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Abstract In this article, we study a class of conditionally convergent alternating
series including, as a special case, the famous series ∑n>2(−1)n ζ(n)

n
which links

Euler’s constant γ to special values of the Riemann zeta function at positive in-
tegers. We give several new relations of the same kind. Among other things, we
show the existence of a similar relation for the Apostol-Vu harmonic zeta function
which have never been noticed before. We also highlight a deep connection with
the Ramanujan summation of certain divergent series which originally motivated
this work.
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Introduction
The first part of this article is devoted to the study of the conditionally convergent
alternating series νk defined by

νk :=
∞∑
n=2

(−1)n ζ(n)
n+ k

,

where ζ(s) is the Riemann zeta function and k denotes an integral parameter. By
a classical result (cf. [8, p. 66], [15, p. 62]), it is well known that ν0 is Euler’s
constant

γ = lim
n→∞


n∑
j=1

1
j
− lnn

 = 0.5772156649 . . . .

This remarkable connection between γ and the special values at positive integers
of the Riemann zeta function goes back to Euler’s early works on harmonic series
(cf. [13]). Less famous but yet fairly well-known (cf. [8, p. 93], [16, Eq. (5.1)],
[17, Eq. (1.5]) is the relation

ν1 = γ

2 −
1
2 ln 2π + 1

sometimes called Suryanarayana formula. Recently, Blagouchine ([5, p. 413]) gave
a general expression of these series νk in the case where k is a positive integer:

νk = γ

2 −
ln 2π
k + 1 + 1

k

+
[ k

2 ]∑
r=1

(−1)r
(

k

2r − 1

)
(2r)!
r(2π)2r ζ

′(2r) +
[ k+1

2 ]−1∑
r=1

(−1)r
(
k

2r

)
(2r)!

2(2π)2r ζ(2r + 1) . (1)

This formula seems quite cumbersome but can be much simplified using the func-
tional equation of ζ. After some elementary transformations, we show that equa-
tion (1) can be reduced to the following equivalent (but much more pleasant)
expression:

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j) + Ck , (2)

where Ck is a rational number (see Proposition 1). Moreover, this expression
allows to highlight a deep connection between ν2k and the sum (in the sense of the
Ramanujan summation of divergent series) of the series ∑n>1 n

2kHn, where Hn is
the nth harmonic number (see Remark 2).

Next, in a second part, we introduce a generalization of these series series νk
replacing the zeta values by certain multiple zeta values. A natural extension may
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be defined as follows: for all integers k ≥ −1 and p ≥ 0, we consider the class of
series (νk,p) with

νk,p :=
∞∑
n=2

(−1)n
n+ k

ζ(n, 1, . . . , 1︸ ︷︷ ︸
p

) ,

where
ζ(s1, s2, · · · , sk) =

∑
n1>n2>···>nk≥1

1
ns1

1 n
s2
2 · · ·nsk

k

,

so that the previous series νk become νk,0. Then we establish (see Proposition 2)
the following identity which is the main result of this work:

νk,p =
∞∑
n=1

|G(k+1)
n |
np+1 , (3)

where G(k)
n denotes the Gregory coefficients of higher order recently introduced by

Blagouchine (cf. [5, 6]). They are defined by

G(k)
n := 1

n!

n∑
j=1

s(n, j)
j + k

(k ≥ 0, n ≥ 1), (4)

where s(n, j) are the Stirling numbers of the first kind. Comprehensive informa-
tions on the Stirling numbers of the first and the second kind may be found in
[1, 5, 12, 15, 18]. One can prove easily (see Lemma 4) that G(k)

n = (−1)n+1|G(k)
n |,

so that the rationals numbers G(k)
n alternate in sign. As a special case of equation

(3), we derive the following result:

νk−1 =
∞∑
n=1

|G(k)
n |
n

(k ≥ 0) . (5)

In the case k = 1, we recover the classical Mascheroni’s series for γ (cf. [5, p. 406],
[15, p. 280]):

γ = 1
2 + 1

24 + 1
72 + 19

2880 + 3
800 + 863

362 880 + · · · .

Another notable consequence of formula (3) is the deduction of this nice formula
(see Example 3):

∞∑
n=2

(−1)n ζH(n)
n

= γ1 + 1
2γ

2 + π2

12 ,

where ζH(s) denotes the Apostol-Vu harmonic zeta function (cf. [2, 3, 4]) and γ1
is the first Stieltjes constant (cf. [7, 8]).

Finally, in the last section, we highlight a relation between the series νk, the
Stirling numbers of the second kind S(n, k), and the shifted Mascheroni series σr
whose study was the main subject of [12] (see Proposition 3 and Example 4).
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1 The case of a positive integer
In this section, we focus on the case of a positive integer k and give two independant
proofs of our formula (2). More precisely, we prove the following proposition:

Proposition 1. For any positive integer k, we have

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j) + Ck

with
Ck = 1

k
+

k∑
n=2

(
k

n

)
BnHn−1

k + 1− n , (6)

where Hn are the harmonic numbers, Hn := 1 + 1
2 + · · · + 1

n
, and Bn are the

Bernoulli numbers defined by means of the exponential generating function

x

ex − 1 =
∞∑
n=0

Bn
xn

n! (|x| < 2π) .

In particular, B0 = 1, B1 = −1/2, B2 = 1/6, B2r+1 = 0 for r ≥ 1.

Proof. We can quite easily derive (2) from (1). Differentiation of the functional
equation

ζ(s) = 2(2π)s−1Γ(1− s)ζ(1− s) sin πs2
(cf. [3, Eq. (25.4.2)]), leads to the two relations

(−1)r (2r)!
2(2π)2r ζ(2r + 1) = ζ ′(−2r) (r ≥ 1),

and

(−1)r (2r)!
r(2π)2r ζ

′(2r) = −ζ ′(1− 2r) + B2r

2r (H2r−1 − γ − ln 2π) (r ≥ 1) .

Substituting these relations into (1) and grouping together the terms under the
two symbols Σ, leads to the expression

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j) + Ck ,

where the rational constant Ck is given by equation (6).
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Another alternative proof of (2), independant from (1), may be deduced from
the expansion in powers of z of the relation

∞∑
k=0

(−1)kzk
k!

∞∑
j=1

(−1)j−1

j
ζR(j − k) = (1− ez)

∞∑
k=0

(−1)kzk
k! ζ ′(−k)

+ (1− ez)
∞∑
k=0

(−1)kzk
k!

1
(k + 1)2

+
ˆ 1

0
ln(t+ 1)e−zt dt

(cf. [8, p. 93]), with

ζR(j − k) =

γ if j = k + 1
ζ(j − k)− 1

j−k−1 otherwise.

Rewriting the series νk as

νk =
∞∑

j=k+2

(−1)j−k
j

ζ(j − k) ,

and using the well-known relations

ζ(0) = −1
2 , ζ(1− 2r) = −B2r

2r , and ζ ′(0) = −1
2 ln 2π (cf. [3, p. 605]),

then a careful identification of the terms in zk in the previous development leads
again, after some simplifications, to formula (2), and provides in addition another
equivalent expression for the constant Ck:

Ck = Hk

k + 1 + 1
2k −

k∑
n=2

Bn

n(k + 1− n) . (7)

An unexpected consequence of this equivalence is the curious identity

k∑
n=2

(
k

n

)
BnHn−1

k + 1− n +
k∑

n=2

Bn

n(k + 1− n) = Hk

k + 1 −
1
2k (k ≥ 2)

whose direct proof does not seem obvious.
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Example 1. For the first values of k, we have the following relations:

ν1 = γ

2 −
1
2 ln 2π + 1 ,

ν2 = γ

3 −
1
2 ln 2π − 2ζ ′(−1) + 2

3 ,

ν3 = γ

4 −
1
2 ln 2π − 3ζ ′(−1) + 3ζ ′(−2) + 7

12 ,

ν4 = γ

5 −
1
2 ln 2π − 4ζ ′(−1) + 6ζ ′(−2)− 4ζ ′(−3) + 47

90 ,

ν5 = γ

6 −
1
2 ln 2π − 5ζ ′(−1) + 10ζ ′(−2)− 10ζ ′(−3) + 5ζ ′(−4) + 167

360 .

Remark 1. Starting from the Maclaurin series expansion

ψ(x+ 1) + γ =
∞∑
n=2

(−1)nζ(n)xn−1 (|x| < 1)

(cf. [3, Eq. (25.8.5)]), where ψ(x) denotes the digamma function (i.e. the logarith-
mic derivative of the Γ-function), and multiplying each side by xk (with k ≥ 1),
then an integration between 0 and 1 gives

νk = γ

k + 1 +
ˆ 1

0
xkψ(x+ 1) dx.

Thus, it follows from formula (2) that
ˆ 1

0
xkψ(x+ 1) dx =

k−1∑
j=0

(−1)j
(
k

j

)
ζ ′(−j) + Ck (k ≥ 1).

Remark 2 (Link with the Ramanujan summation: part I). Candelpergher et al.
([10, Corollary 1], see also [8, p. 82]) established that

R∑
n>1

Hn = 3
2γ −

1
2 ln 2π + 1

2 ,

and for any positive integer p,

R∑
n>1

npHn =
(

1−Bp+1

p+ 1

)
γ − 1

2 ln 2π +
p∑
j=1

(−1)j
(
p

j

)
ζ ′(−j) +Rp with Rp ∈ Q,

where the symbol
R∑ denotes the sum of the series in the sense of the Ramanujan

summation of divergent series (cf. [7, 8, 9, 10]). For p = 2k (with k ≥ 1), we have
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Bp+1 = 0 and Rp = Cp− Bp

2p + Bp

2 , then, in view of formula (2), these relations may
be translated into the following identities:

R∑
n>1

Hn = ν1 + γ − 1
2 ,

and for k ≥ 1,
R∑
n>1

n2kHn = ν2k + ζ ′(−2k) + 1− 2k
2 ζ(1− 2k) = ν2k + ζ ′(−2k) + (2k− 1)B2k

4k . (8)

In particular, we have
R∑
n>1

n2Hn = ν2 + ζ ′(−2) + B2

4 = ν2 −
ζ(3)
4π2 + 1

24 .

2 The case k = −1
The case k = −1 behaves differently from the previous case and must be studied
separately. We recall the identities

ν−1 =
ˆ 1

0

ψ(x+ 1) + γ

x
dx =

∞∑
m=1

ln(m+ 1)
m(m+ 1) = −

∞∑
n=2

ζ ′(n) = 1.2577468869 . . .

(cf. [8, p. 105], [11, p. 142]). Another interesting representation (communicated
by I. V. Blagouchine) is

ν−1 = 1
2

ˆ +∞

−∞

ζ(3/2 + ix)
(1/2 + ix) cosh(πx) dx.

Moreover, we can write yet another relation which will be useful in the next section:
let κ1 be the constant

κ1 :=
∞∑
n=1

|bn|
n2 = 0.5290529699 . . . ,

where the rational numbers bn are the Bernoulli numbers of the second kind defined
by means of their generating function

x

ln(x+ 1) = 1 +
∞∑
n=1

bn x
n (|x| < 1).

These numbers bn were introduced and studied by Jordan ([15, p. 265 et seq.]).
Note that several authors quoted here use different notations: bn are denoted by
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Gn (and called Gregory coefficients) in [5, 6, 7], and they are denoted by βn

n! in
[8]. The coefficients n! bn are sometimes called Cauchy numbers (cf. [9]). The
constants κ1 and ν−1 are linked by the relation

κ1 + 1
2ζ(2) = ν−1 + γ1 + 1

2γ
2 (9)

(cf. [7, Eq. (37)], [8, Eq. (3.23) p. 105]), where γ1 denotes the first Stieljes
constant (cf. [3, 7, 8])

γ1 = lim
n→∞


n∑
j=1

ln j
j
− 1

2 ln2 n

 = −0.07281584548 . . . .

In terms of the Ramanujan summation, γ1 is
R∑
n>1

lnn
n

(cf. [8, p. 67]), whereas κ1 is
R∑
n>1

Hn

n
(cf. [8, Eq. (4.29) p. 133]).

3 Alternating series involving multiple zeta val-
ues

In this section, we consider a more general class of series of the previous type
replacing zeta values with certain multiple zeta values. We prove our formula (3)
and deduce some interesting consequences.

Proposition 2. For all integers p ≥ 0 and k ≥ −1, let

νk,p :=
∞∑
n=2

(−1)n
n+ k

ζ(n, 1, . . . , 1︸ ︷︷ ︸
p

) ;

then
νk,p =

∞∑
n=1

|G(k+1)
n |
np+1 ,

where the rational numbers G(k)
n are defined by equation (4).

Corollary 1. In particular, for p = 0, we have

νk−1,0 = νk−1 =
∞∑
n=1

|G(k)
n |
n

(k ≥ 0);

and since G(1)
n = bn, for k = 0, we have also

ν0,p = κp :=
∞∑
n=1

|bn|
np+1 (p ≥ 0) .
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In order to prove Proposition 2, we begin by stating the following lemmas:

Lemma 1. For all integers j ≥ 1 and p ≥ 0, we have
ˆ 1

0

lnj(1− x) lnp(x)
x

dx = (−1)j+p j! p! ζ(j + 1, 1, . . . , 1︸ ︷︷ ︸
p

) . (10)

Proof. This follows directly from [18, Eq. (2.27), (2.28)].

Lemma 2. The Stirling numbers of the first kind s(n, j) with fixed j ≥ 1 admit
the (vertical) exponential generating function (cf. [1, Eq. (2.8)])

lnj(1 + x)
j! =

∞∑
n=j

s(n, j)x
n

n! (|x| < 1) . (11)

Lemma 3. For all integers n ≥ 1 and p ≥ 0, we have

(−1)p
ˆ 1

0
xn−1 lnp(x) dx = p!

np+1 (12)

Proof. This is nothing else than [7, Eq. (41)] in the case where p is an integer.

Lemma 4. For all integers n ≥ 1 and k ≥ 0, we have

G(k)
n = (−1)n+1

n!

ˆ 1

0
xk(1− x)n−1 dx ,

where (z)n = z(z+1)(z+2) · · · (z+n−1) is the Pochhammer symbol. In particular,
this implies that

G(k)
n = (−1)n+1|G(k)

n | . (13)

Proof. Integration between 0 and 1 of the expansion

xk−1x(x− 1) · · · (x− n+ 1) =
n∑
j=1

s(n, j)xj+k−1

gives the required result.

Proof of Proposition 2. Using successively formulas (10)–(13) above, we can write
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the following equalities:

νk,p =
∞∑
j=1

(−1)j+1

j + k + 1ζ(j + 1, 1, . . . , 1︸ ︷︷ ︸
p

)

= (−1)p+1

p!

∞∑
j=1

1
j + k + 1

ˆ 1

0

lnj(1− x)
j!

lnp(x)
x

dx

= (−1)p+1

p!

∞∑
j=1

1
j + k + 1

ˆ 1

0

 ∞∑
n=j

(−1)ns(n, j)x
n

n!

 lnp(x)
x

dx

= (−1)p+1

p!

∞∑
j=1

1
j + k + 1

∞∑
n=j

(−1)n s(n, j)
n!

ˆ 1

0
xn−1 lnp(x) dx

= −
∞∑
j=1

1
j + k + 1

∞∑
n=j

(−1)n s(n, j)
n!np+1

= −
∞∑
n=1

(−1)n
n!np+1

n∑
j=1

s(n, j)
j + k + 1

=
∞∑
n=1

(−1)n+1

 1
n!

n∑
j=1

s(n, j)
j + k + 1

 1
np+1

=
∞∑
n=1

(−1)n+1G
(k+1)
n

np+1 =
∞∑
n=1

|G(k+1)
n |
np+1 .

This completes the proof.

Example 2. For the first values of k ≥ −1, we have the following expansions in
series containing only positive rational terms:

ν−1 =
∞∑
n=1

|G(0)
n |
n

= 1 + 1
8 + 5

108 + 3
128 + 251

18000 + 95
10368 + · · · ,

ν0 =
∞∑
n=1

|G(1)
n |
n

= 1
2 + 1

24 + 1
72 + 19

2880 + 3
800 + 863

362 880 + · · · ,

ν1 =
∞∑
n=1

|G(2)
n |
n

= 1
3 + 1

48 + 7
1080 + 17

5760 + 41
25 200 + 731

725 760 + · · · ,

ν2 =
∞∑
n=1

|G(3)
n |
n

= 1
4 + 1

80 + 1
270 + 11

6720 + 89
100 800 + 5849

10 886 400 + · · · ,

ν3 =
∞∑
n=1

|G(4)
n |
n

= 1
5 + 1

120 + 1
420 + 83

80 640 + 59
108 000 + 397

1 209 600 + · · · .
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Example 3. Let ζH be the Apostol-Vu harmonic zeta function (cf. [2, 3, 4, 10])
defined for Re(s) > 1 by

ζH(s) :=
∞∑
n=1

Hn

ns
.

We recall that ζH is analytic in the half-plane Re(s) > 1 and can be extended
meromorphically with poles at the integers 1, 0,−1,−3,−5, · · · . The special values
at negative even integers are ζH(−2k) = B2k/2 − B2k/4k. The special values at
positive integers are also well-known: the first values are

ζH(2) = 2ζ(3), ζH(3) = 5
4ζ(4),

and more generally, they may be computed by means of the following beautiful
formula (first discovered by Euler (cf. [14]) and several times rediscovered after-
wards):

2ζH(n) = (n+ 2)ζ(n+ 1)−
n−2∑
r=1

ζ(r + 1)ζ(n− r) (n ≥ 3).

Otherwise, by Proposition 2 above, we can write
∞∑
n=2

(−1)n ζH(n)
n

= ν0,1 − ν−1 + ζ(2) = κ1 − ν−1 + ζ(2) ,

and thus, from equation (9), we derive the following elegant evaluation:
∞∑
n=2

(−1)n ζH(n)
n

= γ1 + 1
2γ

2 + π2

12 = 0.916240149 . . . . (14)

Another expression of this constant is ζ ′′(0)+ 1
2 ln2(2π)+ π2

8 (cf. [3, Eq. (25.6.12)]).
Remark 3 (Link with the Ramanujan summation: part II). For s ∈ C, let ζRH be
the function s 7→

R∑
n>1

Hn n
−s where

R∑ stands for the Ramanujan summation. The

function ζRH is an entire function linked to the harmonic zeta function ζH by the
relation

ζRH (s) = ζH(s)−
ˆ ∞

1
x−s (ψ(x+ 1) + γ) dx for Re(s) > 1

(cf. [10, Eq. (84)]). We have the identities

ζRH (1) = ν0,1 = κ1 , ζRH (0) = ν1 + γ − 1
2 ,

and formula (8) may be nicely rewritten

ζRH (−2k) = ζH(−2k) + ζ ′(−2k) + ν2k .
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4 Link with the shifted Mascheroni series
Let us consider now the forward shifted Mascheroni series which are defined by

σr :=
∞∑
n=1

|bn+r|
n

, for r = 0, 1, 2, · · · .

We have in particular σ0 = ν0 = γ. The study of these series σr was the main sub-
ject of [12]. Among other things, we have established the following decomposition
of ζ ′(−j) on the “basis” of σr (cf. [12, Proposition 3]):

ζ ′(−j) =
j+1∑
r=2

(−1)j−r(r−1)!S(j, r−1)σr−
Bj+1

j + 1γ−
Bj+1

(j + 1)2 , for j = 1, 2, 3, · · · ,

where S(j, r) are Stirling numbers of the second kind; moreover, for j = 0, we
have also a similar relation:

1
2 ln 2π = −ζ ′(0) = σ1 + γ

2 + 1
2 .

Then, substituting these relations into (2) enables us to write each series νk with
k ≥ 1 as an integral linear combination of γ, σ1, σ2, · · · , σk plus a rational number
Dk which is closely linked to Ck. In this combination, the coefficient of γ is zero
since it is equal to 1

k+1
∑k
j=0

(
k+1
j

)
Bj which vanishes by a well-known property of

the Bernoulli numbers. Finally, equation (2) may be nicely rewritten in terms of
σr as follows:

Proposition 3. For all integers k ≥ 1, we have the relation

νk = Dk − σ1 +
k∑
r=2

(−1)r(r − 1)!
 k−1∑
j=r−1

(
k

j

)
S(j, r − 1)

σr (15)

with

Dk = Ck −
1
2 +

k∑
n=2

(
k

n

)
Bn

n(k + 1− n) = 1
k

+
k∑

n=1

(
k

n

)
BnHn

k + 1− n .
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Example 4. For the first values of k, we have the following relations:

ν1 = 1
2 − σ1 ,

ν2 = 1
4 − σ1 + 2σ2 ,

ν3 = 5
24 − σ1 + 6σ2 − 6σ3 ,

ν4 = 13
72 − σ1 + 14σ2 − 36σ3 + 24σ4 ,

ν5 = 109
720 − σ1 + 30σ2 − 150σ3 + 240σ4 − 120σ5 ,

ν6 = 23
180 − σ1 + 62σ2 − 420σ3 + 1560σ4 − 1800σ5 + 720σ6 .
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