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TOWERS OF TORSORS OVER A FIELD

MARCO ANTEI, INDRANIL BISWAS, AND MICHEL EMSALEM

Abstract. Let X be a projective, connected and smooth scheme defined over an alge-
braically closed field k. In this paper we prove that a tower of finite torsors (i.e., under
the action of finite k-group schemes) can be dominated by a single finite torsor. Let G be
any finite k-group scheme and Y any G–torsor over X pointed in y ∈ Y (k); we define over
Y , which may not be reduced, in a very natural way the categories of Nori-semistable and
essentially finite vector bundles. These categories are proved to be Tannakian. Their Galois
k-group schemes πS(Y, y) and πN (Y, y), respectively, thus generalize the S–fundamental
and the Nori fundamental group schemes. The latter still classifies all the finite torsors over
Y , pointed over y. We also prove that they fit in short exact sequences involving πS(X, x)
and πN (X, x) respectively, where x is the image of y.
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1. Introduction

The existence of a group scheme classifying all the finite torsors over a given scheme
X has been first conjectured by Grothendieck in his celebrated work [SGA1, Chapitre X].
However a complete proof was given by Nori in [No1] almost thirty years later when X is a
proper, reduced and connected scheme defined over a perfect field k endowed with a section
x ∈ X(k). Then in his PhD thesis [No2] Nori provided a new proof in the more general
set-up where X is not necessarily proper and k is any field. In this paper we only consider
the case where k is an algebraically closed field and X a smooth, connected and projective
scheme over k. In this set-up we first analyze two questions which happen to be tightly
linked:
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(a) Given two finite k-group schemes G1 and G2, a G1-torsor Y1 −→ X and a G2-torsor
Y2 −→ Y1, when there is a finite k-group scheme G3 and a G3-torsor Y3 −→ X
together with a faithfully flat morphism Y3 −→ Y2?

(b) Given a finite k-group scheme G and a G-torsor Y −→ X when there is a funda-
mental group scheme πN (Y, y) classifying all the finite torsors over Y pointed over
the base point y ∈ Y ?

Neither of these two questions is new. Question (a) is well known to have a positive
answer when both G1 and G2 are étale while in the general case it has first been studied by
Garuti in [Ga] with his solution being made sharp by Antei and Emsalem in [AE]. Garuti
communicated to us that the proof of [Ga] is not correct unfortunately, so the question is
still open. Regarding question (b), as a consequence of the aforementioned results in [Ga]
and [AE], an answer to it was given, which is thus not correct either. However in [EHS]
Esnault, Hai and Sun found a complete answer to question (b) when G is étale.

In the present work we use old techniques combined with new tools in order to find a
complete and satisfactory solution to both questions (a) and (b). They happen to be a
particular case of a more general aspect which will be described in § 3. More precisely,
when X is, as before, a smooth connected and projective k-scheme provided with a section
x ∈ X(k), a complete solution to question (a) is given in Corollary 5.4, while question (b)
is answered in Theorem 5.1 and Lemma 6.3. It is now natural to wonder whether there is
any canonical relation between the fundamental group scheme πN (X, x) of X and that of
Y (the notation of question (b) is being used). A result proved in [EHS] says there exist an
exact sequence

1 −→ πN(Y, y) −→ πN(X, x) −→ G −→ 1

when G is étale. Here we prove that the same sequence continues to hold when G is any
finite k-group scheme (cf. Theorem 5.3). We also prove that a similar short exact sequence
for the S-fundamental group scheme holds (cf. Theorem 5.1):

1 −→ πS(Y, y) −→ πS(X, x) −→ G −→ 1 ,

where πS(Y, y) is defined to be the group scheme naturally associated to the category (that
we prove to be Tannakian) of generalized Nori-semistable vector bundles over Y , i.e., those
vector bundles over Y which are semistable of degree 0 when restricted to any normal and
proper curve over k.

Thanks to these two exact sequences we can study further some properties of both Nori’s
fundamental group scheme and the S-fundamental group scheme. Indeed, Esnault and Mehta
proved in [EM] that πN (X, x) trivial implies πS(X, x) trivial; this was further generalized by
Langer in [La2] where he proved that πN(X, x) ≃ πS(X, x) whenever the étale fundamental
group πét(X, x) of X is trivial. Using the latter, here we prove (cf. Corollary 5.6) that
whenever πN(X, x) is finite then, again, πN(X, x) ≃ πS(X, x). In particular in this case
we have that Nori’s universal torsor XN −→ X is both Nori-simply connected and S-simply
connected, meaning that πN(XN , xN) = πS(XN , xN ) = 0. A similar statement is true more
in general (i.e. not necessarily when πN(X, x) is finite): indeed we prove in Corollary 5.5
that every finite pointed torsor over XN is trivial.

Whenever πN(Y, y) can be defined, it is natural to study the homomorphism

π(i) : πN(Yred, y) −→ πN (Y, y)
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induced by the natural inclusion i : Yred −→ Y with Yred being the reduced subscheme of
Y . In the étale case, the analogous homomorphism πét(Yred, y) −→ πét(Y, y) is known to
be an isomorphism (cf. [SGA1, I, Théorème 8.3]). We prove that π(i) is a closed immersion
whenever Y is a finite Galois torsor over a smooth connected and proper curve X defined
over k (cf. Theorem 5.7). However π(i) is unlikely to be faithfully flat. A similar result
holds for πS(Y, y).

2. Nori-semistable vector bundles

In this section we recall some well-known facts; the details can be found in [La1], [La2]
and [EM].

Let k be any algebraically closed field. Let X be a connected reduced proper scheme, of
dimension d, defined over k. The S–fundamental group scheme of X is defined as the group
scheme associated to the Tannakian category given by the strongly semistable vector bundles
on X of degree zero (see below). Here we need a different description for this category, so
from now on let us assume that X is moreover smooth and projective. Let H be a fixed
ample line bundle on X ; the degree of torsionfree coherent sheaves on X will be defined
using H . A torsion-free coherent sheaf V on X is said to be stable (respectively, semistable)
if for every nonzero subsheaf E ⊂ V with rank(E) < rank(V ), we have

µ(E) < µ(V ) (respectively, µ(E) ≤ µ(V ))

where µ(V ) denotes the slope of V , i.e., µ(V ) := deg(V )/rank(V ). We recall that a
semistable vector bundle V is said to be strongly semistable if either char(k) = 0 or
char(k) = p > 0 and for every n ∈ N the Frobenius pullback (F n

X)
∗V is semistable.

A vector bundle V on X is called numerically flat if both V and its dual V ∗ are nef. It is
known that V is numerically flat if and only if it is Nori semistable, i.e., for any morphism
i : C −→ X from a smooth projective curve C, the pullback i∗V is semistable of degree
zero. Let V ects0(X) denote the full sub-category of the category of coherent sheaves on
X whose objects are strongly semistable reflexive sheaves V with ch1(V ).H

d−1 = 0 and
ch2(V ).Hd−2 = 0. A vector bundle V is numerically flat if and only if V ∈ V ects0(X) [La1,
Proposition 5.1]. Using [La1, Theorem 4.1] we can summarize the previous discussion as
follows:

Let X be a connected, smooth and projective scheme of dimension d defined over an
algebraically closed field k. Let H be a fixed ample line bundle on X and V a vector bundle
on X . Then the following are equivalent:

(1) V ∈ Ns(X);
(2) V is numerically flat;
(3) V is strongly semistable with ch1(V ).Hd−1 = 0 and ch2(V ).H

d−2 = 0;
(4) V is strongly semistable with vanishing (numerical) Chern classes.

The category Ns(X) of Nori semistable vector bundles is a k-linear abelian rigid tensor
category. Fixing a closed point x ∈ X endows Ns(X) with a fiber functor, namely x∗ :
Ns(X) −→ k-mod which makes (Ns(X), ⊗OX

, x∗, OX) into a neutral Tannakian category
over k. Then x∗ induces an equivalence of categories between the category Rep(πS(X, x)) of
finite dimensional representation of the Galois fundamental group πS(X, x) of the Tannakian
category (Ns(X),⊗OX

, x∗, OX) and Ns(X). The affine group scheme πS(X, x) is called the
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S-fundamental group scheme of X with base point x. This group scheme has been studied
in the curve case in [BPS], then in any dimension in [La1] and [Me] independently and later
in [La2] and [EM].

3. General machinery

Let θ : X −→ Spec(k) be a scheme over a field k such that H0(X, OX) = k together
with a rational point x ∈ X(k). In this section we state a few general facts about Tannakian
categories contained in the category Coh(X) of coherent sheaves on X ; these will be applied
in the next sections.

By a Tannakian category contained in Coh(X) we mean a full exact k-linear tensor functor
i : T →֒ Coh(X), such that T is Tannakian with the neutral fiber functor x∗. Given two
Tannakian categories T1 →֒ T2 →֒ Coh(X) contained in Coh(X), we will say that T1 is a
full Tannakian sub-category of T2 if the functor T1 →֒ T2 is an exact tensor fully faithful
functor and the category T1 is closed in T2 by taking sub-objects.

To the data of a Tannakian category contained in Coh(X) is attached the Galois group

scheme π1(T , x
∗) of the Tannakian category, and the universal torsor X̂ −→ X , where

X̂ = Isom⊗(θ∗x∗, i) is a right torsor under the affine group scheme π1(T , x∗). The fiber at
x of this universal torsor

x∗X̂ ≃ Isom⊗(x∗θ∗x∗, x∗) ≃ π1(T , x
∗)

is trivial. The universal torsor X̂ −→ X corresponds to a functor

F : Rep(π1(T , x
∗)) −→ Coh(X)

by the formula X̂ ≃ Isom⊗(θ∗O, F ), where

O : Rep(π1(T , x
∗)) −→ k-mod

is the forgetful functor with Rep(π1(T , x∗)) being the category of finite dimensional repre-
sentations of π1(T , x∗) and k-mod the category of finite dimensional k-vector spaces. This

formula means that the functor F is the result of twisting θ∗O by the torsor X̂ (see [E]). In
particular the two functors θ∗O and F are locally isomorphic for the flat topology.

On the other hand, the functor x∗ induces an equivalence of categories

x̃ : T
∼

−→ Rep(π1(T , x
∗))

such that x∗ = O ◦ x̃. The link between the functors F and x̃ is given by the lemma below.

Lemma 3.1. The functor F and i ◦ x̃−1 are equivalent, where x̃−1 denotes a quasi-inverse
of x̃.

Proof. The following diagram is commutative:

T
x∗

//

x̃ &&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

k-mod
θ∗ // Coh(X)

Repk(π1(T , x
∗))

O

OO

θ∗
// RepX(π1(T , x

∗))

OX

OO



TOWERS OF TORSORS OVER A FIELD 5

where RepX(π1(T , x
∗)) denotes the category of OX -modules endowed with an action of

π1(T , x∗) and OX is the forgetful functor. Thus

X̂ ≃ Isom⊗(θ∗x∗, i) ≃ Isom⊗(θ∗x∗x̃−1, ix̃−1) ≃ Isom⊗(θ∗O, ix̃−1) .

Comparing with the formula X̂ ≃ Isom⊗(θ∗O, F ) and using the one-to-one correspondence
between torsors and functors, one gets the equivalence F ≃ ix̃−1. �

It follows from Lemma 3.1 that F takes values in the category T ⊂ Coh(X). We will
need the following general fact.

Lemma 3.2. Let G −→ Spec(k) be an affine group scheme and

j : T −→ X

a G-torsor. Denote by T ⊂ Coh(X) the category of vector bundles V on X such that j∗V is
trivial (morphisms in T are morphisms in Coh(X)). Let

FT : Rep(G) −→ T ⊂ Coh(X)

be the associated functor. Then FT is fully faithful if and only if H0(T, OT ) = k. When this
is the case FT induces an equivalence of categories between Rep(G) and T .

Proof. The torsor j : T −→ X defines an equivalence of categories ρ between the category
G-VectT of G-vector bundles over T and vector bundles over X . So FT = ρ ◦ (θ ◦ j)∗. Thus
FT is fully faithful if and only if j∗ ◦ θ∗ is fully faithful. Let V1, V2 be two objects of Rep(G).
Then HomRep(G)(V1, V2) = (V ∨

1 ⊗R V2)
G. Analogously if F1, F2 are two objects of G-VectT ,

then HomG-VectT (F1, F2) = H0(T, F∨
1 ⊗OT

F2)
G. Thus FT is fully faithful if and only if for

any object W ∈ Rep(G), the natural map

WG −→ H0(T, j∗θ∗(W ))G (1)

is an isomorphism. We have the following sequence of isomorphisms of G-modules (by means
of the projection formula):

H0(T, j∗θ∗(W )) ≃ H0(Spec(k), (θ ◦ j)∗(θ ◦ j)
∗(W )) ≃ H0(Spec(k), (θ ◦ j)∗OT ⊗k W )

≃ H0(Spec(k), (θ ◦ j)∗OT )⊗k W ≃ H0(T, OT )⊗k W .

Then FT is fully faithful if and only if (H0(T, OT ) ⊗k W )G = WG for any object W . This
will be the case if H0(T, OT ) = k. Conversely, suppose that for any representation W of
G, we have (H0(T, OT ) ⊗k W )G = WG. Passing to the limit one gets that (H0(T, OT ) ⊗k

kG)G = (kG)G = k, where kG is the Hopf algebra of G. But if d = dimk H
0(T, OT ), then

(H0(T, OT )⊗k kG ≃ (kG)⊕d and thus (H0(T, OT )⊗k kG)
G ≃ k⊕d. Now one concludes that

d = 1 and H0(T, OT ) = k.

In order to prove the essential surjectivity, we argue as follows. Take a vector bundle E
on X such that j∗E is trivializable. This implies the existence of a finitely generated free
k-vector space M such that E := j∗E ≃ (θ ◦ j)∗M . Again applying the projection formula
we obtain that

(θ ◦ j)∗(θ ◦ j)
∗M = (θ ◦ j)∗OT ⊗R M = M .

It follows that E ≃ (θ ◦ j)∗(θ ◦ j)∗(θ ◦ j)
∗M ≃ (θ ◦ j)∗(θ ◦ j)∗E ≃ (θ ◦ j)∗H0(T, E). We now

observe that the previous isomorphism

(θ ◦ j)∗(θ ◦ j)∗E −→ E
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is G-equivariant and thus FT (H
0(T, E)) ≃ E. �

Applying Lemma 3.2 to the universal torsor X̂ −→ X attached to the Tannakian category
T ⊂ Coh(X), we have the following:

Corollary 3.3. H0(X̂, OX̂) = k, and T is the category of vector bundles trivialized by the

universal torsor X̂ −→ X.

Let us introduce the following notion.

Definition 3.4. Let T ⊂ Coh(X) be a Tannakian category (inclusion being an exact tensor
full functor). A torsor g : T −→ X under an affine group scheme G will be called a T -torsor
if the essential image of the associated functor FT : Rep(G) −→ Coh(X) lies in T .

Lemma 3.5. There is a one-to-one correspondence between the following two:

(1) isomorphism classes of T -torsors f : T −→ X under affine group schemes G
pointed above x ∈ X(k), and

(2) homomorphisms ϕ : π1(T , x∗) −→ G.

Given such a torsor and the corresponding morphism ϕ : π1(T , x∗) −→ G, the torsor is

isomorphic to the contracted product X̂ ×π1(T , x∗) G through the morphism ϕ.

Proof. Let FT : Rep(G) −→ T ⊂ Coh(X) be the functor associated to the torsor f :
T −→ X . As before,

F : Rep(π1(T , x
∗)) −→ T ⊂ Coh(X)

is the functor associated to the universal torsor X̂ −→ X . From the fact that the torsors
are pointed above x, one gets the following 2-commutative diagram:

Rep(G)
FT //

O %%❑❑
❑❑

❑❑
❑❑

❑
T

x∗

��

Rep(π1(T , x∗))
Foo

Oww♥♥♥
♥♥
♥♥
♥♥
♥♥

k-mod

Let F−1 be a quasi-inverse of F ; the functor

F−1 ◦ FT : Rep(G) −→ Rep(π1(T , x
∗))

induces a homomorphism ϕ : π1(T , x∗) −→ G. The functor associated to the torsor

X̂ ×π1(T , x∗) G −→ X

is F ◦ (F−1 ◦ FT ) ≃ FT . Consequently, the torsors T −→ X and X̂ ×π1(T , x∗) G −→ X are
isomorphic. �

Lemma 3.6. Let f : Y −→ X be a T -torsor. Assume that Y is pointed above x. Let

ϕ : π1(T , x
∗) −→ G

be the corresponding homomorphism. Then the following are equivalent:

(1) ϕ is faithfully flat.
(2) For all pointed T -torsors g : T −→ X and morphism of pointed torsors h : T −→

Y , h is faithfully flat.
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(3) For all pointed T -torsors g : T −→ X and morphism of pointed torsors h : T −→
Y that is a closed immersion, then h is an isomorphism.

Proof. (1) ⇒ (2): Consider the homomorphism of affine group schemes

λ : H −→ G

associated to h : T −→ Y , and also the homomorphism

ψ : π1(T , x
∗) −→ H

associated to the torsor T −→ X . Then ϕ = λ ◦ ψ, and as ϕ is supposed to be faithfully
flat, the same is true for λ.

(2) ⇒ (3): This follows from the fact that a faithfully flat closed immersion is an
isomorphism.

(3) ⇒ (1): Decompose ϕ = λ◦ψ, where λ is a closed immersion and ψ : π1(T , x∗) −→

H is faithfully flat, and consider T = X̂ ×π1(T , x∗) H the contracted product through ψ.
Then according to (3), λ is an isomorphism, and thus ϕ is faithfully flat. �

Definition 3.7. A T -torsor f : Y −→ X will be called T -Galois if the equivalent conditions
in Lemma 3.6 hold.

Remark 3.8. When X is a proper connected reduced scheme satisfying H0(X, OX) = k,
and T = EF (X) the category of essentially finite vector bundles, every torsor under a finite
group scheme is a T -torsor in the sense of Definition 3.4 [No2, Proposition 3.8]. The finite
T -Galois torsors are called “reduced” in [No2].

Remark 3.9. A pointed T -Galois torsor g : T −→ X under a finite group scheme G
defines a fully faithful functor FT : Rep(G) −→ T whose essential image we denote by TT .
Then the torsor g : T −→ X is isomorphic to the universal torsor associated to the full
Tannakian sub-category TT ⊂ T . Let us write FT = i ◦ F̃T , where F̃T : Rep(G) −→ TT is
an equivalence. Then the corresponding universal torsor is

Isom⊗(θ∗x∗, i) ≃ Isom⊗(θ∗x∗F̃T , iF̃T ) ≃ Isom⊗(θ∗O, FT ) ≃ T ,

where O denotes as usual the forgetful functor.

Lemma 3.5 describes the T -torsors f : Y −→ X . More generally, one may consider
finite flat morphisms of k-schemes f : Y −→ X such that f∗OY is an object of T .

Lemma 3.10. The fiber functor x∗ induces an equivalence between the following two cate-
gories:

(1) The category of finite flat morphisms of k-schemes f : Y −→ X such that f∗OY is
an object of T

(2) The category of finite k-schemes endowed with an action of π1(T , x∗).

Moreover, if fi : Yi −→ X, i = 1, 2, are two objects of the first category, and g : Y1 −→ Y2
is a morphism such that f2 ◦ g = f1, then g is faithfully flat if and only if the restriction to
the fibers of x,

gx : x∗Y1 −→ x∗Y2

is surjective.
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Proof. The tensor functor F ≃ i◦x̃−1 induces an equivalence between the category of finite k-
algebras endowed with an action of π1(T , x∗) and the category of finite OX-algebras that are
objects of T as OX-modules. Thus passing to the spectrum one gets an equivalence between
finite k-schemes endowed with an action of π1(T , x∗) and finite morphisms f : Y −→ X
such that f∗OY is an object of T .

As we noticed that the functors F and θ∗ ◦O are locally isomorphic for the flat topology,
the above equivalence of categories transforms faithfully flat morphisms into faithfully flat
morphisms. �

In this context one can define the “Galois closure” of a finite flat morphisms of k-schemes
f : Y −→ X such that f∗OY is an object of T .

Proposition 3.11. Consider a finite flat morphisms of k-schemes f : Y −→ X such
that f∗OY is an object of T and the full Tannakian sub-category TY = 〈f∗OY 〉 of T gen-

erated by f∗OY . Let g : X̂Y −→ X its universal torsor under the affine group scheme
π1(TY , x

∗) pointed at x̂Y . If Y has a k-rational point y, there exists a unique morphism

h : X̂Y −→ Y such that h(x̂Y ) = y. Moreover this morphism h is faithfully flat if and only
if H0(X, f∗OY ) = k. When this is the case:

(1) The morphism X̂Y −→ Y of pointed k-schemes is a pointed torsor under the isotropy
subgroup scheme of y ∈ x∗Y for the action of π1(TY , x

∗).
(2) The universal torsor satisfies the following universal property: for any T -Galois tor-

sor g′ : T −→ X pointed at t ∈ T (k) and any faithfully flat X-morphism of pointed
schemes h′ : T −→ Y such that h′(t) = y, there exists a unique morphism of

pointed torsors j : T −→ X̂Y making the following diagram commutative

T

g′

��

h′

##

j

  ❅
❅❅

❅❅
❅❅

X̂Y

g
����

h // Y

f~~~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X

Proof. In the equivalence of Lemma 3.10, π1(TY , x
∗) −→ Spec(k) corresponds to the uni-

versal torsor X̂Y −→ X and x∗Y −→ Spec(k) to Y −→ X . The morphism η :
π1(TY , x

∗) −→ x∗Y given by g 7−→ g.y corresponds thus to a unique pointed morphism

h : X̂Y −→ Y whose restriction to the fiber at x is η. The quotient x∗Y/π1(TY , x
∗) is the

spectrum of
(x̃(f∗OY ))

π1(TY , x∗) ≃ H0(X, f∗OY ) .

Thus η is surjective if and only if H0(X, f∗OY ) = k.

The assertion (1) is the consequence of the fact that the morphism η : G −→ x∗Y is a
torsor under the isotropy of y.

Finally, let g′ : T −→ X be a T -Galois torsor pointed at t. Then it is the universal
torsor attached to the category TT (see Remark 3.9). Let h′ : T −→ Y be a faithfully flat
morphism of pointed schemes. Then f∗OY ⊂ TT and 〈f∗OY 〉 = TX̂Y

is a full Tannakian

sub-category of TT . From this one gets a morphism of universal torsors T −→ X̂Y . �
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Remark 3.12. Suppose that T1 ⊂ T2 ⊂ Coh(X) are two Tannakian categories, where T1

is a full Tannakian sub-category of T2. One can apply Proposition 3.11 to a finite morphism
f : Y −→ X such that f∗OY is an object of T1 with respect to T1 or T2. With obvious

notation, 〈f∗OY 〉T1 = 〈f∗OY 〉T2 so that the Galois closure X̂Y −→ X constructed with T1

or T2 are the same. This will be the case with the categories EF (Y ) ⊂ N (Y ) introduced
in Section 4.

Let f : Y −→ X be a T -Galois torsor under a finite group scheme G. We will consider
the category T (Y ) of coherent sheaves F on Y such that f∗F is an object of T .

Theorem 3.13. Let X be a k-scheme such that H0(X, OX) = k provided with a rational
point x ∈ X(k), T a Tannakian category contained in Coh(X) and G be a finite k-group
scheme. Let f : Y −→ X be a pointed T -Galois torsor under G pointed at y ∈ Y (k) above
x. Then T (Y ) is a Tannakian category whose objects are vector bundles, with fiber functor
y∗.

Moreover the Galois group scheme π1(T (Y ), y∗) of this Tannakian category at y∗ is the
kernel K of the faithfully flat homomorphism ϕ : π1(T , x∗) −→ G associated to the G-
torsor Y −→ X, giving rise to the exact sequence

1 −→ π1(T (Y ), y∗) −→ π1(T , x
∗) −→ G −→ 1 (2)

and the universal torsor is X̂ −→ Y .

Proof. The universal property of universal torsor p : X̂ −→ X implies the existence of
a morphism of pointed torsor pY : X̂ −→ Y such that f ◦ pY = p (see Remark 3.9).
Observe that as in the proof of [EHS, Proposition 2.7], for any object V of T (Y ), there are
two objects W1, W2 of T such that V is the cokernel of a homomorphism f ∗W1 −→ f ∗W2.
Indeed W2 = f∗V is by definition an object of T . Consider the kernel V1 of the surjection
f ∗f∗V −→ V . As f ∗f∗V ≃ V ⊕d is an object of T (Y ), where d is the degree of the torsor
f : Y −→ X , it follows that W1 =: f∗V1 is the kernel of the morphism f∗(f

∗f∗V ) −→ f∗V
between objects of T , and is thus an object of T . This insures that V1 is an object of T (Y ).
Finally V is the cokernel of f ∗W1 = f ∗f∗V1 −→ V1 ⊂ f ∗f∗V = f ∗W2.

As a consequence, p∗Y V is the cokernel of p∗Y f
∗W1 = p∗W1 −→ p∗Y f

∗W2 = p∗W2 between

trivial vector bundles. The torsor pY : X̂ −→ Y is a K-torsor where K is the kernel of the
faithfully flat morphism ϕ : π(X) −→ G associated to the T -Galois torsor f : Y −→ X .

As H0(X̂, O
X̂
) = k according to Corollary 3.3, the functor ηY : Rep(K) −→ Coh(Y )

associated to the K-torsor pY : X̂ −→ Y is fully faithful, according to Lemma 3.2. As
f ∗W1 and f

∗W2 whose pull back by pY are trivial, are objects of the essential image C of ηY ,
V is also an object of C. One concludes that T (Y ) ⊂ C.

Conversely, consider an object V of C. Then

p∗f∗V = p∗Y f
∗f∗V ≃ p∗Y (V

⊕d) ≃ (p∗Y V )
⊕d .

As V is an object of C, we know that p∗Y V is trivial, and thus p∗f∗V is trivial. From Lemma
3.2, one concludes that f∗V is an object of T , and thus V is an object of T (Y ). One
concludes that T (Y ) = C is a Tannakian category, whose Galois group scheme is K. �

The following statement is an easy generalization of Theorem 3.13 whose proof is left to
the reader.
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Theorem 3.14. Let X be a k-scheme such that H0(X, OX) = k provided with a rational
point x ∈ X(k) and T a Tannakian category contained in Coh(X). Let f : Y → X be a
finite faithfully flat morphism pointed at y ∈ Y (k) above x, such that f∗OY is an object of T
and such that H0(X, f∗OY ) = k. Assume that the Galois closure, constructed in Proposition

3.11, X̂Y → X is finite. Consider the following commutative diagram

X̂
pY //

j ��❅
❅❅

❅❅
❅❅

❅ Y
f // X

X̂Y

h

OO

π

??⑦⑦⑦⑦⑦⑦⑦⑦

where π : X̂Y → Y is the natural morphism , X̂ → X the universal torsor attached to the
category T and x. Then the category T (Y ) of vector bundles V on Y such that π∗h

∗V is
an object of T is a Tannakian category ; T (Y ) is the category of vector bundles V on Y

such that p∗Y V is trivial ; the universal torsor attached to T (Y ) and y is X̂ → Y , and the
Tannakian Galois group π1(T (Y ), y) attached to T (Y ) and y is the isotropy group of y under
the action of π1(T , x) on x∗Y .

4. Generalized Nori-semistable bundles

Let us introduce the following definition:

Definition 4.1. A vector bundle F over a k-scheme T is called Nori-semistable if the
following holds: for any smooth projective k-curve C and any morphism i : C −→ T , the
pulled back vector bundle i∗F is semistable of degree zero. We will denote by Ns(T ) the
category of Nori-semistable vector bundles.

Let f : Y −→ T be a finite and flat morphism It is said to be Nori-semistable if the
direct image f∗OY is a Nori-semistable vector bundle.

Lemma 4.2. Let T be a k-scheme, where k is an algebraically closed field. The tensor
product of two Nori-semistable vector bundles on T is again Nori-semistable.

Proof. Let (C , i) be as in Definition 4.1 and F1 and F2 two Nori-semistable vector bundles
on T . The statement is the consequence of the facts that i∗(F1 ⊗OT

F2) = i∗F1 ⊗OC
i∗F2

and that Ns(C) is a tensor category. �

Let X be is a smooth projective scheme over an algebraically closed field k, pointed at
a rational point x ∈ X(k). Let G be a finite k-group scheme and f : Y −→ X a Galois
G-torsor endowed with a k-rational point y ∈ Yx(k). The full sub-category of Coh(Y )
whose objects are those coherent sheaves on Y whose push-forward to X is an essentially
finite vector bundle called F(Y ) in [EHS] is a Tannakian category whose objects are vector
bundles according to Theorem 3.13 (cf. also [EHS, Proposition 2.7]). Moreover, if G is
smooth, then F(Y ) is nothing but the category of essentially finite vector bundles over Y
[EHS, Theorem 2.9]. Here we do a similar construction and we call N (Y ) the full sub-
category of Coh(Y ) whose objects are those coherent sheaves on Y whose push-forward to
X is a Nori-semistable vector bundle.

As a consequence of the following proposition, Ns(Y ) is a sub-category of the category
N (Y ) of vector bundles F on Y such that f∗F is Nori-semistable.
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Proposition 4.3. Let X be a k-scheme over an algebraically closed field k, f : Y −→ X a
Nori-semistable morphism and F a Nori-semistable vector bundle over Y . Then the vector
bundle f∗F on X is Nori-semistable.

Proof. It suffices to prove the following: for any proper and normal k-curve C and any
nonconstant morphism i : C −→ X the vector bundle i∗f∗F is semistable of degree zero.
So take (C , i) as above. Let C ′ := Y ×X C be the fiber product; we consider the diagram

C̃

u

��✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

s

��❄
❄❄

❄❄
❄❄

❄

C ′ i′ //

f ′

��

Y

f
��

C
i

// X

where C̃ is the normalization of an irreducible component of the reduced curve C ′
red for C ′

that surjects to C. The morphism u is finite and faithfully flat (see for instance [Li, § 4,
Corollary 3.10]), so in particular u∗H is a subbundle of u∗i∗f∗F as long as H is a subbundle
of i∗f∗F . Hence to prove that i∗f∗F is semistable of degree 0 it is enough to show that
u∗i∗f∗F is semistable of degree 0; indeed, the pullback by u of any subbundle of i∗f∗F
contradicting the semistability condition, contradicts the semistability condition for u∗i∗f∗F
too, while degree(u∗i∗(f∗F)) = 0 implies that degree(i∗(f∗F)) = 0 (cf. for instance [AE,
Lemma 3.25]).

To prove that u∗i∗f∗F is semistable of degree 0, we have

u∗i∗f∗F ≃ u∗f ′
∗i

′∗F = s∗f ′∗f ′
∗i

′∗F ≃ s∗((i′∗F)⊗O
C′

(f ′∗f ′
∗OC′))

and the latter is isomorphic to (s∗i′∗F) ⊗O
C̃
(u∗f ′

∗OC′). The vector bundle s∗i′∗F is Nori
semistable of degree 0 and the same is true for u∗f ′

∗OC′ because f ′ is a Nori-semistable
morphism. Therefore, from Lemma 4.2 it follows that (s∗i′∗F)⊗O

C̃
(u∗f ′

∗OC′) is semistable
of degree zero. �

Corollary 4.4. Let f : Y −→ X a Nori-semistable morphism, then Ns(Y ) = N (Y )
where N (Y ) is the category of vector bundles F on Y such that f∗F is Nori-semistable.

Proof. In Proposition 4.3 we have already proved that Ns(Y ) ⊆ N (Y ). So let now V be an
object of N (Y ), i.e. a vector bundle such that f∗(V ) is Nori-semistable. For any morphism
j : C −→ Y from a smooth and projective curve C to Y ,

(f ◦ j)∗f∗V = j∗(f ∗f∗V ) = j∗(f ∗f∗OY ⊗OY
V ) = (f ◦ j)∗(f∗OY )⊗OC

j∗V

and as (f ◦ j)∗f∗V and (f ◦ j)∗(f∗OY ) are Nori-semistable, j∗V has degree 0. Furthermore
we know that V is a quotient bundle of f ∗f∗V , which is Nori-semistable, so in particular j∗V
remains a quotient bundle of a Nori-semistable vector bundle and this is enough to conclude
that j∗V is semistable of degree 0 (cf. [No2, Lemma 3.6]). �

Corollary 4.5. Let X be a k-scheme, f : Y −→ X and g : Z −→ Y two Nori-semistable
morphisms. Then g ◦ f is Nori-semi-stable.
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We now recall that a Weil-finite vector bundle over a scheme Y is a vector bundle V such
that there exist two polynomials p(x) , q(x) ∈ N[x], p(x) 6= q(x), with p(V ) isomorphic to
q(V ). In particular if h : T −→ Y is a M-torsor for some finite k-group scheme M , then
h∗OT is a Weil-finite vector bundle.

Lemma 4.6. A Weil-finite vector bundle V on a k-scheme Y is Nori-semistable.

Proof. Let i : C −→ Y a morphism of a smooth projective curve C to Y . Then i∗V is
Weil-finite too, and thus semistable of degree 0 ([No1, Proposition 3.4]) �

Corollary 4.5 and Lemma 4.6 together produce the following:

Corollary 4.7. Let X be a k-scheme provided with a section x ∈ X(k), and let G and M
be two finite k-group schemes. Let

f : Y −→ X

a Galois G-torsor endowed with a k-rational point y ∈ Yx(k) and h : T −→ Y a M-torsor
endowed with a k-rational point t ∈ Ty(k). Then f∗h∗OT is Nori-semistable.

Corollary 4.7 was proved earlier in [EHS, Lemma 2.8] assuming that G is smooth.

Definition 4.8. Let X be a k-scheme such that Ns(X) is a Tannakian sub-category of
Coh(X) (in particular H0(X,OX) = k). Consider the full Tannakian sub-category EF (X)
of Ns(X) generated by the Weil-finite vector bundles. The objects of EF (X) are called
essentially finite (this definition applies in particular in the case of a smooth projective
scheme over an algebraically closed field, in which case it coincides with Nori’s definition
[No2]).

Let X be as in Definition 4.8 and f : X −→ Y a torsor under a finite group scheme.
Then f∗OY is Weil-finite and one may consider the full Tannakian sub-category 〈f∗OY 〉 of
Ns(X) generated by f∗OY (see section 3). Then 〈f∗OY 〉 is a full Tannakian sub-category of
EF (X).

With X still as in Definition 4.8, consider the situation of Theorem 3.14 with T = Ns(X).

As the Galois closure π : X̂Y −→ X of the Nori semistable morphism f : Y −→ X is a
torsor under a finite group scheme, f∗OY is essentially finite.

Definition 4.9. Let X be as in Definition 4.8 and f : Y −→ X be a finite flat morphism
such that f∗OY is essentially finite. We will say that the morphism f is essentially finite
(in the case of a smooth projective scheme over an algebraically closed field, this definition
agrees with that of [AE]).

Definition 4.10. Let X be as in Definition 4.8 endowed with a rational point x ∈ X(k).
The Galois group of the Tannakian category EF (X) based at x will be denoted πN(X, x)

and the corresponding universal torsor X̂N −→ X . When X is a proper reduced k-scheme
such that H0(X,OX) = k, these are the Nori fundamental group scheme and its universal
torsor.

5. Fundamental Group Scheme of torsor

As a consequence of Corollary 4.4 and Theorem 3.13, one gets the following statement.
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Theorem 5.1. Let X be k-scheme such that Ns(X) is a Tannakian sub-category of Coh(X),
provided with a section x ∈ X(k) and G be a finite k-group scheme. Let f : Y −→ X be
a Galois G-torsor endowed with a k-rational point y ∈ Yx(k). Then N (Y ) is a Tannakian
category whose objects are vector bundles, with fiber functor y∗.

Moreover the Galois group scheme πS(Y, y) of this Tannakian category at y∗ – also
called the S-fundamental group scheme of Y at y – is the kernel of the natural morphism
πS(X, x) −→ G associated to the G-torsor f : Y −→ X, giving rise to the exact sequence

1 −→ πS(Y, y) −→ πS(X, x) −→ G −→ 1

and the universal torsor is X̂S −→ Y .

Finally for any object V of EF (Y ), f ∗f∗V is also an object of EF (Y ).

Proof. The only new statement is the last one. It is clearly true for Weil finite vector bundles
as f ∗f∗OY is Weil finite and f ∗f∗V ≃ f ∗f∗OY ⊗V . For general elements of EF (Y ) one uses
the fact that for an affine morphism f , f∗ is exact. �

Lemma 5.2. With the hypothesis of Theorem 5.1, the k-group scheme πN(Y, y) is profinite
and for every finite k-group scheme G and every pointed Galois G-torsor h : T −→ Y ,
there is a unique Y -morphism of pointed torsors Y N −→ T .

Proof. The second assertion simply follows from the fact that h∗(OT ) is Weil-finite. For the
first assertion first note that over Y the Krull-Schmidt theorem for coherent sheaves holds
(properties (a) and (b) of the Corollary to [At, Lemma 3] hold, hence [At, Theorem 1] also
holds) so, as in [No1, Lemma 3.1] ((a) ⇒ (d)), for a given Weil-finite vector bundle V , the
collection S(V ) of all indecomposable components of V ⊗r, for all non-negative integers r,
is finite. Then we argue as in [No1, Lemma 3.9]: Let S be a finite collection of Weil-finite
vector bundles; let W be the direct sum of all the members of S and their duals. Then
W is a Weil-finite vector bundle, and by previous discussion S(W ) is finite. The category
generated by S(W ) has thus a finite number of generators (in the sense of [No1, § 2.1]) and
therefore the k-group scheme associated to it is finite too. The category generated by all
Weil-finite vector bundles gives thus rise to a profinite k-group scheme. �

Theorem 5.3. With notations as in Theorem 5.1, the following sequence of group schemes
is exact:

1 −→ πN(Y, y) −→ πN (X, x) −→ G −→ 1 . (3)

Moreover EF (Y ) is the category of vector bundles V on Y such that f∗V is an object of
EF (X).

Proof. According to Theorem 3.13, one is reduced to prove the last statement of the Theorem.
Consider a vector bundle V on Y such that f∗V is essentially finite. Following the proof of
Theorem 3.13, there exists two objects W1 and W2 of EF (X) such that V is the cokernel
of a morphism f ∗W1 −→ f ∗W2 between objects of EF (Y ). Thus V is itself an object of
EF (Y ).

On the other direction one has to show that the push-forward by f of an object of EF (Y )
is an object of EF (X). As f is affine, f∗ is exact and it suffices to prove the statement
for Weil finite vector bundles. Denote by C the category of vector bundles on X trivialized
by f : Y −→ X and consider a Weil finite vector bundle V on Y and the full Tannakian
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sub-category C′ of Ns(X) generated by C and f∗V . One has the following commutative
diagram

C // Ns(X)
f∗

// N (Y )

C

=

OO

// C′

OO

f∗

// 〈f ∗f∗V 〉

OO

the vertical maps and the left horizontal maps being fully faithful, where the category
〈f ∗f∗V 〉 is a full Tannakian sub-category of EF (Y ). As the first line satisfies the condi-
tion of Theorem A1 of [EHS] for giving rise to an exact sequence of Galois group schemes, it
is easy to check that the second line as well satisfies conditions (i), (ii), (iii) (a) and (iii) (b)
of Theorem A1 of [EHS]. Let us verify the condition (iii) (c): for every object U of 〈f ∗f∗V 〉
there exists an objectW of C′ such that U is a quotient of f ∗W . As f ∗ commutes with tensor
product and dual, every object U of 〈f ∗f∗V 〉 can be viewed as a sub-object U →֒ Q, where
Q is a quotient in Ns(Y ) of f ∗N for some object N of C′. As f∗ is exact and the image by
f∗ of objects of Ns(Y ) are in Ns(X) according to Proposition 4.3, one gets an embedding
f∗U →֒ f∗Q where f∗Q is a quotient in Ns(X) of f∗f

∗N . As f∗f
∗N ≃ N ⊗OX

f∗OY is
an object of C′, f∗Q and thus f∗U are objects of C′. Finally U is a quotient of f ∗f∗U and
condition (iii) (c) of Theorem A1 of [EHS] is verified. Thus according to ibid the second line
of the above diagram gives rise to an exact sequence of Galois group schemes

1 −→ H −→ G′ −→ G −→ 1.

As f ∗f∗V ≃ f ∗f∗OY ⊗OY
V is Weil finite, the Galois group H of the Tannakian category

〈f ∗f∗V 〉 is finite according to Lemma 6.3, and thus the Galois group G′ of the Tannakian
category C′ is also finite. It follows that C′ ⊂ EF (X). In particular f∗V is essentially
finite. �

As a consequence of Theorem 5.3 one gets that the Galois closure of a tower of two finite
pointed torsors is itself finite. More precisely:

Corollary 5.4. Let X be a k-scheme such that the category Ns(X) is a Tannakian subcat-
egory of Coh(X), provided with a section x ∈ X(k), while G and M be two finite k-group
schemes, f : Y −→ X a Galois G-torsor endowed with a k-rational point y ∈ Yx(k) and
h : T −→ Y a M-torsor endowed with a k-rational point t ∈ Ty(k). Then there exists a
finite k-group scheme N , a Galois N-torsor Z −→ X, pointed in z ∈ Zx(k) and a unique
morphism λ : Z −→ T with λ(z) = t. If moreover H0(T, OT ) = k, then λ is faithfully
flat and it has a natural structure of Nt-torsor, Nt being the stabilizer of t, under the action
of N on Tx.

Proof. It follows from Theorem 5.3, (3) that the N -torsor Z −→ X built in Proposition
3.11 is indeed finite. �

A consequence of Corollary 5.4 is that the universal torsor is “simply connected” in the
following sense.

Corollary 5.5. Let X be k-scheme such that the category Ns(X) is a Tannakian subcategory
of Coh(X), provided with a section x ∈ X(k), then every pointed torsor under a finite group

scheme over the universal torsor X̂ is trivial.
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Proof. We know that X̂N = limXi, a filtered projective limit, where the Xi −→ X are

Galois torsors under finite group schemes. Let f : Y −→ X̂ be a pointed torsor under a
finite group scheme G. Using [EGAIV], paragraph 8.8, théorème 8.8.2 and its corollaries,
one can easily prove that there exists an index i0 and a pointed G-torsor Yi0 −→ Xi0 such
that the following diagram is cartesian :

Y //

f
��

Yi0

��
X̂ // Xi0

(note that the schemes Xi as well as Yi0 are quasi-compact and of finite presentation).
According to Corollary 5.4 there exists a pointed torsor Z −→ X under a finite group
scheme that dominates the tower of finite torsors Yi0 −→ Xi0 −→ X . So one may consider

Z ′ = Z ×Xi0
X̂ and the following commutative diagram whose squares are cartesian :

Z ′

h
��

// Z

��
Y

f
��

// Yi0

��
X̂

  ❆
❆❆

❆❆
❆❆

❆❆
// Xi0

��
X

and from the universal property of X̂ , one gets a morphism X̂ −→ Z and thus a morphism

g : X̂ −→ Z ′ fitting in the commutative diagram. Thus h◦g is a section of the given torsor

f : Y −→ X̂. �

Corollary 5.6. Let X be a smooth projective k-scheme such that H0(X,OX) = k, endowed
with a k-rational point x ∈ X(k). If πN(X, x) is finite then πS(X, x) = πN(X, x). More-
over πN(XN , xN) = πS(XN , xN) = 1, where XN −→ X is the universal πN (X, x)-torsor.

Proof. Let us denote by X ét −→ X the universal πét(X, x)-torsor. Then πét(X ét, xét) = 1
and according to [La2, § 8],

πN(X ét, xét) = πS(X ét, xét) .

But by Theorems 5.1 and 5.3 applied to X ét −→ X we finally have πS(X, x) = πN(X, x).
That πN(XN , xN ) = 1 follows from Corollary 5.5, but in this particular case it is also a
consequence of Theorem 5.3 applied to XN −→ X ; then by the latter and Theorem 5.1 we
obtain that πS(XN , xN) = 1. �

Theorem 5.7. Let X be a reduced, connected and projective k-scheme provided with a section
x ∈ X(k), let G be a finite k-group scheme, f : Y −→ X a Galois G-torsor endowed with
a k-rational point y ∈ Yx(k). Let us assume that dim(Y ) = 1 then the natural morphism

πN(Yred, y) −→ πN(Y, y)
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induced by i : Yred −→ Y is a closed immersion.

Proof. First we observe that Yred satisfies Nori’s conditions for defining the Tannakian cate-
gory EF (Yred) of essentially finite vector bundles, and the Nori’s fundamental group scheme
πN
1 (Yred, y) [No2]. And secondly that in dimension one every vector bundle over Yred can be

deformed to a vector bundle over Y (cf. for instance [Il, Theorem 8.5.3]). Let V be vector
bundle over Y . Then f∗V is essentially finite over X if i∗V is essentially finite over Yred.
Indeed i∗f ∗f∗V ≃ i∗(f ∗f∗OY ⊗ V ) which is essentially finite over Yred. This implies that
there exist a finite k-group scheme M and a M-torsor h : Z −→ Yred such that h∗i∗f ∗f∗V
is trivial, hence f∗V is essentially finite by [BD, Theorem 2]. According to Theorem 5.3 this
implies that V is essentially finite. �

It is unlikely that the closed immersion of Theorem 5.7 is an isomorphism in general. It
is also not known if there exists a statement analogous to Theorem 5.7 for dimX > 1.

6. Essentially finite morphisms

Let X be k-scheme such that the category Ns(X) is a Tannakian subcategory of Coh(X),
endowed with a k-rational point x ∈ X(k). Consider a pointed essentially finite morphism
f : Y −→ X (Definition 4.9). In this paragraph we will show the existence of a fundamental
group scheme πN(Y, y) (Corollary 6.6), generalizing the results of the previous section. The
main tool used in the proof is Lemma 6.2 which states that the property of being Nori-
semistable is local is a certain sense.

We leave the proof of the following statement to the reader.

Proposition 6.1. Let f : Y −→ X be a Nori-semistable morphism and consider the Galois

closure g : X̂Y −→ X defined in Proposition 3.11. The following properties are equivalent:

(1) f is essentially finite;

(2) g : X̂Y −→ X is a torsor under a finite group scheme.

Lemma 6.2. Let h : Z −→ Y be a finite faithfully flat morphism and V a vector bundle
on Y . Then the following properties are equivalent:

(1) V is Nori-semistable ;
(2) h∗V is Nori-semistable.

Proof. It is clear that (1) implies (2). Assume (2) and as in the proof of Proposition 4.3
consider a non constant morphism i : C −→ Y from a a smooth projective curve C to Y
and the following diagram

C̃

u

��✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

s

��❄
❄❄

❄❄
❄❄

❄

C ′ i′ //

h′

��

Z

h
��

C
i

// Y

where the square is cartesian and C̃ is the normalization of an irreducible component of C ′

wich surjects onto C. The morphism u is finite and faithfully flat [Li, § 4, Corollary 3.10].
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We assume that h∗V is Nori-semistable. Then s∗i′∗h∗V = u∗i∗V is Nori-semistable. We will
deduce from this that i∗V is Nori-semistable. So one is reduced to prove the statement for a
finite faithfully flat morphism h : Z −→ Y , where Z and Y are smooth projective curves.
Here h∗V is supposed to be semistable of degree 0 on Z. This implies that V is of degree
0. Suppose that W ⊂ V is subbundle with deg(W ) ≥ 0; then h∗W ⊂ h∗V , deg(h∗W ) ≥ 0
and thus h∗W = h∗V . As h is affine, one may suppose that h : SpecB −→ SpecA, where
A and B are k-algebras, h faithfully flat, and V and W free A modules. The fact that
W ⊗AB = V ⊗AB implies that V and W are of same rank n. Let us choose basis of W and
V over A and consider the n× n matrix M with coefficients in A giving the coordinates of
the basis of W in terms of the basis of V . Then by hypothesis detM ∈ A ∩ B×. The fact
that h is surjective implies that detM ∈ A× and W = V . This proves that V is semis-stable
of degree 0. �

Lemma 6.3. Let h : Z −→ Y be a Galois torsor under a finite group scheme. Assume
that Ns(Y ) is a Tannakian sub-category of Coh(Y ) and let V be a vector bundle on Y . Then
the following properties are equivalent:

(1) V is essentially finite ;
(2) h∗V is essentially finite.

Proof. Remark first that Ns(Z) is a Tannakian sub-category of Coh(Z) according to Theo-
rem 5.1, and thus EF (Z) is well defined. It is clear that (1) implies (2). Conversely assume
that h∗V is essentially finite. According to Lemma 6.2, V is Nori-semistable. Moreover
V ⊂ h∗h

∗V which is essentially finite according to Theorem 5.3, and thus V is essentially
finite. �

Proposition 6.4. Let X be a k-scheme such that Ns(X) is a Tannakian sub-category of
Coh(X) endowed with a k-rational point x ∈ X(k), f : Y −→ X a faithfully flat essentially

finite morphism pointed at y ∈ Yx(k) such that H0(Y,OY ) = k, and g : X̂Y −→ X the
Galois closure of f constructed in Proposition 3.11. With notation of Proposition 3.11

g = f ◦ h where h : X̂Y −→ Y is a faithfully flat morphism. Then a vector bundle V on Y
is Nori-semistable if and only if g∗h

∗V is Nori-semistable on X.

Moreover the category Ns(Y ) is a Tannakian sub-category of Coh(Y ).

Proof. According to Lemma 6.2, V is Nori-semistable if and only if h∗V is Nori-semistable,
and according to Corollary 4.4 this last condition is equivalent to the fact that g∗h

∗V is
Nori-semistable. The last statement is an immediate consequence of Theorem 3.14. �

Corollary 6.5. Under the hypothesis of Proposition 6.4, V is essentially finite on Y is and
only if g∗h

∗V is essentially finite on X.

Proof. If V is essentially finite, h∗V is also essentially finite, and according to Theorem 5.3
g∗h

∗V is essentially finite. Conversely if g∗h
∗V is essentially finite, h∗V is essentially finite

according to Theorem 5.3 and Lemma 6.3 implies that V is essentially finite. �

Corollary 6.6. Under the hypothesis of Proposition 6.4, EF (Y ) is a Tannakian sub-category
of Coh(Y ), and its Galois group based at y ∈ Yx(k) is the isotropy group of y in the action

of πN (X, x) on Yx. The universal torsor attached to EF (Y ) and y is X̂N −→ Y .

Proof. This is an immediate translation of Theorem 3.14 taking in account Corollary 6.5. �
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Corollary 6.7. Under the hypothesis of Proposition 6.4, every pointed torsor under a finite

group scheme over Y is dominated by X̂N −→ Y .

Let us finally state another consequence of Corollary 6.5.

Corollary 6.8. Under the hypothesis of Proposition 6.4, for any essentially finite vector
bundle W on Y , f∗W is essentially finite.

Proof. According to Corollary 6.5, ifW is essentially finite, g∗h
∗W is essentially finite. More-

over one knows from Proposition 4.3 that f∗W is Nori-semistable. As f∗W ⊂ f∗h∗h
∗W =

g∗h
∗W , f∗W is also essentially finite. �
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