
HAL Id: hal-01721463
https://hal.univ-cotedazur.fr/hal-01721463

Submitted on 2 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Emulation of a Marshall JCM 800 Guitar
Tube Amplifier, Audio FX Pedals, in a Virtual Pedal

Board
Michel Buffa, Jerome Lebrun

To cite this version:
Michel Buffa, Jerome Lebrun. Real-Time Emulation of a Marshall JCM 800 Guitar Tube Amplifier,
Audio FX Pedals, in a Virtual Pedal Board. WWW2018 - TheWebConf 2018 : The Web Conference,
27th International World Wide Web Conference, Apr 2018, Lyon, France. �10.1145/3184558.3186973�.
�hal-01721463�

https://hal.univ-cotedazur.fr/hal-01721463
https://hal.archives-ouvertes.fr

Real-Time Emulation of a Marshall JCM 800 Guitar Tube
Amplifier, Audio FX Pedals, in a Virtual Pedal Board

Michel Buffa
Université Côte d’Azur

CNRS, INRIA
buffa@i3s.unice.fr

Jerome Lebrun
Université Côte d’Azur

CNRS
lebrun@i3s.unice.fr

ABSTRACT
The ANR project WASABI [12] will last 42 months and consists
in developing a 2 million songs database with interactive
WebAudio enhanced client applications 1 . Client applications
target composers, music schools, sound engineering schools,
musicologists, music streaming services and journalists. In this
paper, we present a virtual pedal board (a set of chainable audio
effects on the form of “pedals”), and a guitar tube amplifier
simulation for guitarists, that will be associated with songs from
the WASABI database. Music schools and music engineering
schools are interested in such tools that can be run in a Web page,
without the need to install any further software. Take a classic
rock song: isolate the guitar solo, study it, then mute it and play
guitar real-time along the other tracks using an online guitar
amplifier that reproduces the real guitar amp model used in the
song, with its signature sound, proper dynamic and frequency
response. Add some audio effects such as a reverberation, a delay,
a flanger, etc. in order to reproduce Pink Floyd’s guitar sound or
Eddie Van Halen famous “Brown Sound”. Learn interactively,
guitar in hands, how to fine tune a compressor effect, or how to
shape the sound of a tube guitar amp, how to get a “modern
metal” or a “Jimi Hendrix” sound, using only your Web browser.

CCS CONCEPTS
• Software and its engineering → Software organization and
properties → Software system structures → Abstraction,
modeling and modularity.
WWW ’18 Companion April 23-27, 2018, Lyon, France.
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License. ACM ISBN 978-1-4503-5640-
4/18/04. DOI: https://doi.org/10.1145/3184558.3186973

KEYWORDS
WebAudio, Tube Guitar Amp Simulation, Audio Effects, Plugin
Architecture, Web Standards

1 INTRODUCTION
The W3C WebAudio API is now a recommendation candidate,

and proposes a set of nodes for building an “audio processing
graph”. The implementation of these nodes in the browser allows
for developing a whole range of new applications. This API
comes with a large set of predefined nodes (gain, filters, wave-

1 The wasabi database is at https://wasabi.i3s.unice.fr/

shapers, delay, stereo panner, etc.) that can be assembled into an
“audio graph”. Some developers have managed to write some
impressive web applications (Digital Audio Workstations, real
time audio effects, tube guitar amp simulation, synthesizers,
organs, pianos, real time 3D sound spatialization etc.), but there
was so far no good way to make low level processing until the
recent addition of the AudioWorklet node, that is the last
inclusion in the WebAudio API version 1 (the now obsolete
ScriptProcessor node was initially designed for this purpose but
had many flaws).

For the WASABI project, we developed the first online digital
emulation of a real tube guitar amplifier: the Marshall JCM 800, a
popular amp used by many classic rock artists (AC/DC, Led
Zeppelin, Guns N’Roses etc.). Section 2 will detail this work.

In general, guitarists use additional audio effects in the form of
audio effect pedals, plugged between the electric guitar and the
amplifier, or to the FX loop of the amplifier. Very often we call
this set of FX pedals a “pedal board”. For WASABI, we wrote a
“virtual pedal board” web application, and we created, using
WebAudio, some of the most common audio effect pedals. We
also started to design a “WebAudio plugin architecture”,
collaborating with other groups of researchers sharing the same
interests. This work is detailed in section 3.

Finally, in section 4, we will conclude with some perspectives
and detail the demonstration setup we propose.

Figure 1: Typical demo setup: a guitar, a low latency sound
card, speakers, and a Web browser with the apps running.

WWW2018 Demo Track Michel Buffa and Jerome Lebrun

2

2 TUBE GUITAR AMPLIFIER SIMULATION
Guitar amplifier digital models became popular with devices

such as the pod series by Line 6 in the early 2000s. More recently,
Fractal Audio Systems introduced the Axe FX-II amp modeler, a
comprehensive preamp/effects digital processor containing a vast
virtual inventory of hundreds of vintage and modern guitar amps.
In 2002, Amplitube, an audio plugin commercialized by IK
Multimedia, was the first successful software amp simulation on
the market, followed soon by Guitar Rig from Native Instruments.
Today, we can find hundreds of native plugins (commercial or
freeware, only a few are open source) for digital audio
workstations that simulate existing guitar amps, or original
designs by their authors. Software amp simulations are popular
on-the-run solutions, or when the production budget for recording
is low, as they are cheaper and more flexible than their digital
hardware equivalents, whereas some may claim they’ll never be
the same as the real thing.

These last two years, we have been developing a tube guitar
amplifier simulation using the WebAudio API with the aim to
faithfully reproduce the classic rock Marshall JCM 800 tube
amplifier used by artists such as AC/DC, Guns and Roses, ZZ-
Top, etc. Each stage of the real amp has been recreated from the
electronic schematic (tube preamp, tone stack, reverb, tube power
amp and speaker simulation). We’ve also added an extra
multiband EQ. This “classic rock” amp simulation has been used
in real gigs and can be favorably compared with some native amp
simulation both in terms of latency, sound quality, dynamics and
comfort of the guitar play (see [7] for details). The amp is open
source 2 and can be tested online 3 , even without a real guitar
plugged-in. It comes with an audio player, dry guitar samples and
a wave generator that can be used as inputs. Figure 2 shows the
current GUI, with some optional frequency analyzers and
oscilloscopes to probe the signal at different stages of the
simulation. One purpose was to evaluate the limits of the
WebAudio API and to see if it was possible to design a web-based
guitar amp simulator that could compete with native simulations.
Blind tests with real guitarists, including professional ones have
been conducted and the WebAudio amp came second compared to
a set of four different commercial, native, guitar amp simulators4.

Many papers have been written about vacuum-tube guitar
amplifiers modeling [1][6], and about the particularities of linear
and non-linear distortion effects suited for guitar [2][3][4][5].
More generally, works such as James J. Clark’s “Advanced
programming techniques for modular synthesizers” book, are not
focused on guitar but discuss thoroughly the different approaches
for achieving a distortion effect.

There are two main approaches for simulating the different
parts of a guitar amplifier: one called the technique of virtual
analog (or physical modeling) that consists in faithfully simulating

2 https://github.com/micbuffa/WebAudio-Guitar-Amplifier-Simulator-3
3 https://wasabi.i3s.unice.fr/AmpSim3 and a version with measure tools activated:
https://wasabi.i3s.unice.fr/AmpSimFA
4 Videos of tests with real guitarists:
https://wasabi.i3s.unice.fr/AmpSim3/userEvaluation.html

the electronic schematic with tools like the industry standard
SPICE analog circuit simulator to translate the circuit into
equations to be solved. These general equations are typically
nonlinear differential algebraic equations that may be solved using
integration methods, roots solver algorithms, and sparse matrix
techniques. SPICE can produce C++ code ready to be executed.
However, it is often necessary to make simplifications and
optimizations to achieve solutions suited for real-time processing.
This is critical for the modeling of the vacuum tubes used in guitar
amplifiers with their typical interactions with other parts of the
circuitry (see [1] for a review of common techniques). Also, the
physical approach usually assumes perfect behavior of the
electronic components used (resistors, capacitors, tubes, etc.)
making it difficult to render the typical empirical design / fine
tuning, ala “musical instrument making”, of the tube-based guitar
amps in which much of the coloring of the sound comes indeed
from the limitations and non-linearities of the electronic
components used.

Figure 2: Full GUI of the tube amp guitar emulation, with

debug tools displayed (freq. analyzers, advances settings etc.).

An alternative technique consists in higher-level emulations:
each “logical” being identified (filters, tubes, etc.) analyzed and
individually emulated using separate models with now the aim to
perceptually approximate these parts. This may be electronically
less accurate as some effects and interactions such as the current
feedback effect of overloaded tubes or the action of the speaker
impedance on the sound tone may not be fully reproduced.
However, the results obtained are usually more consistent and
perceptually faithful with the sounds / distortions obtained with
real tube guitar amps. Furthermore, this approach is much simpler
and more adapted to the WebAudio framework with its current
limitations (custom processing on audio samples with the script
processor node is not usable without introducing latency or
glitches, for example). Also, WebAudio proposes nodes (such as
the wave shaper node, the biquad filter node) that can be used for
modeling tubes and filters, and it has been shown that when
properly used, wave shaping techniques associated with
appropriate filtering give good results. The famous pod XT by
Line 6 effect processor uses such techniques [1].

Real-time emulation of a Marshall JCM800 guitar tube amp… WWW2018 Demo Track WOODSTOCK’97, July 2016, El Paso, Texas USA

 3

As far as we know there is no previous work where authors
have tried to simulate a complete tube guitar amp using
WebAudio. The most advanced work we have found is a Google
Chrome application named GuitarFX5 that proposes simple amp
models with a set of audio effect pedals, but does not fully
recreate each stages of a real amp (only one wave shaper per amp,
for example), or the guitar amps proposed by the commercial
services soundtrap.io and bandlab.com that are based on original
designs, and do not aim to reproduce a real, existing, multi-stage
amp. Our proposed demonstration is also a good test bench to
assess the current limitations of Web Audio in terms of latency
(driver, audio buffer size, sample rate frequency, etc.). Now, with
respect to the version previously demonstrated [8], we have fully
redesigned our approach to the power stage in the tube guitar amp
to include a proper emulation of the push-pull stage with output
transformer, including the “Negative Feedback (NFB)” and a
realistic “Presence” control. Many important new features have
also been added like the possibility to emulate the control of
biasing points of the tubes or to alter the profile of the NFB. See
[13] for details about the modelization of a tube guitar power amp.

3 VIRTUAL PEDAL BOARD AND FX PEDALS
With the WebAudio API standard nodes, it is possible to

create more complex audio effects such as a simple delay (delay
node, gain node, filter node, feedback loop), a phaser (used a lot
in reggae music, made of cascaded allpass filter nodes whose
parameters are modulated by an oscillator node), a chorus (the
guitar sound in Roxanne by The Police, delay, oscillator, filters),
distortion effects (fuzz, metal, classic, crunchy, creamy -there are
lots of distortion models- that involves wave shaper nodes and
filters), etc.

Sometimes, you need to chain some of these complex effects:
add a stereo delay, a fuzz, a reverb, plug this into the amplifier
presented in section 2 and you can get close to David Gilmour’s
Pink Floyd sound. In the native audio application world, such
high-level effects are called “plugins” and can be easily shared
among hosts, generally Digital Audio Workstations such as
GarageBand, Cubase, Ableton Live, etc. There are some
competing standards for these plugins and hosts: VSTs and VSTis
by Steinberg, Audio Units (Apple), RTAS (Avid), LV2 (Unix),
etc. -all describe in detail the host-plugin interfacing to ease
integration of any plugin into any host, and how plugins can work
together (being connected, expose their parameters, number of
inputs/outputs, etc.). Another standard, JUCE, aims to be “above
the others” and is a way to “write once, then generate the code for
any standard”.

Such a high-level “audio plugin” standard does not exist yet
for WebAudio, but is targeted for the v2 of the API. For the
WASABI project, we’ve been developing a “plugin host”: a
“virtual pedal board” that is a recreation of a physical pedal board.
This pedal board can be used to assemble WebAudio “plugins”,
the input is either the signal coming from the guitar or from a

5 https://tinyurl.com/ljdhuqh

sound file, the output is the speakers (Figures 3 and 4). In the
WASABI pedal board, you can drag and drop effects, connect
them, change the settings using knobs or sliders, control them
using a MIDI control device (if your browser supports the
WebMidi API), and you can also plug the tube guitar amp
simulator presented in section 2 -we made it a plugin too. Each
“pedal” or “amplifier” is a WebComponent, and implements our
draft version of a “WebAudio” plugin API6.

Figure 3: A real pedal board used by guitarists. Audio FX
pedals are chained together before going to the amplifier.

Figure 4: Virtual pedal board. On the right two instances of

the guitar amp presented in section 1, here as an audio plugin
with a minimal GUI.

In 2012, Google Chrome was the first to propose low-latency
access to live audio from a microphone or other audio input on
MacOS, followed by a Windows implementation (with a longer
latency). Soon Opera, Firefox and more recently Microsoft Edge
also implemented this features that relies on the Media Capture
and Streams API from W3C. Chris Wilson’s “Input Effects”

6 API specification and the source code of the pedal board, effects, etc. can be found
at: https://github.com/guizmo2000/TER-Pedalboard-creation

WWW2018 Demo Track Michel Buffa and Jerome Lebrun

4

demo7 was one of the first to show real time sound processing
effects written with Web Audio. He proposed implementations of
some famous effects such as delay, distortion, wah, etc. His demo
did not allow to chain effects but proved that low latency
processing could be achieved. Pedals.io is a JavaScript recreation
of some classic audio effect pedals for guitarists (delay, chorus,
overdrive, etc.), and we find nearly the same implementations of
these effects in many Web Audio JavaScript libraries such as
toneJS, tunaJS, pizzicatoJS 8 , etc. Two commercial services,
soundtrap.io and bandlab.com propose also a set of audio effects.

Our approach is different as we would like to go towards an
open WebAudio plugin standard, and for this we need 1) to design
an API, 2) to develop a prototype (host and effects) and 3) to work
with other groups with the same goal and share plugins with them.
Since 2013, we developed our own set of effects in plain
JavaScript/WebAudio [11]. Other researchers tried to attract
native audio application developers who code in C++ or with the
popular FAUST language. We are collaborating with J. Kleimola,
and O. Larkin authors of the webaudiomodules.org initiative [10],
that proposes both a host and a standard for porting native plugins
to WebAudio. The webaudiomodules toolchain compiles C++
code to WebAssembly and wraps the result into an AudioWorklet
node, it then becomes possible to port a native VST or JUCE
plugin into a traditional WebAudio node with a minimum of
efforts. The FAUST language compiler 9 , also targets
WebAssembly now, and produces WebAssembly code that runs
in an AudioWorklet node too [14]. This is interesting as there are
many existing plugins/modules/pieces of code written in FAUST
or as native plugin for other popular standards (VSTs etc.). Other
initiatives such as the one by Nicholas Jillings et al. [9] proposes
in addition to consider the concept of “session” in a plugin host.

The consensus for now is that an audio plugin should behave
like a standard low level WebAudio node, exposing its I/Os,
parameters, name, version, etc. The way to distribute and reuse
WebAudio plugins is still under consideration: the standard APIs
behind the WebComponents (HTML templates, shadow DOM,
custom elements and HTML imports), is a good candidate, and
webaudiomodules.org and our approach use them so far. However
some browser vendors are still not supporting them as the HTML
imports API is already competing with the JavaScript modules
(ES6 “imports”) feature and with npm, the popular package
manager for the JavaScript programming language (it is the
default package manager for the JavaScript runtime environment
Node.js) that can also be considered for publishing/importing
plugins. Other problems include the GUI of these plugins: how to
deal with the different libraries and JS frameworks developers are
using? In the current version of our work, we chose to rely on
W3C standards exclusively. Webaudiomodules and FAUST
components are compatible with our host with little adjustments

7 https://webaudiodemos.appspot.com/input/index.html
8 , https://github.com/Tonejs/Tone.js, https://github.com/Theodeus/tuna,

https://alemangui.github.io/pizzicato
9 http://faust.grame.fr

and we are collaborating closely with the creators of these
proposals to converge toward a unified API that could become a
basis for a WebAudio plugin standard in the WebAudio API
version 2.

4 SETTINGS FOR THE DEMO
We propose to demonstrate the first emulation of a Marshall

JCM 800 guitar tube amp running in a browser, with a virtual
pedal board to chain audio FX pedals. These web tools can be
played real-time with a guitar, and controlled using any MIDI
controller. We recommend for the best experience to use MacOS
and a low latency sound card. We propose to compare our
WebAudio tube amp simulation and effects with native
simulations such as Guitar Rig by Native Instruments (used by
many musicians and guitarists).

A typical demo is: look for a song in the WASABI database,
switch to the embedded multitrack player, mute the guitar track
and open the pedal board, build your own virtual guitar rig, plug
your guitar, adjust the sound and play along with the other tracks,
with no noticeable latency.

ACKNOWLEDGMENTS
This work was supported by the French Research National

Agency (ANR) and the WASABI team (contract ANR-16-CE23-
0017-01). ElMahdi Korfed and Guillaume Etevenard who helped
developing these tools.

REFERENCES
[1] J. Pakarinen and D.T. Yeh. 2009. A review of digital techniques for modeling

vacuum-tube guitar amplifiers. Computer Music Journal 33, 2 (2009), 85-100.
[2] B. Holmes and M. van Walstijn. 2015. Improving the robustness of the iterative

solver in state-space modeling of guitar distortion circuitry. In Proc. 18th Int.
Conference on Digital Audio Effects (DAFx-15). Trondheim, Norway.

[3] C.H. Chang. 2011. DESC9115: Digital Audio Systems-Final Project
Overdrive/Distortion. In Repository of Tech. Reports, University of Sydney,
Australia. http://hdl.handle.net/2123/7608

[4] J. Macak and J. Schimmel. 2010. Real-time guitar tube amplifier simulation
using an approximation of differential equations. In Proc. 13th Int. Conference
on Digital Audio Effects (DAFx-10). Graz, Austria.

[5] D.T. Yeh, J.S. Abel, A. Vladimirescu, and J.O. Smith. 2008. Numerical methods
for simulation of guitar distortion circuits. Computer Music Journal, 32, 2
(2008), 23-42.

[6] D.T. Yeh and J.O. Smith. 2006. Discretization of the ’59 Fender Bassman tone
stack. In Proc. 9th Int. Conference on Digital Audio Effects (DAFx-06).
Montreal, Canada.

[7] M. Buffa and J. Lebrun. 2017. Real time tube guitar amplifier simulation using
WebAudio. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[8] M. Buffa and J. Lebrun. 2017. Web Audio Guitar Tube Amplifier vs Native
Simulations. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[9] N. Jillings and al. 2017. Intelligent audio plugin framework for the Web Audio
API. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[10] J. Kleimola and O. Larkin. 2015. Web audio modules. In Proc. 12th Sound and
Music Computing Conference (SMC15). Maynooth, Ireland.

[11] M. Buffa, M. Demetrio, and N. Azria. 2016. Guitar pedal board using
WebAudio. In Proc. 2th Web Audio Conference (WAC 2016). Atlanta, USA.

[12] M. Buffa and al. 2017. WASABI: a Two Million Song Database Project with
Audio and Cultural Metadata plus WebAudio enhanced Client Applications. In
Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[13] I. Cohen and T. Helie. 2010. Real-Time Simulation of a Guitar Power Amplifier.
In Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10). Graz,
Austria.

[14] S. Letz, Y. Orlarey, and D. Fober. 2017. Compiling Faust Audio DSP Code to
WebAssembly. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

