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A note on some alternating series involving zeta and multiple zeta values

Introduction

The first part of this article is devoted to the study of the conditionally convergent alternating series ν k defined by This remarkable connection between γ and the special values at positive integers of the Riemann zeta function goes back to Euler's early works on harmonic series [START_REF] Euler | De progressionibus harmonicis observationes[END_REF]. Less famous but yet fairly well-known (cf. [8, p. 93], [START_REF] Srivastava | Sums of certain series of the Riemann zeta function[END_REF]Eq. (5.1)], [START_REF] Singh | Some series involving Riemann zeta function[END_REF]Eq. (1.5)]) is the relation

ν 1 = γ 2 - 1 2 ln 2π + 1
sometimes called Suryanarayana formula. Recently, Blagouchine [5, p. 413] gave a general expression of these series ν k in the case where k is a positive integer:

ν k = γ 2 - ln 2π k + 1 + 1 k + [ k 2 ] r=1 (-1) r k 2r -1 (2r)! r(2π) 2r ζ (2r) + [ k-1 2 ]
r=1 (-1) r k 2r (2r)! 2(2π) 2r ζ(2r + 1) . [START_REF] Agoh | Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind[END_REF] This formula seems quite cumbersome but can be much simplified using the functional equation of ζ. After some elementary transformations, we show that equation (1) can be reduced to the following equivalent (but much more pleasant) expression:

ν k = γ k + 1 - 1 2 ln 2π + k-1 j=1 (-1) j k j ζ (-j) + C k , ( 2 
)
where C k is a rational number (see Proposition 1). Moreover, this expression allows to highlight a deep connection between ν 2k and the sum (in the sense of the Ramanujan summation of divergent series) of the series n 1 n 2k H n , where H n is the nth harmonic number (see Remark 2). Next, in a second part, we introduce a generalization of these series series ν k replacing the zeta values by certain multiple zeta values. A natural extension may be defined as follows: for all integers k ≥ -1 and p ≥ 0, we consider the class of series (ν k,p ) with

ν k,p := ∞ n=2 (-1) n n + k ζ(n, 1, . . . , 1 p ) , where ζ(s 1 , s 2 , • • • , s k ) = n 1 >n 2 >•••>n k ≥1 1 n s 1 1 n s 2 2 • • • n s k k ,
so that the previous series ν k become ν k,0 . Then we establish (see Proposition 2) the following identity which is the main result of this work:

ν k,p = ∞ n=1 |G (k+1) n | n p+1 , ( 3 
)
where G (k) n denotes the Gregory coefficients of higher order recently introduced by Blagouchine [START_REF] Blagouchine | Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π -1[END_REF][START_REF] Blagouchine | Three notes on Ser's and Hasse's representations for the zeta-functions[END_REF]. They are defined by

G (k) n := 1 n! n j=1 s(n, j) j + k (k ≥ 0, n ≥ 1), (4) 
where s(n, j) are the Stirling numbers of the first kind. Comprehensive informations on the Stirling numbers of the first and the second kind may be found in [START_REF] Agoh | Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind[END_REF][START_REF] Blagouchine | Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π -1[END_REF][START_REF] Coppo | Shifted Mascheroni series and hyperharmonic numbers[END_REF][START_REF] Jordan | Calculus of Finite Differencies[END_REF][START_REF] Xu | Multiple zeta values and Euler sums[END_REF]. One can prove easily (see Lemma 4) that G (k) n = (-1) n+1 |G (k) n |, so that the rationals numbers G (k) n alternate in sign. As a special case of equation (3), we derive the following result:

ν k-1 = ∞ n=1 |G (k) n | n (k ≥ 0) . ( 5 
)
In the case k = 1, we recover the classical Mascheroni's series for γ (cf. [5, p. 406 

∞ n=2 (-1) n ζ H (n) n = γ 1 + 1 2 γ 2 + π 2 12 ,
where ζ H (s) denotes the Apostol-Vu harmonic zeta function [START_REF] Alkan | Approximation by special values of harmonic zeta function and log-sine integrals[END_REF][START_REF] Apostol | Zeta and Related Functions, NIST Handbook of Mathematical Functions[END_REF][START_REF] Apostol | Dirichlet series related to the Riemann zeta function[END_REF] and γ 1 is the first Stieltjes constant [START_REF] Blagouchine | A note on some constants related to the zeta function[END_REF][START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF]. Finally, in the last section, we highlight a relation between the series ν k , the Stirling numbers of the second kind S(n, k), and the shifted Mascheroni series σ r whose study was the main subject of [START_REF] Coppo | Shifted Mascheroni series and hyperharmonic numbers[END_REF] (see Proposition 3 and Example 4).

The case of a positive integer

In this section, we focus on the case of a positive integer k and give two independant proofs of our formula [START_REF] Alkan | Approximation by special values of harmonic zeta function and log-sine integrals[END_REF]. More precisely, we prove the following proposition: Proposition 1. For any positive integer k, we have

ν k = γ k + 1 - 1 2 ln 2π + k-1 j=1 (-1) j k j ζ (-j) + C k with C k = 1 k + k-1 j=1 k j B j+1 H j j + 1 , ( 6 
)
where H n are the harmonic numbers,

H 0 = 0 , H n := 1 + 1 2 + • • • + 1 n (n ≥ 1) ,
and B n are the Bernoulli numbers defined by means of the exponential generating function

x e x -1 = ∞ n=0 B n x n n! (|x| < 2π) .
In particular,

B 0 = 1, B 1 = -1 /2, B 2 = 1 /6, B 2r+1 = 0 for r ≥ 1.
Proof. We can quite easily derive (2) from [START_REF] Agoh | Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind[END_REF]. Differentiation of the functional equation [3, Eq. (25.4.2)]

ζ(s) = 2(2π) s-1 Γ(1 -s)ζ(1 -s) sin πs 2
leads to the two relations

(-1) r (2r)! 2(2π) 2r ζ(2r + 1) = ζ (-2r) (r ≥ 1), and 
(-1) r (2r)! r(2π) 2r ζ (2r) = -ζ (1 -2r) + B 2r 2r (H 2r-1 -γ -ln 2π) (r ≥ 1) .
Substituting these relations into (1) and grouping together the terms under the two symbols Σ, leads to the expression

ν k = γ k + 1 - 1 2 ln 2π + k-1 j=1 (-1) j k j ζ (-j) + C k ,
where the rational constant C k is given by equation ( 6). Another alternative proof of (2), independant from (1), may be deduced from the expansion in powers of z of the relation [8, p. 93

] ∞ k=0 (-1) k z k k! ∞ j=1 (-1) j-1 j ζ R (j -k) = (1 -e z ) ∞ k=0 (-1) k z k k! ζ (-k) + (1 -e z ) ∞ k=0 (-1) k z k k! 1 (k + 1) 2 + ˆ1 0 ln(t + 1)e -zt dt with ζ R (j -k) =    γ if j = k + 1 ζ(j -k) -1 j-k-1 otherwise.
Rewriting the series ν k as

ν k = ∞ j=k+2 (-1) j-k j ζ(j -k) ,
and using the well-known relations

ζ(0) = - 1 2 , ζ(1 -2r) = - B 2r 2r , and ζ (0) = - 1 2 ln 2π (cf. [3, p. 605]),
then a careful identification of the terms in z k in the previous development leads again, after some simplifications, to formula (2), and provides in addition another equivalent expression for the constant C k :

C k = H k k + 1 - k j=1 B j j(k + 1 -j) . ( 7 
)
An unexpected consequence of this equivalence is the curious identity

H k k + 1 - 1 k = k-1 j=0 B j+1 j + 1 k j H j + 1 k -j (k ≥ 1)
whose direct proof does not seem obvious.

Example 1. For the first values of k, we have the following relations:

ν 1 = γ 2 - 1 2 ln 2π + 1 , ν 2 = γ 3 - 1 2 ln 2π -2ζ (-1) + 2 3 , ν 3 = γ 4 - 1 2 ln 2π -3ζ (-1) + 3ζ (-2) + 7 12 , ν 4 = γ 5 - 1 2 ln 2π -4ζ (-1) + 6ζ (-2) -4ζ (-3) + 47 90 , ν 5 = γ 6 - 1 2 ln 2π -5ζ (-1) + 10ζ (-2) -10ζ (-3) + 5ζ (-4) + 167 360 .
Remark 1. Starting from the Maclaurin series expansion [3, Eq. (25.8.5)]

ψ(x + 1) + γ = ∞ n=2 (-1) n ζ(n)x n-1 (|x| < 1)
where ψ(x) denotes the digamma function (i.e. the logarithmic derivative of the Γ-function), and multiplying each side by x k (with k ≥ 1), then an integration between 0 and 1 gives

ν k = γ k + 1 + ˆ1 0 x k ψ(x + 1) dx.
Thus, it follows from formula (2) that

ˆ1 0 x k ψ(x + 1) dx = k-1 j=0 (-1) j k j ζ (-j) + C k (k ≥ 1).
Remark 2 (Link with the Ramanujan summation: part I). 

H n = 3 2 γ - 1 2 ln 2π + 1 2 ,
and for any positive integer p,

R n 1 n p H n = 1 -B p+1 p + 1 γ - 1 2 ln 2π + p j=1 (-1) j p j ζ (-j) + R p with R p ∈ Q,
where the symbol R denotes the sum of the series in the sense of the Ramanujan summation of divergent series [START_REF] Blagouchine | A note on some constants related to the zeta function[END_REF][START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF][START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF][START_REF] Candelpergher | Ramanujan summation and the exponential generating function ∞ k=0 z k k! ζ (-k)[END_REF]. For p = 2k (with k ≥ 1), we have

B p+1 = 0 and R p = C p -Bp 2p + Bp 2 ,
then, in view of formula (2), these relations may be translated into the following identities: R n 1

H n = ν 1 + γ - 1 2 ,
and for k ≥ 1,

R n 1 n 2k H n = ν 2k + ζ (-2k) + 1 -2k 2 ζ(1 -2k) = ν 2k + ζ (-2k) + (2k -1) B 2k 4k . ( 8 
)
In particular, we have

R n 1 n 2 H n = ν 2 + ζ (-2) + B 2 4 = ν 2 - ζ(3) 4π 2 + 1 24 .
2 The case k = -1

The case k = -1 behaves differently from the previous case and must be studied separately. We recall the identities [11, p. 142]

ν -1 = ˆ1 0 ψ(x + 1) + γ x dx = ∞ n=1 1 n ln(1 + 1 n ) = - ∞ n=2 ζ (n) = 1.2577468869 . . .
Another interesting representation (communicated by I. V. Blagouchine) is

ν -1 = 1 2 ˆ+∞ -∞ ζ( 3 /2 + ix) ( 1 /2 + ix) cosh(πx)
dx.

Moreover, we can write yet another relation that will be useful in the next section: for an integer p ≥ 0, let κ p be the constant defined by

κ p := ∞ n=1 |G n | n p+1 ,
where G n := G (1) n are the Bernoulli numbers of the second kind (also called Gregory coefficients). In particular, we have 

κ 0 = ∞ n=1 |G n | n = γ and κ 1 = ∞ n=1 |G n | n 2 = 0.5290529699 . . .
κ 1 = ν -1 + γ 1 + 1 2 γ 2 - 1 2 ζ(2) , (9) 
where γ 1 denotes the first Stieljes constant [START_REF] Apostol | Zeta and Related Functions, NIST Handbook of Mathematical Functions[END_REF][START_REF] Blagouchine | A note on some constants related to the zeta function[END_REF][START_REF] Candelpergher | Ramanujan Summation of Divergent Series[END_REF] . 

γ 1 = lim n→∞    n j=1 ln j j - 1 2 ln 2 n    = -0.

Alternating series involving multiple zeta values

In this section, we consider a more general class of series of the previous type replacing zeta values with certain multiple zeta values. We prove our formula (3) and deduce some interesting consequences.

Proposition 2. For all integers p ≥ 0 and k ≥ -1, let

ν k,p := ∞ n=2 (-1) n n + k ζ(n, 1, . . . , 1 p ) ; then ν k,p = ∞ n=1 |G (k+1) n | n p+1 ,
where the rational numbers G (k) n are defined by equation ( 4). Corollary 1. In particular, for p = 0, we have

ν k-1,0 = ∞ n=1 |G (k) n | n = ν k-1 (k ≥ 0);
and for k = 0, we have

ν 0,p = ∞ n=1 |G (1) n | n p+1 = κ p (p ≥ 0) .
In order to prove Proposition 2, we begin by stating the following lemmas:

Lemma 1. For all integers j ≥ 1 and p ≥ 0, we have

ˆ1 0 ln j (1 -x) ln p (x) x dx = (-1) j+p j! p! ζ(j + 1, 1, . . . , 1 p ) . ( 10 
)
Proof. This follows directly from [18, 

ln j (1 + x) j! = ∞ n=j s(n, j) x n n! (|x| < 1) . ( 11 
)
Lemma 3. For all integers n ≥ 1 and p ≥ 0, we have

(-1) p ˆ1 0 x n-1 ln p (x) dx = p! n p+1 (12)
Proof. This is nothing else than [7, Eq. ( 41)] in the case where p is an integer.

Lemma 4. For all integers n ≥ 1 and k ≥ 0, we have

G (k) n = (-1) n+1 n! ˆ1 0 x k (1 -x) n-1 dx , where (z) n = z(z+1)(z+2) • • • (z+n-1)
is the Pochhammer symbol. In particular, this implies that

G (k) n = (-1) n+1 |G (k) n | . ( 13 
)
Proof. Integration between 0 and 1 of the expansion

x k-1 x(x -1) • • • (x -n + 1) = n j=1 s(n, j)x j+k-1
gives the required result.

Proof of Proposition 2. Using successively formulas (10)-( 13) above, we can write the following equalities:

ν k,p = ∞ j=1 (-1) j+1 j + k + 1 ζ(j + 1, 1, . . . , 1 p ) = (-1) p+1 p! ∞ j=1 1 j + k + 1 ˆ1 0 ln j (1 -x) j! ln p (x) x dx = (-1) p+1 p! ∞ j=1 1 j + k + 1 ˆ1 0   ∞ n=j (-1) n s(n, j) x n n!   ln p (x) x dx = (-1) p+1 p! ∞ j=1 1 j + k + 1 ∞ n=j (-1) n s(n, j) n! ˆ1 0 x n-1 ln p (x) dx = - ∞ j=1 1 j + k + 1 ∞ n=j (-1) n s(n, j) n! n p+1 = - ∞ n=1 (-1) n n! n p+1 n j=1 s(n, j) j + k + 1 = ∞ n=1 (-1) n+1   1 n! n j=1 s(n, j) j + k + 1   1 n p+1 = ∞ n=1 (-1) n+1 G (k+1) n n p+1 = ∞ n=1 |G (k+1) n | n p+1 .
This completes the proof.

Example 2.

For the first values of k ≥ -1, we have the following expansions in series containing only positive rational terms: and more generally, they may be computed by means of the following beautiful formula (first discovered by Euler [START_REF] Euler | Meditationes circa singulare serierum genus (1775), Eneström-Number E477[END_REF] and several times rediscovered afterwards):

ν -1 = ∞ n=1 |G (0) n | n =
2ζ H (n) = (n + 2)ζ(n + 1) - n-2 r=1 ζ(r + 1)ζ(n -r) (n ≥ 3).
Otherwise, by Proposition 2 above, we can write

∞ n=2 (-1) n ζ H (n) n = ν 0,1 -ν -1 + ζ(2) = κ 1 -ν -1 + ζ(2) ,
and thus, from equation ( 9), we derive the following elegant evaluation:

∞ n=2 (-1) n ζ H (n) n = γ 1 + 1 2 γ 2 + π 2 12 = 0.916240149 . . . . ( 14 
)
Another expression of this constant is ζ (0) + 

(s) = ζ H (s) - ˆ∞ 1 x -s (ψ(x + 1) + γ) dx for Re(s) > 1 .
We have the identities

ζ R H (1) = ν 0,1 = κ 1 , ζ R H (0) = ν 1 + γ - 1 2 ,
and formula (8) may be nicely rewritten

ζ R H (-2k) = ζ H (-2k) + ζ (-2k) + ν 2k .

Link with the shifted Mascheroni series

Let us consider now the forward shifted Mascheroni series which are defined by

σ r := ∞ n=1 |b n+r | n , for r = 0, 1, 2, • • • .
We have in particular σ 0 = ν 0 = γ. The study of these series σ r was the main subject of [START_REF] Coppo | Shifted Mascheroni series and hyperharmonic numbers[END_REF]. Among other things, we have established the following decomposition of ζ (-j) on the "basis" of σ r [12, Proposition 3]:

ζ (-j) = j+1 r=2
(-1) j-r (r-1)!S(j, r-1)σ r -B j+1 j + 1 γ-B j+1 (j + 1) 2 , for j = 1, 2, 3,

• • • ,
where S(j, r) are Stirling numbers of the second kind; moreover, for j = 0, we have also a similar relation:

1 2 ln 2π = -ζ (0) = σ 1 + γ 2 + 1 2 .
Then, substituting these relations into (2) enables us to write each series ν k with k ≥ 1 as an integral linear combination of γ, σ 1 , σ 2 , • • • , σ k plus a rational number D k which is closely linked to C k . In this combination, the coefficient of γ is zero since it is equal to 1 with

D k = 1 k + k j=1 k j B j H j k + 1 -j .
Example 4. For the first values of k, we have the following relations: 

ν 1 = 1 2 -σ 1 , ν 2 = 1 4 -σ 1 + 2σ

ν k := ∞ n=2 (- 1 )

 n=21 n ζ(n) n + k , where ζ(s) is the Riemann zeta function and k denotes an integral parameter. By a classical result (cf. [8, p. 66], [15, p. 62]), it is well known that ν 0 is Euler's constant

The constants κ 1

 1 and ν -1 are linked by the relation [8, Eq. (3.23) p. 105]

BProposition 3 .

 3 j which vanishes by a well-known property of the Bernoulli numbers. Finally, equation (2) may be nicely rewritten in terms of σ r as follows: For all integers k ≥ 1, we have the relationν k = D k -σ 1 + k r=2(-1) r (r -1)!

  07281584548 . . . .

	In terms of the Ramanujan summation, γ 1 is	R n 1	ln n n (cf. [8, p. 67]), whereas κ 1 is
	R n 1	Hn n (cf. [8, Eq. (4.29) p. 133]).	

  Eqs. (2.27), (2.28)].

	Lemma 2. The Stirling numbers of the first kind s(n, j) with fixed j ≥ 1 admit
	the (vertical) exponential generating function [1, Eq. (2.8)]

  + 30σ 2 -150σ 3 + 240σ 4 -120σ 5 , ν 6 = 23 180 -σ 1 + 62σ 2 -420σ 3 + 1560σ 4 -1800σ 5 + 720σ 6 .

				2 ,
	ν 3 =	5 24	-σ 1 + 6σ 2 -6σ 3 ,
	ν 4 =	13 72	-σ 1 + 14σ 2 -36σ 3 + 24σ 4 ,
	ν 5 =	109 720	-σ 1
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