
HAL Id: hal-01589229
https://hal.univ-cotedazur.fr/hal-01589229

Submitted on 18 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real time tube guitar amplifier simulation using
WebAudio

Michel Buffa, Jerome Lebrun

To cite this version:
Michel Buffa, Jerome Lebrun. Real time tube guitar amplifier simulation using WebAudio. Web
Audio Conference 2017 – Collaborative Audio #WAC2017, Queen Mary University of London, Aug
2017, London, United Kingdom. �hal-01589229�

https://hal.univ-cotedazur.fr/hal-01589229
https://hal.archives-ouvertes.fr

Real time tube guitar amplifier simulation using WebAudio

Michel Buffa
Université Côte d’Azur,

CNRS, INRIA
buffa@i3s.unice.fr

Jérôme Lebrun
Université Côte d’Azur,

CNRS
lebrun@i3s.unice.fr

ABSTRACT
This paper presents a tube guitar amplifier simulation made with
the WebAudio API, that reproduces the main parts of the Marshall
JCM 800 amplifier schematics. Each stage of the real amp has been
recreated (preamp, tone stack, reverb, power amp and speaker
simulation, and we added an extra multiband EQ). The “classic
rock” amp simulation we built has been used in real gigs and can
be compared with some native amp simulation both in terms of
latency, sound quality, dynamics and comfort of the guitar play.
Unfortunately, as of today, low latency can be achieved only with
certain configurations, due to audio driver limitations of current
browsers on certain operating systems. The paper discusses the
latency problems encountered with WebAudio, common traps,
current limitations, and proposes some solutions.

The final web based simulation has been compared with native re-
creations of the same amp model (including commercial products
such as GuitarRig, the JCM800 amp included in GarageBand or the
open source Guitarix amp sim that runs on Linux), and with a real
amp: the Yamaha THR10 that comes with a model of a Marshall
amp. We conducted both quantitative evaluations (measure of the
“guitar-to-speaker” latency, group delay, frequency response
analysis) and qualitative evaluations with real guitar players who

1 https://github.com/micbuffa/WebAudio-Guitar-Amplifier-

Simulator-3

compared, guitar in hands, the different simulations in terms of
sound quality and dynamics, and more generally “how they feel
playing guitar with these simulations”. The amp is open source1 and
can be tested online2, even without a guitar (it comes with an audio
player, dry guitar samples and a wave generator that can be used at
input). The Web page contains links to the source code repository,
tutorial videos and a complete report of the measures we made, with
different configurations (various soundcard, operating system,
browsers), that is summarized in this paper. Figure 1 shows the
current GUI (with optional frequency analyzers and oscilloscopes
we used to probe the signal at different stages of the simulation).

Our initial goal was to evaluate the limits of the WebAudio API and
see if it was possible to design a web based guitar amp simulator
that could compete with native simulations.

1. INTRODUCTION
Guitar amplifier digital models became popular with devices such
as the pod series by Line6 in the early 2000s, or more recently with
the Axe FX-II amp modeler by Fractal Audio Systems: an all-in-
one preamp/effects digital processor that contains a vast virtual
inventory of hundreds of vintage and modern guitar amps. In 2002,
Amplitube, an audio plugin commercialized by IK multimedia, was

2 https://wasabi.i3s.unice.fr/AmpSim3/and a version with measure
tools activated: https://mainline.i3s.unice.fr/AmpSimFA

Figure 1: web based tube amp simulation, GUI with visualization tools.

the first popular 100% software amp simulation on the market,
followed soon by Guitar Rig by Native Instruments. Today we can
find hundreds of native plugins (commercial or freeware, only a
few are open source) for digital audio workstations, that simulates
existing guitar amps, or are based on an original design by their
authors.

Software amp simulations are popular in nomad situations, or when
the production budget for recording is low, as they are cheaper and
more flexible than their digital hardware equivalents, although
purists claims that they’ll never be the same as the real thing.

2. State of the art
In 2012, Google Chrome proposed for the first time low-latency
access to live audio from a microphone or other audio input on Mac
OSX, followed by a Windows implementation (with a bigger
latency). Soon Opera, Firefox and more recently Microsoft Edge
also implemented this features that relies now on the Media Capture
and Streams API from W3C3.

 Chris Wilson’s “Input Effects” demo4 was one of the first to show
real time sound processing effects written with WebAudio, and
proposed implementations of famous effects such as Delay,
Distortion, Wah, etc. This demo did not allow to chain effects but
proved that low latency processing could be achieved. However,
getting close to the sound of a real guitar amplifier is a real
challenge that Chris Wilson’s examples did not address.

Many papers have been written about vacuum-tube guitar
amplifiers modeling [1] [6], and about the particularities of linear
and non-linear distortion effects suited for guitar [2][3][4][5]. Some
works such as James J. Clark “Advanced programming techniques

3 https://www.w3.org/TR/mediacapture-streams/

for modular synthesizers” book, are not focused on guitar but cover
in deep the different approaches for achieving a distortion effect on
a signal [9].

The common approach consists in modeling the different parts of a
guitar amplifier. Wikipedia gives a rather good description of the
high-level design of a guitar amplifier: “Typically, guitar
amplifiers have two amplifying circuit stages and in addition
frequently have tone-shaping electric circuits, which usually
include at least bass and treble controls, which function similarly
to the equivalent controls on a home hi-fi More expensive
amplifiers typically have more controls for other frequency ranges,
such as one or two "midrange" controls and a "presence" control
for very high frequencies (this “tone shaping” module is called the
“tone stack”). Some guitar amplifiers have a graphic equalizer,
which uses vertical fader controls, which can control many
frequency bands. The first amplifier stage is a preamplifier stage
(there may be more than one), which amplifies the guitar signal to
a level that can drive the power stage. The power amplifier or
output stage produces a high current signal to drive
a loudspeaker to produce sound that the guitarist and audience can
hear.”

There are two main approaches for simulating the different parts of
a guitar amplifier: one is called the technique of virtual analog (or
physical modeling) and consists in entering the electronic schema
in a tool like the industry standard SPICE analog circuit simulator,
then translate the circuit into equations to be solved. These general
equations are typically nonlinear differential algebraic equations

4 https://webaudiodemos.appspot.com/input/index.html

Figure 2: Marshall JCM800 schematics.
From left to right we distinguish the different stages: preamp, tone stack, power amp

that may be solved using integration methods, roots solver
algorithms, and sparse matrix techniques.

SPICE can produce C++ code ready to be executed. However, it is
often necessary to make simplifications and optimizations to obtain
a solution allowing real time processing. This is particularly the
case with the modeling of vacuum-tubes used in guitar amplifiers
and their interactions with other parts of the circuitry (see [1] and
[17] for a review of common techniques).

Another technique consists in a higher-level emulation, in which
“logical” parts are identified (filters, tubes, etc.) and emulated
manually using separate models. This is in theory less accurate as
some effects and interactions such as the current feedback effect of
overloaded tubes or the action of the speaker impedance on the
power amp/sound tone may not be considered. However, this
approach is simpler and more adapted to WebAudio and its today
limitations (custom processing on audio samples with the Script
Processor node is not usable without introducing latency or
glitches, for example). Furthermore, WebAudio proposes some
high-level nodes (such as the Wave Shaper node and the biquad
filter node) that can be used for modeling tubes and filters, and it
has been shown that properly used, wave shaping techniques
associated with oversampling and appropriate filtering, can give
good results [18]. The famous pod XT effect processor by Line6
uses such techniques [1].

Figure 3: JCM800 preamp

As far as we know there is no previous work that tried to simulate
a complete guitar amp using WebAudio. Pedals.io5 is a JavaScript
recreation of some classic audio effect pedals for guitarists (delay,
chorus, overdrive, etc.), and we find nearly the same
implementations of these effects in many WebAudio JavaScript

5 https://pedals.io/
6 https://github.com/Tonejs/Tone.js/
7 https://github.com/Theodeus/tuna

libraries such as toneJS6, tunaJS7, pizzicatoJS8, etc. The most
advanced work we found is a Google Chrome application named
GuitarFX9 that proposes simple amp models altogether with a set
of audio effect pedals, but does not recreate in detail each stages of
a real amp (only one wave shaper per amp, for example).

3. Modeling the different amp stages
3.1 Preamp
The preamp of the Marshall JCM800 is shown on Figure 3. It is
composed of several filters and two dual triodes (V1 and V2, typ.
two 12AX7). The second, named v2a and v2b, located at the end of
this stage (right of the figure), is a DC coupled cathode follower
buffer, limiting clipping and acting as a linear driver of the tone
stack (section 3.2). The most interesting part is made of the filters
and the first dual triode v1a and v1b. From the left of the signal
chain to the right, we have a low shelf filter with a -3.3dB gain at
720Hz, then another low shelf at -6dB 320Hz, and the first triode
stage named v1b, followed by a high pass filter at 6-7Hz. This is
the first part of the preamp. The low shelf filters cut the annoying
frequency generated by the guitar, and the V1 part generates odd
and even harmonics (v1a is mainly a gain, v2a amplifies and
introduces harmonics). Even harmonics are important to perceive
the sound as “warm, bluesy”, and odd harmonics yield a more
“harsh, gritty” sound. The mix of both even and odd harmonics is
known to be the secret of the “warm punchy sound” you can find
in “classic rock” and blues, if nicely distributed. To model the two
parts of this first tube, we used a WebAudio wave shaper node with
the asymmetric transfer function described in Pakarinen-Yeh's
article [1] (with origins from a patent held by Doidec et al. 1998),
shown in the left of Figure 5.

Figure 4: Asymmetric distortion function (Pakarinen, Yeh)

This function clips differently the negative and positive portions of
the wave (“harder clipping” on the negative portion, while the
positive portion of the wave is softly clipped). This asymmetry
somewhat approximates the duty-cycle modulation seen in
overdriven tube amplifiers. This asymmetry in clipping adds both
even and odd harmonics, resulting in a richer tone that characterizes
vintage tube amps. The output signal is no more centered as the
asymmetry adds to the DC value. The high pass filter at 6-7Hz
rectifies this signal and removes the hum noise that could have been
amplified.

Figure 5: Transfer functions used for the two first tubes in the
JCM800 preamp (v1a and v1b)

8 https://alemangui.github.io/pizzicato/
9 https://tinyurl.com/ljdhuqh

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.
© 2017 Copyright held by the owner/author(s).

The second part of the preamp is made of another low shelf filter at
720Hz with a gain of -6dB. This time, for the second triode stage
V2, we used a symmetric transfer function (in the example made
with a tanh function) for generating more even harmonics.

In our implementation, we included 15 different transfer functions
that can be set to the different preamp tubes (V1 or V2), giving
more versatility to the original JCM800 preamp design. The ones
shown in Figure 5 produce a sound rich in both even and odd
harmonics, with a high level of distortion/overdrive, that can be
heard in videos with guitar players who tested the simulated amp10.

Filters have been implemented using standard WebAudio biquad
filters.

Some care must be taken: during clipping, these transfer functions
may produce harmonics which exceed half of the sample rate and
wrap back around to the high frequencies, causing aliasing artifacts
in the signal [1]. Some methods such as oversampling are known
to allow a larger frequency range before aliasing occurs to allow
higher harmonic components in the digital frequency domain. The
WebAudio wave shaper node has a property named
“oversampling”, that unfortunately increases the latency
(depending on its value “2x” or “4x”). Another approach for
limiting aliasing is known as multiband distortion and consists in
splitting the signal into several separate frequency bands and to
apply different amounts or types of distortion in each subband [9].
We implemented this approach in a previous version of the
WebAudio amp simulation [19], that indeed produced very nice
clean sounds. This version based on an original design, not inspired
by any existing amp, can be tried online11. The preamp we
implemented for the work presented in this paper integrates
optional oversampling, and we also measured that, in addition, our
speaker simulation stage cuts most of the high frequencies that may
result from aliasing. These measures have been confirmed during
qualitative evaluations, as none of our human testers could hear a
difference, with or without oversampling activated.

3.2 Tone stack

Figure 6: the tone stack circuit of the JCM800

In a reference paper about the modeling of the Fender Bassman amp
tone stack[6], reproduced in the JCM800, David Yeh and Julius
Smith explains that the circuit (bass, medium, treble) that shapes
the sound of the electric guitar, presented in Figure 6, cannot be
simulated accurately by filters in series or in parallel. Besides its
simplicity, this circuit results in a complicated filter with each
individual part influencing the other. Yeh and Julius analyzed the

10 https://wasabi.i3s.unice.fr/AmpSim3/userEvaluation.html
11 Multiband distortion preamp in a WebAudio amp sim:

https://mainline.i3s.unice.fr/AmpSim

schematics symbolically using the technique of virtual analog, and
proposed an exact solution: a filter that responds to user controls in
the same way as the analog prototype.

As many classic Amps by Fender, Vox or Marshall share this
design, we can find exact implementations of many different tone
stacks (only the location on the amp circuit–after the first stage of
the preamp on classic Fender amps-, or the values of the different
resistors and capacities, changes). In our WebAudio amp, we
transpiled the original C++ implementation of Yeh’s code12 from
C++ to JavaScript, using emscripten[14], and used a WebAudio
ScriptProcessor node to reproduce the exact tone stack of the
JCM800. However, experimentations showed that a minimum of
4ms in latency was introduced, therefore we decided to explore
further alternatives. In addition, we encountered sometimes buffer
glitches while users operated the bass, medium, treble and presence
knobs from the amp GUI (as the ScriptProcessor node runs in the
GUI thread), this led us to remove temporarily this implementation
(waiting for the upcoming AudioWorklet node that should give
better performances and no glitches). We adopted as an alternative
solution a set of biquad filters in series: treble filter (high shelf, 6.5
KHz) goes into medium (peaking, 1.7KHz) into bass (low shelf
100Hz) into presence (peaking, 3.9KHz), we adjusted the types of
filters and their parameters so that they approached the frequency
response of the real tone stack (we used the tone stack calculator
tool13 for comparing). The result is not a faithful replication of the
real tone stack circuit, but “does the job”, our testers found it easy
to use and managed to shape their sound rapidly. In a real JCM800
the presence filter is in the feedback loop between the input and
output of the power amp stage, however we kept it in the series of
filters when we switched the tone stack implementation.

3.3 Reverb
We used a convolver node with free reverb impulses14. We
implemented this using a classic wet/dry audio graph to make the
“room effect” adjustable. Several impulses are included in the
online demo (Marshall JCM800 plate reverb, Fender spring reverb,
etc.)

3.4 Power Amp
The power amplifier stage of the JCM800 (right of Figure 2) relies
on a long-tailed phase splitter feeding a classical push-pull of
pentodes (two EL34 or 6550). The 2nd harmonic (and all the even
ones in general) are naturally cancelled by a well-balanced push-
pull [11]. Also, compared to triodes, the use of pentodes enhances
the third harmonics (and all the odd ones) [12]. We end up with a
spectrum mostly composed of odd harmonics that could be
reasonably simulated using symmetrical transfer functions [10].
However, if one wants to re-introduce even harmonics to get a
better harmonious version of the JCM800, one should use instead
asymmetrical transfer functions, which provides a good simulation
of the classical use of slightly mismatched pentodes to get even
harmonics from an unbalanced push-pull. We added a low gain (<
1) before our power amp stage to reproduce the “light” overdrive
expected effect. As for the power amp part in real analog amps, in
addition to the overdrive, an influence on the tone is linked to the
impedance of the speakers in the cabinet. This impedance is due to
the load of the power lamps and therefore "shapes" the sound. This
document[16], written by the creator of Randall tube amplifiers

12 Available at: http://quitte.de/dsp/caps.html - ToneStack
13 http://www.duncanamps.com/tsc/
14 https://plus.google.com/+YoannPichard/posts/MTDzQgpSS9L

gives a general idea of the impedance of a speaker and how to
model it. We did not implement this part yet as the speaker
simulation has a much greater effect on the overall tone. While
negligible, we plan to add it to our model as a future improvement.

3.5 Speaker simulation
We used a convolver node with cabinet impulses from the
Redwirez commercial set15. Included in the online demo of the
WebAudio amp is the matched JCM800 cabinet as well as some
Fender and Vox cabinet impulses. We implemented this using a
classic wet/dry audio graph to make the effect of the cabinet
simulation on the final output signal adjustable. The quality of
impulses affect the overall sound tone and lowers aliasing.

4. Evaluations
4.1 Latency
Paul Adenot from Mozilla gave a tutorial at the WebAudio
Conference 2016 that covered all performance facets of the
WebAudio API, and includes a whole section about latency [15].
Latency depends on the sound card / driver / size of the audio buffer
/ USB ports, on the Operating System / audio driver supported by
the browser (low latency processing is not possible on Windows
due to the WASABI audio driver being the only one available today
on all browsers -no ASIO on windows, Firefox supports Jack audio
on Linux, while not enabled by default, etc.), on the browser
implementation (for example, the multi process design of Google
Chrome adds latency to do inter process communication). Latency
is also introduced by some WebAudio nodes: the delay node
(obviously), the compressor node adds a fixed look-ahead of 6ms,
biquad filter nodes add a two-frame latency that is negligible, wave
shaper nodes, when oversampling is enabled, add latency, the
panner node adds latency depending on some azimuth and
elevation parameters, finally, the convolver node adds latency that
depends on the size of the impulses.

In our implementation, we tried to keep latency as low as possible:
and did not use any feature/nodes that could add latency except the
convolver nodes. However, we used very small reverb (300-700k
bytes) and speaker (10-20k bytes) impulses, that added no more
than 1-2ms latency on our reference desktop.

Figure 7: Example of measure in Audacity, here the

WebAudio amp sim with Google Chrome and a Presonus
44VSL sound card.

15 http://www.redwirez.com/
16 https://wasabi.i3s.unice.fr/AmpSim3/latency.html

We tested latency with a Mac Book Pro 2016, Mac OSX Sierra,
16GB ram, both with a Presonus 44VSL sound card, and an Apogee
Jam sound card. We ran the WebAudio amp on a “clean” browser
(no other tabs and processes running) and tried both with Chrome
and Firefox Nightly. As of today, there is no means in the
WebAudio API for setting the size of the audio buffer, so we used
the default buffer size of 256 samples double buffered, that
corresponds to 11ms of intrinsic latency (confirmed by the
baseLatency property of the WebAudio context’s value). We
also measured the latency of Guitar Rig’s JCM800 amp sim (as a
plugin in GarageBand), and with the Clean Brit amp plugin that
comes bundled with GarageBand (also a JCM800 replica). Buffer
size is locked to 512 samples with GarageBand versions >= 10, the
same value used by WebAudio in our test configurations. In
addition, we compared with a Mod Duo Linux-based pedal and a
Yamaha THR10 guitar amp as a reference. We measured the guitar
to speaker latency, using a Panasonic WM61A electret microphone
taped on the guitar body, next to the high E string (Figure 8), and a
jack plugged at the output from the sound cards. We joined them
using a Y wire plugged into a Sony PCM-M10 digital recorder at
96kHz/24bit

Figure 8: Latency measurement setup

We then hit several times the guitar body with a metallic rod, and
recorded the result while going through different sound card and
amp simulations (with settings that did not alter too much the
signal). Figure 7 shows an example of measure in audacity after we
loaded a wav file we just recorded. The selection gives a rather
good approximation of the latency. However, we confirmed these
measures using a Matlab script of our own that analyses the
different Dirac shaped impulses to compute max/min and mean
value of the latency as well as estimations of the group delay.
Measures and .wav files are available online16.

A summary of our latency measures is shown in Table 1. We
compared latencies with an audio buffer of 256 samples double
buffered (eq. 512) both with WebAudio and with native plugins in
GarageBand (they both do not allow to change this setting). We
also compared with two other configurations that allowed a much
lower latency/buffer size. It is interesting to notice that even with
the slightly higher numbers in WebAudio/GarageBand setups, real
guitar players did not notice the latency with Google Chrome nor
found it problematic for playing comfortably (this was not the case
with Firefox Nightly that had a higher latency than Google
Chrome17, see next section). The digital plugin community usually
estimates that you can feel the latency when it’s higher than 10ms,

17 We used Google Chrome version 59.0.3053.3 dev (64-bit) and
Firefox Nightly version 55.0a1 (2017-04-01) (64-bit) for Mac OS

and experimented guitarists could even feel it above 5ms. Presonus
on the other side states11 that “our roundtrip latency of 9.7ms is still
below the realm of human perception, and it shouldn’t affect your
performance”. See the Audio Anecdotes book [20] for a demystification
of the perceived audio latency.

With the Yamaha THR10, a hardware guitar amp with amp
modeling using a dedicated DSP, we measured a latency < 1ms.

The Mod Duo pedal18 uses a Linux operating system with LV2
plugins to define virtual pedal boards. This hardware runs on a dual
core ARM A7 1.0GHz, a dedicated Cirrus Logic sound card and
uses a fixed audio buffer of 128 samples at 48Khz. Latency with no
plugins, given by the constructor, is 9ms. We used it with the LV2
Guitarix JCM800 native plugin and a matched cabinet simulator.

Table 1. Measured guitar-to-speaker latencies

Guitar

Rig
JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web Audio Amp
(Chrome/FF

Nightly 03/2017)
Presonus
44VSL 17ms 19ms 23/32ms

Apogee Jam 19ms 26ms 26/35ms
ModDuo

Pedal
(Linux)

 21ms

4.2 Frequency responses and waveforms
We used sinusoid waves at different frequencies and amplitudes as
an input signal, and plotted the frequency responses and waveform
at different stages of the WebAudio amp. We then compared with
outputs from a real JCM800 amp and outputs from the Guitar Rig
JCM800, with similar settings. Frequency responses were close,
however our asymmetric transfer function at the first section of the
preamp described in section 3.1, introduced more even harmonics
than the real amp and guitar rig on crunch settings. Figure 9 shows
the frequency response of an input signal and of the signal after the
preamp stage (with the two wave shapers set with the transfer
functions from Figure 5). In white we see the even harmonics and
the peaks between them are the odd harmonics. This corresponds
to a warm sound, rich in harmonics.

Figure 9: Frequency responses and a Sin wave at 440Hz. At

input and after the preamp stage.

18 http://wiki.moddevices.com/wiki/MOD_Duo
11 https://www.presonus.com/community/Learn/The-Truth-About-
Digital-Audio-Latency
19 https://github.com/g200kg/webaudio-controls

5. A few words about the GUI and MIDI
support
The current version of the amp GUI relies on a set of Polymer web
components called “webaudiocontrols19. They propose photo-
realistic knobs, sliders, leds, switches and look like popular widgets
from the native audio plugin world. The sprite sheet images they
rely on have been created using an online generator
(WebKnobMan20), a web based version of the popular KnobMan
tool from the VST plugin scene. We contributed to this set of
widgets by adding a midi learn context menu to all of them,
enabling control from external MIDI devices. We used the
WebAudio amp with both a Behringer FCB1010 MIDI pedalboard
(for changing presets) and with a Novation Launch Control pad
(that comes with a set of rotating knobs and buttons we mapped to
the rotating knobs and switches of our GUI) 21, but it can be
controlled using any MIDI device.

6. Blind tests and interviews
We asked four guitar players with different background to play
different guitar amp simulations (Guitar Rig by Native Instruments
-a reference used by many recording studios and musicians, the
GarageBand JCM800 plugin, Guitarix JCM800 –an open source
amp sim- tried on a dedicated Linux device: the Mod Duo pedal,
and our WebAudio amp), as well as the Yamaha THR10 amplifier,
that uses digital modeling too. We paired the amp sims with a
speaker simulation and matched cabinet, and with a reverb when
necessary, to have similar configurations (amp, reverb, cabinet
simulation) that could be compared.

We used a Blade Austin guitar (two single and a double coil pickup
+ active circuitry for boosting pickups with a push pull knob), a
Mac Book pro, the Presonus 44VSL sound card and a pair of Tapco
S5 studio monitor speakers (see Figure 10). We used both Google
Chrome and Firefox nightly. This is our lowest latency hardware
configuration. We let our testers change pickups settings on the
guitar, and we tweaked the amp simulations on demand (“please
add some treble, add some reverb, give me more crunch…”). Our
testers’ experience is > 10 years of guitar playing, 3 of them played
in bands for years, gave gigs, are used to guitar amps, 1 of them
plays a lot with amp simulators at home.

Figure 10: Typical setup during qualitative evaluation

20 http://www.g200kg.com/en/webknobman/
21 We also re-created a web version of these two MIDI devices,

using custom made webaudio controls, for making the MIDI
mapping process more ergonomic. See:
https://wasabi.i3s.unice.fr/AmpSim3/midi.html

We asked them to rank the different amp sims using this scale: E
(bad), D (average), C (good), B (very good) and A (Excellent).
Tables 2-6 show the results. We also asked them to describe with a
few words the sounds and the feeling of play (Table 7).

You can find videos and a complete report of these sessions
online22.

Table 2. "Can you feel the latency and is it annoying for
playing comfortably?”

 Guitar
Rig

JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web Audio
Amp

(Chrome/FF)
User 1 No Yes No No/Yes in high

notes but ok for
playing

User 2 No Yes No No/Yes in high
notes but ok for

playing
User 3 No Yes No No
User 4 No No No No

Table 3. "How can you qualify the sound (clean sound)?”

 Guitar Rig
JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web
Audio
Amp

User 1 A D E A
User 2 B C D A
User 3 A D D C
User 4 D D D C

Table 4. "How can you qualify the sound (crunch sound)?”

 Guitar Rig
JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web
Audio
Amp

User 1 B E E B
User 2 B C D C
User 3 B D E B
User 4 D D D D

Table 5. "How can you qualify the sound (distortion sound)?”

 Guitar Rig
JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web
Audio
Amp

User 1 A E E B
User 2 B C D C
User 3 B D E B
User 4 D E E D

Table 6. "How can you qualify the dynamic response?”

 Guitar Rig
JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web
Audio
Amp

User 1 A D E B
User 2 B C D C
User 3 C B D B
User 4 D D D C

Table 7. "Describe in a few words your feelings

Guitar Rig JCM800

Garage
Band

JCM 800

Guitarix
JCM800

Web
Audio
Amp

User 1

Very nice twang
sound, we feel the

tubes, excellent
dynamics. Accurate

Not bad,
“round”

sound, too
greasy,

Bad. This
one

sounds
very

Nice,
warm,
clean

sound, we

22 https://wasabi.i3s.unice.fr/AmpSim3/userEvaluation.html

distortion. Very
comfortable.

something
is

missing.

digital,
like in a
closed
box.

feel the
tubes.
More

structured
distorted
sound,

User 2

Tube feeling, good
sound in each setting.

Warm and
responsive.

Fells like a real amp.

Nice
clean

sound,
tubes,

distortion
is not

accurate
enough.

Latency is
a problem

Strange
feeling,

very
digital.
Cold

sounds
and bad
feeling.

Nice clean
sound,

tubes here.
“humid”

for
rhythmic

with
distortion
very good
for soloing

User 3
Good feeling, good

dynamics, good
sound

Toy amp,
sound not
accurate,

clean
sound ok.

Sounds
weird,
digital
feeling.

Warm
clean/crun
ch sound,
accurate

distortion,
nice. Good

feeling

User 4 Sounds digital. Too
much “round” sound.

Not
enough

nuances,
not warm

and
versatile
enough.

Sounds
digital.
Cold.

Not warm
enough,

dynamics
ok, Good
distortion.

Table 8. (switching to oversampling 2x and 4x)

"Can you hear a difference in the sound?”
User 1 User 2 User 3 User 4

No No No No

During the tests, we turned the oversampling mode of wave shaper
nodes on and off with values equal to 2x and 4x, and asked our
tester if they can hear or feel a difference. None of them noticed
any change (Table 8). Also, Google Chrome and Firefox proposed
a similar experience: two testers could not distinguish them with
the WebAudio amp sim, and two noticed the latency on high notes
(more with Firefox that has a higher latency than Google Chrome),
but they said they could handle it and that it was not inconvenient.

User 4 did not like any of the amp sim he tried, he’s used to play in
the style of Jimi Hendrix on a real tube amp at home and felt that
all simulations sounded “digital”, but the Yamaha amp didn’t. The
WebAudio simulation is a close second to Guitar Rig, a reference
in the audio plugin world, and this is very encouraging. The LV2
Guitarix JCM800 plugin running on the Mod Duo pedal did not
sound right to any of our testers. Other plugins on this pedal sounds
much better, so we wondered if the port of this software on the Mod
Duo has been made correctly.

Our reference hardware amp, the Yamaha THR10, got an A in each
category, with all our testers. Its speakers are not “neutral” like the
studio monitor speakers we used, and they certainly add a lot to the
sound color. However, the simulations we used during the
evaluations are not are not yet comparable to dedicated DSP
hardware..

7. Perspectives
This amp simulation is part of the ANR WASABI project (42
months, started in January 2017), that consists in building a 2
million song database with different client applications for music
schools, sound engineering schools, musicians / composers, etc.

The amp is part of a future set of WebAudio applications that will
include a guitar pedalboard with chainable effects (a prototype
demo shown at the WebAudio conference 2016 [19] is already
available, and includes a previous version of the amp presented in
this paper23), a mixing table, sound analysis tools, and so on, linked
and pre-tuned for classic songs from the database.

The amp model can be enhanced with a more faithful tone stack
model, a better power amp model (we did not model yet the effect
of speakers’ impedance), tube feedback effect simulation could be
improved by adding more dynamics (with an envelope follower at
the input of the amp, that could drive the “strength” of the transfer
functions), and when the AudioWorklet node will be available,
more accurate simulation of triodes will hopefully be possible
without adding too much latency. Other amp models are planned
and will be developed during the project. The GUI needs also to be
polished (there are too many “advanced settings” widgets and
measurement tools for a normal user), and ergonomic tests should
be conducted.

8. Conclusion
We could not find any previous work that reproduced each stage of
a specific guitar tube amplifier in WebAudio, and we showed that
it is possible to make a WebAudio based guitar amp simulation that
is both playable “guitar in hands”, and competitive in terms of
sound and comfort of play with some reference native plugins. The
use of simplified tube models based on wave shapers, while not as
accurate as more advanced models based on differential equations,
is a valuable solution for making a guitar tube amp simulation,
when accompanied by filters and fine-tuned gain settings.
Hopefully, the upcoming AudioWorklet node will make better
modeling possible for both preamp / amp tube stages and for the
tone stack.

However, the main problem that remains with WebAudio today,
and illustrated by our measures and experiments, is still the lack of
low latency audio driver support by standard browsers on
Windows, the lack of a mean to set the audio buffer size or to set
the sample rate to adjust the latency, and finally, the lack of support
for multiple audio inputs/outputs. Jack Audio is certainly the way
to go as it may act as a “proxy/barrier” between browsers vendors
and licensing policies from audio driver publishers (ASIO for ex.).

9. ACKNOWLEDGMENTS
French Research National Agency (ANR) and the WASABI project
team (contract ANR-16-CE23-0017-01).

Acknowledgements also go to Ivan Cohen and Alain Poulin (aka
LePou) for their encouragements and precious help in
understanding how guitar amp internals work, providing literature,
and giving their precious time for testing and sending feedback.

10. REFERENCES
[1] Pakarinen, J., & Yeh, D. T. (2009). A review of digital

techniques for modeling vacuum-tube guitar
amplifiers. Computer Music Journal, 33(2), 85-100.

[2] Holmes, B., & van Walstijn, M. Improving the robustness of
the iterative solver in state-space modeling of guitar
distortion circuitry. 18th Int. Conference on Digital Audio
Effects (DAFx-15), Trondheim, Norway, 2015.

23 https://mainline.i3s.unice.fr/GuitarProcessor/

[3] Cheng-Hao C. A Guitar Overdrive/Distortion Effect of
Digital Signal Processing. https://tinyurl.com/kc6s4er

[4] Macak, J., & Schimmel, J. Real-time guitar tube amplifier
simulation using an approximation of differential equations.
In Proceedings of the 13th International Conference on
Digital Audio Effects (DAFx’10). 2010.

[5] Yeh, D. T., Abel, J. S., Vladimirescu, A., & Smith, J. O.
(2008). Numerical methods for simulation of guitar distortion
circuits. Computer Music Journal, 32(2), 23-42.

[6] Yeh, D. T., & Smith, J. O. (2006, September). Discretization
of the’59 Fender Bassman tone stack. In Int. Conf. on
Digital Audio Effects (DAFx-06) (pp. 18-20).

[7] Cohen, I., & Helie, T. (2010, September). Real-time
simulation of a guitar power amplifier. In 13th Int.
Conference on Digital Audio Effects (DAFx-10).

[8] Hotz, M. A Study of Tube Amplifier Modeling Using
Nonlinear Wave Digital Filters. Master student thesis.
https://tinyurl.com/kzhj32x

[9] Clark, J. J. (2003). Advanced programming techniques for
modular synthesizers. https://tinyurl.com/3xskmv

[10] Millet P. “The sound of distortion”, online tutorial.
http://www.pmillett.com/file_downloads/ThesoundofDistorti
on.pdf

[11] Denton D., "Electronics for Guitarists", Springer Science &
Business Media. 2013. (typ. Page 247)

[12] Barbour, E. (1998). The cool sound of tubes [vacuum tube
musical applications]. IEEE Spectrum, 35(8), 24-35.

[13] Donaldson, N.P, "An Electric Guitar Plucked String Model
for Realtime Control with Distortion and Feedback"McGill
University, MUMT 618 Final Project, Fall 2009.

[14] Zakai, A. 2011. Emscripten: an LLVM-to-JavaScript
compiler. ACM Int. Conf. companion on Object oriented
programming systems languages and applications
companion (OOPSLA '11). ACM, New York, NY, USA, pp.
301-312. Website at http://kripken.github.io/emscripten-site/

[15] Adenot P. Web Audio API performance and debugging
notes, 2nd WebAudio Conference, Atlanta, 2016.
http://padenot.github.io/web-audio-perf/#latency

[16] Randall, A., Proper Dummy Load on Output of Tube Amp,
1998. https://tinyurl.com/myxo9k3

[17] Cohen, I., & Helie, T. (2009, October). Simulation of a guitar
amplifier stage for several triode models: examination of
some relevant phenomena and choice of adapted numerical
schemes. In Audio Engineering Society Convention 127.
Audio Engineering Society.

[18] G2 Workshops and tutorials : Waveshaping and Distortion.
https://rhordijk.home.xs4all.nl/G2Pages/Distortion.htm

[19] Buffa M., Demetrio M., Azria N. Guitar pedal board using
WebAudio. Web Audio Conference, Apr 2016, Atlanta,
United States. 2016.

[20] D. Difilippo and K. Greenebaum. Audio Anecdotes: Tools,
Tips, and Techniques for Digital Audio: Tools, Tips, and
Tricks for Digital Audio: v. 1. Book. 2004.

