−B)2 − 4C2)θ − 48(B − A)Cθ2 − 16(B − A)2θ3 (11)

For the RHF solutions in the low coupling regime, θ = C
A−B . Inserting this value into g′ we

can check that it does not correspond to a stationnary point of the dispersion. We calculate:

g′(
C

A−B
) =

16C3

A−B
, (12)

So cancellation can occur only for C = 0.

3 Comparison on a numerical example

Let us set A = 0, B = 2, C = −0.5. The exact eigenvalues are: 2.41421, 2, 0,−0.414214.

There are two equivalent optimal β-values: β ≈ 0.267949 and β ≈ 3.73205 which give an
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Figure 1: The f -function (expectation value of the Slater determinant) as a function of β

RHF energy of ERHF = −0.25 to be compared with EFCI = −0.414214. The optimal β-value

in the same range is: β ≈ 0.218032 which gives a complete Hilbert space projected energy
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Figure 2: The g-function (dispersion value of the Slater determinant) as a function of β

of ECHSP = −0.24299 quite close to ERHF .

See more examples at the end: there is always a relative minimum of the disper-

sion near the absolute minimum of the expectation value, but it is not always

the absolute minimum of the dispersion.

4 Solution by projection on Slater determinants

We can also project the eigenvalue equation on a few Slater determinants. The four single

determinantal functions (ψ1 ∧ ψ̄1, ψ1 ∧ ψ̄2, ψ2 ∧ ψ̄1, ψ2 ∧ ψ̄2) give the following projected

equations:

a(A− E) + (b+ c)C = 0 (13)

b(B − E) + (a+ d)C = 0 (14)
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c(B − E) + (a+ d)C = 0 (15)

d(A− E) + (b+ c)C = 0. (16)

Looking for a singlet single determinantal solution, these equations reduce to

A− E + 2βC = 0 (17)

β(B − E) + (1 + β2)C = 0 (18)

β2(A− E) + 2βC = 0. (19)

Two at least are needed to determine the two unknowns E and β.

Choosing the first and the last, we find either β = 0, E = A or β = ±1, E = A ± 2C. The

latter are RHF stationnary solutions.

Choosing the first and the second, we find β = B−A
2C
±
√

(A−B)2+4C2

2C
, E = B±

√
(A−B)2 + 4C2.

Choosing the second and the third, we find β = A−B
2C
±
√

(A−B)2+4C2

2C
, E = B±

√
(A−B)2 + 4C2.

These choices lead to identical energies for different β-values.

Note that, there is no solution to the 3 equations taken together, in general. Hence the

least mean square procedure.
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f(β) /. {A→ 0, B→ 2, C→ -0.5}

g β
1+β2

 /. {A→ 0, B→ 2, C→ -0.5}
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