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A note on shifted Mascheroni series and their
relations with certain alternating series involving

zeta values

Marc-Antoine Coppo∗

March 14, 2018

Introduction
This short article is devoted to the alternating series Sk defined by

Sk :=
∞∑
p=2

(−1)p ζ(p)
p+ k

, for k = 0, 1, 2, · · ·

By a classical result due to Euler, it is well-known (cf. [SC], Eq. (23), p. 272) that

S0 =
∞∑
p=2

(−1)p ζ(p)
p

= γ ,

where γ denotes the Euler-Mascheroni constant. It is also fairly well-known that
S1 = γ

2 −
1
2 ln(2π) + 1 ([SC], Eq. (483), p. 312, [SV], Eq. (1.5)), and for k = 2,

S2 = γ
3 + ln(2− 1

2π−
1
2A2) + 1

2 , where A is the Glaisher-Kinkelin constant (cf. [SC],
Eq. (529), p. 318), which may be rewritten as follows (cf. [C], p. 93)

S2 = γ

3 −
1
2 ln(2π)− 2ζ ′(−1) + 2

3 .

More generally, for k ≥ 2, Sk admits the following explicit evaluation:

Sk = γ

k + 1 −
1
2 ln(2π) +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j) + Hk

k + 1 −
k∑
j=1

Bj

j(k + 1− j) , (1)
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where Hk is the kth harmonic number

Hk =
k∑
j=1

1
j
,

and theBj (j = 1, · · · , k) are Bernoulli numbers defined by the generating function:

t

et − 1 =
∞∑
k=0

Bk

k! t
k ,

or by the equivalent recursion:

B0 = 1 and
k∑
j=0

Bj

j!(k + 1− j)! = 0 for k ≥ 1.

This expression of Sk may be deduced from a certain relation between generating
series given in [C] (see Section 1 below).

Let us introduce now the forward shifted Mascheroni series studied in [CY]
which are defined by

σr :=
∞∑
n=1

|bn+r|
n

, for r = 0, 1, 2, · · · ,

where (bn) denotes the sequence of Bernoulli numbers of the second kind which
are determined by the generating function:

t

ln(1 + t) =
∞∑
n=0

bnt
n ,

or recursively by

b0 = 1 and
n∑
j=0

(−1)jbj
n+ 1− j = 0 for n ≥ 1 ,

the first values of the sequence being

b1 = 1
2 , b2 = − 1

12 , b3 = 1
24 , b4 = − 19

720 , b5 = 3
160 , · · ·

One has the classical identity (originally due to Mascheroni)
∞∑
n=1

|bn|
n

= γ ,
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which translates here into S0 = σ0. Furthermore, we have recently obtained (cf.
[CY], Proposition 3) the following decomposition

ζ ′(−k) =
k+1∑
r=2

(−1)k−r(r − 1)!S2(k, r − 1)σr −
Bk+1

k + 1γ −
Bk+1

(k + 1)2 ,

where S2(k, r) are Stirling numbers of the second kind, and this relation enables
us to write an interesting expression of Sk as an integer linear combination of
σ1, σ2, · · · , σk and a rational constant (the coefficient of γ vanishing by a well-
known relation between the Bernoulli numbers). More precisely, we prove (see
Section 2 below) the following relations:

S1 = 1
2 − σ1 ,

and for k ≥ 2,

Sk = Dk − σ1 +
k∑
r=2

(−1)r(r − 1)!
 k−1∑
j=r−1

(
k

j

)
S2(j, r − 1)

σr , (2)

where Dk is the rational number

Dk = Hk

k + 1 + 1
2k −

[ k
2 ]∑

r=1

B2r

2r(k + 1− 2r) +
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

(2r)2 −
1
2 . (3)

We give in Section 3 an alternative expression of Dk deduced from a formula of
Blagouchine (cf. Eq. (8)).

1 Proof of formula (1)
This formula may be deduced by expanding in powers of z a relation between
generating series given in [C], p. 93. More precisely, we expand the following
relation:

∞∑
k=0

(−1)kzk
k!

∞∑
j=1

(−1)j−1

j
ζR(j − k) = (1− ez)

∞∑
k=0

(−1)kzk
k! ζ ′(−k)

+ (1− ez)
∞∑
k=0

(−1)kzk
k!

1
(k + 1)2

+
∫ 1

0
ln(t+ 1)e−zt dt ,
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with

ζR(j − k) =

γ if j = k + 1
ζ(j − k)− 1

j−k−1 otherwise.
Rewriting the series Sk under the following form:

Sk =
∞∑

j=k+2

(−1)j−k
j

ζ(j − k) ,

and using
ζ ′(0) = −1

2 ln(2π) ,

the identification of the coefficient of z
k

k! in the previous development leads to the
relation

Sk = Ck + γ

k + 1 −
1
2 ln(2π) +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j)

where Ck is the rational

Ck =
k−1∑
j=0

(−1)j
(
k

j

)
1

(j + 1)2

− 1
2k −

k−1∑
j=1

(−1)j
k − j

(
1−Bj+1

j + 1

)

+
(
1− (−1)k

) 1
k + 1

k+1∑
j=1

(−1)j−1

j
.

However, since
k−1∑
j=0

(−1)j
(
k

j

)
1

(j + 1)2 = Hk+1

k + 1 −
(−1)k

(k + 1)2 ,

this expression of Ck may be simplified as

Ck = Hk

k + 1 + 1
2k +

k−1∑
j=1

(−1)jBj+1

(k − j)(j + 1) .

Since B1 = −1
2 and B2r+1 = 0 for r ≥ 1, the constant Ck may also be rewritten

Ck = Hk

k + 1 −
k∑
j=1

Bj

j(k + 1− j)

= Hk

k + 1 + 1
2k −

[ k
2 ]∑

r=1

B2r

2r(k + 1− 2r) . (4)

Hence, formula (1) is established.
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2 Proofs of formulae (2) and (3)
We have seen above that

Sk = γ

k + 1 −
1
2 ln(2π) +

k−1∑
j=1

(−1)j
(
k

j

)
ζ ′(−j) + Ck (5)

where the expression of Ck is given by (4). Furthermore, using [CY], Proposition
2 and Proposition 3, we can write the relations

1
2 ln(2π) = σ1 + γ

2 + 1
2 ,

and

ζ ′(−j) =
j+1∑
r=2

(−1)j−r(r − 1)!S2(j, r − 1)σr −
Bj+1

j + 1γ −
Bj+1

(j + 1)2 for j ≥ 1 .

Then, substituting these relations in (5) gives

Sk = γ

k + 1

k∑
j=0

(
k + 1
j

)
Bj − σ1 +

k−1∑
j=1

j+1∑
r=2

(
k

j

)
(−1)r(r − 1)!S2(j, r − 1)σr

− 1
2 +

k−1∑
j=1

(−1)j+1
(
k

j

)
Bj+1

(j + 1)2 + Ck .

The coefficient of γ vanishes since
k∑
j=0

(
k + 1
j

)
Bj = 0 ,

and moreover we may write

k−1∑
j=1

(−1)j+1
(
k

j

)
Bj+1

(j + 1)2 =
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

(2r)2 .

Finally, interchanging the symbols Σ leads to

Sk = Dk − σ1 +
k∑
r=2

(−1)r(r − 1)!
 k−1∑
j=r−1

(
k

j

)
S2(j, r − 1)

σr
with

Dk = Ck +
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

(2r)2 −
1
2 ,

hence, after substitution of Ck by its value given by (4), formulae (2) and (3) are
now established.
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3 Another expressions of the constants Ck and
Dk

Some time ago, Blagouchine ([B]) gave another formula for Sk (cf. [B], Eq. (38),
p. 413):

Sk = 1
k
− ln(2π)

k + 1 + γ

2 +

+
[ k

2 ]∑
r=1

(−1)r
(

k

2r − 1

)
(2r)!
r(2π)2r ζ

′(2r) +
[ k+1

2 ]−1∑
r=1

(−1)r
(
k

2r

)
(2r)!

2(2π)2r ζ(2r + 1) (6)

A differentiation of the functional equation

ζ(s) = 2(2π)s−1Γ(1− s)ζ(1− s) sin(πs2 ) ,

leads to the relations

(−1)r (2r)!
2(2π)2r ζ(2r + 1) = ζ ′(−2r)

and
(−1)r (2r)!

r(2π)2r ζ
′(2r) = −ζ ′(1− 2r) + B2r

2r (H2r−1 − γ − ln(2π)) .

Substituting these relations in (6), a comparison with (5) gives

Ck = 1
k

+
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

2r H2r−1 . (7)

Yet, the constant Dk in (3) is equal to

Ck +
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

(2r)2 −
1
2 ,

hence, this constant also admits the following new expression:

Dk = 1
k
− 1

2 +
[ k

2 ]∑
r=1

(
k

2r − 1

)
B2r

2r H2r . (8)
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4 Examples
For the first values of k, we compute the following evaluations

S1 = γ

2 −
1
2 ln(2π) + 1 ,

S2 = γ

3 −
1
2 ln(2π)− 2ζ ′(−1) + 2

3
S3 = γ

4 −
1
2 ln(2π)− 3ζ ′(−1) + 3ζ ′(−2) + 7

12
S4 = γ

5 −
1
2 ln(2π)− 4ζ ′(−1) + 6ζ ′(−2)− 4ζ ′(−3) + 47

90
S5 = γ

6 −
1
2 ln(2π)− 5ζ ′(−1) + 10ζ ′(−2)− 10ζ ′(−3) + 5ζ ′(−4) + 167

360 ,

and the relations

S1 = 1
2 − σ1 ,

S2 = 1
4 − σ1 + 2σ2 ,

S3 = 5
24 − σ1 + 6σ2 − 6σ3 ,

S4 = 13
72 − σ1 + 14σ2 − 36σ3 + 24σ4 ,

S5 = 109
720 − σ1 + 30σ2 − 150σ3 + 240σ4 − 120σ5.

5 Final remark
Recently, we have shown (cf. [BC], Eq. (36)) that

κ1 :=
∞∑
n=1

|bn|
n2 =

∞∑
p=2

(−1)p
p

∞∑
n=2

Hn−1

np
=
∞∑
p=2

(−1)p
p

ζ(p, 1) ,

where ζ(p, q) is the double zeta value

ζ(p, q) =
∑
n>m

1
npmq

.

It would be interesting to investigate the existence of similar relations for the series

Sk(q) :=
∞∑
p=2

(−1)p ζ(p, q)
p+ k

for q = 1, 2, · · · , and k = 0, 1, 2, · · ·
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