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Abstract
In this article, we consider various generalizations of Euler’s famous relation

γ =
∑
n≥2

(−1)n ζ(n)
n

linking Euler’s constant γ to special values of the Riemann zeta function at
positive integers. Among other things, we highlight the existence of a very
similar relation for the Apostol-Vu harmonic zeta function which have never
been noticed before.

Keywords: Euler’s constant, first Stieltjes constant, Riemann zeta function, har-
monic zeta function, Stirling numbers, Bernoulli numbers, Bernoulli numbers of
the second kind, harmonic numbers, multiple zeta values.

Introduction
This article is primarily devoted to the study of alternating series νk defined by

νk :=
∞∑

n=2
(−1)n ζ(n)

n+ k
,

where k denotes an integral parameter. By a classical result (cf. [11] p. 62, [12]
p. 532), one knows that ν0 is Euler’s constant

γ = lim
n→∞


n∑

j=1

1
j
− lnn

 = 0.5772156649 . . .

This remarkable connection between γ and the special values at positive integers
of the Riemann zeta function goes back to Euler’s early works on harmonic series1.

1De progressionibus harmonicis observationes (1734), Eneström-Number E43.



Less famous but yet fairly well-known (cf. [8] p. 93, [13] Eq. (5.1), [14] Eq. (1.5))
is the following relation:

ν1 = γ

2 −
1
2 ln 2π + 1 .

Recently, Blagouchine ([5]) has given this general expression of the series νk in the
case where k is a positive integer:

νk = γ

2 −
ln 2π
k + 1 + 1

k

+
[ k

2 ]∑
r=1

(−1)r

(
k

2r − 1

)
(2r)!
r(2π)2r

ζ ′(2r) +
[ k+1

2 ]−1∑
r=1

(−1)r

(
k

2r

)
(2r)!

2(2π)2r
ζ(2r + 1) . (1)

Though this formula seems quite cumbersome, it may be highly simplified using
the functional equation of ζ. After some transformations, we show (see Proposition
1) that formula (1) can be reduced to the following equivalent (but much more
pleasant) expression:

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j

(
k

j

)
ζ ′(−j) + Ck , (2)

where Ck is a rational constant whose explicit expression involves both the Bernoulli
numbers and the harmonic numbers (cf. formula (6)).

Next, we introduce some generalizations of these series involving certain mul-
tiple zeta values. A natural extension of the series νk may be defined as follows:
for all integers k ≥ −1 and p ≥ 0, we consider the series

νk,p :=
∞∑

n=2

(−1)n

n+ k
ζ(n, 1, . . . , 1︸ ︷︷ ︸

p

) ,

where
ζ(s1, s2, · · · , sk) =

∑
n1>n2>···>nk≥1

1
ns1

1 n
s2
2 · · ·nsk

k

,

in such a way that our series νk are nothing else than νk,0. Then, we establish (see
Proposition 2) the following remarkable identity:

νk,p =
∞∑

n=1

|G(k+1)
n |
np+1 , (3)

where G(k)
n denotes the Gregory coefficients of higher order recently introduced in

[6]. They are defined by

G(k)
n := 1

n!

n∑
j=1

S1(n, j)
j + k

(k ≥ 0, n ≥ 1), (4)
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where S1(n, j) are the Stirling numbers of the first kind2. One can prove easily
that G(k)

n = (−1)n+1|G(k)
n |, i.e. the rationals G(k)

n alternate in sign. As a special
case of formula (3) above, we derive the following result:

νk−1 =
∞∑

n=1

|G(k)
n |
n

(k ≥ 0), (5)

which significantly generalizes the Mascheroni series for γ (this classical series (cf.
[11] p. 280) is nothing else than formula (5) with k = 1).

Another notable consequence of our study is the highlighting of this elegant
formula (see Example 3):

∞∑
n=2

(−1)n ζH(n)
n

= γ1 + 1
2γ

2 + π2

12 ,

where ζH(s) denotes the Apostol-Vu harmonic zeta function (cf. [2], [3], [4]) and
γ1 is the first Stieltjes constant (cf. [7], [8]).

Finally, in the last section, we highlight the existence of an interesting rela-
tion between the series νk, the Stirling numbers of the second kind S2(n, k), and
the shifted Mascheroni series σr whose study was the main subject of [10] (see
Proposition 3 and Example 3).

1 The case of a positive integer
In this section, we focus on the case of a positive integer k and give two independant
proofs of our formula (2). More precisely, we prove the following proposition:
Proposition 1. For any positive integer k, then

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j

(
k

j

)
ζ ′(−j) + Ck

with

Ck = 1
k

+
[ k

2 ]∑
r=1

(
k

2r

)
B2r H2r−1

k + 1− 2r (6)

where Hk = 1 + 1
2 + · · · + 1

k
is the kth harmonic number and the B2r are the

Bernoulli numbers defined by their exponential generating function
z

ez − 1 =
∞∑

n=0
Bn

zn

n! (|z| < 2π) .

In particular, B0 = 1, B1 = −1/2, B2r+1 = 0 for r ≥ 1.
2Comprehensive informations on the Stirling numbers of the first and the second kind may

be found in [1], [5], [10], [11], [15].
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Proof. We can quite easily derive (2) from formula (1). Differentiation of the
functional equation

ζ(s) = 2(2π)s−1Γ(1− s)ζ(1− s) sin πs2 ,

enables us to write the two relations:

(−1)r (2r)!
2(2π)2r

ζ(2r + 1) = ζ ′(−2r) (r ≥ 1),

and

(−1)r (2r)!
r(2π)2r

ζ ′(2r) = −ζ ′(1− 2r) + B2r

2r (H2r−1 − γ − ln 2π) (r ≥ 1) .

Substituting these relations in (1) and grouping together the terms under the two
symbols Σ, leads to the following expression:

νk = γ

k + 1 −
1
2 ln 2π +

k−1∑
j=1

(−1)j

(
k

j

)
ζ ′(−j) + Ck

with

Ck = 1
k

+
[ k

2 ]∑
r=1

(
k

2r

)
B2r H2r−1

k + 1− 2r .

Another alternative proof of formula (2), independant from (1), may be de-
duced from the expansion in powers of z of the following relation given in [8] p.
93:

∞∑
k=0

(−1)kzk

k!

∞∑
j=1

(−1)j−1

j
ζR(j − k) = (1− ez)

∞∑
k=0

(−1)kzk

k! ζ ′(−k)

+ (1− ez)
∞∑

k=0

(−1)kzk

k!
1

(k + 1)2

+
ˆ 1

0
ln(t+ 1)e−zt dt ,

with

ζR(j − k) =

γ if j = k + 1
ζ(j − k)− 1

j−k−1 otherwise.

Rewriting the series νk under the following form:

νk =
∞∑

j=k+2

(−1)j−k

j
ζ(j − k) ,
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and using the well-known relations (cf. [3]) :

ζ(0) = −1
2 , ζ(1− 2r) = −B2r

2r , ζ ′(0) = −1
2 ln 2π ,

a careful identification of the terms in zk in the previous development leads again
to (2) and provides in addition an alternative expression of the constant Ck

3:

Ck = Hk

k + 1 + 1
2k −

[ k
2 ]∑

r=1

B2r

2r(k + 1− 2r) .

Example 1. For the first values of k, we have the following relations:

ν1 = γ

2 −
1
2 ln 2π + 1 ,

ν2 = γ

3 −
1
2 ln 2π − 2ζ ′(−1) + 2

3 ,

ν3 = γ

4 −
1
2 ln 2π − 3ζ ′(−1) + 3ζ ′(−2) + 7

12 ,

ν4 = γ

5 −
1
2 ln 2π − 4ζ ′(−1) + 6ζ ′(−2)− 4ζ ′(−3) + 47

90 ,

ν5 = γ

6 −
1
2 ln 2π − 5ζ ′(−1) + 10ζ ′(−2)− 10ζ ′(−3) + 5ζ ′(−4) + 167

360 ,

ν6 = γ

7 −
1
2 ln 2π − 6ζ ′(−1) + 15ζ ′(−2)− 20ζ ′(−3) + 15ζ ′(−4)− 6ζ ′(−5) + 349

840 .

2 The case k = −1
The case k = −1 behaves differently from the previous case and must be studied
by other tools. We recall the identities (cf. [8] p. 105, [9] p. 142):

ν−1 =
ˆ 1

0

ψ(x+ 1) + γ

x
dx =

∞∑
m=1

ln(m+ 1)
m(m+ 1) = −

∞∑
n=2

ζ ′(n) = 1, 2577468869 . . . ,

3An unexpected consequence is the equation

[ k
2 ]∑

r=1

(
k

2r

)
B2rH2r−1

k + 1− 2r = Hk

k + 1 −
1
2k −

[ k
2 ]∑

r=1

B2r

2r(k + 1− 2r)

whose direct proof does not seem obvious.
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where ψ is the digamma function4. Moreover, we can also write another interesting
relation which will be useful in the next section: let κ1 be the constant

κ1 :=
∞∑

n=1

|bn|
n2 = 0, 5290529699 . . . ,

where the rational numbers bn are the Bernoulli numbers of the second kind5

defined by their generating function

x

ln(x+ 1) = 1 +
∞∑

n=1
bn x

n (|x| < 1);

we recall the relation (cf. [7] Eq. (37), [8] Eq. (3.23) p. 105):

κ1 + 1
2ζ(2) = γ1 + 1

2γ
2 + ν−1 , (7)

where γ1 denotes the first Stieljes constant (cf. [7], [8]):

γ1 = lim
n→∞


n∑

j=1

ln j
j
− 1

2 ln2 n

 = −0.07281584548 . . .

3 Alternating series involving multiple zeta val-
ues

In this section, we consider more general series of the same type involving cer-
tain multiple zeta values, we prove our formula (3) and draw some interesting
consequences.

Proposition 2. For all integers p ≥ 0 and k ≥ −1, let

νk,p :=
∞∑

n=2

(−1)n

n+ k
ζ(n, 1, . . . , 1︸ ︷︷ ︸

p

) ;

4Another interesting identity (communicated by I. V. Blagouchine) is

ν−1 = 1
2

ˆ +∞

−∞

ζ(3/2 + ix)
(1/2 + ix) cosh(πx) dx.

5These numbers were introduced and studied by Jordan ([11] p. 265 ff.); see also [1], [10],
[16]. Note that several authors quoted in reference use different notations: numbers bn are noted
Gn (and called Gregory coefficients) in [5], [6], [7], they are noted βn/n! in [8], and bn/n! in [9].
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then
νk,p =

∞∑
n=1

|G(k+1)
n |
np+1 ,

where G(k)
n are the Gregory coefficients of higher order defined by Eq. (4). In

particular, we have

νk−1,0 = νk−1 =
∞∑

n=1

|G(k)
n |
n

(k ≥ 0);

since G(1)
n = bn, we have also

ν0,p = κp :=
∞∑

n=1

|bn|
np+1 (p ≥ 0) .

Proof. In order to prove our Proposition 2, we use the following lemmas:
Lemma 1. For all integers n ≥ 1 and k ≥ 0, then

G(k)
n = (−1)n+1

n!

ˆ 1

0
xk(1− x)n−1 dx , (8)

where (z)n = z(z+1)(z+2) · · · (z+n−1) is the Pochhammer symbol. In particular,
this implies that

G(k)
n = (−1)n+1|G(k)

n | .

Proof. Integration between 0 and 1 of the development

xk−1x(x− 1) · · · (x− n+ 1) =
n∑

j=1
S1(n, j)xj+k−1

gives the required result.

Lemma 2 ([7] Eq. (41)). For all integers n ≥ 1 and p ≥ 0, then

(−1)p

ˆ 1

0
xn−1 lnp(x) dx = p!

np+1 (9)

Lemma 3 ([15] Eq. (2.27) and (2.28)). For all integers j ≥ 1 and p ≥ 0, then
ˆ 1

0

lnj(1− x) lnp(x)
x

dx = (−1)j+p j! p! ζ(j + 1, 1, . . . , 1︸ ︷︷ ︸
p

) . (10)
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This enable us to write the following equalities:
∞∑

n=2

(−1)n

n+ k
ζ(n, 1, . . . , 1︸ ︷︷ ︸

p

) =
∞∑

j=1

(−1)j+1

j + k + 1ζ(j + 1, 1, . . . , 1︸ ︷︷ ︸
p

)

= (−1)p+1

p!

∞∑
j=1

1
j + k + 1

ˆ 1

0

lnj(1− x)
j!

lnp(x)
x

dx

= (−1)p+1

p!

∞∑
j=1

1
j + k + 1

ˆ 1

0

 ∞∑
n=j

(−1)nS1(n, j)x
n

n!

 lnp(x)
x

dx

= −
∞∑

n=1

(−1)n

n!

n∑
j=1

S1(n, j)
j + k + 1

(−1)p

p!

ˆ 1

0
xn−1 lnp(x) dx

=
∞∑

n=1
(−1)n+1

 1
n!

n∑
j=1

S1(n, j)
j + k + 1

 1
np+1

=
∞∑

n=1
(−1)n+1G

(k+1)
n

np+1 =
∞∑

n=1

|G(k+1)
n |
np+1 .

Example 2. For−1 ≤ k ≤ 6, we have the following expansions in series containing
only positive rational terms:

ν−1 = 1 + 1
8 + 5

108 + 3
128 + 251

18000 + 95
10368 + · · · ,

ν0 = 1
2 + 1

24 + 1
72 + 19

2880 + 3
800 + 863

362 880 + · · · ,

ν1 = 1
3 + 1

48 + 7
1080 + 17

5760 + 41
25 200 + 731

725 760 + · · · ,

ν2 = 1
4 + 1

80 + 1
270 + 11

6720 + 89
100 800 + 5849

10 886 400 + · · · ,

ν3 = 1
5 + 1

120 + 1
420 + 83

80 640 + 59
108 000 + 397

1 209 600 + · · · ,

ν4 = 1
6 + 1

168 + 5
3024 + 17

24 192 + 557
1 512 000 + 5249

23 950 080 + · · · ,

ν5 = 1
7 + 1

224 + 11
9072 + 41

80 640 + 439
1 663 200 + 311

1 995 840 + · · · ,

ν6 = 1
8 + 1

288 + 1
1080 + 73

190 080 + 47
237 600 + 2581

22 239 360 + · · · ,

8



Example 3. Let ζH be the Apostol-Vu harmonic zeta function ([2], [3], [4], [8] p.
72) defined for Re(s) > 1 by

ζH(s) =
∑
n≥1

Hn

ns
.

The special values at positive integers of this harmonic zeta function are well-
known: the first values are

ζH(2) = 2ζ(3), ζH(3) = 5
4ζ(4);

more generally, they may be computed by means of the beautiful formula (first
discovered by Euler6 and several times rediscovered afterwards):

2ζH(n) = (n+ 2)ζ(n+ 1)−
n−2∑
r=1

ζ(r + 1)ζ(n− r) (n ≥ 3).

Otherwise, by Proposition 2 above, we can write
∞∑

n=2
(−1)n ζH(n)

n
= ν0,1 − ν−1 + ζ(2) = κ1 − ν−1 + ζ(2) ,

and thus, using formula (7), we derive the following elegant evaluation:
∞∑

n=2
(−1)n ζH(n)

n
= γ1 + 1

2γ
2 + π2

12 = 0, 916240149 . . . 7 (11)

4 Link with shifted Mascheroni series
Let us consider by now the forward shifted Mascheroni series which are defined by

σr :=
∞∑

n=1

|bn+r|
n

(r = 0, 1, 2, · · · ) .

The study of these series was the main subject of [10]. Among other things, we
have established the following decomposition of ζ ′(−j) on the “basis” of σr (cf.
[10], Proposition 3):

ζ ′(−j) =
j+1∑
r=2

(−1)j−r(r − 1)!S2(j, r − 1)σr −
Bj+1

j + 1γ −
Bj+1

(j + 1)2 (j = 1, 2, · · · ),

6Meditationes circa singulare serierum genus (1775), Eneström-Number E477.
7Another alternative expression of this constant is ζ ′′(0)+ 1

2 ln2(2π)+π2

8 (cf. [3] Eq. (25.6.12)).
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where S2(j, r) are Stirling numbers of the second kind; moreover we have the
relation ([16], Corollary 9):

1
2 ln(2π) = σ1 + γ

2 + 1
2 .

Then, substituting these relations in (2) enables us to write each series νk as an
integral linear combination of σ0 = γ, σ1, σ2, · · · , σk plus a rational constant Dk

which is closely linked to Ck. In this combination, the coefficient of γ is zero since
it is equal to 1

k+1
∑k

j=0

(
k+1

j

)
Bj which vanishes by a well-known property of the

Bernoulli numbers. Finally, formula (2) may be nicely rewritten in terms of σr as
follows:

Proposition 3. For each integer k ≥ 1,

νk = Dk +
k∑

r=1
(−1)r(r − 1)!

 k−1∑
j=r−1

(
k

j

)
S2(j, r − 1)

σr (12)

with

Dk = Ck −
1
2 +

[ k
2 ]∑

r=1

(
k

2r

)
B2r

2r(k + 1− 2r) = 1
k
− 1

2 +
[ k

2 ]∑
r=1

(
k

2r

)
B2rH2r

k + 1− 2r .

Example 4. For the first values of k, we have the following relations:

ν1 = 1
2 − σ1 ,

ν2 = 1
4 − σ1 + 2σ2 ,

ν3 = 5
24 − σ1 + 6σ2 − 6σ3 ,

ν4 = 13
72 − σ1 + 14σ2 − 36σ3 + 24σ4 ,

ν5 = 109
720 − σ1 + 30σ2 − 150σ3 + 240σ4 − 120σ5 ,

ν6 = 23
180 − σ1 + 62σ2 − 420σ3 + 1560σ4 − 1800σ5 + 720σ6 .
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