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In this article, new series for the first and second Stieltjes constants (also known as generalized Euler's constant), as well as for some closely related constants are obtained. These series contain rational terms only and involve the so-called Gregory coefficients, which are also known as (reciprocal) logarithmic numbers, Cauchy numbers of the first kind and Bernoulli numbers of the second kind. In addition, two interesting series with rational terms for Euler's constant γ and the constant ln 2π are given, and yet another generalization of Euler's constant is proposed and various formulas for the calculation of these constants are obtained. Finally, we mention in the paper that almost all the constants considered in this work admit simple representations via the Ramanujan summation.

I. Introduction and definitions

The zeta-function

ζ(s) ≡ ∞ ∑ n=1 n -s = ∞ ∏ n=1 1 -p -s n -1 ,
Re s > 1 p n ∈ P = {2, 3, 5, 7, 11, . . .} is of fundamental and long-standing importance in analytic number theory, modern analysis, theory of L-functions, prime number theory and in a variety of other fields. The ζ-function is a meromorphic function on the entire complex plane, except at the point s = 1 at which it has one simple pole with residue 1. The coefficients of the regular part of its Laurent series, denoted γ m ,

ζ(s) = 1 s -1 + γ + ∞ ∑ m=1 (-1) m (s -1) m m! γ m , s = 1. ( 1 
)
where γ is Euler's constant 1 , and those of the Maclaurin series δ m

ζ(s) = 1 s -1 + 1 2 + ∞ ∑ m=1 (-1) m s m m! δ m , s = 1. (2) 
are of special interest and have been widely studied in the literature, see e.g. [START_REF] Gram | Note sur le calcul de la fonction ζ(s) de Riemann[END_REF], [1, vol. I, letter 71 and following], [23, p. 166 et seq.], [START_REF] Jensen | Sur la fonction ζ(s) de Riemann[END_REF][START_REF] Jensen | Note n o 245. Deuxième réponse. Remarques relatives aux réponses de MM. Franel et Kluyver[END_REF][START_REF] Franel | Note n o 245, L'Intermédiaire des mathématiciens[END_REF][START_REF] Hardy | Note on Dr. Vacca's series for γ[END_REF][START_REF]Collected papers of Srinivasa Ramanujan[END_REF][START_REF] Briggs | The power series coefficients of ζ(s)[END_REF][START_REF] Berndt | On the Hurwitz Zeta-function[END_REF][START_REF] Liang | The Stieltjes constants[END_REF][START_REF] Israilov | On the Laurent decomposition of Riemann's zeta function[END_REF][START_REF] Williams | Some results on the generalized Stieltjes constant[END_REF][START_REF] Coppo | Nouvelles expressions des constantes de Stieltjes[END_REF][START_REF] Ia | Expansions of generalized Euler's constants into the series of polynomials in π -2 and into the formal enveloping series with rational coefficients only[END_REF][START_REF] Lehmer | The sum of like powers of the zeros of the Riemann zeta function[END_REF][START_REF] Sitaramachandrarao | Maclaurin coefficients of the Riemann zeta function[END_REF][START_REF] Connon | Some possible approaches to the Riemann hypothesis via the Li/Keiper constants[END_REF]. The coefficients γ m are usually called Stieltjes constants or generalized Euler's constants (both names being in use), while δ m do not possess a special name. 2 It may be shown with the aid of the Euler-MacLaurin summation that γ m and δ m may be also given by the following asymptotic representations

γ m = lim n→∞ n ∑ k=1 ln m k k - ln m+1 n m + 1 , m = 1, 2, 3, . . . , 3 (3) 
and

δ m = lim n→∞ n ∑ k=1 ln m k -n m! m ∑ k=0 (-1) m+k ln k n k! + (-1) m m! - ln m n 2 , m = 1, 2, 3, . . . , 4 (4) 
These representations may be translated into these simple expressions 

γ m = R ∑ k 1 ln m k k , δ m = R ∑ k 1 ln m k , m = 1,
δ 2 = γ 1 + 1 2 γ 2 -1 2 ln 2 2π -1 24 π 2 + 2 = -0.006356455908 . . . 6 δ 3 = -3 2 γ 2 -3γ 1 γ -γ 3 -3γ 1 + 3 2 γ 2 -1 8 π 2 ln 2π + ζ(3) + 1 2 ln 3 2π -6 = +0.004711166862 . .

. and conversely

γ 1 = δ 2 + 2δ 2 1 + 4δ 1 -1 2 γ + 1 24 π 2 = -0.07281584548 . . . γ 2 = -2 3 δ 3 -2δ 2 (γ + 2) -4δ 1 δ 2 -16 3 δ 3 1 -4δ 2 1 (γ + 4) -8δ 1 (γ + 1) -1 12 γπ 2 + 1 3 γ 3 + 2 3 ζ(3) -4 3 = -0.009690363192 . . .
The relationships between higher-order coefficients become very cumbersome, but may be found via a semi-recursive procedure described in [START_REF] Apostol | Formulas for higher derivatives of the Riemann zeta function[END_REF]. 

II. Series expansions

II.1. Preliminaries

Since the results, that we come to present here, are essentially based on the Gregory coefficients and Stirling numbers, it may be useful to briefly recall their definition and properties. Gregory numbers, denoted below G n , are rational alternating

G 1 = + 1 /2 , G 2 = -1 /12 , G 3 = +1 /24 , G 4 = -19 /720 , G 5 = +3 /160 , G 6 = -863
/60 480 ,. . . , decreasing in absolute value, and are also closely related to the theory of finite differences; they behave as n ln 2 n -1 at n → ∞ and may be bounded from below and above according to [8, Eqs. ( 55)-( 56)]. They may be defined either via their generating function

z ln(1 + z) = 1 + ∞ ∑ n=1 G n z n , |z| < 1 , (6) 
or recursively by

G n = (-1) n+1 n + 1 + n-1 ∑ l=1 (-1) n+1-l G l n + 1 -l , G 1 = 1 2 , n = 2, 3, 4, . . . ( 7 
)
or explicitly by7 

G n = 1 n! 1 0 x (x -1) (x -2) • • • (x -n + 1) dx , n = 1, 2, 3, . . . ( 8 
)
Throughout the paper, we also use the Stirling numbers of the first kind, which we denote below by S 1 (n, l). Since there are different definitions and notations for them 8 , we specify that in our definition they are simply the coefficients in the expansion of falling factorial

x (x -1) (x -2) • • • (x -n + 1) = n ∑ l=1 S 1 (n, l) • x l , n = 1, 2, 3, . . . ( 9 
)
and may equally be defined via the generating function

ln l (1 + z) l! = ∞ ∑ n=l S 1 (n, l) n! z n = ∞ ∑ n=0 S 1 (n, l) n! z n , |z| < 1 , l = 0, 1, 2, . . . ( 10 
)
It is important to note that sgn S 1 (n, l) = (-1) n±l . The Stirling numbers of the first kind and the Gregory coefficients are linked by the relation

G n = 1 n! n ∑ l=1 S 1 (n, l) l + 1 , n = 1, 2, 3, . . . ( 11 
)
which follows directly from ( 8) and ( 9).

II.2. Some auxiliary lemmas

Before we proceed with the series expansions for δ m and γ m , we need to prove several useful lemmas.

Lemma 1.

For each natural number k, let

σ k := ∞ ∑ n=1 G n n + k .
Then the following equality holds

σ k = 1 k + k ∑ m=1 (-1) m k m ln(m + 1) , k = 1, 2, 3, . . . ( 12 
)
Proof. By using [START_REF] Briggs | The power series coefficients of ζ(s)[END_REF] and by making use of the generating equation for the Stirling numbers of the first kind [START_REF] Briggs | The irrationality of γ or of sets of similar constants[END_REF], we obtain

∞ ∑ n=1 G n n + k = ∞ ∑ n=1 1 n! n ∑ l=1 (-1) l+1 S 1 (n, l) l + 1 • 1 0 x n+k-1 dx 1/(n+k) = - ∞ ∑ l=1 1 (l + 1)! 1 0 x k-1 ln l (1 -x) dx = ∞ ∑ l=1 (-1) l+1 (l + 1)! ∞ 0 1 -e -t k-1 t l e -t dt = ∞ ∑ l=1 (-1) l+1 (l + 1)! k-1 ∑ m=0 (-1) m k -1 m ∞ 0 e -t(m+1) t l dt l! (m+1) -l-1 = ∞ ∑ l=1 (-1) l+1 l + 1 k-1 ∑ m=0 (-1) m k -1 m 1 (m + 1) l+1 = k-1 ∑ m=0 (-1) m k -1 m 1 m + 1 -ln m + 2 m + 1 , (13) 
where at the last stage we made a change of variable x = 1e -t and used the well-known formula for the Γ-function. But since

k-1 ∑ m=0 (-1) m m + 1 k -1 m = 1 k , and k -1 m + k -1 m -1 = k m ,
the last finite sum in (13) reduces to (12) 9 .

Remark 1. One may show10 that σ k may also be written in terms of the Ramanujan summation:

σ k = R ∑ n 1 Γ(k + 1)Γ(n) Γ(n + k + 1) = R ∑ n 1 B(k + 1, n) , ( 14 
)
where B stands for the Euler beta-function.

Lemma 2. Let a = (a(1), a(2), . . . , a(n), . . . ) be a sequence of complex numbers. The following identity is true for all nonnegative integers n:

n ∑ l=0 (-1) l n l a(l + 1) l + 1 = 1 n + 1 n ∑ k=0 k ∑ l=0 (-1) l k l a(l + 1) . ( 15 
)
In particular, if a = ln m for any natural m, then this identity reduces to

n ∑ l=0 (-1) l n l ln m (l + 1) l + 1 = 1 n + 1 n ∑ k=1 k ∑ l=1 (-1) l k l ln m (l + 1) . (16) 
Proof. Formula ( 15) is an explicit translation of [14, Proposition 7].

Lemma 3. For all natural m γ m = ∞ ∑ n=1 |G n+1 | n + 1 n ∑ k=1 k ∑ l=1 (-1) l k l ln m (l + 1) , ( 17 
)
δ m = ∞ ∑ n=1 |G n+1 | n ∑ l=1 (-1) l n l ln m (l + 1) . ( 18 
)
Proof. Using the representation for the ζ-function

ζ(s) = 1 s -1 + ∞ ∑ n=0 G n+1 n ∑ k=0 (-1) k n k (k + 1) -s , s = 1 ,
see e.g. [6, pp. 382-383], [START_REF] Ia | Three notes on Ser's and Hasse's representations for the zeta-functions[END_REF], we first have

γ m = ∞ ∑ n=0 G n+1 n ∑ l=0 (-1) l n l ln m (l + 1) l + 1 ,
and

δ m = ∞ ∑ n=0 G n+1 n ∑ l=0 (-1) l n l ln m (l + 1) .
Then formula [START_REF] Coffey | Certain logarithmic integrals, including solution of monthly problem #tbd, zeta values, and expressions for the Stieltjes constants[END_REF] follows from [START_REF] Candelpergher | Ramanujan summation and the exponential generating function ∑ ∞ k=0 z k k! ζ (-k)[END_REF].

II.3. Series with rational terms for the first Stieltjes constant γ 1 and for the coefficient δ 1

Theorem 1. The first Stieltjes constant γ 1 may be given by the following series 

γ 1 = 3 2 - π 2 6 + ∞ ∑ n=2 G n n 2 + n-1 ∑ k=1 G k G n+1-k H n -H k n + 1 -k = 3 2 - π 2 6 + 1 
+ . . . ( 19 
)
containing π 2 and positive rational coefficients only. Using Euler's formula π 2 = 6 ∑ n -2 , the latter may be reduced to a series with rational terms only.

Proof. By ( 17) with m = 1, one has

γ 1 = ∞ ∑ n=1 G n+1 n + 1 n ∑ k=1 k ∑ m=1 (-1) m k m ln(m + 1) .
Using [START_REF] Candelpergher | Ramanujan summation of divergent series[END_REF], we find that

1 n + 1 n ∑ k=1 k ∑ m=1 (-1) m k m ln(m + 1) = 1 n + 1 n ∑ k=1 σ k - H n+1 n + 1 + 1 (n + 1) 2 .
Thus

γ 1 = ∞ ∑ n=1 G n+1 n + 1 n ∑ k=1 σ k - ∞ ∑ n=0 G n+1 H n+1 n + 1 + ∞ ∑ n=0 G n+1 (n + 1) 2 = ∞ ∑ n=1 ∞ ∑ m=1 G n+1 G m (H m+n -H m ) n + 1 -ζ(2) + 1 + ∞ ∑ n=1 G n n 2 since ∞ ∑ n=1 G n H n n = ζ(2) -1 .
For the latter, see e.g. [ 

∑ n=1 ∞ ∑ m=1 G n+1 G m H m+n -H m n + 1 = ∞ ∑ n=2 n-1 ∑ k=1 G k G n+1-k H n -H k n + 1 -k ,
we finally arrive at [START_REF] Connon | Some possible approaches to the Riemann hypothesis via the Li/Keiper constants[END_REF].

Remark 2. It seems that the sum κ 1 := ∑ |G n | n -2 = 0.5290529699 . . .11 cannot be reduced to the "standard" mathematical constants. However, it admits several interesting representations, which we give in Appendix A.

Theorem 2. The first MacLaurin coefficient δ 1 = 1 2 ln 2π -1 admits a series representation similar to that for γ 1 , namely

δ 1 = ∞ ∑ n=1 1 n n ∑ k=1 G k G n+1-k + 1 -ln 2π 2 . ( 20 
)
Proof. Proceeding analogously to the previous case and recalling that

∞ ∑ n=2 |G n | n -1 = - γ + 1 -ln 2π 2 ,
see e.g. [8, p. 413, Eq. ( 41)], [42, Corollary 9], we have

δ 1 = ∞ ∑ n=0 G n+1 n ∑ l=0 (-1) l n l ln(l + 1) = ∞ ∑ n=1 G n+1 σ n - 1 n = ∞ ∑ n=1 G n+1 σ n - ∞ ∑ n=1 G n+1 n = ∞ ∑ n=1 ∞ ∑ k=1 G n+1 G k n + k + γ + 1 -ln 2π 2 = ∞ ∑ n=1 ∞ ∑ k=1 G n G k n + k -1 + 1 -ln 2π 2 (21) = ∞ ∑ n=1 1 n n ∑ k=1 G k G n+1-k + 1 -ln 2π 2 ,
where in [START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF] we eliminated γ by using the fact that G 1 = 1 /2 and that the sum of |G n |/n over all natural n equals precisely Euler's constant, see [START_REF] Berndt | On the Hurwitz Zeta-function[END_REF].

Corollary 1. The constant ln 2π has the following beautiful series representation with rational terms only and containing a product of Gregory coefficients 

ln 2π = 3 2 + ∞ ∑ n=1 1 n n ∑ k=1 G k G n+1-k = 3 
+ . . . ( 22 
)
This result directly follows from [START_REF] Coppo | Nouvelles expressions des constantes de Stieltjes[END_REF]. It is worth noting that one can also readily derive a series with rational coefficients only for ln π (for instance, with the aids of the Mercator series).

Corollary 2. Euler's constant γ admits the following series representation with rational terms 

γ = 2 ln 2π -3 -2 ∞ ∑ n=1 1 n + 1 n ∑ k=1 G k G n+2-k = 2 ln 2π -3 - 1 24 - 1 
-. . . ( 23 
)
This result seems to be undiscovered yet. It follows from ( 5), [START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF], and the transformation

∞ ∑ k=1 ∞ ∑ n=1 G k+1 G n n + k = ∞ ∑ n=1 1 n + 1 n ∑ k=1 G k G n+2-k .
II.4. Generalizations to the second-order coefficients δ 2 and γ 2 via an application of the harmonic product

We recall the main properties of the harmonic product of sequences which are stated and proved in [START_REF] Candelpergher | Le produit harmonique des suites[END_REF]. If a = (a(1), a(2), . . . ) and b = (b(1), b(2), . . . ) are two sequences in C N * , then the harmonic product a b admits the explicit expression:

(a b)(m + 1) = ∑ 0 l k m (-1) k-l m k k l a(k + 1)b(m + 1 -l) , m = 0, 1, 2, . . . (24) 
For small values of m, this gives:

(a b)(1) = a(1)b(1) , (a b)(2) = a(2)b(1) + a(1)b(2) -a(2)b(2) , (a b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2) -2a(3)b(2) -2a(2)b(3) + a(3)b(3) .
The harmonic product is associative and commutative.

Let D be the operator (known as the binomial transform) defined by

D(a)(m + 1) = m ∑ j=0
(-1) j m j a(j + 1) , m = 0, 1, 2, . . . then D = D -1 and the harmonic product satisfies the following property:

D(ab) = D(a) D(b) . (25) 
In particular, if a = ln, then D(a)(1) = ln 1 = 0. By [START_REF] Candelpergher | Ramanujan summation of divergent series[END_REF], we find that

D(ln)(m + 1) = m ∑ j=1 (-1) j m j ln(j + 1) = σ m - 1 m , m = 1, 2, 3, . . . (26) 
Therefore, if a = ln 2 then, by ( 24), [START_REF] Gram | Note sur le calcul de la fonction ζ(s) de Riemann[END_REF], and ( 26), the following identity holds

D(ln 2 )(m + 1) = ∑ 0 l k m k =0 l =m (-1) k-l m k k l σ k - 1 k σ m-l - 1 m -l . (27) 
From this identity, we deduce the following theorem:

Theorem 3. The second coefficients γ 2 and δ 2 may be given by the following series

γ 2 = ∞ ∑ n=1 |G n+1 | n + 1 ∑ 0 l k m n k =0 l =m (-1) k-l m k k l σ k - 1 k σ m-l - 1 m -l ,
and

δ 2 = ∞ ∑ m=1 |G m+1 | ∑ 0 l k m k =0 l =m (-1) k-l m k k l σ k - 1 k σ m-l - 1 m -l .
Proof. Using [START_REF] Coffey | Certain logarithmic integrals, including solution of monthly problem #tbd, zeta values, and expressions for the Stieltjes constants[END_REF] and equation ( 27), we get the following equalities:

γ 2 = ∞ ∑ n=1 |G n+1 | n + 1 n ∑ m=1 m ∑ j=1 (-1) j m j ln 2 (j + 1) = ∞ ∑ n=1 |G n+1 | n + 1 n ∑ m=1 D(ln 2 )(m + 1) = ∞ ∑ n=1 |G n+1 | n + 1 n ∑ m=1 ∑ 0 l k m k =0 l =m (-1) k-l m k k l σ k - 1 k σ m-l - 1 m -l . Similarly δ 2 is δ 2 = ∞ ∑ n=0 |G n+1 | n ∑ j=0 (-1) j n j ln 2 (j + 1) = ∞ ∑ n=1 |G n+1 |D(ln 2 )(n + 1) = ∞ ∑ m=1 |G m+1 | ∑ 0 l k m k =0 l =m (-1) k-l m k k l σ k - 1 k σ m-l - 1 m -l .
By following the same method, one may also obtain expressions for higher-order constants γ m and δ m . However, the resulting expressions are more theoretical than practical.

where li denotes the integral logarithm function, H 

is P 0 = 1, P 1 (x 1 ) = x 1 , P 2 (x 1 , x 2 ) = 1 2 x 2 1 + x 2 , P 3 (x 1 , x 2 , x 3 ) = 1 6 x 3 1 + 3x 1 x 2 + 2x 3 , . . . 14
In particular, for the series κ 1 mentioned in Theorem 1 and Remark 2, this gives

κ 1 = ∞ ∑ n=1 G n n 2 = - 1 0 1 ln(1 -x) + 1 x ln x dx (33) = 1 0 -li(1 -x) + γ + ln x x dx = ∞ 0 -li 1 -e -x + γ -x dx (34) = ∞ ∑ k=2 (-1) k k ∞ ∑ n=1 H n (n + 1) k = R ∑ n 1 H n n . ( 35 
)
Moreover, we have

κ 1 = γ 1 + γ 2 2 - π 2 12 + 1 0 Ψ(x + 1) + γ x dx (36) 
= γ 2 2 + π 2 12 - 1 2 + 1 2 1 0 Ψ 2 (x + 1) dx , ( 37 
)
where Ψ denotes the digamma function (logarithmic derivative of the Γ-function).

Proof of formula [START_REF] Jensen | Sur la fonction ζ(s) de Riemann[END_REF] We first write the generating equation for Gregory's coefficients, Eq. ( 6), in the following form

1 ln(1 -x) + 1 x = ∞ ∑ n=1 |G n | x n-1 , |x| < 1 . (38) 
Multiplying both sides by ln p x, integrating over the unit interval and changing the order of summation and integration 15 yields:

1 0 1 ln(1 -x) + 1 x ln p x dx = ∞ ∑ n=1 |G n | 1 0 x n-1 ln p x dx , Re p > -1 . ( 39 
)
14 More generally, these polynomials, called the modified Bell polynomials are defined by the generating function: 15 The series being uniformly convergent.

exp ∞ ∑ k=1 x k z k k = ∞ ∑ n=0 P n (x 1 , • • • , x n ) z n .
The last integral may be evaluated as follows. Considering Legendre's integral Γ(p + 1) = ´tp e -t dt taken over [0, ∞) and making a change of variable t = -(s + 1) ln x , we have 1 0 x s ln p x dx = (-1) p Γ(p + 1)

(s + 1) p+1 , Re s > -1, Re p > -1. (40) 
Inserting this formula into (39) and setting n -1 instead of s, yields [START_REF] Jensen | Sur la fonction ζ(s) de Riemann[END_REF].

Proof of formula [START_REF] Jensen | Note n o 245. Deuxième réponse. Remarques relatives aux réponses de MM. Franel et Kluyver[END_REF] Putting in [START_REF] Tasaka | Note on the generalized Euler constants[END_REF] x = x 1 x 2 • • • x p+1 and integrating over the volume [0, 1] p+1 , where p ∈ N, on the one hand, we have

1 0 • • • 1 0 (p+1)-fold ∞ ∑ n=1 |G n | x 1 x 2 • • • x p+1 n-1 dx 1 • • • dx p+1 = ∞ ∑ n=1 |G n | n p+1 . ( 41 
)
On the other hand

1 0 1 ln(1 -xy) + 1 xy dx = - li(1 -y) -γ -ln y y .
Taking instead of y the product x 1 x 2 • • • x p and setting x = x p+1 , and then integrating p times over the unit hypercube and equating the result with ( 41) yields [START_REF] Jensen | Note n o 245. Deuxième réponse. Remarques relatives aux réponses de MM. Franel et Kluyver[END_REF].

Proof of formulas [START_REF] Kowalenko | Properties and applications of the reciprocal logarithm numbers[END_REF] and [START_REF] Lehmer | Euler constants for arithmetical progressions[END_REF] Writing in the generating equation ( 10) -x instead of z, multiplying it by ln m x/x and integrating over the unit interval, we obtain the following relation 16Ω(k, m) = (-1) m+k m! k! which is identical with [START_REF] Kowalenko | Properties and applications of the reciprocal logarithm numbers[END_REF] if setting m = p. Moreover, it is well known that

S 1 (n + 1, m + 1) n! = P m H (1) 
n , -H

n , . . . , (-1) m-1 H (m) n

, see [18, p. 217], [36, p. 1395], [30, p. 425, Eq. ( 43)], [6, Eq. ( 16)], which immediately gives [START_REF] Lehmer | Euler constants for arithmetical progressions[END_REF] and completes the proof.

Proof of formula [START_REF] Lehmer | The sum of like powers of the zeros of the Riemann zeta function[END_REF] This formula straightforwardly follows form the fact that κ p = F p (1), see [13, p. 307, 318 et seq.], where F p (s) is the special function defined by 

∑

  2, 3, . . . where R stands for the sum of the series in the sense of the Ramanujan summation of divergent series 5 . Due to the reflection formula for the zeta-function ζ(1s) = 2ζ(s)Γ(s)(2π) -s cos 1 2 πs , the numbers δ m and γ m are related to each other polynomially and also involve Euler's constant γ and the values of the ζ-function at naturals. For the first values of m, this gives δ 1 = 1 2 ln 2π -1 = -0.08106146679 . . .

  stands for the generalized harmonic number and the sequence of polynomials (P n )

1 0S 1 S 1

 111 ln k (1x) ln m x x dx , k, m ∈ N.By integration by parts, it may be readily shown thatΩ(k, m) = k m + 1 Ω(m + 1, k -1) ,and thus, we deduce the duality formula: (n, m + 1) n! n k .Furthermore, since 1x = e ln(1-x) for x < 1, the Maclaurin series expansion of e z with z = ln(1x) givesx = 1 -(n, m + 1) n! n k ,

F 1 )

 1 -s .Proof of formulas[START_REF] Shen | Remarks on some integrals and series involving the Stirling numbers and ζ(n)[END_REF] and[START_REF] Sitaramachandrarao | Maclaurin coefficients of the Riemann zeta function[END_REF] These formulas immediatly follow from[START_REF] Candelpergher | Ramanujan summation of divergent series[END_REF] Eqs. (3.21) and (3.23)] and[START_REF] Pilehrood | Criteria for irrationality of generalized Euler's constant[END_REF].

  Altough there exist numerous representations for γ m and δ m , no convergent series with rational terms only are known for them (unlike for Euler's constant γ, see e.g.[START_REF] Ia | Expansions of generalized Euler's constants into the series of polynomials in π -2 and into the formal enveloping series with rational coefficients only[END_REF] Sect. 3], or for various expressions containing it[START_REF] Ia | Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π -1[END_REF] p. 413, Eqs. (41), (45)-(47)]). Recently, divergent envelopping series for γ m containing rational terms only have been obtained in[START_REF] Ia | Expansions of generalized Euler's constants into the series of polynomials in π -2 and into the formal enveloping series with rational coefficients only[END_REF]]. In this paper, by continuing the same line of investigation, we derive convergent series representations with rational coefficients for γ 1 , δ 1 , γ 2 and δ 2 , and also find two new series of the same type for Euler's constant γ and ln 2π respectively. These series are not simple and involve a product of Gregory coefficients G n , which are also known as (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind b n , and normalized Cauchy numbers of the first kind C 1,n . Similar expressions for higher-order constants γ m and δ m may be obtained by the same procedure, using the harmonic product of sequences introduced in[START_REF] Candelpergher | Le produit harmonique des suites[END_REF], but are quite cumbersome. Since the Stieltjes constants γ m generalize Euler's constant γ and since our series contain the product of G n , these new series may also be seen as the generalization of the famous Fontana-Mascheroni series |G n | n -m-1 , which also generalize Euler's constant γ. These numbers, similarly to γ m , coincide with Euler's constant at m = 0 and have various interesting series and integral representations, none of them are reducible to classical mathematical constants.

	γ =	∞ ∑ n=1	G n n	=	1 2	+	1 24	+	1 72	+	19 2880	+	3 800	+	863 362 880	+	275 169 344	+ . . .	(5)
	which is the first known series representation for Euler's constant having rational terms only, see
	[8, pp. 406, 413, 429], [6, p. 379]. In Appendix A, we introduce yet another set of constants κ m =
	∑																		
	n 1																		

We recall that γ = lim n→∞ (H nln n) = -Γ (1) = 0.5772156649 . . . , where H n is the nth harmonic number.

It follows from (2) that δ m = (-1) m ζ (m) (0) + m!

This representation is very old and was already known to Adolf Pilz, Stieltjes, Hermite and Jensen[6, p. 366].

A slightly different expression for δ m was given earlier byLehmer [32, Eq. (5), p. 266], Sitaramachandrarao [37, Theorem 1], Finch [23, p. 168 et seq.] and Connon [19, Eqs. (2.15),(2.19)]. The formula given by these writers differ from our (4) by the presence of the definite integral of ln m x taken over[1, n], which in fact may be reduced to a finite combination of logarithms and factorials.

For more details on the Ramanujan summation, see[START_REF] Candelpergher | La sommation de Ramanujan[END_REF][START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF][START_REF] Candelpergher | Ramanujan summation and the exponential generating function ∑ ∞ k=0 z k k! ζ (-k)[END_REF][START_REF] Candelpergher | Ramanujan summation of divergent series[END_REF] and[START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF] Ch. 

6].[START_REF] Ia | Expansions of generalized Euler's constants into the series of polynomials in π -2 and into the formal enveloping series with rational coefficients only[END_REF] This expression for δ 2 was found by Ramanujan, see e.g.[4, (18.2)].

For more information about G n , see[8, pp. 410-415],[6, p. 379],[START_REF] Ia | A note on some recent results for the Bernoulli numbers of the second kind[END_REF], and the literature given therein (nearly 50 references).

More information and references (more than 60) on the Stirling numbers of the first kind may be found in [8, Sect. 2.1] and[START_REF] Ia | Expansions of generalized Euler's constants into the series of polynomials in π -2 and into the formal enveloping series with rational coefficients only[END_REF] Sect. 1.2]. We also note that our definitions for the Stirling numbers agree with those adopted by MAPLE or MATHEMATICA: our S 1 (n, l) equals to Stirling1(n,l) from the former and to StirlingS1[n,l] from the latter.

The result appeared without proof in[START_REF] Ia | Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π -1[END_REF]. For a slightly more general result, see[START_REF] Coppo | On shifted Mascheroni series and hyperharmonic numbers[END_REF] Proposition 1].

See[START_REF] Candelpergher | Ramanujan summation of divergent series[END_REF] Eq. (4.31).

For more digits, see OEIS A270859.

See also[START_REF] Xu | Euler sums and integrals of polylogarithm functions[END_REF] Theorem 2.7].

Acknowledgments

The authors warmly thank the referee for his valuable comments. They are also grateful to Vladimir V. Reshetnikov for his kind help and useful remarks.

Appendix A. Yet another generalization of Euler's constant

The numbers κ p := ∑ |G n | n -p-1 , where the summation extends over n = [1, ∞), may also be regarded as one of the possible generalizations of Euler's constant (since κ 0 = γ 0 = γ and κ -1 = γ -1 = 1). 12,13 These constants, which do not seem to be reducible to the "classical mathematical constants", admit several interesting representations as stated in the following proposition.

Proposition 1. Generalized Euler's constants κ

, where the summation extends over n = [1, ∞), admit the following representations:

n , H

n , . . . ,

12 Numbers κ 0 and κ -1 are found for the values to which Fontana-Mascheroni and Fontana series converge respectively [8, pp. 406, 410]. 13 Other possible generalizations of Euler's constant were proposed by Briggs, Lehmer, Dilcher and some other authors [START_REF] Briggs | The irrationality of γ or of sets of similar constants[END_REF][START_REF] Lehmer | Euler constants for arithmetical progressions[END_REF][START_REF] Tasaka | Note on the generalized Euler constants[END_REF][START_REF] Pilehrood | Criteria for irrationality of generalized Euler's constant[END_REF][START_REF] Xia | The parameterized-Euler-constant function γ a (z)[END_REF][START_REF] Dilcher | Generalized Euler constants for arithmetical progressions[END_REF].