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Abstract

The Kashiwara-Vergne method reduces the proof of a deep result in analysis
on a Lie group (transferring convolution of invariant distributions from the
group to its Lie algebra, by means of the exponential mapping) to checking
two formal Lie brackets identities linked to the Campbell-Hausdor¤ formula.
First, we expound this method and a proof, for quadratic or solvable Lie
algebras, of the Kashiwara-Vergne conjecture allowing to apply the method
to those cases.
We then extend it to a general symmetric space S = G=H. This leads to

introduce a function e(X;Y ) of two tangent vectors X;Y at the origin of S,
allowing to make explicit, in the exponential chart, G-invariant di¤erential
operators of S, the structure of the algebra of all such operators, and an
expansion of mean value operators and spherical functions. For Riemannian
symmetric spaces of the noncompact type, otherwise well-known from the
work of Harish-Chandra and Helgason, we compare this approach with the
classical one. For rank one spaces (the hyperbolic spaces), we give an explicit
formula for e(X;Y ).
Finally, we explain a construction of e for a general symmetric space by

means of Lie series linked to the Campbell-Hausdor¤ formula, in the spirit of
the original Kashiwara-Vergne method. Proved from this construction, the
main properties of e thus link the fundamental tools of H-invariant analysis
on a symmetric space to its in�nitesimal structure.
The results extend to line bundles over symmetric spaces.

Mathematics Subject Classi�cation (2010): 43A85, 53C35, 17B01,
43A90, 58J70, 22E30, 33C80.
Keywords: symmetric space, invariant di¤erential operator, Kashiwara-
Vergne conjecture, Du�o isomorphism, Campbell-Hausdor¤ formula.
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Preface

Let G=K denote a Riemannian symmetric space of the noncompact type.

«The action of the G-invariant di¤erential operators on G=K
on the radial functions on G=K is isomorphic with the action
of certain di¤erential operators with constant coe¢ cients. The
isomorphism in question is used in Harish-Chandra�s work on the
Fourier analysis on G and is related to the Radon transform on
G=K.

For the case when G is complex a more direct isomorphism of
this type is given, again as a consequence of results of Harish-
Chandra.»

This is a quote from Sigurður Helgason, Fundamental solutions of invariant
di¤erential operators on symmetric spaces, Amer. J. Maths. 86 (1964), p.
566, one of the �rst mathematical papers I have studied. As a consequence
he showed that every (non-zero) G-invariant di¤erential operator D on G=K
has a fundamental solution, whence the solvability of the di¤erential equation
Du = f . Those results were fascinating to me, they still are and they fostered
my interest in invariant di¤erential operators as well as Radon transforms.
Yet I was dreaming simpler proofs could be given, without relying on Harish-
Chandra�s deep study of semisimple Lie groups...
In the beginning of 1977 Michel Du�o [18] gave an analytic interpretation

of the celebrated Du�o isomorphism he had exhibited six years before by
means of algebraic constructions in an enveloping algebra. As a consequence
he proved that every (non-zero) bi-invariant di¤erential operator on a Lie
group has a local fundamental solution and is locally solvable. His work used
delicate analysis on the group.
Then, in the fall of 1977, came a preprint by Masaki Kashiwara and

Michèle Vergne, The Campbell-Hausdor¤ formula and invariant hyperfunc-
tions [30], showing that similar (and even stronger) results could be obtained
- for solvable Lie groups at least - by means of «elementary» , but very
clever, formal computations with the exponential mapping and the Campbell-
Hausdor¤ formula only.
After explaining this method for Lie groups (with updates from the 2008-

09 papers by Anton Alekseev and Charles Torossian) I will give here a detailed

ix



x PREFACE

account of its extension to general symmetric spaces. The present text is an
attempt at a self-contained monograph on the Kashiwara-Vergne approach
to invariant analysis. A completely rewritten and updated version of my
former papers [43] - [47], it includes several unpublished results and a few
open questions. It is also a greatly expanded version of a talk given at the
2007 Reykjavik conference in honour of Helgason�s eightieth birthday.

Acknowledgement

Sigurður Helgason�s in�uence on my own work goes far beyond the above
quote of course. His clearly written books and articles have been a constant
reference and source of inspiration to me for many years and, above all, his
friendly advice on many occasions has been extremely helpful. Thank you so
much Sigurður.
I am indebted to Mogens Flensted-Jensen for several stimulating discussions,
particularly about the rank one case.
I am very thankful to Anton Alekseev, Charles Torossian and Michèle Vergne
for enlightening explanations of their work.



Introduction

The 1978 Inventiones paper [30] by Kashiwara and Vergne was a break-
through in the �eld of analysis on Lie groups. Before it, the proof of several
signi�cant results (notably results involving invariant di¤erential operators,
their local solvability, Du�o�s isomorphism,...) required a detailed knowledge
of the structure of the group and its Lie algebra, the use of speci�c subgroups
etc. Their work opened a new way, only using skillful formal manipulations
of Lie brackets, thus providing a direct link to the in�nitesimal structure of
the group. They carried out their program for solvable Lie groups and conjec-
tured two general identities allowing an extension of the method to arbitrary
Lie groups.
Two natural questions (at least) arose from their paper:

� prove the Kashiwara-Vergne conjecture, implying that their method is
actually valid for all Lie groups

� investigate possible extensions of the method to symmetric spaces.

A complete solution to the former question kept us waiting for nearly thirty
years. The conjecture is now a theorem, proved in full generality by two
di¤erent methods in [5] resp. [7], by Alekseev and Meinrenken resp. Alekseev
and Torossian; see the Notes of Chapter 1 for more details.
The latter question is the main topic of the present text (Chapters 3

and 4). At �rst one is led to restrict to those symmetric spaces, called here
«special» , for which the method applies in the same way as for Lie groups.
But, when considering more general spaces, one needs to introduce a real-
valued function e(X;Y ) of two tangent vectors X;Y : identically 1 for spe-
cial spaces, this function embodies the modi�cation of the Kashiwara-Vergne
method required for a general symmetric space. It can be constructed from
its in�nitesimal structure (the corresponding Lie triple system) and contains
by itself much information about invariant analysis on the symmetric space,
when transferred to its tangent space at the origin via the exponential map-
ping (hence the notation «e» ): invariant di¤erential operators, mean values,
spherical functions are related to e. The search for such relations between
analysis and in�nitesimal properties is our main guiding line.

xi



xii INTRODUCTION

Several recent works [1][12][6] have attracted attention on the non-unique
ness in such constructions and encouraged me to rewrite my previous papers
[43] - [47] entirely. Reorganizing them in a more synthetic way, we now sepa-
rate the general use of e in invariant analysis on a symmetric space (Chapter
3) from properties arising from a speci�c construction of this function (Chap-
ter 4). Not only do we speak of «an e-function» instead of «the e-function» ,
but we also add several unpublished results, some of them recently obtained.
Many proofs have been rewritten. The Kashiwara-Vergne «conjecture» is
henceforth a theorem and, using it for the group G, stronger results and eas-
ier proofs can be given for the main properties of e on the symmetric space
G=H (Section 4.4).

Let us describe the contents in more detail.
Chapter 1, devoted to the Kashiwara-Vergne method for Lie groups,

provides inspiration and motivation for its extension to symmetric spaces. It
is however almost entirely independent of the sequel, its results being only
used in Section 4.4.2. We give a complete proof of the conjecture for two
important families of Lie groups (quadratic, resp. solvable, following [8],
resp. [48]) and a brief overview of the latest proof by Alekseev and Torossian
[7] for the general case.
Apart from Chapter 1 the whole paper focuses on a convolution trans-

fer formula from a symmetric space S = G=H to its tangent space s at
the origin. Working on suitable neighborhoods of the origin, we prove the
existence of a (non-unique) function e on s� s such that, for all H-invariant
distributions u; v on s and all test functions f on s,Deu �S ev; efE = hu(X)
 v(Y ); e(X;Y )f(X + Y )i ;

where X;Y denote variables in s. Let us explain the notation. The function
f on s is transferred to S as ef by means of the exponential mapping Exp
of the symmetric space and multiplication by some factor j, namely f(X) =
j(X) ef(ExpX). No speci�c choice of j is necessary up to this point, though
it soon becomes clear that the most interesting example is j = J1=2, the
square root of the Jacobian of Exp. This transfer extends to distributions by
duality, giving two H-invariant distributions eu, ev on S.
The convolution product �S is de�ned in Chapter 2, where a few exam-

ples are given.
InChapter 3, regardless of any construction of e, we develop the outcome

of the convolution formula in H-invariant analysis on S. If e is identically
1 (the «special» case studied in Section 3.2), its right-hand side is simply
hu �s v; fi, given by the classical abelian convolution on the vector space s.
The H-invariant analysis on a special symmetric space thus boils down to
classical Euclidean analysis on its tangent space at the origin. For general
symmetric spaces the formula, applied to distributions supported at the ori-
gin, leads to an explicit description of G-invariant di¤erential operators in
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the exponential chart and of the algebra D(S) of all these operators, which
is commutative whenever e(X;Y ) = e(Y;X) (Section 3.3). Using e we also
give, if H is compact, an expansion of mean value operators and spherical
functions (Section 3.4). Invariant analysis is a well-known topic if S is a Rie-
mannian symmetric space of the noncompact type, and Section 3.6 is devoted
to a discussion of the links between e and the classical approach in this case.
Our (partly conjectural) results of this section suggest the possibility of a
far-reaching generalization of Du�o�s isomorphism to symmetric spaces. In
Section 3.7 we propose an explicit e-function for isotropic Riemannian sym-
metric spaces, arising from manipulations of integral formulas as explained
in Section 3.5. Two technical proofs of this chapter are postponed to the
Appendix.
In Chapter 4 we give a general construction of e for arbitrary symmetric

spaces, relying on the Campbell-Hausdor¤ formula in the spirit of the original
Kashiwara-Vergne paper. This chapter contains our main results (Theorems
4.12, 4.20, 4.22, 4.24), relating e to the in�nitesimal structure of the space.
Let us call the reader�s attention to an element c(X;Y ) of the group H,
constructed in Section 4.2.5, which plays a key role at several places (e.g.
Corollary 3.17, Proposition 3.21, Proposition 4.18, Theorem 4.24).
The theory extends to line bundles over a symmetric space. Though

more general and arguably more natural (particularly for the bundle of half-
densities), this framework requires handling H-components and more cum-
bersome notation. We made the choice to deal with line bundles in speci�c
sections of Chapters 2, 3 and 4 only. A character � of the subgroup H of
G de�nes a line bundle L� over G=H. The convolution transfer formula still
holds for H-invariant sections of L� provided e is replaced by e�, the product
of e and a factor involving �. Again the formula leads to a description in
terms of e� of the algebra D(L�) of invariant di¤erential operators and a new
proof of Du�o�s theorem on its commutativity for certain �, in particular for
the bundle of half-densities (Sections 3.8 and 4.5).
Sections 3.9 and 4.7 list a few open questions.

Chapters 1 to 4 are, to a large extent, independent of each other. The
Reader is assumed to have some familiarity with the basic theory of Lie groups
and symmetric spaces, as can be gleaned from the books [27][28][37][58].
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Notation

0.1 General Notation

The sign := indicates a de�nition.
N = f0; 1; 2; :::g denotes the set of natural integers, Z = f:::;�2;�1; 0; 1; 2; :::g
the ring of all integers, R the �eld of real numbers and C the �eld of complex
numbers.
shx = (ex � e�x) =2, chx = (ex + e�x) =2, thx = shx= chx and cothx =
chx= shx are the classical hyperbolic functions.
In Chapters 1 and 4 we shall use three commuting involutions acting on a
function f of two variables in a vector space

f_(X;Y ) := f(�X;�Y ) , f(X;Y ) := f(Y;X) , ef(X;Y ) := f(�Y;�X):

Dots are used with several meanings, which should be clear from their con-
text: if a group G acts on a set, the action of g 2 G transforms a point x of
the set into g � x.
h:; :i are duality brackets between a vector space and its dual, or sometimes
denote a scalar product. t means transpose.
trV u denotes the trace of an endomorphism u of a �nite dimensional vector
space V and detV u its determinant. The subscripts V may be dropped when
no confusion arises.
Smooth means C1 and supp denotes the support.
D(M) denotes the space of test functions on a manifold M , i.e. smooth
complex-valued compactly supported functions on M , equipped with the
Schwartz topology (see e.g. [28] p. 239). Its dual D0(M) is the space of
distributions on M .
If f maps a manifold into another, Dxf is the tangent map (di¤erential) of f
at x. In case of several variables x; y etc., @xf is the partial di¤erential with
respect to x.
Let us recall the classical multi-index notation when taking coordinates
(x1; :::; xn) in a vector space: for � = (�1; :::; �n) 2 Nn

j�j = �1 + � � �+ �n , �! = �1! � � ��n!
x� = x�11 � � �x�nn , @� = @�11 � � � @�nn , @i = @=@xi:

xv



xvi NOTATION

0.2 Lie Groups and Lie Algebras

The identity element of a Lie group G is denoted by e (not to be confused,
of course, with a notation such as eX or e(X;Y )).
Lg, resp. Rg, is the left, resp. right, translation in G, that is Lgx := gx and
Rgx := xg for g; x 2 G.
For X;Y in the Lie algebra g of G, with bracket [:; :], we write adX(Y ) :=
[X;Y ]. The notation x := adX, y := adY will be frequently used in Chapters
1 and 4; for example xy2xY = [X; [Y; [Y; [X;Y ]]]] etc.
If a; b are vector subspaces of g, [a; b] is the space of all �nite sums

P
i[Ai; Bi]

with Ai 2 a, Bi 2 b.
The adjoint representation Ad of G on g will most often be denoted by a dot:
g �X := Ad g(X) for g 2 G, X 2 g.
The exponential mapping exp : g ! G will most often be written as X 7!
expX = eX ; thus eg�X = geXg�1 and Ad eX = eadX .
The Campbell-Hausdor¤ formula expands V (X;Y ) := log

�
eXeY

�
as a series

of brackets of X and Y .
The di¤erential at X 2 g of the exponential mapping and its Jacobian are

DX exp = DeLeX �
1� e�x

x
, j(X) = det g

1� e�x
x

(1)

with x = adX.
Caution: this notation j is only used in Chapter 1. In Chapters 3 and 4, j
has a more general meaning (De�nition 3.2).

0.3 Symmetric Lie Algebras

A symmetric Lie algebra is a couple (g; �) where g is a (�nite dimensional
real) Lie algebra and � is an involutive automorphism of g. If h, resp. s,
denotes the +1, resp. �1, eigenspace of � in g, we have the decomposition
g = h� s with [h; h] � h, [h; s] � s, [s; s] � h by the rule of signs.
The subspace h� := [s; s] is an ideal of h.
The subspace s is not in general a Lie algebra, but inherits from g a structure
of Lie triple system: denoting by L(X;Y ) the map Z 7! [X;Y; Z] :=
[[X;Y ]; Z] from s into itself, we have
(i) L(X;X) = 0
(ii) [X;Y; Z] + [Y; Z;X] + [Z;X; Y ] = 0
(iii) L(X;Y ) is a derivation of the trilinear product [:; :; :], that is

L(X;Y )[U; V;W ] = [L(X;Y )U; V;W ] + [U;L(X;Y )V;W ] + [U; V; L(X;Y )W ]

for all X;Y; Z; U; V;W 2 s (see [37] p. 78).



0.4. SYMMETRIC SPACES xvii

0.4 Symmetric Spaces

Throughout the text G denotes a connected real Lie group and H a
closed subgroup of G. Let S = G=H be the homogeneous space S = G=H
of left cosets gH, with g 2 G. It will be convenient to assume S is simply
connected; this implies H is connected.
Let eG be the universal covering of G with canonical projection p : eG ! G
and eH = p�1(H). From the simple connectedness of G=H it follows that eH
is connected and eG= eH = G=H. Thus, whenever necessary, the group G may
be assumed to be simply connected too. These topological properties will
only be useful to give a precise de�nition of the domains we are working on.
The natural action of G on S is denoted by �(g)(g0H) = g � g0H := gg0H for
g; g0 2 G, and o = eH is taken as the origin of S.
A homogeneous space S = G=H is a symmetric space if G is equipped with
an involutive automorphism � and H lies between the �xed point subgroup
of � in G and its identity component (if connected, H therefore equals this
component). We still denote by � the corresponding automorphism of the Lie
algebra g of G, whence a symmetric Lie algebra (g; �). In the decomposition
g = h� s, h is the Lie algebra of H and s identi�es with the tangent space to
S at o. We denote by H� the connected Lie subgroup of H with Lie algebra
h� = [s; s].
The exponential mapping given by the canonical connection of the symmetric
space is ExpX = eXH, X 2 s, where X 7! eX is the exponential mapping
of the group G. For h 2 H and X 2 s we have h � ExpX = Exp(h �X).
For X;Y in a neighborhood of the origin in s, the element Z(X;Y ) of s
de�ned by ExpZ(X;Y ) = expX � ExpY is the symmetric space analog of
the Campbell-Hausdor¤ element V (X;Y ) of Lie groups.
The di¤erential at X 2 s of the exponential mapping and its Jacobian are,
with x = adX,

DX Exp = Do�(e
X) � shx

x
, J(X) = det s

shx

x
: (2)

The symmetric space S admits a G-invariant measure dx if and only if the
Lebesgue measure dX of s is H-invariant, that is jdetsAdhj = 1 for all
h 2 H. No absolute value is needed if H is connected. The measures can
then be normalized so thatZ

S

f(x)dx =

Z
s

f(ExpX)J(X)dX

if supp f is contained in a suitable neighborhood of the origin.
The superscript H on a space denotes the subspace of H-invariant elements.
For example if U is an H-invariant open subset of S, D(U)H is the space of
test functions f such that supp f � U and f��(h) = f for all h 2 H. Similarly
D0(U)H is the space of distributions T on U such that hT; fi = hT; f � �(h)i
for all f 2 D(U), h 2 H.
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D(s) = S(s) is the algebra of linear di¤erential operators with constant (com-
plex) coe¢ cients on s, canonically identi�ed with the (complexi�ed) sym-
metric algebra of s, and D(s)H = S(s)H is the subalgebra of H-invariant
operators.
D(S) denotes the algebra of G-invariant linear di¤erential operators on S.
The speci�c notation for line bundles is explained in Section 2.2.

0.5 Semisimple Notation

In Proposition 3.7, Sections 3.6, 3.7 and the Appendix, we narrow our inves-
tigation to the case of a Riemannian symmetric space of the noncom-
pact type. We shall then replace the above general notation by the classical
semisimple notation as used in Helgason�s books [27] - [29], to which we refer
for details and proofs.
The symmetric space is then S = G=K, simply connected, where G is a
connected noncompact real semisimple Lie group with �nite center and K is
a maximal compact subgroup; K is connected. The involutive automorphism
is the Cartan involution � giving the decomposition g = k� p. For X;Y 2 g
let hX;Y i := �B(X; �Y ), where B(X;Y ) := trg (adX adY ) is the Killing
form. The Riemannian structure on S is the G-invariant metric de�ned by
the scalar product h:; :i restricted to p. The exponential mapping Exp is then
a global di¤eomorphism of p onto S.
Let a be a maximal abelian subspace of p and a� its dual space; the dimension
of a is the rank of G=K. A linear form � 2 a� is called a root of (g; a) if
� 6= 0 and g� 6= f0g, where

g� := fX 2 gj[H;X] = �(H)X for all H 2 ag :

The dimensionm� = dim g� is themultiplicity of the root �. A pointH 2 a
is called regular if �(H) 6= 0 for all roots �. The set a0 of regular elements has
(�nitely many) connected components, the Weyl chambers. Having picked
one of them, called the positive Weyl chamber and denoted by a+ (with
closure a+ in g), we say a root is positive if it takes positive values on a+.
Let � := 1

2

P
�>0m�� 2 a� (sum over the set of positive roots �). Let M ,

resp. M 0, be the centralizer, resp. normalizer, of a in K. They are compact
subgroups with the same Lie algebra. The quotient group W := M 0=M is a
�nite group called theWeyl group; it acts simply transitively on the set of
Weyl chambers.
The choice of a gives rise to the Iwasawa decomposition g = k�a�n with
n = ��>0g�. The corresponding Lie subgroups of G give the decomposition
G = KAN , the map (k; a; n) 7! g = kan being a di¤eomorphism ofK�A�N
onto G.



Chapter 1

The Kashiwara-Vergne
Method for Lie Groups

In this �rst chapter we motivate and explain the two equations (KV1) and
(KV2) of the «Kashiwara-Vergne conjecture» for a Lie algebra and their ap-
plication to analysis on the corresponding Lie group (transfer of convolution
of invariant distributions, Du�o isomorphism); see Sections 1.2 to 1.5. Sec-
tion 1.6, independent of the sequel, gives an elementary solution of (KV1)
and (KV2) for the algebra sl(2;R). After discussing two symmetries on the
set of solutions (Section 1.7), we give a detailed proof of the conjecture in
two important special cases: quadratic Lie algebras, solvable Lie algebras
(Sections 1.8 and 1.9). The chapter ends with a brief survey of a proof in the
general case due to Alekseev and Torossian (Section 1.10).
The main statements are Theorem 1.5 (the Kashiwara-Vergne equations

(KV1) and (KV2) imply a convolution equality), Conjecture 1.6 (the Kashi
wara-Vergne conjecture), Theorems 1.23 and 1.24 (the conjecture is true for
quadratic or solvable Lie algebras), and Theorems 1.26 and 1.27 (the conjec-
ture is true for all Lie algebras).
Chapter 1 provides motivation for a generalization to symmetric spaces

in the sequel. However Chapter 3 and 4 are, to a large extent, independent
from the present one.

1.1 A General Convolution Problem

Let G be a (�nite dimensional real) Lie group with Lie algebra g. The
convolution of two distributions u; v on the vector space g is the distribution
u �g v de�ned by

hu �g v; fi := hu(X)
 v(Y ); f(X + Y )i

1
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where X;Y denote variables in g, h:; :i the duality between distributions and
functions and f is an arbitrary test function (smooth and compactly sup-
ported) on g. Similarly the convolution of two distributions U; V on G is
de�ned by

hU �G V; 'i := hU(g)
 V (h); '(gh)i
where g; h denote variables in G and ' is an arbitrary test function on G.
These de�nitions make sense under suitable additional assumptions, e.g. if
one of the distributions involved is compactly supported. They extend to
distributions the addition of g, resp. the group law of G, as seen by applying
them to Dirac measures. The product �g is commutative whereas in general
�G is not.
The exponential mapping exp : g! G, X 7! expX = eX , is a di¤eomor-

phism from a neigborhood of 0 in the Lie algebra onto a neighborhood of the
identity in the group and our goal is to relate both convolutions by means of
exp. From now on in this introduction we shall work on these neighborhoods
without further mention. Let f 7! ef denote the transfer of a function f on
g, de�ned by

j(X)1=2 ef(eX) = f(X)

where j(X) := det
��
1� e� adX

�
= adX

�
is the Jacobian of exp. By duality

the transfer u 7! eu of a distribution u on g is de�ned by
heu; efi = hu; fi

for any test function f . Finally let us recall that a distribution u on g is G-
invariant if hu(X); f(g �X)i = hu(X); f(X)i for any f and any g 2 G, where
dot denotes the adjoint action of G on its Lie algebra; eu is then a central
distribution on G, that is


eu; 'g� = heu; 'i for any ' and any g 2 G, with
'g(h) := '(ghg�1).

Problem. Prove that
(u �g v)e= eu �G ev (1.1)

for any G-invariant distributions u; v on g (with suitable supports).

Note that hev(h); '(gh)i = hev(h); '(g�1 (gh) g)i = hev(h); '(hg)i if ev is G-
invariant, which implies the commutativity eu �G ev = ev �G eu. The problem
would be impossible otherwise.
If v is G-invariant and supported at the origin the convolution by v is a
G-invariant di¤erential operator with constant coe¢ cients on g and the con-
volution by ev is a bi-invariant di¤erential operator on G. Equation (1.1)
therefore reduces the study of the latter operators to the much easier case of
the former.
Two previously known deep results motivate this problem:

� In 1965 Harish-Chandra [26] proved (1.1) for G semisimple and v sup-
ported at the origin.
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� In 1977 Du�o [18] proved (1.1) for all Lie groups G and u; v supported
at the origin. One of his results can be stated as follows: let P 2 S(g)G
be an invariant element of the symmetric algebra of g, identi�ed with
a G-invariant di¤erential operator with constant coe¢ cients P (@X) on
g, and let (P ) be the di¤erential operator on G de�ned by

(P )'(g) := P (@X)
�
j(X)1=2'(geX)

����
X=0

for any smooth function '. Then P 7! (P ) is an isomorphism of alge-
bras of S(g)G onto Z(g), the center of the universal enveloping algebra
of g, identi�ed with the algebra of bi-invariant di¤erential operators on
G. This map is known as the Du�o isomorphism. It is related to e
by
�
(P ) ef� (e) = (P (@X) f) (0), that is t(P )�G = (tP (@X)�g)e where

t denotes the transpose operator and � the Dirac measure at the origin.
Du�o�s theorem is thus a consequence of (1.1), taking P;Q 2 S(g)

G

and u = tP�, v = tQ�. In the same paper Du�o also proved the lo-
cal solvability of all (non-zero) bi-invariant di¤erential operators on
G. This follows again from (1.1), taking as u a G-invariant fundamen-
tal solution of tP (@X) (see Raïs [40]): eu is then a (local) fundamental
solution of t(P ) whence its local solvability.

Harish-Chandra�s and Du�o�s proofs are both di¢ cult and make use of the
structure of the group. A direct proof of (1.1) would be more natural however,
only relying on formal properties of the exponential mapping and its Jaco-
bian. This has become possible thanks to the Kashiwara-Vergne method
[30] which we now describe.

1.2 The Kashiwara-Vergne Method

Applied to a test function ef the left-hand side of (1.1) is
h(u �g v)e; efi = hu �g v; fi = hu(X)
 v(Y ); f(X + Y )i

and, according to our de�nitions, the right-hand side is

heu �G ev; efi = heu(g); hev(h); ef(gh)ii = heu(g); e'(g)i = hu; 'i
with e'(g) = hev(h); ef(gh)i i.e. '(X) := j(X)1=2hev(h); ef(eXh)i. For �xed X
we may write ef(eXh) = e (h) with  (Y ) := j(Y )1=2 ef �eXeY �, and here enters
the Campbell-Hausdor¤1 formula

V (X;Y ) := log
�
eXeY

�
= X+Y +

1

2
[X;Y ]+

1

12
[X; [X;Y ]]� 1

12
[Y; [X;Y ]]+� � �

1According to [11] Campbell-Baker-Hausdor¤-Dynkin (in chronological order of the
contributions) should be a more appropriate terminology. On computational aspects of
the formula, see e.g. the exposition in [13].
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expressing the group law in exponential coordinates (near the origin). Thus
'(X) = j(X)1=2hv;  i with

 (Y ) = j(Y )1=2 ef �eV (X;Y )� = � j(Y )

j(V (X;Y ))

�1=2
f(V (X;Y ))

and �nally

heu �G ev; efi = *u(X)
 v(Y );� j(X)j(Y )

j(V (X;Y ))

�1=2
f(V (X;Y ))

+
:

Equation (1.1) is now equivalent to

hu(X)
 v(Y ); f(X + Y )i =
*
u(X)
 v(Y );

�
j(X)j(Y )

j(V (X;Y ))

�1=2
f(V (X;Y ))

+
:

(1.2)
One of the main ideas in [30] is to prove (1.2) by deformation. Let gt be

the Lie algebra obtained by endowing the vector space g with the bracket
[X;Y ]t = t[X;Y ], where t is a real parameter; thus g0 is abelian and g1 = g.
The corresponding function V is

Vt(X;Y ) = t�1V (tX; tY ) = X+Y+
t

2
[X;Y ]+

t2

12
[X; [X;Y ]]� t

2

12
[Y; [X;Y ]]+� � �

for t 6= 0, and V0(X;Y ) = X + Y . It will therefore su¢ ce to prove that, for
any G-invariant distributions u; v on g and any test function f ,

@

@t

*
u(X)
 v(Y );

�
j(tX)j(tY )

j(tVt(X;Y ))

�1=2
f(Vt(X;Y ))

+
= 0 (1.3)

since both sides of (1.2) are the values of this bracket for t = 0 and t = 1
respectively.
This will follow from the Kashiwara-Vergne equations (KV1) and (KV2)

which we now introduce and motivate.

1.3 The Equation (KV1)

When trying to make (1.3) explicit the �rst di¢ culty is to express @tVt(X;Y ).
This will be achieved by a technique à la Moser. We shall need the partial
di¤erentials of Vt at (X;Y ) de�ned by

(@XVt)Z = @sVt(X + sZ; Y )js=0 , (@Y Vt)Z = @sVt(X;Y + sZ)js=0

for any Z 2 g.
Let us look for a one parameter family of di¤eomorphisms Ft of g�g into

itself (in a neighborhood of the origin), starting from F0 = Id, given by the
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adjoint action of G � G and transforming Vt(X;Y ) into its abelian analog
X + Y , that is

Ft(X;Y ) = (Xt; Yt) := (ft(X;Y ) �X; gt(X;Y ) � Y ) (1.4)

f0(X;Y ) = g0(X;Y ) = e

Vt � Ft(X;Y ) = Vt(Xt; Yt) = X + Y (1.5)

with ft(X;Y ); gt(X;Y ) 2 G. Since V0(X;Y ) = X + Y , (1.5) is equivalent to

@tVt + (@XVt)@tXt + (@Y Vt)@tYt = 0 (1.6)

where all derivatives of Vt are computed at (Xt; Yt). Let (Ft; Gt) : g � g !
g� g be the time-dependent vector �eld (near the origin) which generates
(ft; gt) :

@tft(X;Y ) =
�
DeRft(X;Y )

�
Ft(Xt; Yt) (1.7)

@tgt(X;Y ) =
�
DeRgt(X;Y )

�
Gt(Xt; Yt)

where Ra denotes the right translation g 7! ga in G and DeRa its tangent
map at the identity. Then (1.4) implies

@tXt = [Ft(Xt; Yt); Xt] , @tYt = [Gt(Xt; Yt); Yt]: (1.8)

Indeed (1.8) is easily checked in a matrix Lie group, where ft �X = ftXf
�1
t .

For general Lie groups, one notes that the adjoint representation satis�es
(Ad �Rg)

�
etX
�
= Ad

�
etX
�
� Ad g for g 2 G and X 2 g, whence by di¤eren-

tiation (Dg Ad �DeRg)X = adX �Ad g and the result. From (1.6) and (1.8)
we see that (1.5) is equivalent to

@tVt = (@XVt) [X;Ft] + (@Y Vt) [Y;Gt] (1.9)

where all functions are now evaluated at (X;Y ).
With applications to analysis on G in mind, let us introduce the neigh-

borhoods we shall be working with. Let g0 be an open neighborhood of the
origin in g, invariant under all automorphisms of the Lie algebra g and all
scalings X 7! tX for t 2 [�1; 1], and such that exp : g0 ! exp g0 is a di¤eo-
morphism. If G is connected and simply connected one may take as g0 the
set of all X 2 g such that j Im�j < � for all eigenvalues � of adX (see [58] p.
113). If G is a solvable exponential group one may take g0 = g, exp g0 = G.
Having chosen such a g0 let

U :=
�
(X;Y )jX;Y 2 g0 and etXetY 2 exp g0 for all t 2 [0; 1]

	
: (1.10)

The main properties of U are summarized in the following easy lemma.

Lemma 1.1 This set U is a connected open neighborhood of (0; 0) in g� g,
invariant under all maps (X;Y ) 7! (tX; tY ) for t 2 [�1; 1], (X;Y ) 7! (Y;X)
and (X;Y ) 7! (g � X; g � Y ) for g 2 G. The map (t;X; Y ) 7! V (tX; tY ) =
log
�
etXetY

�
is analytic from an open subset of R�g�g containing [�1; 1]�U

into g0.
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Since V (0; 0) = 0 the map (t;X; Y ) 7! Vt(X;Y ) = t�1V (tX; tY ) is analytic
too in the same open set.
Proof. Let (X0; Y0) 2 U and let C be a compact neighborhood of (X0; Y0) in
g0�g0. The map (t;X; Y ) 7! f(t;X; Y ) := etXetY is uniformly continuous on
[0; 1]�C (with respect to some distance on G) therefore, for C small enough,
f(t;X; Y ) belongs to the open set exp g0 for all t 2 [0; 1] and (X;Y ) 2 C.
Thus C � U and U is open.
U is star-shaped with respect to (0; 0) hence connected.
The invariance of U under (X;Y ) 7! (g � X; g � Y ) is clear. Taking g =
etY we have gf(t;X; Y )g�1 = f(t; Y;X) and we infer the invariance under
(X;Y ) 7! (Y;X) then, from f(t;�X;�Y ) = f(t; Y;X)�1, the invariance
under (X;Y ) 7! (�X;�Y ).
The map (t;X; Y ) 7! V (tX; tY ) = log f(t;X; Y ) 2 g0 is analytic in the open
set f�1(exp g0), which contains [�1; 1]� U .

The notation x := adX, y := adY will be used throughout. The partial
di¤erentials of V (X;Y ) are given by the next lemma.

Lemma 1.2 For (X;Y ) 2 U we have, with v = adV (X;Y ),

1� e�v
v

� @XV = e�y
1� e�x

x
,
1� e�v

v
� @Y V =

1� e�y
y

.

Proof. As above let Lg, resp. Rg, denote the left, resp. right, translation
by g in G and DeLg, DeRg their di¤erentials at the origin. Remembering
the equality eV = eXeY and the di¤erential (1) of exp, di¤erentiation with
respect to X gives

DeLeV �
1� e�v

v
� @XV = DeXReY �DeLeX �

1� e�x
x

.

But DeXReY � DeLeX is the di¤erential at e of the map g 7! eXgeY =
eV
�
e�Y geY

�
, hence

DeXReY �DeLeX = DeLeV �Ad
�
e�Y

�
= DeLeV � e�y

and the �rst formula. The proof for @Y V , similar and easier, is left to the
Reader.

Proposition 1.3 Let2 F;G be given elements of g and let (X;Y ) 2 U . The
following are equivalent:
(i) @tVt(X;Y )jt=1 = (@XV )(X;Y )[X;F ] + (@Y V )(X;Y )[Y;G]
(ii) V (Y;X) = X + Y � (1� e�x)F � (ey � 1)G .

2No confusion should arise between this G and the group G!
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Proof. For (X;Y ) 2 U , V (X;Y ) belongs to g0 so that, exp being a dif-
feomorphism on g0, the map (1� e�v) =v is an invertible endomorphism of
g. The de�nition of Vt gives @tVt(X;Y )jt=1 = (@XV )X + (@Y V )Y � V ; (i)
is thus equivalent to (@XV )X + (@Y V )Y � V = (@XV )xF + (@Y V ) yG or,
applying (1� e�v) =v to both sides,

e�yX + Y � V (X;Y ) = e�y
�
1� e�x

�
F +

�
1� e�y

�
G

by Lemma 1.2. But eV (X;Y ) = eXeY = e�Y
�
eY eX

�
eY = e�Y eV (Y;X)eY ,

therefore V (X;Y ) = e�yV (Y;X) and the above equation is equivalent to
(ii).

Summarizing, assume we have two g-valued maps F;G analytic in a neigh-
borhood of the origin in g�g (contained in U) such that F (0; 0) = G(0; 0) = 0
and the �rst Kashiwara-Vergne equation

V (Y;X) = log
�
eY eX

�
= X + Y �

�
1� e�x

�
F (X;Y )� (ey � 1)G(X;Y )

(KV1)
holds on this neighborhood. Then, replacing (X;Y ) by (tX; tY ) and setting
Ft(X;Y ) = t�1F (tX; tY ), Gt(X;Y ) = t�1G(tX; tY ), Proposition 1.3 shows
that (1.9) holds true. Hence, de�ning ft, gt by the di¤erential equations
(1.7):

@tft(X;Y ) =
�
DeRft(X;Y )

�
Ft(ft(X;Y ) �X; gt(X;Y ) � Y ) , f0 = e

@tgt(X;Y ) =
�
DeRgt(X;Y )

�
Gt(ft(X;Y ) �X; gt(X;Y ) � Y ) , g0 = e

and Xt; Yt by Xt = ft �X, Yt = gt � Y we have (1.8):

@tXt = [Ft(Xt; Yt); Xt] , X0 = X

@tYt = [Gt(Xt; Yt); Yt] , Y0 = Y

and it follows that (1.5) is satis�ed (near the origin):

Vt � Ft(X;Y ) = X + Y with Ft(X;Y ) = (ft(X;Y ) �X; gt(X;Y ) � Y ) :

Besides ft(X;Y ) = f(tX; tY ), gt(X;Y ) = g(tX; tY ) with f := f1, g := g1,
by uniqueness of solutions of (1.7).

1.4 The Equation (KV2)

Let us go back to (1.3). Assuming (KV1) holds, for any function f on g the
derivative of f(Vt(X;Y )) is, by (1.9),

@tf(Vt(X;Y )) = DFt;Gt
(f � Vt) (X;Y )

where we have set, for any A;B 2 g and any function ' on g� g,

DA;B'(X;Y ) := (@X') [X;A]+(@Y ') [Y;B] = @s'
�
e�sA �X; e�sB � Y

���
s=0

:
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The G-invariance of j implies DA;B

�
j(X)1=2j(Y )1=2

�
= 0 and we obtain, for

�xed t0,

@t

 �
j(t0X)j(t0Y )

j(t0Vt(X;Y ))

�1=2
f(Vt(X;Y ))

!�����
t=t0

=

= DFt0 ;Gt0

 �
j(t0X)j(t0Y )

j(t0Vt0(X;Y ))

�1=2
f(Vt0(X;Y ))

!
:

Moreover j(X) = det ((1� e�x) =x) implies

@t log j(tX) = trg

�
x

etx � 1 �
1

t

�
(where trg denotes the trace of an endomorphism of g), therefore

@t

�
j(tX)j(tY )

j(tVt0(X;Y ))

�1=2�����
t=t0

= Tt0(X;Y )

�
j(t0X)j(t0Y )

j(t0Vt0(X;Y ))

�1=2
with x = adX, y = adY , vt = adVt(X;Y ) and

Tt(X;Y ) :=
1

2
trg

�
x

etx � 1 +
y

ety � 1 �
vt

etvt � 1 �
1

t

�
:

Gathering both pieces we infer that the left-hand side of (1.3) is

@t

*
u(X)
 v(Y );

�
j(tX)j(tY )

j(tVt(X;Y ))

�1=2
f(Vt(X;Y ))

+
=

=

*
u(X)
 v(Y ); (DFt;Gt

+ Tt(X;Y ))

�
j(tX)j(tY )

j(tVt(X;Y ))

�1=2
f(Vt(X;Y ))

+
:

Up to now the invariance of the distributions u; v has never been used.

Lemma 1.4 Let u be a G-invariant distribution on an open subset U of g.
Then, for any smooth map F : U ! g such that suppu \ suppF is compact,

hu(X); trg (x � @XF (X))i = 0:

Proof. Let F (X) =
P
i Fi(X)Ei be the decomposition of F (X) according

to a �xed basis (Ei) of g. The invariance of u implies

@s


u(X); Fi

�
e�s adEiX

����
s=0

= hu(X); @XFi(X)[X;Ei]i = 0:

In the space g� 
 g of endomorphisms of g we have

x � @XF (X) =
X
i

@XFi(X)
 [X;Ei];
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hence tr (x � @XF (X)) =
P
i @XFi(X)[X;Ei] and the lemma.

Applied to F (X) = '(X)A(X) where ' is a scalar function and A is g-
valued, the lemma gives hu; (@X') [X;A]i = �hu; tr (x � @XA)'i. Replacing
g by g� g, u by u
 v etc. we obtain

hu(X)
 v(Y ); DFt;Gt
'(X;Y )i =

= �hu(X)
 v(Y ); tr (x � @XFt + y � @YGt)'(X;Y )i :

We conclude that (1.3), therefore the convolution identity (1.1), will hold if
F and G satisfy (KV1) and the second Kashiwara-Vergne equation with
x = adX, y = adY , v = adV (X;Y )

trg (x � @XF + y � @YG) =
1

2
trg

�
x

ex � 1 +
y

ey � 1 �
v

ev � 1 � 1
�
: (KV2)

An equivalent form of (KV2) is

trg (x � @XF + y � @YG) =
1

2
trg

�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
:

(KV2)
Indeed x= (ex � 1) = x

2 coth
x
2 �

x
2 (which expands by means of the Bernoulli

numbers); besides, the Campbell-Hausdor¤ formula shows V � X � Y is a
sum of brackets hence, by the adjoint representation, v � x � y is a sum of
brackets and tr(v � x � y) = 0. The even function x

2 coth
x
2 will be more

convenient for us in the sequel.
Summarizing, we obtain the following theorem, which is the raison d�être

of the conjecture in the next section.

Theorem 1.5 Let3 G be a real Lie group with Lie algebra g, and let F;G be
two g-valued functions, analytic in a neighborhood of the origin in g� g such
that F (0; 0) = G(0; 0) = 0 and (KV1) and (KV2) hold. Then the convolution
equality

(u �g v)e= eu �G ev
holds on a neighborhood of the origin in G, for any G-invariant distributions
u; v on g with suitable supports. In particular, if F;G are analytic in U
and supp v = f0g, the equality h(u �g v)e; efi = heu �G ev; efi holds for any G-
invariant distribution u on an open subset of g0 and any f 2 C1(g) such that
suppu \ supp f is a compact subset of g0.

The open sets g0 and U have been introduced before Lemma 1.1. As already
noted in Section 1.1 the case supp v = f0g leads to the main applications of
the theorem: local solvability of bi-invariant di¤erential operators and Du�o�s
isomorphism.

3With apologies for this double meaning of G, not too bothersome hopefully!
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Proof. The discussion in Sections 1.2 - 1.4 shows that (1.3) holds true, hence
h(u �g v)e; efi = heu �G ev; efi.
As regards supports, the calculations are valid if, for all t 2 [0; 1],
(suppu� supp v) \ supp (f � Vt) is a compact subset of the neighborhood
where F and G are de�ned (supposed included in the set U of (1.10)). If this
neighborhood is U itself and supp v = f0g we obtain the last result of the
theorem, since Vt(X; 0) = X and U \ (g� f0g) = g0.

1.5 The Kashiwara-Vergne Conjecture

We shall now give a precise statement of the Kashiwara-Vergne «conjecture»
- henceforth a theorem, now completely proved by two di¤erent methods in
[5] and [7].

1.5.1 The Conjecture

Let K be a commutative �eld of characteristic zero and l2the free Lie alge-
bra with two generators X;Y over K, completed with respect to its natural
gradation (the generators having degree 1). The elements of l2are the formal
series F (X;Y )(without constant term) of X;Y and iterated brackets of Xand
Y , with coe¢ cients in K. We call them Lie series in X;Y for short; we
only consider series without zero order term. Two fundamental examples of
Lie series are the Campbell-Hausdor¤ series

V = V (X;Y ) := log
�
eXeY

�
= X + Y +

1

2
[X;Y ] + � � � 2 l2

V = V (Y;X) := log
�
eY eX

�
= X + Y � 1

2
[X;Y ] + � � � 2 l2:

If X;Y are elements of a �nite dimensional Lie algebra g over K = R, the
inclusion fX;Y g ,! g extends, by the universal property of free Lie algebras,
to a morphism of Lie algebras from absolutely convergent formal series in
some neighborhood of the origin (with respect to a norm on g) into g. In
l2 as well as g we denote by x = adX the map Z 7! [X;Z] and similarly
y = adY , v = adV .

Conjecture 1.6 There exist two Lie series F;G 2 l2 such that

V (Y;X) = X + Y �
�
1� e�x

�
F (X;Y )� (ey � 1)G(X;Y ) (KV1)

and, for every �nite dimensional real Lie algebra g, these series de�ne ana-
lytic functions of (X;Y ) in a neighborhhood of the origin in g� g (contained
in the set U de�ned by (1.10)), satisfying the trace condition

trg (x � @XF + y � @YG) =
1

2
trg

�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
:

(KV2)
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Here, for any Z 2 g, @XF (X;Y )Z = @tF (X + tZ; Y )jt=0 and @YG(X;Y )Z =
@tG(X;Y + tZ)jt=0.
The original statement of the conjecture in [30] was «For any �nite-

dimensional Lie algebra there exist F;G, analytic near (0; 0), such that (KV1)
and (KV2)» . The hybrid statement chosen here, with (KV1) expressed
within the framework of free Lie algebras, ensures that F and G are uni-
versal solutions of the problem, regardless of any speci�c relation between X
and Y which may hold in such-and-such Lie algebra g. Of course the trace
equation cannot be written as such for free algebras. However Corollary 1.22
below shows that (KV1) implies some formal analogue of (KV2).
Various equivalent forms of the conjecture are given in [5] (see also [57]).

1.5.2 Remarks on the Conjecture

a. Solving (KV1) alone is easy: the Campbell-Hausdor¤series may be written
as V = X + Y + [X;A] + [Y;B] with A;B 2 l2, hence (KV1) with F;G 2 l2
de�ned by

F =
x

e�x � 1A , G =
y

1� eyB:

We refer to Burgunder [12] (Theorems 42 and 56) for a detailed formal study
and explicit resolution of (KV1) by means of the Euler and Dynkin idempo-
tents.
For K = R closed formulas for A;B; F;G can be obtained as follows. Let
V (t) := log

�
etXetY

�
and v(t) := adV (t) = log (etxety). By Lemma 1.2

the derivative V 0(t) with respect to t is given by
��
1� e�v(t)

�
=v(t)

�
V 0(t) =

e�ty(X + Y ) hence

V =

Z 1

0

v(t)

1� e�v(t) e
�tydt (X + Y ) , V =

Z 1

0

ety
v(t)

ev(t) � 1dt (X + Y ):

The latter formula follows from the former by exchanging X;Y and observing
that (in obvious notation) v(t) = etyv(t)e�ty. Let

 (v) := @v

�v
2
coth

v

2

�
=
1

2

sh v � v
ch v � 1 :

Elementary computations show that the above expression of V may be rewrit-
ten as

V (Y;X) = X + Y �
�
1� e�x

�
F (X;Y )� (ey � 1)G(X;Y )

with

F (X;Y ) =

Z 1

0

1� e�tx
1� e�x

�
 (v(t)) +

1

2

�
dt (X + Y ) (1.11)

G(X;Y ) =

Z 1

0

ety � 1
ey � 1

�
 (v(t))� 1

2

�
dt (X + Y ) = F (�Y;�X):
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These F;G belong to l2, satisfy (KV1) and de�ne analytic functions of (X;Y )
in the open set U (1.10): the analyticity of x= (1� e�x), v(t), v(t) coth v(t)=2
and  (v(t)) follows from the de�nitions of g0 and U .
In order to prove that F;G are given by convergent series of Lie brackets of
X;Y in a neighborhhod of (0; 0), we use a slightly di¤erent expression. Let

!(u) := (1� u)u+ log(1� u)
u2

= �1
2
+

1X
n=1

un

(n+ 1)(n+ 2)
;

so that  (v) + 1
2 = �!(u) if u = 1� e

v and let

A(X;Y ) :=

Z 1

0

1� e�tx
x

!(u(t))dt(X + Y ) , B(X;Y ) := A(�Y;�X)

with u(t) := 1�etxety. Let k:k be a norm on g such that4 k[X;Y ]k � kXk kY k
for all X;Y 2 g; the corresponding operator norm satis�es kxk = kadXk �
kXk. We claim that

V (Y;X) = X + Y + [X;A(X;Y )] + [Y;B(X;Y )];

the expressions A, B, F = (x=(e�x � 1))A and G = (y=(ey � 1))B are given
by convergent series of Lie brackets for kXk + kY k < log 2 = 0:693::: and
F;G coincide with the above solutions (1.11) of (KV1).
Indeed the assumption on X;Y implies ku(t)k � et(kxk+kyk) � 1 < 1 for
0 � t � 1, therefore

A(X;Y ) =

Z 1

0

X
m�0

(�t)m+1
(m+ 1)!

xm

0@�1
2
+
X
n�1

u(t)n

(n+ 1)(n+ 2)

1A dt(X + Y )

where, in multi-index notation for � = (�1; :::; �n), � = (�1; :::; �n),

u(t)n = (�1)n
X

�i+�i�1;1�i�n

tj�j+j�j

�!�!
x�1y�1 � � �x�ny�n

Thus A is a series of Lie brackets with majorant seriesZ 1

0

X
m�0

tm+1

(m+ 1)!
kXkm (kXk+ kY k)�

�

0@1
2
+
X
n�1

1

(n+ 1)(n+ 2)

X
�i+�i�1

tj�j+j�j

�!�!
kXkj�j kY kj�j

1A dt:

4 If j:j is an arbitrary norm on g we have j[X;Y ]j �M jXjjY j for some constant M . Then
kXk =M jXj has the required property.
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If kXk + kY k < log 2 the latter
P
is
�
et(kXk+kY k) � 1

�n
< 1 and the above

integral is less thanZ 1

0

etkXk � 1
kXk dt(kXk+ kY k) = ekXk � 1� kXk

kXk2
(kXk+ kY k) <1;

which implies our claim for A(X;Y ). Since x=(e�x� 1) expands as a conver-
gent power series in x for kxk < 2� we get the same conclusion for F (X;Y ).

b. It will be shown in 1.9 that any solution (F;G) of (KV1), e.g. the functions
(1.11), also satis�es (KV2) if g is a quadratic Lie algebra or (after giving it the
additional symmetry � introduced in 1.7.2 below) if g is solvable. In the latter
case the �-symmetrized (1.11) agrees with the original solution in [30] (see the
Appendix to [43]). Unfortunately, in spite of its «natural» look, the above
choice of (F;G) does not seem to solve (KV2) for general Lie algebras. This
was checked in [1] by computer calculations for the �-symmetrized (1.11).

c. Assuming (KV1) we have constructed (near the origin; see 1.3 with t = 1)
a di¤eomorphism F of g� g such that V �F(X;Y ) = X +Y with F(X;Y ) =
(f(X;Y ) �X; g(X;Y ) � Y ). Setting a�1 = f � F�1, b�1 = g � F�1 we obtain

eXeY = ea(X;Y )�X+b(X;Y )�Y :

This solves, locally at least, an interesting question in matrix theory (where
a � X = aXa�1, b � Y = bY b�1); see e.g. Thompson [51]. Furthermore
b(X;Y ) = a(�Y;�X) if (F;G) is �-invariant, that is G(X;Y ) = F (�Y;�X)
(see Section 1.7.1).
Besides the Campbell-Hausdor¤ formula may be written as

log
�
eXeY

�
= X + Y +

�
eadA(X;Y ) � 1

�
X +

�
eadB(X;Y ) � 1

�
Y

with A = log a, B = log b.

d. Assuming (KV1), the trace equation (KV2) is equivalent to the following
expression of the Jacobian of the di¤eomorphism F constructed in 1.3:

det
g�g

DF(X;Y ) =

�
j(X + Y )

j(X)j(Y )

�1=2
det gAd (f(X;Y )g(X;Y )) :

Let us sketch a proof. By 1.3 the di¤eomorphisms Ft solve the di¤erential
system @tFt = ut � Ft, F0 = Id, where ut is the time-dependent vector �eld
on g � g de�ned by ut(X;Y ) = ([Ft(X;Y ); X]; [Gt(X;Y ); Y ]). Therefore
@t log detDFt = (div ut) � Ft where the divergence div ut is the trace of the
Jacobian

D(X;Y )ut =

�
adFt � x@XFt �x@Y Ft
�y@XGt adGt � y@YGt

�
;
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that is

@t log detDFt = (tr ad(Ft +Gt)� tr (x@XFt + y@yGt)) � Ft:

Observing that @t log j(tX) = tr
�

x
etx�1 �

1
t

�
, @t log detAd ft = (tr adFt)�Ft

and similarly for gt, we obtain

@t log

 �
j(tX)j(tY )

j(tX + tY )

�1=2
detAd (ftgt)

�1
detDFt

!
=

=
1

2
tr

�
x

etx � 1 +
y

ety � 1 �
x+ y

et(x+y) � 1 �
1

t

�
�tr (x � @XFt + y � @YGt)�Ft

and, remembering X + Y = Vt � Ft(X;Y ), our claim easily follows.

1.5.3 Non-Uniqueness

The Lie series F and G are not uniquely determined by (KV1) (for instance
one may add �X to F and �Y to G), not even by the system (KV1)(KV2)
as shown by the next elementary proposition. In 1.7 we shall also give two
ways of constructing new solutions of (KV1)(KV2) from a given one.
We need a preliminary lemma.

Lemma 1.7 Let U be an open subset of g� g and F : U ! g be di¤er-
entiable, such that F (g � X; g � Y ) = g � F (X;Y ) whenever (X;Y ) 2 U and
(g �X; g � Y ) 2 U , g 2 G. Then

@XF (X;Y ) � adX + @Y F (X;Y ) � adY = adF (X;Y );

as endomorphisms of g.

Proof. Given (X;Y ) 2 U and Z 2 g we have (g � X; g � Y ) 2 U for g =
exp tZ and jtj small enough. Then g � X = et adZX and the derivative of
F (g �X; g � Y ) = g � F (X;Y ) with respect to t at t = 0 is

@XF (X;Y )[Z;X] + @Y F (X;Y )[Z; Y ] = [Z;F (X;Y )] .

Proposition 1.8 Given a couple (F;G) of Lie series in (X;Y ) and a scalar
s let

F s(X;Y ) : = F (X;Y ) + s(V (X;Y )�X)
Gs(X;Y ) : = G(X;Y ) + s(V (X;Y )� Y ):

Then (F;G) satis�es (KV1), resp. (KV2), if and only if (F s; Gs) satis�es
(KV1), resp. (KV2).
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Proof. Since e�xV = eyV we have (1� e�x) (V �X)+(ey � 1) (V �Y ) = 0
and (KV1) for (F;G) is equivalent to (KV1) for (F s; Gs). Besides, by the
above lemma,

tr (x � @X(V �X) + y � @Y (V � Y )) = tr (@XV � x+ @Y V � y � x� y)
= tr (v � x� y) = 0;

as explained in 1.4. Thus (KV2) for (F;G) is equivalent to (KV2) for (F s; Gs).

We refer to Burgunder [12] §7 for a systematic study of the non-uniqueness
for (KV1); the question boils down to �nding all Lie series A;B 2 l2 such
that [X;A] + [Y;B] = 0.

1.6 An Elementary Proof for sl(2;R)
In this section5 we solve (KV1) and (KV2) for g = sl(2;R) by an elementary,
though lengthy, exercise in linear algebra. The proof uses speci�c identities
valid in this three-dimensional algebra. It does not extend to other examples,
whereas Theorem 1.23 below is valid for all quadratic Lie algebras.

This Lie algebra consists of all matrices X =

�
a b
c �a

�
, a; b; c 2 R,

which we may identify with X = (a; b; c) 2 R3. The bracket is

[X;X 0] = XX 0 �X 0X = (bc0 � cb0; 2 (ab0 � ba0) ; 2 (ca0 � ac0)) ;

similar to the clasical vector product in R3. The following facts are easily
checked. The Killing form is (X;Y ) := tr(adX adY ) = 4 tr(XY ), nonde-
generate with signature + + �; in particular (X;X) = 8

�
a2 + bc

�
. Also

tr adX = 0 for all X 2 g since adX is skew-symmetric with respect to this
form. Besides, with x = adX, y = adY as usual,

(xY; xY ) = ([X;Y ] ; [X;Y ]) = 8 det(X;Y; [X;Y ]):

Thus X, Y and [X;Y ] make up a basis of g for generic X;Y ; this is the key
to the following calculations. We shall also need the identities

X2 =
(X;X)

8
I (1.12)

(Cayley-Hamilton theorem) where I is the unit matrix and, for all X;Y; Z 2
g,

xyZ = [X; [Y;Z]] =
(X;Y )

2
Z � (X;Z)

2
Y: (1.13)

In particular

x2Y = � (X;Y )
2

X+
(X;X)

2
Y , y2X = �yxY = (Y; Y )

2
X� (X;Y )

2
Y: (1.14)

5This section is independent of the sequel and may be skipped.
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1.6.1 Choice of F and G

As in 1.5.2.a we shall make an explicit choice of A = A(X;Y ) 2 g and
B = B(X;Y ) 2 g, analytic in a neighborhood of the origin in g�g, such that

W := V �X � Y = [X;A] + [Y;B]

with V = log
�
eY eX

�
. Then F := x

e�x�1A , G := y
1�eyB will solve (KV1)

and our main task will be to prove (KV2). The Campbell-Hausdor¤ formula
may be written as

W =
X

j�+�j�1

���y
�1x�1y�2 � � � y�kx�kY

with rational coe¢ cients ��� , � = (�1; :::; �k) ; � = (�1; :::; �k) 2 Nk. The
series converges absolutely for kXk+ kY k < log 2 if the norm on g is chosen
as in 1.5.2. An easy induction with (1.14) shows that each term of the series
may be rewritten as a��xY (if j�+�j is odd), b��x2Y or c��yxY (if j�+�j is
even), where a�� , b�� and c�� are monomials in the Killing products (X;X),
(X;Y ) and (Y; Y ). Reordering the series we obtain

W = axY + bx2Y + cyxY; (1.15)

where a, b and c are power series in these products, convergent in a neigh-
borhood of the origin. Since x and y are skew-symmetric it is easily checked
that a; b; c satisfy

(xY; xY )a = (W;xY ) , (xY; xY )b = �(W;Y ) , (xY; xY )c = (W;X): (1.16)

For any function f on g � g we set ef(X;Y ) := f(�Y;�X). Because
log
�
e�Xe�Y

�
= � log

�
eY eX

�
we have fW = �W and (1.16) implies ea = a,eb = �c whenever (xY; xY ) 6= 0, or even without this condition since the

polynomial function (xY; xY ) does not vanish identically. Let us choose

A =
a

2
Y + bxY , B = eA = �a

2
X + cxY

F =
x

e�x � 1A , G =
eF = y

1� eyB: (1.17)

Proposition 1.9 Let g = sl(2;R). The above functions F;G are analytic in
a neighborhood of the origin in g� g. They solve (KV1) and (KV2) for g.

(KV1) follows from (1.15) and (1.17). The proof of

tr (x � @XF + y � @YG) =
1

2
tr
�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
(KV2)

(where tr denotes the trace of endomorphisms of g) is given in the next three
subsections.
Remark. The above functions A;B; F;G are invariant under the adjoint
action of any g in the group SL(2;R), that is A(g � X; g � Y ) = g � A(X;Y )
etc., because a(g �X; g � Y ) = a(X;Y ) etc. by invariance of the Killing form.
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1.6.2 A Variant of (KV2)

Since G = eF we have y � @YG = (x � @XF )e. In the left-hand side of (KV2)
we shall thus compute tr (x@XF ) then add its transform under e. Let

'(x) :=
x

1� e�x =
x

2
coth

x

2
+
x

2
:

It is easily checked (details are given in the proof of Lemma 1.25 (i)) that

x@XF = '(x)@X
�
(1� e�x)F

�
+ adF + � � �

where � � � is a sum of Lie brackets. Remembering (1.17) (1� e�x)F = �xA
and tr ad = 0 on g, we get tr (x@XF ) = � tr ('(x)@X(xA)).
Let v = adV . Since @XV = '(v)'(x)�1 by Lemma 1.2 the following

observation will shorten the calculations:

tr ('(x)@XW ) = tr
��
@XV � 1

�
'(x)

�
= tr ('(v)� '(x))

= tr

�
v

2
coth

v

2
� x

2
coth

x

2

�
:

But V = log
�
eY eX

�
= e�x log

�
eXeY

�
= e�xV , hence v = e�xvex and we

may replace v by v = adV under the trace. It follows that

tr ('(x)@XW + ('(x)@XW )e) = tr�v coth v
2
� x

2
coth

x

2
� y

2
coth

y

2

�
:

The similarity with the right-hand side of (KV2) suggests to introduce the
function

E = W � 2xA = � [X;A] + [Y;B] =
�
1� e�x

�
F � (ey � 1)G

= �bx2Y � cy2X;

so that (KV2) becomes

tr ('(x) � @XE + ('(x) � @XE)e) = tr�v
2
coth

v

2
� 1
�
: (1.18)

Remark. A similar modi�cation of (KV2) will be performed for arbitrary
Lie algebras in Section 1.9.

1.6.3 A Trace Formula for sl(2;R)
Let u : g! g be a linear map. Then for all X;Y 2 g,

(xY; xY ) tru = �
�
uX; y2X

�
�
�
uY; x2Y

�
+ (uxY; xY ): (1.19)

Indeed it su¢ ces to prove this for (xY; xY ) 6= 0; then X, Y and xY make up
a basis of g. Let �; �;  denote the diagonal coe¢ cients of the matrix of u
with respect to this basis. Then�

uX; y2X
�
=
�
X; y2X

�
� = � (yX; yX)� = � (xY; xY )�
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since y is skew-symmetric, yX = �xY and y2X is orthogonal to Y and xY
with respect to the Killing form. Similarly�

uY; x2Y
�
=

�
Y; x2Y

�
= � (xY; xY )�

(uxY; xY ) = (xY; xY );

and (1.19) follows for tru = �+ � + .

1.6.4 Proof of (KV2)

Again we work for (xY; xY ) 6= 0. By (1.16) and the de�nition of E we have

E = (W;Y )L� (W;X)M with L :=
1

(xY; xY )
x2Y , M :=

1

(xY; xY )
y2X:

We �rst compute tr ('(x)@XE). Since

tr ('(x)@X (f(X)Z)) = h@Xf(X); '(x)Zi

for any scalar function f and constant vector Z (where the brackets h:; :i
denote the duality between g� and g) we obtain

tr ('(x) � @XE) = h@X(W;Y ); '(x)Li � h@X(W;X); '(x)Mi+
+ (W;Y ) tr (@XL � '(x))� (W;X) tr (@XM � '(x)) : (1.20)

First

h@X(W;Y ); '(x)Li = (@XW � '(x)L; Y )
h@X(W;X); '(x)Mi = (@XW � '(x)M;X) + (W;'(x)M):

In view of the trace formula (1.19) the last term of (1.20) is given by

(xY; xY ) tr (@XM � '(x)) =
= �

�
@XM � '(x)X; y2X

�
�
�
@XM � '(x)Y; x2Y

�
+ (@XM � '(x)xY; xY )

= �
�
X;t @XM

�
y2X

��
�
�
'(x)Y;t @XM

�
x2Y

��
+
�
x'(x)Y;t @XM (xY )

�
;

where t means transpose with respect to the Killing form and we noted that
'(x)X = '(0)X = X. But it is easily checked that the products (X;M),
(Y;M) and (xY;M) are constant. Replacing X by X + tH and taking the
t-derivative at t = 0 it follows that (H;M)+(X; @XM(H)) = 0 for all H 2 g,
hence t@XM(X) = �M . Similarly t@XM(Y ) = 0 and t@XM(xY ) = �yM .
Finally, using (1.14) and (1.13) with Z =M ,

(xY; xY ) tr (@XM � '(x)) = (X;M)

2
(Y � '(x)Y; Y ) :
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The same holds with M replaced by L, since the products (X;L), (Y;L) and
(xY;L) are constant. But (X;L) = 0, (X;M) = �1 and we obtain

(xY; xY ) tr (@XL � '(x)) = 0

(xY; xY ) tr (@XM � '(x)) =
1

2
('(x)Y � Y; Y ) :

Gathering all pieces it follows, with the help of (1.14) and (1.13), that

(xY; xY ) tr ('(x) � @XE) =
=
�
@XW � '(x)x2Y; Y

�
�
�
@XW � '(x)y2X;X

�
+ (W; yx'(x)Y ) :

As already seen W = V � X � Y and @XW � '(x) = '(v) � '(x) so that,
after some simpli�cations,

(xY; xY ) tr ('(x) � @XE) =
=
�
'(v)x2Y; Y

�
�
�
'(v)y2X;X

�
+
�
V ; yx'(x)Y

�
� (xY; xY ):

Adding its e to this expression we obtain the left-hand side of (KV2), written
as in (1.18). The map e changes V and v into �V and �v. Observing that
'(v)� '(�v) = v and using (1.14) again, the formula boils down to

(xY; xY ) tr ('(x) � @XE + ('(x) � @XE)e) =
=
�
V ; yx'(x)Y + xy'(�y)X � (X;Y )xY

�
� 2(xY; xY ) (1.21)

after some (easy) manipulations left to the Reader.
Now let f(x) := x

2 coth
x
2 = '(x) � x

2 denote the even part of ' and let
�; � 2 C be such that �2 = (X;X)=2, �2 = (Y; Y )=2. By (1.14) we have
x2n+1Y = �2nxY for n � 0 and

yx'(x)Y = f(�)yxY +
1

2
yx2Y = f(�)yxY +

(X;Y )

4
xY:

A similar transformation of xy'(�y)X shows that the right-hand side of
(1.21) is

�
�
V ; f(�)y2X + f(�)x2Y +

(X;Y )

2
xY

�
� 2 (xY; xY ) : (1.22)

We must now compute V = log
�
eY eX

�
. ForX 2 g we haveX2 = (�=2)2I

by (1.12) hence eX = S(�) (X + f(�)I) with S(�) := sh�=2
�=2 . Introducing �

such that �2 =
�
V ; V

�
=2 we obtain

S(�)

S(�)S(�)

�
V + f(�)I

�
= Y X + f(�)X + f(�)Y + f(�)f(�)I:
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The trace is
S(�)

S(�)S(�)
f(�) = f(�)f(�) +

(X;Y )

8
: (1.23)

But the polarized equation (1.12) implies Y X = 1
2 [Y;X] +

(X;Y )
8 I, therefore

S(�)

S(�)S(�)
V = f(�)X + f(�)Y � 1

2
xY:

Transferring into (1.22) this value of V and taking into account various or-
thogonality relations, (1.23) and (1.21), we �nally check that the left-hand
side of (KV2) is 2 (f(�)� 1).
On the other hand we note that, by (1.14),

f(x)� I = (f(�)� 1) x
2

�2

therefore tr (f(x)� I) = 2 (f(�)� 1). The right-hand side of (KV2) is
then, according to (1.18),

tr
�v
2
coth

v

2
� I
�
= tr (f(v)� I) = 2 (f(�)� 1) ;

and (KV2) is proved! �

1.7 Two Symmetries of the Kashiwara-Vergne
Problem

Notation: for any function f of two variables X;Y in a vector space let6

f_(X;Y ) := f(�X;�Y ) , f(X;Y ) := f(Y;X) , ef(X;Y ) := f(�Y;�X):

Together with the identity these three commuting involutions form a group,
isomorphic to (Z=2Z)� (Z=2Z). For example V (X;Y ) = log(eXeY ) gives

V _ = �V , V = e�xV = eyV , eV = �V: (1.24)

As usual dots will denote the adjoint action of the group G on its Lie algebra
g.
Let us recall that the solutions of the Kashiwara-Vergne problem can be

described by means of (F;G) or (f; g) or F, related as follows (see 1.3): F
and G are series of Lie brackets of X;Y 2 g (near the origin), f(X;Y ) and
g(X;Y ) are elements of the group G obtained by taking t = 1 in the solutions
ft = ft(X;Y ), gt = gt(X;Y ) of the di¤erential equations

@tft = (DeRft)Ft(ft �X; gt �Y ) , @tgt = (DeRgt)Gt(ft �X; gt �Y ) , f0 = g0 = e

6No confusion should arise of the present e with the transfer map in 1.1.
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with Ft(X;Y ) = t�1F (tX; tY ), Gt(X;Y ) = t�1G(tX; tY ), and F is a di¤eo-
morphism of g� g onto itself (near the origin) given by

F(X;Y ) := (f(X;Y ) �X; g(X;Y ) � Y ):

If (F;G) satisfy (KV1) we have

V � F(X;Y ) = V (f �X; g � Y ) = X + Y:

Later on we shall also need

E(X;Y ) :=
�
1� e�x

�
F (X;Y )� (ey � 1)G(X;Y );

motivated by the calculations for sl(2;R) in 1.6.2.
We now give two constructions of new solutions of the problem from a

given one: (F;G) 7! (F�; G�) and (F;G) 7! (F � ; G�); a similar notation is
used for their e¤ects on (f; g) and E.

1.7.1 The Symmetry �

Proposition 1.10 Given a couple (F;G) of Lie series, let (F�; G�) = ( eG; eF )
that is

F�(X;Y ) := G(�Y;�X) , G�(X;Y ) := F (�Y;�X):
The map (F;G) 7! (F�; G�) is involutive and

f�(X;Y ) = g(�Y;�X) , g�(X;Y ) = f(�Y;�X)
E�(X;Y ) = E(�Y;�X) , V (f� �X; g� � Y ) = X + Y:

Besides (F;G) satis�es (KV1), resp. (KV2), if and only if (F�; G�) satis�es
(KV1), resp. (KV2).

Proof. All equalities are easily checked. Applying e to (KV1) for (F;G) we
obtain the equivalent relation

eV = �V = �Y �X � (1� ey) eF � �e�x � 1� eG;
that is (KV1) for (F�; G�). Applying e to (KV2) for (F;G) (written with
coth), we have ]@XF = �@Y eF , ]@YG = �@X eG and the right-hand side ise invariant since ev = �v. It is therefore equivalent to (KV2) for (F�; G�).
1.7.2 The Symmetry �

Proposition 1.11 Given a couple (F;G) of Lie series, let

F �(X;Y ) : = exG(Y;X) +
1

2
(V (X;Y )�X)

G�(X;Y ) : = e�yF (Y;X)� 1
2
(V (X;Y )� Y ) :
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The map (F;G) 7!
�
F � ; G�

�
is involutive and, if (F;G) satis�es (KV1),

f�(X;Y ) = e(X+Y )=2g(Y;X)e�X=2 , g�(X;Y ) = e�(X+Y )=2f(Y;X)eY=2

E�(X;Y ) = �E(Y;X) , V (f� �X; g� � Y ) = X + Y:

Besides (F;G) satis�es (KV1), resp. (KV1) and (KV2), if and only if
(F � ; G�) satis�es (KV1), resp. (KV1) and (KV2).

Proof. (i) First

(F �)� = exG� +
1

2
(V �X) = ex

�
e�xF � 1

2
(V �X)

�
+
1

2
(V �X)

= F

since exV = V . Similarly
�
G�
��
= G. Also

E� =
�
1� e�x

�
F � � (ey � 1)G�

=
�
1� e�x

��
exG+

V

2

�
� (ey � 1)

�
e�yF � V

2

�
= (ex � 1)G�

�
1� e�y

�
F = �E

since e�xV = eyV . Note that (KV1) was not used here.
(ii) Computing as in (i) we obtain

V +
�
1� e�x

�
F � + (ey � 1)G� = V + (1� e�x)F + (ey � 1)G;

hence the equivalence of (KV1) for (F;G) and for (F � ; G�).
(iii) Assuming (KV1) for (F;G) we have

eyG =
�
e�x � 1

�
F +G� V +X + Y

and, exchanging X and Y , the de�nition of F � may be written as

F � =
�
e�y � 1

�
F +G� V

2
+
X

2
+ Y:

Besides

G� =
�
e�y � 1

�
F + F � V

2
+
Y

2
:

We may then apply the equality (@XS)�x+(@Y S)�y = adS (Lemma 1.7) to
S = (e�y � 1)F and S = V hence, noting that @XG = @YG, @Y F = @XF ,

@XF
��x+@YG��y = @XF � x+ @YG � y+ad

��
e�y � 1

�
F � V �X � Y

2

�
:

Since (e�y � 1)F and V �X � Y are sums of brackets it follows that

tr(@XF
� � x+ @YG� � y) = tr

�
@XF � x+ @YG � y

�
:
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Assuming (KV2) for (F;G) we now obtain (KV2) for
�
F � ; G�

�
: indeed

tr (v= (ev � 1)) is invariant under v 7! v since V = e�xV and v = e�xvex.
We conclude that (KV1) and (KV2) for (F;G) imply the same properties for�
F � ; G�

�
and conversely, � being involutive.

(iv) Let f�t (X;Y ) := f�(tX; tY ), F �t (X;Y ) := t�1F �(tX; tY ) and similarly
for g�t , G

�
t . We claim that

(f�t )
0(f�t )

�1 = F �t (f
�
t �X; g

�
t � Y ) , f

�
0 = e (1.25)

(g�t )
0(g�t )

�1 = G�t (f
�
t �X; g

�
t � Y ) , g

�
0 = e

if f� , F � etc. are de�ned as in the proposition. Here 0 denotes the derivative
with respect to t and f 0f�1 means (DeRf )

�1
f 0 for the sake of simplicity.

Replacing (X;Y ) by (tX; tY ) it will su¢ ce to prove (1.25) for t = 1. Details
are given for f� below; the proof for g� is similar.
If a; b; c are di¤erentiable maps from an interval of R into G we have the
following formulas for «logarithmic derivatives» (in our simpli�ed notation)

(ab)
0
(ab)

�1
=
�
a0a�1

�
+ a �

�
b0b�1

�
(abc)

0
(abc)

�1
=
�
a0a�1

�
+ a �

�
b0b�1

�
+ (ab) �

�
c0c�1

�
; (1.26)

where dots denote the adjoint action of G on its Lie algebra. Applying this
to

f�t = et(X+Y )=2 gt e
�tX=2 , g�t = e�t(X+Y )=2 ft e

tY=2

we obtain, for t = 1,

(f�t )
0(f�)�1 =

X + Y

2
+ e(X+Y )=2 � (gt)0 (g)�1 �

�
e(X+Y )=2g

�
� X
2
: (1.27)

The claimed equality (1.25) for (f�t )
0(f�)�1 now ensues from the following

remarks (a) and (b):
(a) X + Y = V (f� � X; g� � Y ). Indeed f� � X = e(X+Y )=2 � (g �X) and
g� � Y = e�(X+Y )=2 �

�
f � Y

�
, hence

expV (f� �X; g� � Y ) = exp(f� �X) exp(g� � Y )

= e(X+Y )=2
�
eg�Xe�(X+Y )ef �Y

�
e(X+Y )=2:

But X + Y = V (f � X; g � Y ) by (KV1) (see Section 1.3), and this implies
Y + X = V

�
f � Y; g �X

�
therefore eX+Y = ef �Y eg�X and expV (f� � X; g� �

Y ) = exp(X + Y ).
(b) g0tg

�1 = G(f �X; g �Y ) hence (gt)0 (g)�1 = G(f �Y; g �X) = G
�
g �X; f � Y

�
.

Also

e(X+Y )=2 �G
�
g �X; f � Y

�
= G

��
e(X+Y )=2g

�
�X;

�
e(X+Y )=2f

�
� Y
�
:
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Observing that
�
e(X+Y )=2g

�
�X = f� �X and, by (a),�

e(X+Y )=2f
�
� Y =

�
eX+Y g�

�
� Y =

�
ef

� �Xeg
� �Y g�

�
� Y

= ef
� �X � (g� � Y );

we infer that

e(X+Y )=2 � (gt)0 (g)�1 = ef
� �X �G(f� �X; g� � Y ):

From (a) and (b) it follows that (1.27) may be written as

(f�t )
0(f�)�1 =

1

2
V (f� �X; g� � Y ) + ef

� �X �G(f� �X; g� � Y )� 1
2
f� �X

= F �(f� �X; g� � Y );

which completes the proof.

Remark. A similar proof to (iv) shows that the couple (F s; Gs) of Proposi-
tion 1.8 corresponds to (fs; gs) given by

fs(X;Y ) = es(X+Y )f(X;Y )e�sX , gs(X;Y ) = es(X+Y )g(X;Y )e�sY ;

and Es = E + 2s(V � V ), V (fs �X; gs � Y ) = X + Y .

1.7.3 Symmetry Invariant Solutions

We keep to the notation of 1.7.1 and 1.7.2.

Proposition 1.12 (i) The above symmetries � and � are commuting invo-
lutions acting on couples of Lie series in (X;Y ).
(ii) For any solution (F;G) of (KV1), resp. (KV1) and (KV2), the couple

(F0; G0) =
1

4
(F + F� + F � + F�� ; G+G� +G� +G��)

is a solution of (KV1), resp. (KV1) and (KV2), invariant under � and �.
Explicitly

F0(X;Y ) =
1

4
(F (X;Y ) +G(�Y;�X)) + 1

4
ex (F (�X;�Y ) +G(Y;X))+

+
1

4
(V (X;Y )�X)

G0(X;Y ) = F0(�Y;�X):

Proof. (i) The de�nitions imply

(F�)� = exG� +
1

2
(V �X) = exF_ +

1

2
(V �X)

(F �)� = fG� = �e�yF � 1
2
(V � Y )

�e= exF_ � 1
2
(eV +X);
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and eV = �V gives (F�)� = (F �)�. Similarly (G�)� = (G�)�.
(ii) is clear from Propositions 1.10, 1.11 and the linearity of the Kashiwara-
Vergne equations.

Proposition 1.13 (i) A couple (F;G) of Lie series in (X;Y ) is invariant
under � and � if and only if there exists an even Lie series H(X;Y ) such
that

F (X;Y ) = ex=2H(X;Y ) +
1

4
(V (X;Y )�X)

G(X;Y ) = e�y=2H(Y;X)� 1
4
(V (X;Y )� Y ):

In this case we have G(X;Y ) = F (�Y;�X) and E(X;Y ) = �E(�X;�Y ) =
�E(Y;X). Besides F = (Y=4)+ � � � , G = �(X=4)+ � � � , where dots are sums
of brackets of X and Y .
(ii) Let (F;G) be a solution of (KV1) invariant under � and �. Then the
corresponding elements f; g of the group satisfy

f(X;Y ) = e(X+Y )=4u(X;Y )e�X=4 , g(X;Y ) = f(�Y;�X)

where u(X;Y ) 2 G is an even function of (X;Y ).

Proof. (i) The invariance (F�; G�) = (F;G) is equivalent to G = eF that
is G = F_. Let us write e�x=2F = H + K where H is even and K is
odd. Then, assuming the �-invariance, the �-invariance F = F � gives F =
exF_ + 1

2 (V �X) that is

ex=2(H +K) = exe�x=2(H �K) + 1
2
(V �X)

which boils down to K = 1
4e
�x=2(V �X) hence F = ex=2H + (V �X)=4.

Conversely, this together with G = eF ensures the �- and �-invariance of
(F;G) since eV = �V . The corresponding properties of E follow from Propo-
sitions 1.10 and 1.11. Besides V = X + Y + � � � where dots are brack-
ets of X;Y and, H being an even Lie series, H = a[X;Y ] + � � � Thus
F (X;Y ) = (Y=4) + � � � and G(X;Y ) = F (�Y;�X) = �(X=4) + � � � .
(ii) As for (i) f� = f gives g = ef that is g = f_. Then f = f� implies f =
e(X+Y )=2f_e�X=2 by Proposition 1.11, which means that e�(X+Y )=4feX=4 is
even.

1.8 From (KV1) Towards (KV2)

In their 2009 note [8], using the free Lie algebra formalism they had devel-
oped in [7], Alekseev and Torossian discovered a remarkable link between
equations (KV1) and (KV2). In this section we extract from their work the
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necessary material, eventually leading in 1.9 to a proof of the conjecture in
two important cases.
LetK be a commutative �eld of characteristic zero. We work here with the

completed free Lie algebra l2 introduced in 1.5.1 and with A2, the completion
(with respect to the degree) of the free associative algebra with two generators
X;Y over K, that is the space of all associative but non-commutative formal
series in X and Y . Any element a 2 A2 has a unique decomposition

a = a0 + aXX + aY Y (1.28)

with a0 2 K and aX ; aY 2 A2; for example [X;Y ] 2 l2 � A2 decomposes as
[X;Y ] = 0 + (�Y )X +XY . For a 2 l2 the components aX and aY play the
role of «partial derivatives» of a with respect to X and Y ; see Lemma 1.21
for a precise statement.
Let � denote the anti-involution of A2 de�ned by �(X) = �X and �(Y ) =

�Y . Thus �(ab) = �(b)�(a) for all a; b 2 A2, �2 is the identity and �(Z) =
�Z for all Z 2 l2. The goal of this section is to prove the following theorem.

Theorem 1.14 Let F;G 2 l2 be two Lie series in (X;Y ) such that (KV1)
holds. Then there exists a 2 A2 such that �(a) = �a and

FXX +GY Y s
1

2

�
X

2
coth

X

2
+
Y

2
coth

Y

2
� V

2
coth

V

2
� 1
�
+ a

where V = V (X;Y ) and s means equal modulo [A2;A2].

The link between this property and (KV2) will appear in Section 1.9. The
proof of Theorem 1.14 requires several formal tools which we now introduce
as we need them. We divide it into seven steps.

1.8.1 Tangential Derivations and Automorphisms

As shown in 1.3 for a �nite-dimensional Lie algebra g, the main role of Lie
series F;G satisfying (KV1) is to allow constructing a one-parameter family
of local di¤eomorphisms Ft of g � g given by the adjoint action of elements
ft = ft(X;Y ), gt = gt(X;Y ) of G, namely Ft(X;Y ) = (ft � X; gt � Y ), and
such that Vt (Ft(X;Y )) = X + Y . Our �rst goal is to introduce similar tools
in the context of the free Lie algebra l2 with generators X;Y . Observing that
F;G 2 l2 were only used by means of the brackets [X;F ] and [Y;G] we are
led to the following de�nition.
Let K be a commutative �eld of characteristic zero and ln be the com-

pleted free Lie algebra with n generators X1; :::; Xn over K. A derivation
D of ln is determined by its values D(Xi) on the generators. It is called a
tangential derivation if there exist D1; :::; Dn 2 ln such that

D(Xi) = [Xi; Di] , i = 1; :::; n:
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Remark. Such a Di is only unique up to the addition of some multiple of
Xi. In the sequel we shall assume that, for each i, Di has no Xi-component
among its �rst order terms. The map (D1; :::; Dn) 7! D thus becomes a
bijection onto the set of tangential derivations and we may simply write
D = (D1; :::; Dn).

Under the natural bracket of linear operators the tangential derivations
of ln form a Lie algebra, denoted by tdn. Indeed an easy computation shows
that [D;D0] = D00 with D00

i = [Di; D
0
i] +D(D

0
i)�D0(Di).

The algebra tdn carries a natural grading induced by the one in ln. For
all k = 1; 2; ::: the subspace of elements of degree k is �nite-dimensional. We
can therefore associate a group, denoted by TAn, to this Lie algebra. As a
set it is tdn, equipped with the group law de�ned by the Campbell-Hausdor¤
series V : writing exp : tdn ! TAn the map identitying both sets, we have
expD expD0 := expV (D;D0) for D;D0 2 tdn. Each element g of TAn is
g = expD for some D 2 tdn, and de�nes an automorphism of ln according
to

g(Z) =
1X
k=0

1

k!
Dk(Z) , Z 2 ln:

TAn is called the group of tangential automorphisms.
Introducing a parameter t, let (Ft) be a one-parameter family of auto-

morphisms of ln such that Ft(Z) belongs to ln[[t]] := ln 
K K[[t]] for any
Z 2 ln. In other words Ft(Z) expands as a series of homogeneous elements
of ln, with formal power series in t as the coe¢ cients. Taking the derivative
of the coe¢ cients with respect to t we obtain a linear map from ln into itself
denoted by @tF . Then F�1t @tF is a one-parameter family of derivations of
ln, as seen by taking the derivative of Ft ([Z1; Z2]) = [Ft (Z1) ;Ft (Z2)].
Conversely let Dt = (Dt;1; :::; Dt;n) be a family of tangential derivations,

with Dt;i 2 ln[[t]]. The di¤erential equation

F�1t @tFt = �Dt , F0 = e (1.29)

de�nes a one-parameter family of tangential automorphisms Ft 2 TAn, as
we now explain.
Indeed let Ai = Ai(t) 2 ln[[t]] be the solution of the di¤erential system

@tAi =
adAi

eadAi � 1Dt;i

�
eadA1X1; :::; e

adAnXn

�
, Ai(0) = 0;

where Dt;i

�
eadA1X1; :::

�
is obtained from Dt;i by replacing the generators

Xi by eadAiXi. Repeating a classical proof for the di¤erential of exp, we set
Zi(s; t) := es adAi(t)Xi. Then @sZi = [Ai; Zi] hence

@s

�
e�s adAi(t)@tZi(s; t)

�
= [e�s adAi(t)@tAi(t); Xi]

= @s

�
1� e�s adAi(t)

adAi(t)
@tAi(t); Xi

�
:
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Since @tZi(0; t) = 0 we infer that, for s = 1,

e� adAi(t)@tZi(1; t) =

�
1� e� adAi(t)

adAi(t)
@tAi(t); Xi

�
:

Setting Ft(Xi) := Zi(1; t) = eadAi(t)Xi, the expression of @tAi �nally leads
to

@tFt(Xi) = [Dt;i(Ft(X1); :::;Ft(Xn));Ft(Xi)] = �Ft (Dt(Xi)) :

Thus Ft de�nes the sought after tangential automorphism of ln.

1.8.2 Behavior Under Scaling Maps

For t 2 Kn0 let �t denote the scaling automorphism of the Lie algebra
ln de�ned by �t(Xi) := tXi for i = 1; :::; n. Thus, for any Lie series F =
F (X1; :::; Xn) 2 ln we have

(�tF ) (X1; :::; Xn) = F (tX1; :::; tXn):

Since F has no zero order term we may introduce Ft = t�1�tF , that is
Ft(X1; :::; Xn) = t�1F (tX1; :::; tXn). Then Ft 2 ln[[t]], F1 = F and �tF =
tFt for t 2 Kn0.

Lemma 1.15 Given a tangential derivation D = (D1; :::; Dn) 2 tdn and
t 2 Kn0, let Dt := t�1�tD�

�1
t . Then Dt is a tangential derivation and

the solution Ft 2 TAn of the di¤erential equation (1.29) F�1t @tFt = �Dt ,
F0 = e satis�es Ft = �tF��1t with F = F1.

Proof. The �rst assertion is easy:

Dt(Xi) = t�1�t[t
�1Xi; Di] = t�1[Xi;�t (Di)] = [Xi; Dt;i]

with Dt;i = t�1�t (Di) 2 ln[[t]].
The second follows from the uniqueness of solutions of (1.29). Indeed 1Gt :=
Fst and 2Gt := �sFt��1s are, for �xed s, two solutions of the di¤erential
system

G�1t @tGt = �sDst , G0 = e

since sDst = �sDt�
�1
s . Thus Fst = �sFt��1s and t = 1 implies our claim.

Specializing to n = 2, let F;G 2 l2 such that (KV1) holds. The argument
given in the Lie algebra g (Section 1.3) remains valid in the free algebra l2
and gives

@tVt(X;Y ) = DtVt(X;Y );

where Dt 2 td2 is the tangential derivation de�ned by Dt = (Ft; Gt). Then
F�1t @tFt = �Dt implies

@t (Ft(Vt)) = Ft (@tVt) + (@tFt) (Vt)
= Ft (@tVt �DtVt) = 0;
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hence Ft(Vt(X;Y )) = F0(V0(X;Y )), that is

Ft(Vt(X;Y )) = X + Y: (1.30)

Remark. Note the change of notation between g and l2: in the former (see
1.3) Ft was a di¤eomorphism of g�g (near the origin) whereas, in the latter,
Ft denotes a map from l2 into itself. If X;Y belong to g they are linked by
Ft(X;Y ) = (Ft(X);Ft(Y )). Accordingly the property Vt (Ft(X;Y )) = X+Y
is replaced here by

Vt (Ft(X);Ft(Y )) = Ft(Vt(X;Y )) = X + Y;

where the �rst equality holds because Vt is a Lie series in X;Y and Ft is an
automorphism of l2.

1.8.3 Using Associativity

A key observation in the proof of Theorem 1.14 is the associativity

V (V (X;Y ); Z) = V (X;V (Y; Z))

satis�ed by the Campbell-Hausdor¤ law, a consequence of the associativity
of the group law and the de�nition of V . To exploit it we now work in the
(completed) free Lie algebra l3 with generators X;Y; Z. Since F (V (X;Y )) =
X + Y by (1.30) we have successively

F1;2 (V (V (X;Y ); Z)) = V (X + Y; Z)

F12;3F1;2 (V (V (X;Y ); Z)) = (X + Y ) + Z

where F1;2 2 TA3 means F acting on the �rst and second generators of l3,
trivially on the third, and F12;3 2 TA3 means F acting on X + Y and Z.
Similarly

F2;3 (V (X;V (Y; Z))) = V (X;Y + Z)

F1;23F2;3 (V (X;V (Y; Z))) = X + (Y + Z):

Introducing the automorphism � 2 TA3 de�ned by

�F1;23F2;3 = F12;3F1;2 (1.31)

we see that the associativity of V implies

�(X + Y + Z) = X + Y + Z:

This special property of �, related to F hence to (F;G), will eventually lead
to the conclusion.
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1.8.4 A «Divergence» and a «Jacobian»

InAn, the completion of the free associative algebra with generatorsX1; ::; Xn

over K, we denote by

a = a0 +
nX
k=1

akXk

the unique decomposition of any a 2 An with a0 2 K and ak 2 An.
Let � denote the anti-involution of An de�ned by �(Xi) = �Xi , i =

1; :::; n. Thus �(ab) = �(b)�(a) for all a; b 2 An, �2 is the identity map and
�(Z) = �Z for all Z 2 ln. Let Nn = ker(1 + �) be the (�1)-eigenspace of �
in An.
Let hAni := A+n = ([An;An] +Nn) be the quotient of A+n (the subalgebra

of elements of degree � 1) by the space of all linear combinations of brackets
in An and of elements ofNn, and let a 7! hai denote7 the canonical projection
An ! hAni. One can think of A+n =[An;An] as the K-vector space spanned
by cyclic words in the letters X1; :::; Xn; including Nn in the quotient will
play no role until Proposition 1.17.
Any derivation D of the Lie algebra ln extends to a derivation of the

associative algebra An, and descends to the graded vector space hAni. In-
deed D ([An;An]) � [An;An] and �D��1 is a derivation of An such that
�D��1(Xi) = ��D(Xi) = D(Xi); thus �D��1 = D hence DNn � Nn. We
denote by D � hai this action of D on hai 2 hAni.
Similarly tangential and scaling automorphisms of ln extend to automor-

phisms of An and descend to hAni, since they map [An;An] into itself and
commute with � .
The «divergence» is the map div : tdn ! hAni de�ned by

divD :=

*
nX
i=1

Di
iXi

+

where D = (D1; :::; Dn) (see Remark in 1.8.1) and Di =
P
kD

k
iXk is the

above decomposition of Di in An.

Proposition 1.16 The map div : tdn ! hAni is a 1-cocycle, that is

div[D;E] = D � divE � E � divD

for all D;E 2 tdn.

Proof. We �rst compute the k-th component of

[D;E]i = [Di; Ei] +D(Ei)� E(Di) = (D(Ei) +DiEi)� (E(Di) + EiDi) :

7This map is denoted by a 7! trquad a in [8].
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Clearly (DiEi)
k
= DiE

k
i . Besides, D being a tangential derivation,

D(Ei) =
X
k

D(Eki Xk) =
X
k

D(Eki )Xk + E
k
i [Xk; Dk]

=
X
k

�
D(Eki )� Eki Dk

�
Xk +

X
k;l

Eki XkD
l
kXl

=
X
k

 
D(Eki )� Eki Dk +

X
l

EliXlD
k
l

!
Xk:

This gives the component D(Ei)k hence [D;E]ki and the above equations
easily imply, modulo [An;An],X
i

[D;E]iiXi s
X
i

�
D(Eii)� EiiDi +DiE

i
i)Xi � (E(Di

i)�Di
iEi + EiD

i
i

�
Xi

On the other hand

D � divE =
X
i



D(EiiXi)

�
=
X
i



D(Eii)Xi + E

i
iXiDi � EiiDiXi

�
=
X
i



D(Eii)Xi +DiE

i
iXi � EiiDiXi

�
;

hence D � divE � E � divD =
P
i



[D;E]iiXi

�
= div[D;E].

This cocycle property of div allows de�ning a representation of the Lie
algebra tdn on the graded vector space Ku�hAni, where u is some generator
of degree zero, according to

D � (�u+ hai) = � divD +D � hai

with D 2 tdn, � 2 K, hai 2 hAni. Indeed [D;E] � (�u+ hai) = (DE � ED) �
(�u+ hai) by Proposition 1.16. The group TAn then acts on Ku� hAni by

(expD) � (�u+ hai) =
1X
k=0

1

n!
Dn � (�u+ hai):

In particular (expD) � u = u+ divD + 1
2D � divD +

1
3!D

2 � divD + � � �

We now de�ne the « logarithm of Jacobian» map J : TAn ! hAni by

J (g) := g � u� u 2 hAni

for g 2 TAn. The following properties of J are clear from this de�nition: for
g; h 2 TAn and D 2 tdn,

J (gh) = J (g) + g � J (h) (1.32)

J (expD) = eD � 1
D

� divD (1.33)

@tJ (exp tD)jt=0 = divD: (1.34)



32 CHAPTER 1. KASHIWARA-VERGNE METHOD FOR LIE GROUPS

Proposition 1.17 Let � 2 TAn be a tangential automorphism of ln such
that

� (X1 + � � �+Xn) = X1 + � � �+Xn:

Then J (�) = 0.

Proof. We have � = expD with D 2 tdn. We shall prove divD = 0 and
conclude by (1.33). The derivation D decomposes as D =

P1
1 Dk with

Dk 2 tdn homogeneous of degree k. Let S := X1 + � � � +Xn, homogeneous
of degree 1. Since (expD) (S) = S we have

S +
X
k�1

Dk(S) +
1

2!

X
k;l�1

DkDl(S) + � � � = S:

Separating homogeneous components we successively obtain D1(S) = 0,
D2(S) +

1
2D

2
1(S) = 0 hence D2(S) = 0,... and Dk(S) = 0 for all k in-

ductively. Thus D(S) = 0 and the proposition follows from the next lemma.

Lemma 1.18 Assume D 2 tdn and D (X1 + � � �+Xn) = 0. Then divD =
0.

Proof. Writing D = (D1; :::; Dn) with Di 2 ln we have
P
i[Xi; Di] =P

i (XiDi �DiXi) = 0 that is, with the decomposition Di =
P
kD

k
iXk,X

i;k

XiD
k
iXk =

X
k

DkXk:

Thus Dk =
P
iXiD

k
i for k = 1; :::; n. Applying the anti-involution � we get

�Dk =
P
i �(D

k
i )(�Xi), hence Di

k = �(Dk
i ). Then

2
X
i

Di
iXi = (1 + �)

 X
i

Di
iXi

!
+ (1� �)

 X
i

Di
iXi

!
:

In the right-hand side the �rst term is
P
i

�
Di
iXi �Xi�(D

i
i)
�
=
P
i[D

i
i; Xi] 2

[An;An], and the second term belongs to Nn. Thus divD = 0.

Combining Section 1.8.3 with Proposition 1.17 (for n = 3) we have proved
that the automorphism � 2 TA3 de�ned by (1.31) F�12;3F�11;23 = F�11;2F�112;3�
satis�es J (�) = 0. The cocycle property (1.32) of J implies

J
�
F�12;3

�
+ F�12;3 � J

�
F�11;23

�
= J

�
F�11;2

�
+ F�11;2 � J

�
F�112;3

�
:

Let f(X;Y ) 2 A2 be such that hf(X;Y )i := J
�
F�1

�
. Then J

�
F�12;3

�
=

hf(Y;Z)i, J
�
F�11;23

�
= hf(X;Y + Z)i, J

�
F�112;3

�
= hf(X + Y; Z)i in hA3i

and the above relation becomes

hf(Y;Z)i+ F�12;3 � hf(X;Y + Z)i = hf(X;Y )i+ F�11;2 � hf(X + Y;Z)i :

Remembering that F was built so that F(V (X;Y )) = X + Y we obtain

hf(Y; Z) + f(X;V (Y;Z))i = hf(X;Y ) + f(V (X;Y ); Z)i : (1.35)
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1.8.5 A Cohomology Argument

We now solve equation (1.35).

Proposition 1.19 An element f(X;Y ) 2 A2 satis�es

hf(Y; Z) + f(X;V (Y; Z))i = hf(X;Y ) + f(V (X;Y ); Z)i

in hA3i if and only if there exists an even formal series g(X) 2 A1 such that

hf(X;Y )i = hg(X) + g(Y )� g(V (X;Y ))i :

Sketch of proof. (i) The «if» part follows from the associativity of V .
(ii) A simpli�ed version of the converse is proved �rst, with V (X;Y ) replaced
by X + Y . Letting � : A2 ! A3 be de�ned by8

�f(X;Y; Z) := f(Y;Z) + f(X;Y + Z)� f(X;Y )� f(X + Y; Z);

we show that h�fi = 0 implies the existence of g such that

hf(X;Y )i = hg(X) + g(Y )� g(X + Y )i :

Since the map � preserves homogeneity, it su¢ ces to prove this for f homo-
geneous of degree k � 1. Our assumption implies

@t h�f(X;Y; tY )� �f(tX;X; Y )ijt=0 = 0;

hence

k hf(X;Y )i = @t hf(tX;X + Y )� f(tX;X) + f(X + Y; tY )� f(Y; tY )ijt=0 :

But, looking modulo brackets at the �rst order terms with respect to t in
f(tX; Y ), it is easily seen that @t hf(tX; Y )ijt=0 = �



XY k�1

�
for some � 2

K. Repeated application of this remark leads to

k hf(X;Y )i =


�X(X + Y )k�1 � �Xk + �Y (X + Y )k�1 � �Y k

�
(1.36)

for some �; � 2 K.
If k is odd we observe that



ABk�1

�
= 0 in hA2i for all A;B 2 l2. Indeed,

computing modulo [A2;A2] +N2,

ABk�1

�
=


�
�
ABk�1

��
= (�1)k



Bk�1A

�
= (�1)k



ABk�1

�
:

Thus (1.36) implies hfi = 0 for k odd.
If k = 2 (1.36) boils down to 2 hf(X;Y )i = (�+�) hXY i (ignoring a bracket)
whence our claim with g(X) = �(�+ �)X2=4.

8More generally, one can de�ne a family of maps � : hAni ! hAn+1i with �2 = 0 (see
2.3 in [7]). We are proving here the vanishing of the second cohomology group.
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If k is even, k � 4, we copy out (1.36) into h�fi = 0, which leads to

k h�f(X;Y; Z)i =
= (���)



Y
�
(X + Y + Z)k�1 � (X + Y )k�1 � (Y + Z)k�1 + Y k�1

��
= 0:

Looking at the terms of highest degree with respect to Y , such as


Y k�2XZ

�
,

we can conclude from this that � = �. Then (1.36) implies our claim with
g(X) = ��Xk=k.
(iii) The original equation (1.35), with V (X;Y ) instead of X +Y , can be re-
duced to the simpli�ed one by expanding f into its homogeneous components
and observing that V (X;Y ) = X + Y + � � � where � � � have degree � 2. For
details we refer to Appendix A of the printed version of [7] or to the arXiv
version of [8].

1.8.6 An Expression of the Divergence

Let us summarize what is known at this point. Given F;G 2 l2 we have
constructed a family of tangential automorphisms Ft 2 TA2, solution of the
di¤erential equation (1.29)

F�1t @tFt = �Dt , F0 = e

where Dt 2 td2 is the tangential derivation Dt = (Ft; Gt) with Ft(X;Y ) =
t�1F (tX; tY ), Gt(X;Y ) = t�1G(tX; tY ). Setting F = F1 we have Ft =
�tF��1t (Lemma 1.15).
Furthermore, if (F;G) satis�es (KV1), we have proved F(V (X;Y )) =

X + Y (1.30) and J
�
F�1

�
= hg(X) + g(Y )� g(V (X;Y ))i for some even

series g 2 A1 (see (1.35) and Proposition 1.19). The cocycle property (1.32)
implies J (F) = �F � J (F�1) and we infer that, in hA2i,

J (F) = �hg(X) + g(Y )� g(X + Y )i : (1.37)

Indeed F(V (X;Y )) = X + Y and F(X) = eadAX, F(Y ) = eadBY for some
A;B 2 l2 (see the construction of Ft in 1.8.1) hence hF(X)i = hXi and
hF(Y )i = hY i in hA2i.
The scaling formula Ft = �tF��1t implies J (Ft) = �t � J (F) since,

writing F = expE with E 2 td2, we have

J (Ft) = J
�
exp

�
�tE�

�1
t

��
= �t

eE � 1
E

��1t � div
�
�tE�

�1
t

�
in view of (1.33). Also div(�tE�

�1
t ) = �t � divE is easily checked from the

de�nitions, hence

J (Ft) = �t
eE � 1
E

� divE = �t � J (F)



1.8. FROM (KV1) TOWARDS (KV2) 35

as claimed. Thus (1.37) implies

J (Ft) = �hg(tX) + g(tY )� g(t(X + Y ))i : (1.38)

This leads to an expression of divD (with D = D1) as we now explain.
Setting t = 1 + s the di¤erential equation for Ft yields the expansion

F�1Ft = e+ sF�1 @tJ (Ft)jt=1 + � � � = e� sD + � � �

where � � � have degree � 2 with respect to s. The de�nition of J now gives

J
�
F�1Ft

�
= (e� sD + � � � ) � u� u = �sD � u+ � � �
= �sdivD + � � �

But F � J
�
F�1Ft

�
= J (Ft)�J (F) by (1.32) again therefore, using (1.38),

F divD = hh(X) + h(Y )� h(X + Y )i

where h 2 A1 is the (even) series de�ned by h(X) := Xg0(X). Finally

divD = hh(X) + h(Y )� h(V (X;Y ))i (1.39)

if (F;G) satis�es (KV1),

1.8.7 Conclusion

To conclude the proof of Theorem 1.14 it only remains to show that (1.39)
actually holds with h(X) = 1

2

�
X
2 coth

X
2 � 1

�
.

Let D = (F;G) 2 td2 be any tangential derivation and let

F (X;Y ) = f(x)Y +O(Y 2) , G(X;Y ) = X + g(x)Y +O(Y 2) (1.40)

be the expansions up to �rst order terms with respect to Y , with x = adX
as usual, f; g 2 K[[t]],  2 K and O(Y 2) denoting terms of degree � 2 in Y .
In accordance with the remark in 1.8.1 there is no X term in F .

a. We �rst prove that

divD =


(f(0)� f(X) + g(X))Y +O(Y 2)

�
: (1.41)

Indeed divD =


FXX +GY Y

�
by the de�nition of div with F = FXX +

FY Y , G = GXX+GY Y and FX ; :::; GY 2 A2. Writing xk+1Y = [X;xkY ] =
�
�
xkY

�
X+X

�
xkY

�
we get

�
xkY

�Y
= Xk for all k � 0 by induction, hence

GY Y = g(X)Y +O(Y 2). Then

FXX = F � FY Y = f(x)Y � f(X)Y +O(Y 2)
= (f(0)� f(X))Y +O(Y 2) + brackets
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(since all terms in f(x)Y except the �rst are Lie brackets) and (1.41) is
proved.

b. Moreover, for any even series h 2 A1, the right-hand side of (1.39) is

hh(X) + h(Y )� h(V (X;Y ))i =


h(0)� h0(X)Y +O(Y 2)

�
: (1.42)

Indeed h(Y ) = h(0) +O(Y 2) since h is even. Also V = X + '(x)Y +O(Y 2)
with '(x) := x= (1� e�x) by Lemma 1.2, hence V k �Xk = kXk�1'(x)Y +
O(Y 2)+brackets and h(V ) � h(X) = h0(X)'(x)Y + O(Y 2)+brackets. But
'(0) = 1 and Xk

�
xlY

�
= [X;Xk

�
xl�1Y

�
] for l � 1, so that the only re-

maining terms are h(V )� h(X) = h0(X)Y +O(Y 2)+brackets, which proves
(1.42).

c. If (F;G) satis�es (KV1) we then have, by (1.39), (1.41) and (1.42),

h(0)� h0(X)Y +O(Y 2)

�
=


(f(0)� f(X) + g(X))Y +O(Y 2)

�
:

This implies
h(0) = 0 , h0(X) = f(X)� g(X) + e1(X) (1.43)

where e1 2 A1 is some even series, as shown by the next lemma.

Lemma 1.20 Let � 2 K and a 2 A1 be such that


�+ a(X)Y +O(Y 2)

�
=

0. Then � = 0 and a is even.

Proof. By assumption � + a(X)Y + O(Y 2) is the sum of Lie brackets
and an element of N2 = ker(1 + �). Applying 1 + � it follows that 2� +
(a(X)� a(�X))Y + O(Y 2) is a sum of brackets. The zero order term with
respect to Y gives � = 0. Looking at �rst order terms it su¢ ces to show
that, if f(X) =

P
k�0 fkX

k and f(X)Y is a sum of brackets, then f = 0.
Assuming this and separating orders with respect to X, for every k there
exist scalars cpqr 2 K such that

fkX
kY =

X
cpqr [X

p; XqY Xr] =
X

cpqr
�
Xp+qY Xr �XqY Xp+r

�
where

P
runs over p � 1; q; r � 0 and p+ q+ r = k. Each coe¢ cient appears

twice in the latter sum, with opposite signs; if we reorder it as

fkX
kY = c0X

kY + c1X
k�1Y X + � � �+ ckY Xk;

we have c0+ � � �+ ck = 0 of course. But the uniqueness of the decomposition
(1.28) in A2 implies c0 = fk and c1 = 0,..., ck = 0 successively. Therefore
fk = 0 and the lemma is proved.

d. The �nal step is to prove that f; g in the expansions of F and G are
determined by (KV1). Indeed, replacing Y by tY , we have V (tY;X) =
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X + t'(�x)Y + O(t2) by Lemma 1.2 and the �rst order terms with respect
to t in (KV1) give, in view of (1.40),

'(�x)Y = Y �
�
1� e�x

�
f(x)Y + xY;

hence f(x) = (1� '(�x)) = (1� e�x) + '(x) that is

f(x) = '0(x) + '(x):

To reach g we need the second order terms in the expansion of (KV1). Thus
let

F (X;Y ) = f(x)Y +
1

2
(a(x1; x2)jY; Y ) +O(Y 3)

be the expansion of F , where a(u; v) =
P
p;q�0 apqu

pvq is some formal (com-
mutative) power series and we have written, for any A;B 2 l2,

(a(x1; x2)jA;B) :=
X
p;q

apq[x
pA; xqB]:

Since xpyxqY = (adX)
p
[Y; xqY ] = ((x1 + x2)

pxq2jY; Y ) by Leibniz�formula
(with y = adY ), the second order terms in F 2 l2 actually have the claimed
form. Similarly, for V (t) := V (tY;X) we have V 0(t) = '(� adV (t))Y by
Lemma 1.2, noting that eadV (t)e�xY = etyY = Y . Let '(�x) =

P
p�0 'px

p;
then

V 0(t) = '(�x� t ad('(�x)Y ) +O(t2))Y

= '(�x)Y + t
X
p�1

'p
X
1�q�p

xq�1 ad('(�x)Y )xp�qY +O(t2):

But

xq�1 ad('(�x)Y )xp�qY = xq�1['(�x)Y; xp�qY ]
= xq�1

�
'(�x1)xp�q2 jY; Y

�
= ((x1 + x2)

q�1'(�x1)xp�q2 jY; Y )

and the sum for 1 � q � p gives ('(�x1)((x1+x2)p�xp2)=x1jY; Y ). It follows
that V 0(t) = '(�x)Y + t(b(x1; x2)jY; Y ) +O(t2) with

b(x1; x2) := '(�x1)
'(�x1 � x2)� '(�x2)

x1
;

hence

V (tY;X) = X + t'(�x)Y + t2

2
(b(x1; x2)jY; Y ) +O(t3):

Besides we have (a(x1; x2)jY; Y ) = 0 if and only if a is a symmetric series:
a(u; v) = a(v; u); this fact may be proved by means of a Hall basis of l2 (see
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Proposition 2.6 in the arXiv version of [6]; cf. Lemma 4.34 below). Thus
identi�cation of the second order terms in (KV1) leads to

b(u; v) =
�
e�u�v � 1

�
a(u; v)� 2g(v) + v + c(u; v)

where c is a symmetric series. Remembering the de�nition of b, the special
case v = X, u = �X gives

2g(X) = '0(X) + X + e2(X)

where e2(X) = c(�X;X) is an even series.

e. Let us gather all pieces. Since '(X) � (X=2) = (X=2) coth(X=2) is even
we obtain f � g = 1

2'
0 + e with e even and, h being even, (1.43) may be

rewritten as

h0 =
1

2

�
'0 � 1

2

�
, h(0) = 0

hence h(X) = 1
2

�
X
2 coth

X
2 � 1

�
. With (1.39) this completes the proof of

Theorem 1.14.

1.9 The Case of Quadratic or Solvable Lie Al-
gebras

We shall now explain how, for two important classes of Lie algebras, (KV2)
can be deduced from (KV1) thanks to Theorem 1.14. This will prove the
Kashiwara-Vergne conjecture in those cases.
Working �rst with l2 as before, let B denote the algebra of all (associative

but non-commutative) formal series in x = adX and y = adY . The adjoint
representation ad : l2 !End(l2) extends to a morphism of associative algebras
ad : A2 ! B �End(l2); for example ad 1 is the identity, ad(XYX)Z =
xyxZ = [X; [Y; [X;Z]]] for any Z 2 l2 etc. We still denote by � the anti-
involution of B de�ned by �(x) = �x, �(y) = �y; thus �(ad a) = ad �(a) for
any a 2 A2.
To de�ne the partial di¤erentials @XF , @Y F of a Lie series F 2 l2, let l3

be the free Lie algebra with generators X;Y; Z and

@XF (X;Y )Z = @tF (X + tZ; Y )jt=0 , @Y F (X;Y )Z = @tF (X;Y + tZ)jt=0 :

These partial di¤erentials are related to FX and FY by the following lemma.

Lemma 1.21 Let F 2 l2 be a Lie series in (X;Y ) and F = FXX + FY Y
its decomposition (1.28) in the algebra A2. Then

adFX = @XF (X;Y ) , adFY = @Y F (X;Y );

as endomorphisms of l3.
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Proof. It su¢ ces to prove the lemma for a Lie monomial of order p � 1,
namely F = [X1; [X2; [:::; [Xp�1; Xp]:::] with Xi = X or Y for all i. We use
induction on p.
For p = 1 we have (for instance) F = X hence FX = 1 and @XF is the
identity, FY = 0 and @Y F = 0.
For p � 2 we have (for instance) F = [X;G] where G is some Lie monomial
of order p� 1 and we assume that adGX = @XG, adGY = @YG. Then

F (X + tZ; Y ) = [X;G(X + tZ; Y )] + t[Z;G(X + tZ; Y )]

and the derivatives at t = 0 are

@XF (X;Y )Z = [X; @XG(X;Y )Z] + [Z;G(X;Y )]

=
�
adX adGX � adG

�
Z = ad

�
XGX �G

�
Z

by the inductive hypothesis. But F = XG�GX = X
�
GXX +GY Y

�
�GX

gives FX = XGX �G, thus @XF = adFX . A similar proof for @Y F implies
the lemma.

Corollary 1.22 (i) Let F;G 2 l2 be two Lie series in (X;Y ) such that (KV1)
holds. Then there exists b 2 B such that �(b) = �b and

x � @XF + y � @YG s
1

2

�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
+ b

where v = adV (X;Y ) and s means equality of formal series modulo [B;B].
(ii) Let F;G be two Lie series on a �nite-dimensional real Lie algebra g,
solutions of (KV1) and analytic in a neighborhood of the origin in g�g. Then
there exists a series (bk) of (non-commutative) homogeneous polynomials of
degree k in (x; y) such that �(bk) = �bk, the series

P
k trg bk converges and

trg (x � @XF + y � @YG) =

=
1

2
trg

�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
+
X
k�0

trg bk:

Proof. (i) Lemma 1.21 implies ad
�
FXX +GY Y

�
= @XF � x + @YG � y

and the result follows from Theorem 1.14 by the adjoint representation, with
b = ad a. Indeed �(b) = �(ad a) = ad �(a) = � ad a = �b.
(ii) Let u := x�@XF +y �@YG� 1

2

�
x
2 coth

x
2 +

y
2 coth

y
2 �

v
2 coth

v
2 � 1

�
2 B.

From (i) we know that u = b+ c where �(b) = �b and c is a sum of brackets.
Separating the homogeneous components uk, bk, ck of degree k in (x; y) we
obtain uk = bk + ck where �(bk) = �bk and ck is a �nite sum of brackets.
Under the assumptions of (ii), the series u =

P
k�0 uk =

P
k�0 (bk + ck)

converges absolutely with respect to an operator norm and

tru =
X
k�0

truk =
X
k�0

tr bk:
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Let us recall that, by de�nition, g is quadratic if it has a g-invariant
nondegenerate symmetric bilinear form. Letting B denote this form, the
invariance means that B ([X;Y ] ; Z) + B (Y; [X;Z]) = 0 for al X;Y; Z. A
semisimple Lie algebra is quadratic, with its Killing form.

Theorem 1.23 Let g be a �nite-dimensional quadratic real Lie algebra and
let F;G 2 l2 be two Lie series in X;Y 2 g, solutions of (KV1) and analytic
in a neighborhood of the origin in g � g. Then they are solutions of (KV2)
too.

Thus any solution of (KV1) (easily obtained as noted in 1.5.2.a) satis�es
(KV2): the Kashiwara-Vergne problem is «trivial» in this case.
Proof. In view of Corollary 1.22 (ii) it su¢ ces to check that tr bk = 0 for
all k. Here x = adX and y = adY are skew-symmetric with respect to
the invariant form, that is tx = �x and ty = �y where t means transpose.
Therefore tbk = �(bk) = �bk and tr bk = 0.

The solvable case uses similar ideas but requires slightly more work.

Theorem 1.24 Let g be a �nite-dimensional solvable real Lie algebra and
let F;G 2 l2 be two Lie series in X;Y 2 g, solutions of (KV1) and analytic
in a neighborhood of the origin in g � g. Then the corresponding �- and �-
invariant couple of Lie series (Proposition 1.12) is a solution of (KV1) and
(KV2).

The Kashiwara-Vergne problem is «almost trivial» here: except for an el-
ementary modi�cation, any solution of (KV1) solves (KV2). The proof is
based on Corollary 1.22 and the following lemma.

Lemma 1.25 (i) The relations P := (1� e�x)F , Q := (ey � 1)G imply

x � @XF + y � @YG s
x

1� e�x @XP +
y

ey � 1@YQ+ ad (F +G)

where s means equal modulo [B;B].
(ii) Let E := P �Q. If (F;G) satisfy (KV1) then, modulo [B;B],

(x � @XF + y � @YG)�
1

2

�x
2
coth

x

2
+
y

2
coth

y

2
� v

2
coth

v

2
� 1
�
s

s
1

2

�x
2
coth

x

2
� @XE �

y

2
coth

y

2
� @Y E

�
� 1
2

�v
2
coth

v

2
� 1
�
+

+ ad

�
F +G+

X � Y
4

�
:
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Proof. (i) Let '(x) := x= (1� e�x). Then [X;F ] = '(x)P hence x@XF �
adF = @X('(x)P ). Letting P 0 := '(x)�1F we also have [X;P 0] = P and
x@XP

0 � adP 0 = @XP . It is then readily checked that, for any n � 1,

@X (x
nP ) = @X

�
xn+1P 0

�
= xn+1@XP

0 � xn adP 0 �
nX
k=1

xn�k ad
�
xkP 0

�
= xn@XP �

nX
k=1

[x; xn�k ad(xk�1P 0)] s xn@XP;

hence @X ('(x)P ) s '(x)@XP and x@XF � adF s '(x)@XP . Replacing
X;F; P by Y;G;Q we obtain (i).
(ii) Let V = V (X;Y ), V = V (Y;X) for short. In view of P � Q = E and
(KV1) written as P +Q = X + Y � V , the �rst two terms in the right-hand
side of (i) are

'(x)@XP + '(�y)@YQ =

=
1

2
'(x)

�
@XE + 1� @XV

�
� 1
2
'(�y)

�
@Y E � 1 + @Y V

�
:

By Lemma 1.2 @XV = '(v)'(x)�1 and @Y V = '(�v)'(�y)�1 with v =
adV . But v = e�xvex hence '(v) = e�x'(v)ex and, modulo [B;B],

'(x)@XV s '(v) s '(v) , '(�y)@Y V s '(�v) s '(�v)

thus, using '(v) + '(�v) = v coth v2 ,

'(x)@XP +'(�y)@YQ s
1

2
'(x) (@XE + 1)�

1

2
'(�y) (@Y E � 1)�

v

2
coth

v

2
:

In the right-hand side we replace ' by coth functions and observe that, by
Lemma 1.7,

x@XE + y@Y E s @XE � x+ @Y E � y = adE s 0

since P;Q and E belong to [A2;A2] by their very de�nition. Then (ii) follows
from (i).

Proof of Theorem 1.24. (i) Comparing Corollary 1.22 (i) and Lemma
1.25 (ii) we obtain

b s
1

2

�x
2
coth

x

2
� @XE �

y

2
coth

y

2
� @Y E

�
� 1
2

�v
2
coth

v

2
� 1
�
+

+ ad

�
F +G+

X � Y
4

�
modulo [B;B]. Given a solution (F;G) of (KV1) we may change it by Propo-
sition 1.12 into an invariant solution under the symmetries � and �. Propo-
sition 1.13 (i) then shows that E is odd and ad

�
F +G+ X�Y

4

�
is a sum
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of brackets. Besides V _ := V (�X;�Y ) = �e�xV (see (1.24)), therefore
v_ = adV _ = �e�xvex and (v=2) coth(v=2) is even modulo brackets. We
conclude that b is even modulo [B;B].
(ii) Let x1 � � �xn be one of the monomials in b, with xi = x or y for all i. The
anti-involution � gives

� (x1 � � �xn) = (�1)nxn � � �x1 s (�1)nx1 � � �xn

where s now means an equality modulo the two-sided ideal I generated by
(xy�yx) in B. Separating the even and odd components of b we see that the
property �(b) = �b implies that b is odd modulo I. Since [B;B] � I, we infer
from (i) and (ii) that b belongs to I and all its homogeneous components bk
as well.
(iii)When g is solvable, x = adX and y = adY are given by upper triangular
matrices in a suitable basis of its complexi�ed Lie algebra (Lie�s theorem).
The matrix of bk 2 I is then strictly upper triangular, hence tr bk = 0 and
(KV2) follows by Corollary 1.22 (ii).

Remark. Lemma 1.25 leads to an equivalent form of the Kashiwara-Vergne
conjecture: there exists a couple (F;G) such that (KV1) and (KV2) if and
only if there exists a couple (F;G), invariant under the symmetries � and
�, such that, setting P = (1� e�x)F , Q = (ey � 1)G, E = P � Q and
v = adV (X;Y ), the following equations hold:

V (Y;X) = X + Y � P (X;Y )�Q(X;Y )

trg

�x
2
coth

x

2
� @XE �

y

2
coth

y

2
� @Y E

�
= trg

�v
2
coth

v

2
� 1
�
:

The equivalence follows from Lemma 1.25 (ii), Propositions 1.12 and 1.13.
This variant of the conjecture was used in the original article [30] §5 for the
solvable case.

1.10 The General Case

1.10.1 An Abstract Formulation of the Kashiwara-Vergne
Problem

The formalism described in 1.8 allowed Alekseev and Torossian to give a
complete proof of the Kashiwara-Vergne conjecture with the aid of Drinfeld�s
associators. We shall content ourselves here with a very brief survey of their
method and refer to [7] and [2] for full details. Let us state and explain one
of the main results of [7]. A few words about its proof are given in the next
section.

Theorem 1.26 There exist F 2 TA2 and g 2 A1 such that (AT1) and
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(AT2) hold:

F(V (X;Y )) = X + Y (AT1)

J (F) = hg(X) + g(Y )� g(X + Y )i : (AT2)

The group TA2 of tangential automorphisms of the free Lie algebra l2 was
de�ned in 1.8.1, and we know from 1.8.2 that (KV1) for Lie series F;G 2 l2
implies (and is in fact equivalent to) the existence of F 2 TA2 satisfying
(AT1). Let us recall that F is obtained from F and G by integrating the
tangential derivations Dt = (Ft; Gt).
As in 1.8.4 we introduce the algebraAn of associative but non-commutative

formal series in n generators. We denote here by hAni = A+n =[An;An] the
vector space spanned by cyclic words in the generators and by a 7! hai the
canonical projection9 . Note that, unlike the similar notation in 1.8.4, there
is no � and no N here. Except for this di¤erence, the de�nitions and prop-
erties already given of div and J remain the same. As in 1.8.6 (AT1) and
(AT2) imply the existence of a series h 2 A1 (not necessarily even here) such
that divD = hh(X) + h(Y )� h(V (X;Y ))i. As in 1.8.7 it can be proved that
h(X) = 1

2

�
X
2 coth

X
2 � 1

�
+ h�(X) where h� is odd. Finally the automor-

phism F can be modi�ed into a new solution of (AT1) and (AT2) so as to
obtain h� = 0, hence (KV2); see [7] §5 and §6.
Therefore Theorem 1.26 implies the Kashiwara-Vergne conjec-

ture.

1.10.2 Drinfeld�s Associators and the Kashiwara-Vergne
Conjecture

Assuming (AT1) and (AT2) one can de�ne � 2 TA3 by �F1;23F2;3 =
F12;3F1;2 as in (1.31) and prove that �(X + Y + Z) = X + Y + Z as in
1.8.3. Besides J (�) = 0 follows from the cocycle property of J together
with (AT2) although Proposition 1.17 and Lemma 1.18, which made use of
� and N , are no more valid here. One can also check that � satis�es the
pentagon equation in TA4

�12;3;4�1;2;34 = �1;2;3�1;23;4�2;3;4

with a subscript notation similar to the one used in 1.8.3.
Remarkably, one can go backwards and prove Theorem 1.26 by letting

� play the main role, as brie�y sketched below. The following fundamental
theorem is due to Drinfeld.

Theorem 1.27 There exists � 2 TA3 such that
(i) �(X + Y + Z) = X + Y + Z and J (�) = 0
(ii) � satis�es the pentagon equation, two hexagon equations and the inver-
sion property �3;2;1 = �

�1
1;2;3

(iii) � belongs to the subgroup of TA3 generated by in�nitesimal braids.
9This map is denoted by a 7! tr a in [7].
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Such a � is called a Drinfeld associator. We refer to [7], [2] and the mono-
graph [21] for detailed statements of (ii) and (iii). Drinfeld�s proof exhibits
an example of � arising from the monodromy of the Knizhnik-Zamolodchikov
di¤erential equation

u0(z) =
1

2i�

�
X

z
+

Y

z � 1

�
u(z):

Given a Drinfeld associator �, Alekseev and Torossian [7] construct an
F 2 TA2 such that �F1;23F2;3 = F12;3F1;2. The automorphism F is ob-
tained as F = exp f , where the homogeneous components of f 2 td2 are
determined inductively; a closed formula for F is given by Theorem 4 in
[2]. From the property �(X + Y + Z) = X + Y + Z it follows that the
Lie series �(X;Y ) := F�1(X +Y ) satis�es the associativity �(X;�(Y;Z)) =
�(�(X;Y ); Z). Looking at the expansion of �, the authors show that this
implies �(X;Y ) = V (X;Y ) hence (AT1).
Then, using the cocycle property of j as we did at the end of 1.8.4,

they prove that the property J (�) = 0 implies (1.35) hence (AT2) by the
cohomology argument of Proposition 1.19.
To sum up, from a Drinfeld associator one can thus construct a solution

F of (AT1)(AT2) hence a solution (F;G) of the Kashiwara-Vergne conjec-
ture. Moreover, the inversion property (ii) of � implies the invariance of this
solution under the symmetry � of 1.7.2.

Notes

In their pioneering 1978 paper [30] Masaki Kashiwara and Michèle Vergne
proved that the convolution formula (1.1) for invariant distributions in a Lie
group is implied by the «combinatorial» conjecture (KV1)(KV2) in its Lie
algebra. They also proved the conjecture for all solvable Lie algebras.
Three years later I proved the conjecture in the note [42] for the simplest

non-solvable algebra, sl(2;R), by means of ad hoc calculations which did
not seem to extend beyond this case. Excepting this modest attempt, no
signi�cant progress occurred for nearly twenty years, until Vergne proved the
conjecture for all quadratic Lie algebras in her 1999 note [59] by means of
di¤erential forms.
Things speeded up in the �rst decade of the twenty-�rst century. In

2001 Martin Andler, Siddhartha Sahi and Charles Torossian [9] proved the
convolution property (1.1) (but not the combinatorial conjecture) by means
of the Kontsevich star product [32]. In 2002, using the Moser trick and tools
from Poisson geometry, Anton Alekseev and Eckhard Meinrenken [3] gave a
new proof of the conjecture for quadratic Lie algebras. In 2006 [5], using the
2002 paper [54] by Torossian, the same authors gave the �rst complete proof
of the conjecture. The Kontsevich deformation quantization was again one
of the major tools in this approach; see Torossian�s exposition [57]. Then,
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in 2008 Alekseev and Torossian [7] (see also [2]) gave a di¤erent proof of
the conjecture, reducing the problem to the existence theorem of Drinfeld�s
associators. A recent paper by Carlo Rossi [41] sheds light on the link between
both proofs.
In their 2009 note [8] Alekseev and Torossian showed that the Kashiwara-

Vergne problem is «trivial» for quadratic Lie algebras and, following the ideas
of [8] and [30], I noted a similar «triviality» for solvable algebras [48].
The reader is advised to browse through Torossian�s web page10 , which

gathers many interesting documents.
Without any claim for giving here an exhaustive bibliography, let us also

mention the papers [1], [6] and [12] related to the non-uniqueness problem in
the conjecture.
Sections 1.2 to 1.5 are essentially taken from the fundamental 1978 paper

[30]. The symmetries � and � in 1.7 are used in [30] p. 265; the additional
details on � given here are from Section 8 of Alekseev and Torossian�s article
[7]. The expression (1.11) of F and G was given in my 1986 paper [43]
and their relation to the original construction in [30] for the solvable case
is explained in the appendix to [43]. Proposition 1.8 is mentioned without
proof in [43] p. 562. Section 1.6 is taken from [42]; a simpler proof would be
welcome.
Section 1.8 follows Alekseev and Torossian�s works [7][8]. The proof of

Theorem 1.14 given here is slightly di¤erent from the original however, after
a suggestion given to me by Alekseev. The proof of Lemma 1.18 is due
to Vergne. The study of second order terms in 1.8.7.d follows Emanuela
Petracci�s thesis (see [6]). Section 1.9 is taken from [8] for the quadratic case
and [48] for the solvable case. Section 1.10 gives a very brief overview of the
deep proof in [7] with Drinfeld�s associators.

10http://www.math.jussieu.fr/~torossian/
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Chapter 2

Convolution on
Homogeneous Spaces

In this short chapter we de�ne convolution products on a general homo-
geneous space G=H. No symmetric space structure is assumed here. We
give some examples, the most important being the application to invariant
di¤erential operators. Then we extend the de�nitions to line bundles over
homogeneous spaces.

2.1 De�nition and Examples

Let G be a Lie group, H a closed subgroup and S = G=H the homogeneous
space of all left cosets gH, g 2 G. Let � denote the action of G on G=H, that
is �(g)g0H = gg0H. A distribution V on S is H-invariant if hV; f � �(h)i =
hV; fi for any test function f 2 D(S) and any h 2 H.
The convolution of a distribution U by an H-invariant distribution V

is the distribution U �S V de�ned by

hU �S V; fi := hU(gH)
 V (g0H); f(gg0H)i = hU(gH); hV; f � �(g)ii (2.1)

for any test function f ; here g, g0 denote variables in G. Due to the H-
invariance of V the term hV; f � �(g)i is a right H-invariant function of g,
therefore de�nes a function of gH. The de�nition (2.1) makes sense under
suitable assumptions on the supports of U , V and f , e.g. if V and f are
compactly supported. If U and V are H-invariant then U �S V is H-invariant
too. If V and W are H-invariant we have U �S (V �S W ) = (U �S V ) �S W ,
as follows from the associativity of the multiplication in G.
If S has a G-invariant measure dx a (continuous) function U on S can

be identi�ed with the distribution f 7!
R
S
U(x)f(x)dx. The convolution of

two such distributions U and V , the latter being H-invariant, is given by the
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integral

(U �S V ) (g0H) =
Z
S

U(gH)V (g�1g0H) d(gH):

Example 1: H compact. The convolution �S on S is then induced by the
convolution �G on the group G.
Indeed the canonical projection � : G ! G=H is here a proper map. Func-
tions and distributions on S can be pulled back to G by

��f = f � � , h��U;'i = hU; ��'i with ��'(gH) =
Z
H

'(gh)dh

for f 2 D(S), U 2 D0(S) and ' 2 D(G), dh being the Haar measure of H
normalized by

R
H
dh = 1. Note that ����f = f and h��U; ��fi = hU; fi. In

particular, taking '(g) = hV (g0H); f(gg0H)i forH-invariant V , resp. '(g0) =
f(gg0H), we simply have ��'(gH) = '(g) so that

hU(gH); hV (g0H); f(gg0H)ii = h��U(g); hV (g0H); f(gg0H)ii
= h��U(g); h��V (g0); ��f(gg0)ii ;

that is
hU �S V; fi = h��U �G ��V; ��fi :

Here the right-hand side makes sense even if V is not H-invariant. Then
�� (U �S V ) = ��U �G ��V .

Example 2: group case. Let G be a Lie group, G := G � G and let
H := f(g; g); g 2 Gg be the diagonal subgroup. The map (g1; g2)H 7! g1g

�1
2

identi�es the homogeneous space S = G=H with the group G, an H-invariant
distribution on S with a central distribution on G and the convolution (2.1)
on S with the convolution on G (which again makes sense even if V is not
H-invariant).
Indeed a function f 2 D(S) corresponds with f 2 D(G) given by f ((g1; g2)H)
= f

�
g1g

�1
2

�
i.e. f(g) = f((g; e)H), and a distribution U 2 D0(S) corresponds

with U 2 D0(G) given by hU; fi =


U; f

�
for all f . Now let g1; g2 2 G be

�xed. If V is an H-invariant distribution on S we may replace (g01; g
0
2) by

(g�12 g01; g
�1
2 g02) so as to obtain:

hV ((g01; g02)H); f((g1; g2)(g01; g02)H)i =


V ((g01; g

0
2)H); f((g1g

�1
2 g01; g

0
2)H)

�
:

Introducing the function '((g01; g
0
2)H) := f((g1g

�1
2 g01; g

0
2)H) this expression

equals
hV; 'i =



V ; '

�
with

'(g0) = '((g0; e)H) = f((g1g
�1
2 g0; e)H) = f(g1g

�1
2 g0):

Therefore
hV; 'i =



V (g0); f(g1g

�1
2 g0)

�
= F ((g1; g2)H)
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with F (g) :=


V (g0); f(gg0)

�
, and �nally

hU �S V; fi = hU;F i = hU;F i =


U(g);



V (g0); f(gg0)

��
=


U �G V ; f

�
as claimed.

Example 3: invariant di¤erential operators. Let D(S) denote the al-
gebra of linear di¤erential operators D on the homogeneous space S = G=H
which are G-invariant, that is D(f � �(g)) = (Df) � �(g) for any f 2 D(S),
g 2 G. An element D of D(S) acts on D(S) or C1(S) and, by transposition,
on distributions:


tDU; f
�
:= hU;Dfi , U 2 D0(S) , f 2 D(S):

The operator tD preserves H-invariance.
If V is H-invariant,


tD (U �S V ) ; f
�
= hU(gH); hV; (Df) � �(g)ii
= hU(gH); hV;D(f � �(g)ii =



U � tDV; f

�
;

therefore
tD (U �S V ) = U �S tDV: (2.2)

In particular, � denoting the Dirac measure at the origin o = H of S, we
have tD� 2 D0(S)H and

tDU = U �S tD�: (2.3)

Also t (D �D0) � = tD� � tD0� for D;D0 2 D(S).
Conversely, let T be an element of D0(S)H supported at o. De�ning D by

Df(gH) := hT; f � �(g)i , f 2 D(S) , g 2 G ,

we get a linear map D : D(S) ! C1(S) decreasing supports, therefore a
di¤erential operator by Peetre�s theorem ([28] p. 236), clearly G-invariant on
S. Thus D 2 D(S) and tD� = T .
Remark. Assume S = G=H has a G-invariant measure d�. Then D 2 D(S)
implies tD 2 D(S). Indeed we have, for f1; f2 2 D(S) and g 2 G,Z

S

tD(f1 � �(g)) � f2 d� =

Z
(f1 � �(g)) �Df2 d�

=

Z
f1 �

�
Df2 � �

�
g�1

��
d�

=

Z
f1 �D

�
f2 � �

�
g�1

��
d�

=

Z
tDf1 �

�
f2 � �

�
g�1

��
d�

=

Z
S

�
tDf1 � � (g)

�
� f2 d�
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in view of the invariance of d� and D; thus tD commutes with �(g), as
claimed.

2.2 Extension to Line Bundles

2.2.1 The Line Bundle L�
Given a Lie group G, a closed subgroup H and a character � of H (a mor-
phism ofH into the multiplicative group of positive numbers) the correspond-
ing line bundle above G=H is

L� := G�H C;

the set of classes of couples (x; z) 2 G� C under the equivalence relation

(x; z) � (xh; �(h)�1z) , h 2 H:

The class of (x; z), denoted by (x; z) 2 L�, projects in the base space as
xH 2 G=H.
If  is a character of the whole group G, the map (x; z) 7! (x;  (x)�1z)

de�nes an isomorphism of L� onto L� .
A smooth section s : G=H ! L� can be identi�ed with a complex valued

function f 2 C1(G) such that

f(xh) = �(h)�1f(x)

for all x 2 G, h 2 H, by the relation s(xH) = (x; f(x)). Let �(L�) denote
the space of smooth sections.
Example. If d is a positive constant, the character

�d(h) :=
��det g=hAdh���d

(the absolute value may be forgotten if H is connected) de�nes a line bundle,
the sections of which are the d-densities on G=H; for d = 0 the 0-densities are
functions and the space of sections is C1(G=H). The special case d = 1=2
will be important in the sequel.

The map (x; z) 7! g � (x; z) = (gx; z) de�nes a natural action of g 2 G on
L�, whence its action on a section s:

sg(xH) := g�1 � s(gxH):

Thus sgg0 = (sg)g0 . If s corresponds to a function f on G, then sg corresponds
to fg(x) = f(gx); a section is H-invariant if and only if the corresponding
function is left H-invariant on G.
A linear di¤erential operatorD : �(L�)! �(L�) isG-invariant if (Ds)g =

D(sg) for all s and g. Let D(L�) denote the algebra of these operators under
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addition and composition. If  is a character of the whole group G, the
map D 7!  �1 � D �  (where  is the multiplication operator by  (x)) is
an algebra isomorphism of D(L�) onto D(L� ). The algebra D(L�) can be
described in terms of enveloping algebras (see Notes below) but we shall not
need it in the sequel.

2.2.2 Convolution of Distributions on L�
A distribution U on L� is a continuous linear form on the space of compactly
supported smooth sections, equipped with the Schwartz topology. It is H-
invariant if

hU; shi = �(h)�1 hU; si

for all h 2 H and all compactly supported smooth sections s. For example
the Dirac distribution � de�ned by < �; s >= f(e) (with s(xH) = (x; f(x)))
and, more generally, the distribution tD� de�ned by


tD�; s
�
= h�;Dsi

are H-invariant for any D 2 D(L�).
The convolution of U by an H-invariant distribution V on L� (with suit-

able supports) is the distribution U � V de�ned by

hU � V; si = hU; �i with �(xH) = (x; hV; sxi):

The convolution of two H-invariant distributions is H-invariant. Moreover

tD (U � V ) = U � tDV , U � tD� = tDU
tD� � tD0� = t (D �D0) �:

if D;D0 2 D(L�) and V is H-invariant.

Notes

The algebra D(L�) has been studied in various papers, in particular by Michel
Du�o [19] for symmetric spaces, Tom Koornwinder [35] for general (non nec-
essarily reductive) homogeneous spaces, Goro Shimura [50] for Hermitian
symmetric spaces and Katsuhiro Minemura [38] for reductive homogeneous
spaces.
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Chapter 3

The Role of e-Functions

Throughout this chapter S = G=H denotes a (n-dimensional) connected
and simply connected symmetric space, where G is a simply connected
real Lie group (we may assume this) with involutive automorphism � andH is
the connected component of the identity in the �xed point subgroup of � in G.
See Notation for more details; the main use of these topological assumptions
is to specify the open sets we are working on. We still denote by � the
corresponding automorphism of the Lie algebra g, whence the decomposition
g = h� s.
In Section 3.1 we de�ne a transfer map e from s to S for functions

and distributions by means of the exponential map. We then introduce the
concept of e-function, which appears when transferring convolutions back
from S to s. Section 3.2 is devoted to the simple case of special symmetric
spaces, when e is identically 1 and convolutions ofH-invariant distributions in
s and S correspond under e. Disregarding an existence proof of e-functions
(postponed until Chapter 4), we develop in Section 3.3 applications of e-
functions to invariant di¤erential operators then, in Section 3.4, to mean
value operators and spherical functions of Riemannian symmetric spaces. No
speci�c construction of e is required in those sections.
Section 3.5 explains how to obtain an e-function from certain integral

formulas, if H is a compact group. This is the method used in Section 3.7
to produce an explicit e-function for rank one Riemannian symmetric spaces
of the noncompact type (the hyperbolic spaces). In the (partly conjectural)
Section 3.6 we investigate some links between e-functions and spherical func-
tions on a semisimple Lie group, arising from asymptotic properties as one
goes to in�nity in the positive Weyl chamber.
The chapter ends with an extension of e-functions to line bundles over a

symmetric space (Section 3.8), and a list of open problems (Section 3.9).
The main features of this chapter are De�nition 3.3 of e-functions, Propo-

sition 3.5 (properties of special symmetric spaces), Theorems 3.8 and 3.9 (link
with invariant di¤erential operators), Theorem 3.13 and Corollary 3.14 (ex-
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pansion of mean value operators and spherical functions by means of e),
Theorem 3.18 (another link between e and spherical functions) and Theorem
3.23 (an explicit e-function for all hyperbolic spaces).

3.1 Transferring Convolutions

3.1.1 The Transfer Map

Our goal is to relate analysis of H-invariant functions (or distributions) on
the symmetric space S to analysis on its tangent space s at the origin, by
means of the exponential mapping Exp : s! S (normal coordinates).
First we need to restrict ourselves to an open set on which Exp is a

di¤eomorphism. For the group G we recall from Section 1.3 that there exists
a connected open neighborhood g0 of 0 in g, invariant under AdG, � and all
maps X 7! tX, t 2 [�1; 1], such that exp : g0 ! exp g0 is a di¤eomorphism.

Lemma 3.1 The set s0 := s \ 1
2g
0 is a connected open neighborhood of the

origin in s, invariant under all maps X 7! tX and X 7! h �X for t 2 [�1; 1],
h 2 H, and such that Exp : s0 ! S0 := Exp s0 is a di¤eomorphism.

If G is simply connected we may take

s0 = fX 2 sj j Im�j < �=2 , for all eigenvalues � of adX on gg .

If Exp is a global di¤eomorphism, e.g. if S is a Riemannian symmetric space
of the noncompact type ([27] p.253), we may replace s0 by s.
Proof. Let gH denote a coset in Exp s0; then g = eXh for some X 2 s0 and
h 2 H. By the symmetry � we get �g = e�Xh therefore e2X = g(�g)�1.
But 2X belongs to g0 and, in view of the properties of g0, this implies X =
1
2 log

�
g(�g)�1

�
2 s0. It follows that Exp : s0 ! Exp s0 is a di¤eomorphism.

De�nition 3.2 Let j be a given analytic function on s0, strictly positive and
H-invariant, normalized by j(0) = 1. We transfer a function f on s0 into
the function ef on S0 de�ned by

j(X) ef(ExpX) = f(X) , X 2 s0 ,

and a distribution u on s0 into the distribution eu on S0 de�ned byDeu; efE = hu; fi
for all f 2 D(s0). These de�nitions extend in an obvious way with s0 replaced
by an open subset of s0.
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Remarks. (a) The transfer preserves H-invariance.
(b) For the time being there is no need for a speci�c choice of the factor j;
we might for instance take j = 1. It will soon become clear however that the
most interesting choice is the square root of the Jacobian of Exp, i.e. j(X)2 =
J(X) = dets (sh(adX)= adX); see Example 1 below, or Propositions 3.6 and
4.23, or the speci�c properties of the line bundle of half-densities (Sections
3.8 and 4.5). The particular choice j = J1=2 will always be speci�ed in the
sequel.

Example 1: transferring measures. Let dX be a Lebesgue measure on
s and let a(X)dX be the distribution on s0 de�ned by a locally integrable
function a. The distribution (a(X)dX)e on S0 is de�ned byD

]a dX; efE = ha dX; fi = Z
s0
a(X)f(X)dX

=

Z
s0
ea(ExpX) ef(ExpX)j(X)2dX ,

for all f 2 D(s0). In other words

(a(X)dX)e= ea(x)d�(x) ,
where d�(x) := (j(X)dX)e is the measure on S0 given byZ

S0
'(x) d�(x) =

Z
s0
'(ExpX)j(X)2dX , ' 2 D(S0) .

If dX is H-invariant, S has a G-invariant measure dx (normalized so that
dExpX = J(X)dX) and it follows that d�(x) =

�
j2J�1

�
(Log x)dx where

Log is the inverse map of Exp. Thus j = J1=2 is the only choice of j such that
the de�nitions of e for functions and distributions agree through (a(X)dX)e=ea(x)dx.
Example 2: transferring invariant di¤erential operators. We consider
D(s)H , the algebra of H-invariant (linear) di¤erential operators on s with
constant coe¢ cients, and D(S), the algebra of G-invariant (linear) di¤erential
operators on S. Let �0, resp. �, denote the Dirac measure at the origin of
s, resp. S; then e�0 = �. For P 2 D(s)H the distribution (tP�0)e belongs to
D0(S)H and is supported at the origin. As noted in Example 3 of 2.1 there
exists a (unique) di¤erential operator eP 2 D(S)such that

t eP� = �tP�0�e. (3.1)

More generally, by (2.3),

t ePU = U �S
�
tP�0

�e (3.2)



56 CHAPTER 3. THE ROLE OF E-FUNCTIONS

for any distribution U on S.
The de�nition of eP means that eP ef(o) = Pf(0) for any smooth function

f on s, an equality only valid at the origin in general; the appropriate gen-
eralization will be given by Theorem 3.8. Taking ' 2 C1(S), g 2 G and
f(X) := j(X)'(g � ExpX) we have ef(x) = '(g � x) and the correspondence
P 7! eP is explicitly given by

eP'(gH) = P (j(X)'(g � ExpX))jX=0 , (3.3)

P acting on X 2 s in the right-hand side. Conversely, with Log = Exp�1

near the origin,

Pf(X) = eP ((j(Log x))�1f(X + Log x))
���
x=o

for f 2 C1(s), X 2 s and eP acting on x 2 S. The map P 7! eP is an
order preserving linear isomorphism of D(s)H onto D(S), but not in general
an isomorphism of algebras; see Proposition 3.5 and Theorem 3.9 below.
For j = 1 our map is the symmetrization map � : P 7! eP = D�(P )

considered by Helgason [28] p. 287; it should not be confused of course with
the transfer of di¤erential operators by means of the di¤eomorphism Exp.
For general j, (3.3) may be written as a Fischer product (see Section 3.3.1)

( eP')(gH) = hP (�)jj(X)'(g � ExpX)i = hj(@�)P (�)j'(g � ExpX)i ;
where j(@�) is an in�nite order di¤erential operator acting on the variable
� 2 s�, in other words1 eP = � (j(@)P ).

3.1.2 e-Functions

A function j being chosen, we retain the notation e from De�nition 3.2 and
now try to transfer convolutions. On s the classical abelian convolution �s of
two distributions u; v is de�ned by

hu �s v; fi = hu(X)
 v(Y ); f(X + Y )i :

But a simple convolution formula like eu�S ev = (u �s v)e does not hold for gen-
eral symmetric spaces: see Proposition 3.7 for instance. Instead convolutions
of H-invariant distributions on S will correspond via e to some «twisted»
abelian convolutions on s as de�ned by (3.4) below; with tools from Chapter
4 at hand, (3.4) will be motivated at the beginning of Section 4.3.2.

1Some authors have named «Rouvière�s isomorphism» the map P 7! � (j(@)P ). So far
so good but it should be noted that it is an isomorphism of algebras in some cases only,
e.g. for special symmetric spaces. Generalized Du�o isomorphisms will be discussed in
Section 3.3.4.
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De�nition 3.3 Let e : 
! R be an analytic function on an open neighbor-
hood 
 of (0; 0) in s0 � s0, such that:
(i) for all h 2 H and (X;Y ) 2 
, one has (h�X;h�Y ) 2 
 and e(h�X;h�Y ) =
e(X;Y )
(ii) for any H-invariant distributions u; v and any smooth function f on open
neighborhoods of the origin in s (with suitable supports), one hasDeu �S ev; efE = hu(X)
 v(Y ); e(X;Y )f(X + Y )i : (3.4)

We call such a function an e�function of S (associated with the given
function j).
If 1 is an e-function, that is

eu �S ev = (u �s v)e
for any H-invariant distributions u; v on open neighborhoods of the origin in
s (with suitable supports), the symmetric space S is said to be special.

No invariance of f is necessary here. A precise assumption about the supports
of u; v; f is in order, so that both sides of (3.4) make sense. Let u; v be H-
invariant distributions on some open subsets of s0 and f 2 C1(s). Writing
Z0(X;Y ) := X + Y , we assume that�


 \ (suppu� supp v) \ supp (f � Z)

 \ (suppu� supp v) \ supp (f � Z0)

are compact. (3.5)

Our main applications will be to invariant di¤erential operators: v is then an
H-invariant distribution supported at the origin of s (Example 2 in 3.1.1).
Let


1 := fX 2 sj(X; 0) 2 
g;

an H-invariant open subset of s0. Since Z(X; 0) = Z0(X; 0) = X assumption
(3.5) becomes: u is an H-invariant distribution on an open subset U of s,
f 2 C1(s) and 
1 \ suppu \ supp f is compact. This support condition is
ful�lled, for instance, if f 2 D (
1 \ U).
Choosing u = v = �0 in (3.4) shows that e(0; 0) = 1 necessarily.

Example 1. Let G = SOo(n; 1) (the connected component of the identity in
SO(n; 1)), H = SO(n) and j = J1=2. An e-function for the real hyperbolic
space Hn(R) = G=H is

e(X;Y ) = A (kXk ; kY k ; kX + Y k)(n�3)=2

where the function A and the norm are de�ned in Theorem 3.23; in particular
H3(R) is special. A hypergeometric factor also appears in e for the other
hyperbolic spaces (complex, quaternionian, exceptional).
Example 2. More examples of special spaces are given in Section 3.2.
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We shall prove in Chapter 4 (Theorem 4.12) that any symmetric space
admits an e-function on some suitably chosen 
 (Theorem 4.6). But except-
ing Section 3.7 our purpose in the present chapter is only to develop some
consequences of (3.4), taking for granted the existence of an e-function of S.
Let us modify the left-hand side of (3.4) into a more convenient form. For

X;Y in a neighborhood of the origin of s let Z(X;Y ) 2 s0 be de�ned by

ExpZ(X;Y ) = expX � ExpY .

Proposition 3.4 Let 
 be an open neighborhood of (0; 0) in s0� s0 on which
e : 
! R and Z : 
! s0 are analytic.
(i) Let u; v; f satisfy (3.5). The equality (3.4) in De�nition 3.3 is equiv-

alent to the following:�
u(X)
 v(Y ); j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�
=

= hu(X)
 v(Y ); e(X;Y )f(X + Y )i : (3.6)

(ii) If detsAdh = 1 for all h 2 H, an e-function satis�es e(X; 0) = e(0; Y ) =
1 for all X;Y such that (X; 0) and (0; Y ) belong to 
.

Remarks. (a) Replacing u by j�1u, v by j�1v and f by jf gives the
following variant of (3.6)

hu(X)
 v(Y ); f(Z(X;Y ))i =

=

�
u(X)
 v(Y ); j(X + Y )

j(X)j(Y )
e(X;Y )f(X + Y )

�
: (3.7)

Looking at (3.6) or (3.7) we see that, up to the j factors, e plays the same
role as the Jacobian of a map transforming Z(X;Y ) into X + Y ; this is the
strategy to construct e in Chapter 4.
If j and � are analytic functions on s0, strictly positive and H-invariant,
normalized by j(0) = �(0) = 1 and e(X;Y ) is an e-function associated to j,
then

�(X)�(Y )

�(X + Y )
e(X;Y )

is an e-function associated to �j. If e itself may be written as e(X;Y ) =
�(X + Y )=�(X)�(Y ) for some �, replacing j by �j will turn S into a special
space.
(b) The assumption of (ii) holds true if G=H has a G-invariant measure and
H is connected, in particular if H is compact connected.

Proof. (i) The functions j(X)j(Y )
j(Z(X;Y ))f(Z(X;Y )) and e(X;Y )f(X + Y ) are

smooth on (X;Y ) 2 
 and, assuming (3.5), both sides of (3.6) are well-
de�ned. The left-hand side is hu(X); '(X)i with

'(X) := j(X)

�
v(Y );

j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�
:
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The variables X;Y remain in s0 and repeated use of the de�nition of e gives
hu; 'i = heu; e'i with

e' (ExpX) = j(X)�1'(X) =
D
v(Y ); j(Y ) ef (ExpZ(X;Y ))E

=
D
v(Y ); j(Y )

� ef � � �eX�� (ExpY )E = Dev; ef � � �eX�E :
The left-hand side of (3.6) is �nally

Deu(gH);Dev; ef � �(g)EE, that is
Deu �S ev; efE = �u(X)
 v(Y ); j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�
(3.8)

as claimed.
(ii) Here the Lebesgue measure dX of s de�nes an H-invariant distribution
on s. Applying (3.6) to u = dX and v = �0 (the Dirac measure of s) we
obtain, in view of Z(X; 0) = X and j(0) = 1,Z

s

f(X)(1� e(X; 0))dX = 0

for any f 2 D(
1), hence e(X; 0) = 1 if (X; 0) 2 
. Similarly u = �0 and
v = dY give e(0; Y ) = 1.

3.2 Special Symmetric Spaces

Let us study �rst the nice case when convolutions ofH-invariant distributions
on S correspond exactly, by the transfer map e, to classical abelian convolu-
tions on its tangent space s, as was the case for Lie groups in Chapter 1. We
call special such symmetric spaces (De�nition 3.3). This property essentially
implies j = J1=2; see Propositions 3.6 and 4.23 for precise statements.
As shown by Propositions 3.5 and 3.6, H-invariant analysis on special

symmetric spaces boils down to classical abelian analysis on the tangent
space. The following spaces are special (with j = J1=2):

� all symmetric spaces G=H with G solvable (Theorem 4.22)

� all strongly symmetric spaces (De�nition 4.21 and Theorem 4.22), e.g.
spaces of the form GC=GR or Lie groups viewed as symmetric spaces

� a Riemannian symmetric space of the noncompact type G=K is special
if and only if G admits a complex structure (Proposition 3.7).

As in Section 3.1.2, 
 denotes an open neighborhood of (0; 0) in s0 � s0,
invariant under (X;Y ) 7! (h �X;h �Y ) for h 2 H, on which Z is analytic. Let

1 := fX 2 sj(X; 0) 2 
g � s0 and Z0(X;Y ) := X + Y . The map P 7! eP is
de�ned in 3.1.1.
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Proposition 3.5 Assume S is a special symmetric space. Then
(i) Let u; v be H-invariant distributions on open subsets of s and f 2 C1(s)
such that (3.5) holds. ThenDeu �S ev; efE = Dû �s v; efE = hu �s v; fi :
If P 2 D(s)H and u is an H-invariant distribution on an open subset U of s,

gtPu = t eP eu;
an equality of distributions on Exp (
1 \ U).
(ii) The map P 7! eP is an algebra isomorphism of D(s)H onto D(S).
(iii) Any non-zero di¤erential operator in tD(S) has an H-invariant funda-
mental solution on 
1 and is locally solvable.

The transfer map reduces invariant di¤erential equations on a special space
to equations with constant coe¢ cients on its tangent space.
As noted at the end of 2.1, tD(S) = D(S) if S has a G-invariant mesaure.
Proof. (i) follows from De�nition 3.3 with e = 1 on 
 and the support
condition (3.5). The second equality is obtained by taking v = tP�0, in view
of (3.2).

(ii) Taking now u = tQ�0 with Q 2 D(s)H we infer that ^tP tQ�0 = t eP t eQ�,
hence t(gQP ) = t( eQ eP ) by (3.1) and the conclusion.
(iii) By (ii) any operator in tD(S) is t eP for some P 2 D(s)H . The di¤erential
operator tP has constant coe¢ cients and is H-invariant on s; by a result due
to Raïs [40] it admits an H-invariant (and tempered) fundamental solution
E 2 D0(s)H . Restricting it to 
1 we obtain E 2 D0(
1)H such that t eP eE =e�0 = � on Exp
1 by (ii). The local solvability follows in view of (2.2).

We now discuss, under some stronger assumptions, the meaning of the
convolution equality for special symmetric spaces. In order to avoid repeti-
tions we shall use results proved for general symmetric spaces in Section 3.3,
specialized here to the case e = 1. Let E 0(s)H denote the space of H-invariant
distributions on s with compact support and, for � 2 s� (the dual of s),

bu(�) := Du(X); e�ih�;XiE
the classical Fourier transform of u 2 E 0(s)H . Recall that an H-invariant
smooth function ' on a symmetric space S = G=H, H compact, is called a
spherical function if '(o) = 1 and ' is an eigenfunction of all di¤erential
operators in D(S). Spherical functions are characterized by the functional
equation ([28] p. 400): for all g; g0 2 G

'(gH)'(g0H) =

Z
H

'(ghg0H)dh:



3.2. SPECIAL SYMMETRIC SPACES 61

Proposition 3.6 Assume H is compact, Exp : s ! S is a global di¤eo-
morphism onto and j is analytic and strictly positive on s. The following
properties of the Riemannian symmetric space S = G=H are equivalent:
(i) eu �S ev = û �s v on S for all u; v 2 E 0(s)H
(ii) for every � 2 s� there exists a spherical function '� of S such that
eu; '�� = bu(�) for all u 2 E 0(s)H .
These properties imply j(X)j(�X) = J(X) for X 2 s, and j = J1=2 if j is
even.

Here the transfer map reducesH-invariant harmonic analysis on S to classical
Fourier analysis on the tangent space.
Proof. (i))(ii). Assuming (i) we have gtPu = t eP eu for all u 2 E 0(s)H and,
by the proof of Theorem 3.8 (ii), eP ef = fPf on S for all P 2 D(s)H and all
H-invariant smooth functions f on s. We apply this to the integral f�(X) :=R
H
e�ih�;h�Xidh (generalized Bessel function), which is an eigenfunction of all

operators P 2 D(s)H namely P (@X) f� = P (�i�)f�. Thus '� := ef� is a
spherical function on S and, for u 2 E 0(s)H ,


eu; '�� = hu; f�i = bu(�).
(ii))(i). Assuming (ii) we have


û �s v; '�
�
=\u �s v(�) = bu(�)bv(�)
=

eu; '�� 
ev; '�� = 
eu �S ev; '�� ;

as follows from the functional equation of spherical functions and the def-
inition of �S . Let w 2 E 0(s)H be de�ned by ew = û �s v � eu �S ev. Then
 ew;'�� = bw(�) = 0 for all � 2 s�, whence w = 0 and our claim.
Finally let us write (i) at the origin for distributions u(X)dX, v(X)dX, with
u; v 2 D(s)H . By Example 1 in 3.1.1 we have

]udX = Udx with U(ExpX) =
�
jJ�1

�
(X)u(X)

and (see 2.1)

]udX �S gvdX = Udx �S V dx =W1dx

with W1(x) =

Z
S

U(gH)V (g�1 � x)d(gH):

On the other hand, by (i),

]udX �S gvdX = (udX �s vdX)e= ]wdX =W2dx

with W2(ExpX) =
�
jJ�1

�
(X)

Z
s

u(Y )v(X � Y )dY:

Writing W1(o) = W2(o) and remembering j(0) = J(0) = 1, J(�X) = J(X),
we obtainZ

s

U(ExpX)V (Exp(�X))J(X)dX =

Z
s

u(X)v(�X)dX;
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that is Z
s

u(X)v(�X)
�
j(X)j(�X)J(X)�1 � 1

�
dX = 0

for all u; v 2 D(s)H . Taking v(�X) = 1 on suppu, the conclusion easily
follows since j(X)j(�X)J(X)�1 is H-invariant (see Lemma 3.15).

The next proposition considers the case of a Riemannian symmetric space
of the noncompact type. We use here the semisimple notation explained in
Section 0.5.

Proposition 3.7 Let G be a noncompact connected simple Lie group with
�nite center and K a maximal compact subgroup. With transfer e de�ned
by j = J1=2, the symmetric space S = G=K is special if and only if G admits
a complex structure.

Proof. (i) Assume S is special and let �, resp. L, denote the Laplacian on
p, resp. S. By Theorem 3.8 (ii) below we have e� ef = f�f (in a neighborhood
of the origin) for any K-invariant function f , and Proposition 3.11 (ii) givese� = L + c with c = �j(0). Applying this to f = j we obtain ej = 1,f�j = L1 + c = cej, hence �j = cj on p by analytic continuation. Here

j(H) = J(H)1=2 =
Y
�

�
sh�(H)

�(H)

�m�=4

for H 2 a (product over all positive and negative roots �). When restricted
to the open set a0 of regular elements in a the K-invariant equality �j = cj
implies, by means of the radial part of � for the adjoint action of K on p
([28] p. 270): 

�a +
1

2

X
�

m��(H)
�1H�

!
j(H) = cj(H) , H 2 a0;

with a sum over all roots; �a is the Laplacian on a and H� 2 a, de�ned
by hH�;Hi = �(H) for all H 2 a, is viewed here as a constant coe¢ cients
di¤erential operator on a.
Let (Hi) be an orthonormal basis of a and @i the partial derivative with
respect to the i-th coordinate; thus H� =

P
i �i@i with �i = �(Hi) and

�a =
P
i @

2
i . Then j

�1�j = c restricted to a0 becomes

X
i

@i
�
j�1@ij

�
+
X
i

�
j�1@ij

�2
+
1

2

X
i;�

m��(H)
�1�i

�
j�1@ij

�
= c:

Since j�1@ij = 1
4

P
�m�

�
coth�(H)� �(H)�1

�
�i , elementary calculations
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lead to

4
X
�

m�

�
�(H)�2 � (sh�(H))�2

�
j�j2+

+

�����X
�

m� (coth�(H))�

�����
2

�
�����X
�

m��(H)
�1�

�����
2

= 16c

for all H 2 a0, with j�j2 := hH�;H�i =
P
i �

2
i for � 2 a�. Replacing H by tH,

the asymptotic expansion as t ! 1 implies c = j�j2 with � = 1
2

P
�>0m��

and, for the t�2 terms,

4
X
�

m��(H)
�2j�j2 =

�����X
�

m��(H)
�1�

�����
2

:

Fix an indivisible root � and let � denote any root non-proportional to �
(assuming such � exist). There exists H0 2 a such that �(H0) = 0 and
j�(H0)j > 1 for all ��s: one may take H1 2 ker� outside the �nite number of
(d � 2)-planes ker� \ ker� (with d = dim a), and a suitable multiple of H1

will do. Replacing H0 by H := H0 + sj�j�2H� with s > 0 small enough, we
obtain �(H) = s and j�(H)j > 1 for all ��s. In the above equality, written
at this point H, we separate �� and �2� from the other roots �:

8 (m� +m2�) j�j2s�2 + 4
X
�

m��(H)
�2j�j2 = 4 (m� +m2�)

2 j�j2s�2+

+ 4 (m� +m2�)
X
�

m��(H)
�1 h�; �i s�1 +

������
X
�

m��(H)
�1�

������
2

:

The coe¢ cients including �(H)�1 remain bounded as s! 0. The s�2 terms
show that m� + m2� = 2, therefore m� = m2� = 1 or else m� = 2 and
m2� = 0. The former case is impossible because [g�; g�] = g2� ([27] p. 408).
Thus m� = 2 and m2� = 0 for all indivisible roots �. By Araki�s results for
simple Lie algebras this implies that g admits a complex structure ([27] p.
531).
If all roots are proportional to �, there are no

P
��s in the above equation

whence m� +m2� = 2 and the same conclusion.
(ii) The converse follows from Theorem 4.22 (ii) or from Proposition 3.6 (ii)
and the expression of spherical functions of G=K for G complex ([28] p. 425).

3.3 e-Functions and Invariant Di¤erential Op-
erators

Specializing De�nition 3.3 of e-functions to distributions supported at the
origin (Example 2 in 3.1.1), we shall now derive some interesting relations
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between e and the algebra of G-invariant di¤erential operators on a general
symmetric space S = G=H. The philosophy of this section and the next
one is that several important objects in H-invariant analysis on this space
are determined by the algebraic structure of S(s)H (the commutative algebra
of H-invariant elements in the symmetric algebra of s) together with an e-
function. We �rst recall a few elementary facts on symmetric algebras.

3.3.1 The Fischer Product

Let V denote a �nite dimensional vector space over R and V � its dual space.
The (complexi�ed) symmetric algebra S(V ) is canonically isomorphic to the
algebra of (complex valued) polynomial functions on V � and to the algebra
D(V ) of linear di¤erential operators with (complex) constant coe¢ cients on
V . Writing P or P (�) or P (@X) accordingly an element of this algebra (with
� 2 V �, X 2 V ) we have

P (@X)
�
e<�;X>

�
= P (�)e<�;X> .

Similarly an elementQ of S(V �) is a polynomial function on V or a di¤erential
operator on V �. The duality between V and V � extends to a duality between
S(V ) and S(V �) by means of the nondegenerate bilinear form (the Fischer
product)

hP jQi = hP (�)jQ(X)i := P (@X)Q(X)jX=0 . (3.9)

Let (e1; :::; en), resp. (e�1; :::; e
�
n), denote dual bases of V , resp. V �, and

X =
P
Xiei, � =

P
�je

�
j the corresponding decompositions. Then, writing

P (�) =
P
a��

�, Q(X) =
P
b�X

� in multi-index notation � = (�1; :::; �n) 2
Nn, we have

P (@X)Q(X)jX=0 = Q (@�)P (�)j�=0 . (3.10)

since both sides equal
P
� �! a�b�. Let us call «�nite» a linear form on S(V )

which vanishes on all homogeneous elements of S(V ) of degree greater than
some value; the map Q 7! h:jQi allows to identify S(V �) with the space of
�nite linear forms on S(V ).
Replacing Q by the product of two elements Q;R 2 S(V �) in (3.10) we obtain

hP jQRi = R(@�) (Q(@�)P (�))j�=0 = hQ(@�)P (�)jR(X)i

by (3.10) again, that is

hP (�)jQ(X)R(X)i = hQ(@�)P (�)jR(X)i : (3.11)

Thus Q(@�) is the transpose of the multiplication operator by Q(X) with
respect to the Fischer product.
More generally (3.11) still holds if Q is a formal series and R a smooth
function near the origin of V , since the formula only involves a �nite number
of derivatives of R at the origin.
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3.3.2 Explicit Transfer of Invariant Di¤erential Opera-
tors

We retain the notation of 3.1. Our next theorem gives an explicit relation,
by means of e, between an H-invariant constant coe¢ cients di¤erential op-
erator P 2 D(s)H on the tangent space s and the corresponding G-invariant
di¤erential operator eP 2 D(S) on the symmetric space. As usual t denotes
the transposition of di¤erential operators.

Theorem 3.8 Let e : 
 ! R be an e-function of a symmetric space S =
G=H and 
1 = fX 2 sj(X; 0) 2 
g.
(i) For P 2 D(s)H the equation

Pe(X; @X)f(X) := P (@Y ) (e(X;Y )f(X + Y ))jY=0 ;

f 2 C1(
1), de�nes an H-invariant di¤erential operator Pe with analytic
coe¢ cients on 
1 and symbol Pe(X; �) = e(X; @�)P (�). For any H-invariant
distribution u on 
1

t eP eu = �tPe(X; @X)u�eon Exp
1:
(ii) If H is compact and f is any H-invariant smooth function on 
1

eP ef = (Pe(X; @X)f)eon Exp
1:
Remarks. (a) The assumptions on 
 (De�nition 3.3) imply that 
1 is an
H-invariant open subset of s0.
(b) If (X1; :::; Xn) are coordinates with respect to a basis of s and (�1; :::; �n)
the dual coordinates on s� we have, in multi-index notation,

e(X;Y ) =
X

�;�2Nn

1

�!�!
@�X@

�
Y e(0; 0) X

�Y �

Pe(X; �) =
X
�

1

�!
@�Y e(X; 0) @

�
� P (�) =

X
�;�

1

�!�!
@�X@

�
Y e(0; 0) X

� @�� P (�);

(3.12)

with �nite summation over � in the latter equations.
(c) Theorem 4.16 below extends the result of (ii) to arbitrary symmetric
spaces, for a speci�c choice of e.
(d) In view of (ii) �nding the radial part of eP for the action of H on S is
equivalent to the same problem for Pe on s.

Proof. (i) In view of (3.1) (3.2) De�nition 3.3 implies, with v = tP�0,Deu �S t eP�; efE = 
u(X); 
tP�0(Y ); e(X;Y )f(X + Y )
��



66 CHAPTER 3. THE ROLE OF E-FUNCTIONS

for any test function f on 
1, that isD
t eP eu; efE = hu(X); P (@Y )(e(X;Y )f(X + Y ))jY=0i

=


tPe(X; @X)u(X); f(X)

�
=
D�

tPe(X; @X)u
�e; efE :

Besides, by (3.11) with V = s, X �xed and Y as the variable,

Pe(X; @X)f(X) = P (@Y )(e(X;Y )f(X + Y ))jY=0
= hP je(X; :)f(X + :)i = he(X; @)P jf(X + :)i ;

thus Pe(X; @X) is obtained by replacing � by @X in Pe(X; �) = e(X; @�)P (�),
hence (3.12). The H-invariance of Pe is an immediate consequence of the
invariance of P and e.
(ii) By (i) we have

Deu; eP efE = Deu;gPefE for all f 2 D(
1). Assuming H is

compact and f is H-invariant, Pef is H-invariant too and the H-invariant
function eP ef �gPef is annihilated by any H-invariant distribution on Exp
1.
This function must therefore vanish identically, as follows from the existence
of H-invariant means (Lemma 3.15 below). Thus eP ef = gPef if supp f is
compact, and the result extends to any H-invariant f on 
1 by invariant
truncation.

The next result shows how e and the map e de�ned by (3.3) relate
the structures of the algebras D(s)H = S(s)H (the H-invariant elements
in the symmetric algebra of the tangent space) and D(S) (the G-invariant
di¤erential operators on the symmetric space).

Theorem 3.9 Let e(X;Y ) be an e-function of a symmetric space S = G=H.
Then, for any P;Q 2 D(s)H , eP � eQ = P̂ �Q

where the product � on D(s)H is de�ned by

(P �Q)(�) := e (@�; @�) (P (�)Q(�))j�=� = (Qe (@�; �)P (�))j�=� ,

with �; � 2 s�. Thus the map P 7! eP is an order preserving isomorphism of
algebras of

�
D(s)H ;�

�
onto (D(S); �).

The di¤erential operator Qe (@�; �) is obtained from Qe(X; �) in the previous
theorem by substituting @� for X, so that

Qe(X; @X)e
<�;X> = Qe(X; �)e

<�;X> = Qe (@�; �) e
<�;X>j�=� .

In dual coordinates (X1; :::; Xn), (�1; :::; �n) on s and s
� we have the expansion

(�nite sum)

(P �Q)(�) =
X

�;�2Nn

1

�!�!
@�X@

�
Y e(0; 0) @

�
� P (�)@

�
�Q(�) (3.13)

= P (�)Q(�) + lower order terms
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since e(0; 0) = 1. The product � is thus a deformation of the classical product
in the symmetric algebra; of course P � Q = PQ if the symmetric space is
special.
Proof. We already know from 3.1.1 that e is an order preserving isomor-
phism of vector spaces, whence the existence of a unique R 2 D(s)H such
that eP � eQ = eR. To make R explicit we may apply Theorem 3.8 with u
supported at the origin, or compute directly as follows.
Let f be a smooth function on s with support in a neighborhood of the origin.
Then

R(@)f(0) =


tR�0; f

�
=
D
]tR�0; efE = Dt eR�; efE

=
D
t eQ�t eP�� ; efE = Dt eP� � t eQ�; efE

=


tP�0(X)
 tQ�0(Y ); e(X;Y )f(X + Y )

�
= P (@X)Q(@Y )(e(X;Y )f(X + Y ))jX=Y=0

by the de�nition of e. The latter expression is a Fischer product on the space
V = s� s, namely

R(@)f(0) = hP (�)Q(�)je(X;Y )f(X + Y )i
= he (@�; @�)P (�)Q(�)jf(X + Y )i

in view of (3.11). The derivatives @X and @Y have the same e¤ect on f(X+Y )
and, going back to Fischer products on s, we have proved

hR(�)jf(X)i =
D
e (@�; @�)P (�)Q(�)j�=� jf(X)

E
;

which gives the �rst expression of R = P �Q. The second follows easily since
Qe(X; �) = e(X; @�)Q(�) (Theorem 3.8), whence Qe(@�; �) = e(@�; @�)Q(�)
and

e(@�; @�)P (�)Q(�) = Qe(@�; �)P (�) .

Remarks. (a) The composition � of di¤erential operators is associative and
Theorem 3.9 implies that � is an associative law on D(s)H . The derivatives
of e at the origin must therefore satisfy some (non-trivial) identities.
Going the other way around, � is clearly commutative if e is a symmetric
function (e(X;Y ) = e(Y;X)); the algebra D(S) is then commutative. This
holds true for a large class of symmetric spaces, as will be shown in Theorem
4.24 (ii).
(b) Let R = P � Q. Then tRe(X; @X)u =

tQe(X; @X) � tPe(X; @X)u for
all H-invariant distributions u on 
1 by combination of both theorems and,
if H is compact, Re(X; @X)f = Pe(X; @X) � Qe(X; @X)f for all H-invariant
functions f on 
1.

Corollary 3.10 Assume the algebra D(s)H (with its usual product) has a
�nite system of generators P1; :::; Pl. Then fP1; :::; ePl generate the algebra
(D(S); �).
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Proof. For P;Q 2 D(s)H we have PQ = P �Q+ lower order, hence gPQ =eP � eQ+ lower order and the result follows by induction on the order.
3.3.3 Example: the Laplace-Beltrami Operator

Let S = G=H be a pseudo-Riemannian symmetric space and e(X;Y ) an e-
function of S. The space is equipped with the G-invariant metric de�ned by
an H-invariant non-degenerate bilinear form on s; thus detsAdh = 1 for all
h 2 H since H is connected. The next proposition relates the corresponding
(pseudo-)Laplacian � 2 D(s)H on the tangent space, the Laplace-Beltrami
operator L 2 D(S) and the operators e� 2 D(S), �e(X; @X) arising from �
and e. As usual J denotes the Jacobian of Exp.

Proposition 3.11 Let S = G=H be a pseudo-Riemannian symmetric space
S = G=H with an e-function on 
 associated with j = J1=2.
(i) Let ' be a smooth function on an open subset of S. Then, for any gH in
this set, L'(gH) = �X'(g � ExpX)jX=0.
(ii) e� = L+�J1=2(0).
(iii) Assume @Y e(X; 0) = 0 identically. Then

�Y e(X; 0) = �J1=2(0)� J(X)�1=2�
�
J(X)1=2

�
�e(X; @X) = �X +�Y e(X; 0):

If u is an H-invariant distribution on 
1,

Leu = ��u� J�1=2��J1=2�u�e on Exp
1:
(iv) Let G be semi-simple. For the pseudo-Riemannian structure de�ned on
G=H by the Killing form one has e� = L+ (n=12) with n = dimG=H.

Remarks. (a) The assumption @Y e(X; 0) = 0 is satis�ed by the rank one e-
function of Section 3.7 (Proposition 3.24) and by the general (J1=2;�)�function
of Chapter 4 (see Remark (d) after Theorem 4.20, with detsAdh = 1 for all
h 2 H implying trh ad h� = 0 by Lemma 4.11).
(b) The expression (iii) of Leu extends Theorem 3.15 in [28] p. 273, proved
by Helgason for Riemannian symmetric spaces of the noncompact type.

Proof. (i) Both sides are G-invariant operators on S and it su¢ ces to prove
their equality at the origin, that is g = e. But, when using normal coordinates
(the di¤eomorphism Exp) in a neighborhood of the origin of S, the classical
expression

P
i;j g

ij
�
@i@j � �kij@k

�
of L ([28] p. 247) reduces to� at the origin

since, at this point, (gij) is the identity matrix and the Christo¤el symbols
�kij vanish.
(ii) By (3.3) and (i),

e�'(gH) = �X(J(X)
1=2'(g � ExpX))

���
X=0

=
�
L+�J1=2(0)

�
'(gH);
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since J(0) = 1 and @XJ1=2(0) = 0.
(iii) The de�nition of �e is

�e(X; @X)f(X) = �Y (e(X;Y )f(X + Y ))jY=0 = �f(X) + �Y e(X; 0)f(X)

since @Y e(X; 0) = 0 and e(X; 0) = 1 by Proposition 3.4 (ii). Applying

Theorem 3.8 (i) to an H-invariant distribution u we have t e�eu = ]t�eu. But
� and L are symmetric operators, as well as �e and e� computed above,
therefore, by (ii),

Leu = ��u+ (�Y e(X; 0)��J1=2(0))u�e:
The distribution u = J(X)1=2dX is H-invariant since detsAdh = 1. Theneu = dx (Example 1 in 3.1.1), Leu = 0, whence

�
�
J(X)1=2

�
+
�
�Y e(X; 0)��J1=2(0)

�
J(X)1=2 = 0

and our claims follow.
(iv) The Taylor expansion at the origin of J1=2 is

J(X)1=2 =

�
det s

sh(adX)

adX

�1=2
= det s

�
1 +

1

6
(adX)

2
+O(X4)

�1=2
= 1 +

1

12
trs (adX)

2
+O(X4):

For X 2 s the Killing form of g is

B(X;X) = trg (adX)
2
= trh (adX)

2
+ trs (adX)

2
= 2 trs (adX)

2

(see (4.3) in Section 4.2.1). If � is the Laplacian associated to B we get
�B = 2n, �J1=2(0) = n=12 and the result follows from (ii).

Example. Let us de�ne the n-dimensional real hyperbolic space Hn(R) as
the upper half-hyperboloid

x20 � x21 � � � � � x2n = 1 , x0 > 0

in Rn+1, with origin o = (1; 0; :::; 0) and (Riemannian) metric induced by the
Lorentzian metric

�dx20 + dx21 + � � �+ dx2n:
As usual Sn�1 denotes the unit sphere in Rn. The map

(r; �) 7�! x = (x0; x1; :::; xn) = (ch r; (sh r)�)

is a di¤eomorphism of ]0;1[�Sn�1 onto Hn(R)n fog transforming the hy-
perbolic metric into

ds2 = dr2 + (sh r)
2
d�2; (3.14)
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where d�2 is the canonical metric of Sn�1.
The length of a curve de�ned by di¤erentiable functions r(t), �(t) with 0 �
t � T , r(0) = 0, r(T ) = R isZ T

0

q
r0(t)2 + (sh r(t))2 k�0(t)k2dt �

Z T

0

r0(t)dt = R;

where k:k is the Euclidean norm in Rn. Taking r(t) = t and �(t) = �
(constant) we obtain a curve with minimal length (equal to R) among all
curves from the origin to the point (chR; (shR)�) in Hn(R). This curve also
has unit speed parametrization; it is therefore the geodesic between those
points, de�ned by x(t) = (ch t; (sh t)�). The initial speed is V = x0(0) =
(0; �), hence x(t) = Exp tV . Replacing V by rV we see that Exp is simply
the map (r; �) 7! (r; �) if we use Euclidean polar coordinates in the tangent
space and geodesic polar coordinates in Hn(R).
The metric (3.14) gives the hyperbolic volume element dv = (sh r)n�1 drd�
where d� is the volume element of Sn�1. Let !n�1 =

R
Sn�1

d�. For any
radial (continuous) function f = f(r) on Hn(R) we haveZ

Hn(R)
f dv = !n�1

Z 1

0

f(r) (sh r)
n�1

dr:

When transferred to the tangent space via Exp (with Jacobian J(X) = J(r))
this integral is alsoZ

Rn
f(ExpX)J(X)dX = !n�1

Z 1

0

f(r)J(r)rn�1dr;

whence J(X) = (sh r=r)n�1 for X = r�.
The metric (3.14) also gives the Laplace-Beltrami operator of Hn(R) in geo-
desic polar coordinates (cf. [28] p. 313):

L = @2r + (n� 1) coth r @r + Lr

where Lr is the Laplace-Beltrami operator on the sphere with center o and
radius r in the hyperbolic space. Similarly

� = @2r +
n� 1
r

@r +�r

in Euclidean polar coordinates of Rn. The «spherical» operators Lr and �r
kill radial functions.
Our transfer map for functions is given by eu (ExpX) = J(X)�1=2u(X) that
is, using the above coordinates on Hn(R) and its tangent space,

eu(r; �) = � sh r
r

�(1�n)=2
u(r; �):
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Restricting ourselves to radial functions we can then compare the radial parts
of L and � above as in Helgason�s proof of his theorem in [28] p. 273. An
easy calculation leads to

Leu = (�u+ fu)e
with

f := �J�1=2�J1=2 = (n� 1)(n� 3)
4

�
1

r2
� 1

sh2 r

�
�
�
n� 1
2

�2
:

Thus2 �J1=2(0) = �f(0) = n(n� 1)=6 and, comparing with (ii) and (iii) in
the proposition, it follows that

�Y e(X; 0) =
(n� 1)(n� 3)

4

�
1

r2
� 1

sh2 r
� 1
3

�
with r = kXk, if e is an e-function of Hn(R) associated with J1=2.

3.3.4 Towards a Generalized Du�o Isomorphism

With the above tools at hand we can now try to extend to general symmetric
spaces Du�o�s isomorphism for Lie groups (Section 1.1). By Theorem 3.9

the transfer map e is an isomorphism of
�
S (s)

H
;�
�
onto (D(S); �), and

the problem is to construct an isomorphism " :
�
S (s)

H
; �
�
!
�
S (s)

H
;�
�

between the classical product (�) and the product (�) in the symmetric alge-
bra. The map  :

�
S (s)

H
; �
�
! (D(S); �) de�ned by (P ) :=]"(P ) will then

be an isomorphism of algebras, the «generalized Du�o isomorphism» .
The commutativity of the algebra D(S) (or of the product �) is of course a

necessary condition for the existence of . This property has been established
by several authors under various assumptions (see the Notes of this chapter).
It will follow here from the symmetry of an e-function (Theorem 4.24).

Example 1. If S is a special symmetric space the products (�) and (�)
coincide and we may take "(P ) = P , (P ) = eP .
Example 2. Assume D(S) is commutative and

�
S(s)H ; �

�
is a polynomial

algebra with generators P1; :::; Pl (as holds true for all Riemannian symmetric
spaces of the noncompact type). Then there exists a unique isomorphism " :�
S (s)

H
; �
�
!
�
S (s)

H
;�
�
such that "(Pj) = Pj for j = 1; :::; l, and (P ) =

]"(P ) is a degree preserving generalized Du�o isomorphism (characterized by
(Pj) = fPj for all j).

2This does not contradict (iv) in the proposition: we are not using here the metric
de�ned by the Killing form.
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Indeed any P 2 S(s)H can be uniquely written as

P =
X
�2Nl

a�P
�1
1 � � �P�ll

(product �), and the maps de�ned by

"(P ) :=
X
�2Nl

a�P
��1
1 � � � � � P��ll , (P ) =

X
�2Nl

a�fP1�1 � � � � � ePl�l
(product �, resp. �) ful�ll our requirements because of Corollary 3.10 and
the commutativity of these products. Remembering (3.13) this " may also
be written as

"(P ) =
X
�2Nl

a�A
�1
1 � � �A�ll 1 (3.15)

where Aj : S(s)H ! S(s)H is the operator de�ned by AjP = Pj � P , that is

Aj :=
X

�;2Nn

1

�!!
@�X@


Y e(0; 0) @

�
� Pj(�)@


� :

Example 3. Assume one of the generators in Example 2, say Q := P1, is
homogeneous of degree two, and the symmetric space is endowed with an
e-function such that e(X;Y ) = e(Y;X) and e(X; 0) = 1, @Y e(X; 0) = 0 (see
Remark (a) in Section 3.3.3). Setting eQ(X) := Q(@Y )e(X;Y )jY=0, Leibniz�
formula implies

Qe(X; @X)f(X) = Q(@Y ) (e(X;Y )f(X + Y ))Y=0
= (Q(@X) + eQ(X)) f(X):

Note that eQ(0) = 0. Thus3 Qe(X; �) = Q(�)+ eQ(X) and, by Theorem 3.9,

(P �Q) (�) = (Qe(@�; �)P (�))j�=� = (Q(�) + eQ(@�))P (�) (3.16)

for P 2 S(s)H , � 2 s�. The required map " satis�es "(Q) = Q and "(P �Q) =
"(P )� "(Q) = Q � "(P ) + eQ(@)"(P ). In other words

"(Q) = Q and [";Q] = eQ(@) � ";

where [";Q] denotes the commutator of two linear endomorphisms of S (s)H ,

with Q meaning here the mutliplication operator by Q in
�
S (s)

H
; �
�
.

If l = 1, that is if S(s)H is the algebra of all polynomials p(Q), p 2 C[X],
these conditions determine ":

"(p(Q)) = p (Q+ eQ(@)) 1:

3A more explicit expression can be given when Proposition 3.11 (iii ) applies.
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This special case of (3.15) follows from (3.16) applied to P = Q�k; here again
Q on the right-hand side is viewed as a multiplication operator.

It would be interesting to generalize these examples: can one construct an

isomorphism " :
�
S (s)

H
; �
�
!
�
S (s)

H
;�
�
by means of e, only assuming the

symmetry e(X;Y ) = e(Y;X)? See Section 3.6.3.b for a hint in this direction.

3.4 e-Functions, Mean Values and Spherical
Functions

Throughout this section S = G=H is a symmetric space with H compact.
The space is now Riemannian, with the G-invariant metric de�ned by an
H-invariant scalar product on s. We denote by jXj the corresponding norm
of X 2 s and by j�j the dual norm of � 2 s�. Let dh be the Haar measure of
H normalized by

R
H
dh = 1.

Recall that a spherical function of S is an H-invariant eigenfunction
' of all operators in D(S), normalized by '(o) = 1. Spherical functions
are analytic on S because of the ellipticity of the Laplace-Beltrami operator
L 2 D(S). Our next goal is to relate spherical functions and mean value
operators to an e-function of S by means of Taylor expansions. Let us begin
with the case of an isotropic space, in order to motivate the more general
construction in 3.4.2 below.

3.4.1 The Case of an Isotropic Riemannian Symmetric
Space

In this subsection we assume H compact and S = G=H isotropic, meaning
that the adjoint action of H is transitive on the unit sphere of the tangent
space s to S at the origin. As is well-known (e.g. [61] p. 295), a connected
Riemannian manifold is isotropic if and only if it is two point homogeneous (its
isometry group is transitive on equidistant pairs of points), or else if and only
if it is a Euclidean space or a symmetric space of rank one. Then D(s)H , resp.
D(S), is the algebra of all polynomials in the (Euclidean) Laplace operator
� of s, resp. in the Laplace-Beltrami operator L of S ([28] p. 288). We also
assume here j = J1=2.

a. On the open neighborhood of the origin where we can use the Exp
chart we may write ' = e that is  (X) = J(X)1=2'(ExpX). Then L' =�e���J1=2(0)� e by Proposition 3.11 and ' is spherical if and only if  is
H-invariant,  (0) = 1 and e�e = �e for some constant �, or else �e = � 
by Theorem 3.8 (ii). Picking an e-function of S such that @Y e(X; 0) = 0 we
obtain the equation

� (X) = (���Y e(X; 0)) (X) ,  (0) = 1 (3.17)
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by Proposition 3.11 (iii). Equation (3.17) is a perturbation of � = � , its
analog for a special isotropic symmetric space. Since � is an elliptic operator
its solutions are analytic. In view of the H-invariance the Taylor series at
the origin have the following form

 (X) =
1X
m=0

am(�)
jXj2m
cm

, �Y e(X; 0) =
1X
m=1

em
jXj2m
cm

; (3.18)

where am(�) (resp. em) are unknown (resp. known) coe¢ cients and the
constants cm :=



�mjjXj2m

�
= �mjXj2m, introduced here for convenience,

are

c0 = 1 , cm = 2mm!n(n+2) � � � (n+2m� 2) with m � 1, n = dimS: (3.19)

Thus am(�) = �m (0), em = �mX�Y e(0; 0) and (3.17) is equivalent to

a0(�) = 1 , a1(�) = � = � (0)

am+1(�) = �am(�)�
m�1X
l=0

cm
cm�lcl

em�lal(�) , m � 1: (3.20)

Solving this inductively we obtain

 (X) = J(X)1=2'(ExpX) (3.21)

= 1 + �
jXj2
c1

+
�
�2 � e1

� jXj4
c2

+

�
�3 �

�
3 +

4

n

�
e1�� e2

�
jXj6
c3

+ � � �

a convergent series in a neighborhood of the origin. Indeed the convergence of
the power series

P
emjXj2m=cm implies jemj=cm � CRm for some positive

constants C, R and jam(�)j=cm � C 0Rm easily follows by induction, with
C 0 > 0 depending on �.
In the case of a special isotropic space (e(X;Y ) = 1) we obtain am(�) =

�m and formula (3.21) boils down to the classical expansion of modi�ed Bessel
functions

 (X) =
1X
m=0

�m
jXj2m
cm

= �(n=2)

�
2

jXj
p
��

�(n=2)�1
J(n=2)�1

�
jXj
p
��
�
:

b. More generally, a similar expansion can be given for the mean value
operator

MX'(gH) :=

Z
H

'(gh�ExpX) dh =
Z
H

'(g �Exp (h �X)) dh , X 2 s, g 2 G;

applied to an arbitrary analytic function ' on the symmetric space S. In an
isotropic space H-orbits are spheres and the above integral is the average of
' over the sphere with center gH and radius jXj.
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For �xed g, J(X)1=2MX'(gH) is an H-invariant analytic function of X
and can be expanded as

J(X)1=2MX'(gH) =
1X
m=0

'm(gH)
jXj2m
cm

;

where the coe¢ cients 'm are given by

'm(gH) = �mX

�
J(X)1=2MX'(gH)

����
X=0

= �mX

�
J(X)1=2'(g � ExpX)

����
X=0

=g�m'(gH)
in view of the H-invariance of � and the de�nition (3.3). Thus

J(X)1=2MX'(gH) =
1X
m=0

g�m'(gH) jXj2m
cm

: (3.22)

The operator g�m belongs to D(S) and can therefore be expressed as a poly-
nomial in e�; this will allow linking our expansion of MX with the above
expansion of a spherical function satisfying e�' = �'. The details can be
carried out inductively as follows.
Applying to �m(�) = j�j2m and � the product � of Theorem 3.9 we have

(�m ��) (�) = �e(@�; �)
�
j�j2m

�
�=�

and, by Proposition 3.11 (iii) and (3.18),

�e(X; �) = j�j2 +�Y e(X; 0) = j�j2 +
1X
l=1

el
cl
jXj2l

whence �e(@�; �) = j�j2 +
P1
l=1 (el=cl)�

l
�.

Since �l�
�
j�j2m=cm

�
= j�j2(m�l)=cm�l we obtain

(�m ��) (�) = �m+1(�) + cm
mX
l=1

el
cl

�m�l(�)

cm�l
:

We now apply e to both sides, hence the following analog of (3.20)
�̂m+1 =g�m � e�� m�1X

l=0

cm
cm�lcl

em�lf�l; (3.23)

implying that g�m = am

�e�� where am is a polynomial of degree m in-

ductively de�ned by this equation and the coe¢ cients el, clearly the same
polynomial as before. We �nally obtain

J(X)1=2MX'(gH) =
1X
m=0

�
am

�e��'� (gH) jXj2m
cm

(3.24)
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for any analytic function ' on S. If ' is spherical, e�' = �', we have
MX'(gH) = '(ExpX)'(gH) by the classical functional equation and this
of course gives (3.21) again.

Remark. In [24] Gray and Willmore proved the following mean value ex-
pansion for an arbitrary n-dimensional Riemannian manifold M . Let u be
an analytic function on a neighborhood of a point a 2 M and let Mru(a)
denote the mean value of u over the (Riemannian) sphere S(a; r) with center
a and radius r. Then

Mru(a) =
fn
�
r
p
��a

�
(Jau)(a)

fn
�
r
p
��a

�
(Ja)(a)

; (3.25)

where fn is the modi�ed Bessel function

fn(x) =
1X
m=0

(�1)mx
2m

cm

(with cm as in (3.19)), Ja is the Jacobian of the exponential map Expa at a,
�a is the di¤erential operator on M de�ned by (�au)�Expa = �(u � Expa)
and � is, as above, the Euclidean Laplace operator on the tangent space to
M at a. This generalized Pizzetti formula follows easily from the correspond-
ing formula in Euclidean space, since the Riemannian sphere S(a; r) is the
image under Expa of the Euclidean sphere with center 0 and radius r. For
isotropic Riemannian symmetric spaces M = G=H the spheres are H-orbits
and we may compare (3.25) with our (3.24): the Gray-Willmore expansion
uses the same simple power series as in the Euclidean case, but in general the
di¤erential operator �a is not G-invariant on M . Thus no simple expansion
of the spherical functions seems to come out of it.

3.4.2 Expansion of Mean Value Operators and Spherical
Functions

Going back to a general Riemannian symmetric space S = G=H we shall
now extend the results proved in the isotropic case. The compactness of H
implies that the algebra S(s)H = D(s)H is �nitely generated ([28] p. 352).
Let P1,..., Pl be a system of generators, homogeneous with respective degrees
d1; :::; dl. They may be algebraically dependent, but from the set of all

P� := P�11 � � �P�ll , � 2 Nl;

we can extract a basis of D(s)H as a vector space. Let B � Nl denote the
corresponding subset of indices.
To introduce the dual basis we note that the Fischer product allows to

identify S(s�)H with the space of �nite linear forms on S(s)H (see 3.3.1).
Indeed let � : S(s)! S(s)H be the projection given by H-invariant mean. If
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` is a �nite linear form on S(s)H , then `�� is a �nite linear form on S(s) and
there exists a unique Q 2 S(s�) such that ` � �(P ) = hP jQi for all P 2 S(s).
Replacing P by h �P with h 2 H we obtain hP jQi = hh � P jQi =



P jh�1 �Q

�
,

hence Q 2 S(s�)H by uniqueness, as claimed.
The conditions `�(P �) = ��� (Kronecker symbol) for �; � 2 B de�ne forms
`� which make up a basis of the space of �nite linear forms on S(s)H . De-
noting by P �� the corresponding elements of S(s

�)H we have

P � jP ��

�
= ��� for �; � 2 B

and the decomposition of any Q 2 S(s�)H is Q =
P
�2B hP�jQiP ��.

Each P� is homogeneous of degree � � d = �1d1 + � � � + �ldl and the same
holds for P�� : indeed for all �; � 2 B and t 2 R we have


P �(@X)jP ��(tX)
�
= t��dP �(@)P ��(0) = t��d���

= t��d��� = t��d


P �(@X)jP ��(X)

�
;

hence P ��(tX) = t��dP ��(X).

Example 1 (trivial case): H = feg, P� = @�X , P
�
� = X�=�!.

Example 2 (isotropic case): P� = �m, P �� = jXj2m=cm with � = m 2 B =
N and cm de�ned by (3.19).

Lemma 3.12 (H compact) Any H-invariant function f , analytic in a neigh-
borhood of 0 in s, admits a unique H-invariant Taylor expansion

f(X) =
X
�2B

a�P
�
�(X);

with coe¢ cients given by a� = P�(@X)f(0) = hP�jfi. The series converges
in the following sense: there exists R > 0 such that

X
q�0

������
X
��d=q

a�P
�
�(X)

������ <1 for jXj < R:

This expansion of f can be di¤erentiated term by term for jXj < R.

Proof. For some R > 0 the classical Taylor series f(X) =
P
�2Nn f�X

�

converges absolutely and can be di¤erentiated term by term for jXj < R.
Gathering terms of equal degrees, the same properties a fortiori hold forP
q�0

�P
j�j=q f�X

�
�
. Each term of this new series, as an invariant q-

homogeneous polynomial in X, is a linear combination of the P ���s with
� � d = q, hence the expansion of f . The formula for a� comes out when
applying P�(@X) term by term.
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Example (generalized Bessel functions). For � 2 s� and X 2 s let

'0�(X) :=

Z
H

e<�;h�X>dh:

Then P (@X)'0�(X) = P (�)'0�(X) for any P 2 D(s)H and '0� is a spherical
function for the �at space s. Lemma 3.12 gives the expansion

'0�(X) =

Z
H

e<�;h�X>dh =
X
�2B

P�(�)P ��(X); (3.26)

a convergent series in the above sense for all X and �.

Let us take up the mean value operator again

MX'(gH) :=

Z
H

'(g � Exp (h �X)) dh , X 2 s, g 2 G:

This integral over H is an average of ' over a submanifold of the sphere
with center gH and radius jXj. Let g be �xed and ' be analytic in a neigh-
borhood of gH. According to the previous lemma the H-invariant function
j(X)MX'(gH) of X can be expanded as

j(X)MX'(gH) =
X
�2B

a�(gH)P
�
�(X)

with the coe¢ cients

a�(gH) = P�(@X)
�
j(X)MX'(gH)

�
X=0

= P�(@X) (j(X)'(g � ExpX))X=0 ;

hence the following generalization of (3.22)

j(X)MX'(gH) =
X
�2B

fP�'(gH) P ��(X) . (3.27)

We now give another version of this expansion in terms of the generatorsfP1; :::; ePl of the algebra D(S) (see Corollary 3.10). Let us recall that this
algebra is commutative ([28] p. 293). Given an e-function we shall write

e(X;Y ) =
X

�;�2Nn
e��X

�Y � with e�� =
1

�!� !
@�X@

�
Y e(0; 0)

its Taylor expansion at the origin with respect to some basis of s. In view of
Proposition 3.4 (ii) we have

e00 = 1 , e�0 = e0� = 0

for all �; � 6= 0. Although unessential here we note that for the Campbell-
Hausdor¤ e-function of chapter 4 with j = J1=2 we also have e�� = 0 for
1 � j�j+ j� j � 3, as follows from Proposition 4.31 and Lemma 4.11. Formula
(3.24) extends as follows.
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Theorem 3.13 (H compact) Let S = G=H be a Riemannian symmetric
space with an e-function, and P1; :::; Pl a given system of generators of the
algebra D(s)H . Let ' be an analytic function on a neighborhood of a point
g0H in S. Then there exist a neighborhood V of g0 in G, a radius R > 0 and
a sequence of polynomials (A�)�2B such that for X 2 s, jXj < R and g 2 V

j(X)MX'(gH) =
X
�2B

A�

�
e;fP1; :::; ePl�'(gH) P ��(X) ,

with convergence in the sense of Lemma 3.12.
Each A� (e;�1; :::; �l) is a polynomial in the �j (with 1 � j � l) and the e��
(with j�j + j� j � � � d), homogeneous of degree � � d if one assigns deg �j =
degPj = dj and deg e�� = j�j+ j� j. Furthermore

A� (e;�1; :::; �l) = ��11 � � ���ll + lower degree in �1; :::; �l:

The coe¢ cients of A� only depend on the structure of the algebra D(s)H and
the choice of generators Pj.

This theorem provides a more precise form, for Riemannian symmetric spaces,
of a result proved by Helgason for general homogeneous Riemannian spaces
G=H ([29] p. 77).
A spherical function ' satis�es the functional equation MX'(gH) =

'(ExpX)'(gH) and we immediately infer the following expansion of '.

Corollary 3.14 With the notation and assumptions of Theorem 3.13, let '
be a spherical function on S and �j the corresponding eigenvalues: fPj' = �j'
for j = 1; :::; l. Then there exists R > 0 such that for X 2 s and jXj < R

j(X)'(ExpX) =
X
�2B

A�(e;�1; :::; �l)P
�
�(X) .

Proof of Theorem 3.13. The function (g;X) 7! '(g �ExpX) is analytic in
a neighborhood of (g0; 0), hence there exist a neighborhood V of g0 and R > 0
such that it has a power series expansion (by means of local coordinates) on
V � fjXj < Rg, and the same holds true for j(X)MX'(gH).
In view of (3.27) it will su¢ ce to prove that

fP� = A�

�
e;fP1; :::; ePl�

for any � 2 Nl, which can be obtained by induction on � � d.
First fP 0 = 1 and the claim follows with A0 = 1. Then, if � 2 Nl and �j � 1
for some j we may write P� = P �Pj (usual product in D(s)H) with � 2 Nl.
Using the � product (3.13) we have

P � � Pj = P �Pj +Q with Q =
X

j�j�1;j� j�1

e�� (@
�P �) (@�Pj) 2 D(s)H ,
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therefore fP� = fP � �fPj � eQ by Theorem 3.9. But Q 2 D(s)H decomposes as
Q =

P
2B cP

 with c =


QjP �

�
(Fischer product), thus

fP� = fP � �fPj �X e��


(@�P �) (@�Pj) jP �

� fP 
where the summation runs over all  2 B and all �; � 2 Nn such that j�j �
1; j� j � 1. Remembering the homogeneity of all terms we see that the Fischer
products in this sum vanish unless � � d � j�j + dj � j� j =  � d, that is
 � d = � � d� (j�j+ j� j) < � � d.
Assuming that fP  = A(e;fP1; :::; ePl) for all  2 Nl such that  � d � N we
deduce that fP� = A�(e;fP1; :::; ePl) for � � d = N + 1, with

A� = A� �fPj � X
;�;�

e��


(@�P �) (@�Pj) jP �

�
A ,

where the sum runs over all  2 B and �; � 2 Nn such that j�j � 1; j� j � 1
and  � d = � � d� (j�j+ j� j). All our claims now follow inductively.

3.5 e-Functions and Integral Formulas

Let G=H be a symmetric space with H compact (equipped with the normal-
ized Haar measure dh). For the sake of simplicity we shall assume in this
section that Exp : s! G=H is a global di¤eomorphism, so that the equality
ExpZ(X;Y ) = expX �ExpY de�nes an analytic function Z : s� s! s; this
is true for instance if G=H is a Riemannian symmetric space of the noncom-
pact type. We also assume that the H-invariant function j is analytic and
strictly positive on the whole s (with j(0) = 1); the function j = J1=2 satis�es
this condition.
We begin with an elementary lemma.

Lemma 3.15 (H compact) Let f be a smooth function on s. The following
are equivalent:
(i) hu; fi = 0 for any H-invariant distribution u on s such that suppu\supp f
is compact
(ii)

R
H
a(X)f(X)dX = 0 for any H-invariant test function a on s

(iii)
R
H
f(h �X)dh = 0 for all X 2 s.

Similarly, if f is a smooth function on s�s, the property hu(X)v(Y ); f(X;Y )i
= 0 for every H-invariant distributions u; v on s (such that (suppu�supp v)\
supp f is compact) is equivalent to

R
H�H f(h � X;h

0 � Y )dhdh0 = 0 for all
X;Y 2 s.
Proof. (i))(ii). The distribution u = a(X)dX ful�lls the assumptions of
(i).
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(ii))(iii). Let a be any test function on s. Then
R
H
a(h�1 � X)dh is H-

invariant henceZ
s

a(X)dX

Z
H

f(h �X)dh =
Z
s

f(X)dX

Z
H

a(h�1 �X)dh = 0

by (ii), which implies (iii).
(iii))(i) immediately, since�

u(X);

Z
H

f(h �X)dh
�
=

Z
H

hu(X); f(h �X)i dh = hu; fi

by the H-invariance of u.

The next proposition, which makes essential use of H-invariant means,
shows how an e-function can be obtained from a certain integral formula. In
some cases (e.g. for rank one spaces, see Section 3.7 below) it leads to an
explicit expression of e, which would be di¢ cult to obtain from the general
construction in Chapter 4.

Proposition 3.16 (H compact and Exp global di¤eomorphism) Let D : s�
s ! R be analytic, with D(h �X;h � Y ) = D(X;Y ) for all h 2 H, X;Y 2 s.
The following are equivalent:
(i) the function

e(X;Y ) =
j(X)j(Y )

j(X + Y )
D(X;Y )

is an e-function of G=H
(ii) for any H-invariant smooth function f on s and any X;Y 2 s,Z

H

f(Z(X;h � Y ))dh =
Z
H

f(X + h � Y )D(X;h � Y )dh

(iii) for any H-bi-invariant smooth function F on the group G and any
X;Y 2 s, Z

H

F (eXeh�Y )dh =

Z
H

F (eX+h�Y )D(X;h � Y )dh: (3.28)

Proof. The de�ning property (3.7) of e-functions, written with e(X;Y ) =
j(X)j(Y )
j(X+Y ) D(X;Y ),

hu(X)
 v(Y ); f(Z(X;Y ))�D(X;Y )f(X + Y )i = 0

is, by Lemma 3.15, equivalent toZ
H�H

f(Z(h �X;h0 � Y ))dhdh0 =
Z
H�H

f(h �X + h0 � Y )D(h �X;h0 � Y )dhdh0
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for any f 2 C1(s) and any X;Y 2 s. Let fH(X) =
R
H
f(h �X)dh. In view of

the invariance of D and Z(h �X;h �Y ) = h �Z(X;Y ), the change of variables
h0 = hh00 in

R
H
(:::)dh0 transforms this property intoZ

H

fH(Z(X;h � Y ))dh =
Z
H

fH(X + h � Y )D(X;h � Y )dh .

Here fH is an arbitrary smooth H-invariant function on s, hence the equiv-
alence of (i) and (ii).
Let f be smooth and H-invariant. De�ning F by

F (g) = f(Exp�1(gH)) , g 2 G ,

we obtain an H-bi-invariant smooth function on G. Conversely, any such F
may be obtained in this way from the H-invariant function f = F � exp on
s. Since ExpZ(X;h � Y ) = eX � Exp(h � Y ) this shows the equivalence of (ii)
with (iii).

Remark. Applied to the mean value f(X) = MX'(gH) (with ' continu-
ous), the result of (ii) implies the iterated mean value formula

MXMY '(gH) =

Z
H

MX+h�Y '(gH)D(X;h � Y )dh:

Corollary 3.17 (H compact and Exp global di¤eomorphism) Under the as-
sumptions stated at the beginning of this section, let c : s � s ! H be an
analytic map such that
(i) c(h �X;h � Y ) = hc(X;Y )h�1 for any h 2 H, X;Y 2 s
(ii) for any X 2 s, the Jacobian of the map  X : Y 7! c(X;Y ) � Y is strictly
positive for Y 2 s
(iii) for any X;Y 2 s, eXe X(Y ) belongs to HeX+YH.
Then  X is a di¤eomorphism of s onto itself, and

e(X;Y ) =
j(X)j(Y )

j(X + Y )
det sD X(Y ) , X;Y 2 s ,

is an e-function for G=H, analytic on s� s.

Remarks. (a) Such a map c will be constructed in the next chapter (see
Propositions 4.8 (i), 4.10 (iii) and 4.18, with 
 = s� s by Theorem 4.6 (v)
under our assumptions).
(b) Let k:k be an H-invariant norm on s and d the corresponding Riemannian
distance on S, so that d(o;ExpX) = kXk. Condition (iii), equivalent to eX �
Exp X(Y ) = h�Exp(X+Y ) for some h 2 H, implies d

�
o; eX � Exp X(Y )

�
=

kX + Y k, that is d (Exp(�X);Exp X(Y )) = kX + Y k.
Therefore Exp X(Y ) = c(X;Y ) � ExpY must belong to the intersection of
the sphere with center o and radius kY k and the sphere with center Exp(�X)
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and radius kX + Y k. Details are given below for the 2-dimensional hyperbolic
space H2(R).

Proof. By (i)  h�X(h � Y ) = h �  X(Y ), hence D h�X(h � Y ) � Adh =
Adh �D X(Y ) and

detD h�X(h � Y ) = detD X(Y ) .

Thus D(X;Y ) := detD X(Y ) satis�es D(h �X;h � Y ) = D(X;Y ).
Owing to the previous proposition we must check thatZ

H

F
�
eXeh�Y

�
dh =

Z
H

F
�
eX+h�Y

�
detD X(h � Y )dh (3.29)

for anyH-bi-invariant F . Taking anH-invariant norm on s we have k X(Y )k =
kY k; thus  X is a proper mapping and  X is a di¤eomorphism of s onto itself
by (ii) and Hadamard�s theorem.
Let u be anH-invariant compactly supported continuous function on s. Then,
using (ii) and (iii),Z
s

u(Y )dY

Z
H

F
�
eXeh�Y

�
dh =

Z
s

F (eXeY )u(Y )dY

=

Z
s

F
�
eXe X(Y )

�
u( X(Y )) detD X(Y )dY

=

Z
s

u(Y )F (eX+Y ) detD X(Y )dY ,

and the validity of this equality for any H-invariant u implies (3.29) in view
of Lemma 3.15 above.

Example. Consider the 2-dimensional hyperbolic space(the Poincaré disk4)
H2(R) = SU(1; 1)=SO(2); the group SU(1; 1) acts on the unit disk of C

by homographic transformations. Let X =

�
0 �

� 0

�
and Y =

�
0 �
� 0

�
denote two elements of s, with � = x

2 e
i�, � = y

2e
i� , x; y � 0 and �; � 2 R.

Then Exp(�X) = � th(x=2)ei�, ExpY = th(y=2)ei� and, by Remark (b)

above, we are looking for c = c(X;Y ) =

�
ei� 0
0 e�i�

�
2 H, � 2 R, such

that d (Exp(�X);Exp(c � Y )) = d(o;Exp(X + Y )).
Taking kXk := x, which is an H-invariant norm on s, the corresponding met-
ric on the unit disk jwj < 1 of the complex plane is ds2 = 4

�
1� jwj2

��2 jdwj2
and the hyperbolic distance d(w;w0) from w to w0 is given by

th

�
1

2
d(w;w0)

�
=
jw0 � wj
j1� ww0j :

4See [28], Introduction, for a detailed study of this example (with slightly di¤erent
notation).
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Let z := kX + Y k = jxei� + yei� j. Condition (iii) becomes

����th x
2

�
ei� +

�
th
y

2

�
ei(2�+�)

���2 = ���1 + �th x
2
th
y

2

�
ei(2�+���)

���2 �th z
2

�2
;

that is
shx sh y cos (2� + � � �) = ch z � chx ch y: (3.30)

The existence of a solution c, analytic function of (X;Y ), is guaranteed by
Remark (a) above. The corresponding map  X is a rotation with angle
2� (depending on x; y; �; �) in the complex plane. Its Jacobian detD X =
1 + 2@�� can be obtained by di¤erentiation with respect to � of (3.30) and

z2 = x2 + y2 + 2xy cos(� � �): (3.31)

It follows that

(detD X) sin (2� + � � �) =
x

shx

y

sh y

sh z

z
sin (� � �) ;

where the sines can be computed from (3.30) and (3.31); details are left to
the Reader. Finally

(detD X)
2
=
1

4

�
sh z

z

�2
z2 � (x� y)2
ch z � ch(x� y)

(x+ y)
2 � z2

ch(x+ y)� ch z :

The Jacobian of Exp is here J(X) = shx=x, therefore the e-function as-
sociated with J1=2 given by Corollary 3.17 is, in the notation of Theorem
3.23,

e(X;Y ) = A(x; y; z)�1=2:

The norm used here is kXk = x =
�
1
2B(X;X)

�1=2
(as easily checked), thus

our result agrees with Theorem 3.23.

3.6 e-Functions and Noncompact Symmetric
Spaces

In this section we specialize to the case of a Riemannian symmetric space
G=K of the noncompact type, where G is a noncompact connected semisimple
Lie group with �nite center and K is a maximal compact subgroup. Corol-
lary 3.14 above relates spherical functions to e-functions by means of Taylor
series expansions. Taking advantage of the semisimple structure we shall now
discuss a di¤erent link which appears when going to in�nity in the positive
Weyl chamber, a method suggested to me by Mogens Flensted-Jensen. We
propose two versions, the �rst with a limit of e itself and the latter with a
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limit in K. Finally, we investigate possible extensions of the Du�o isomor-
phism to all convolution products. It should be noted that some results of
the present section are partly conjectural and/or of a heuristic nature.
We shall need here several facts from the theory of semisimple Lie groups

and refer to Helgason�s books [27] and [28] for their proofs. Our general
notation is put aside in this section, replaced by the classical semisimple
notation in use in these references; please see Section 0.5. Besides, a�c denotes
the complexi�cation of the dual a�, � : p ! a the orthogonal projection,
c(�) Harish-Chandra�s function and

'�(ExpX) =

Z
K

ehi���;A(k
�1�X)idk; � 2 a�c ; (3.32)

the spherical function, where the Iwasawa projection A : p ! a cor-
responding to the Iwasawa decomposition G = KAN is de�ned by eX =
k(X)eA(X)n(X) with X 2 p, k(X) 2 K, A(X) 2 a and n(X) 2 N .

3.6.1 The Function e1
Theorem 3.18 (S = G=K of the noncompact type) Let e be an e-function
for S associated to j = J1=2, analytic in p � p, and let H 2 a+ be �xed.
Assume the existence of

e1(X) := lim
t!+1

e(X; tH)

for all X 2 p, with uniform convergence for X running in any K-orbit in p.
The spherical functions '� of S are then given by

J(X)1=2'�(ExpX) =

Z
K

eih�;�(k
�1�X)ie1(k�1 �X)dk

for � 2 a�c and X 2 p.

Remarks. (a) The space G=K actually has a globally de�ned e-function:
see Theorem 3.23 for rank one spaces and Theorem 4.12 for general spaces,
with 
 = p � p by Theorem 4.6 (v). The assumption about e1 holds for
rank one spaces (Proposition 3.24).and is obviously satis�ed (with e1 = 1)
for a special symmetric space, that is if G has a complex structure and K is
a compact real form (Proposition 3.7).
(b) Duistermaat�s beautiful paper [20] gives a complete proof of a similar
expression of the spherical functions of G=K. A few comments on his method
are given at the end of 3.6.2.
(c) e1(m:X) = e1(X) for X 2 p and m 2 M , because e(m � X;H) =
e(m �X;m �H) = e(X;H) for H 2 a. Owing to �(m �X) = �(X) the integral
for '� is actually taken over K=M , with the K-invariant measure d(kM)
replacing dk.
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(d) In the rank one case (or for G complex) we have e(X;Y ) = 1 whenever
[X;Y ] = 0. Thus e1(X) = 1 for X 2 a. The same is true for the e-function
of Chapter 4 (Theorem 4.20) if the limit exists.
(e) Given � 2 a�c let

 �(X) :=

Z
K

eih�;�(k
�1�X)ie1(k�1 �X)dk:

The theorem says that '� = f � is a spherical function. According to

the classical functional equation, this fact is equivalent to
Deu � ev;f �E =Deu;f �EDev;f �E for all K-invariant test functions u; v on p, that is

hu(X)v(Y ); e(X;Y ) �(X + Y )i = hu(X);  �(X)i hv(Y );  �(Y )i

or else, by the de�nition of  � and the K-invariance of u; v and e,D
u(X)v(Y ); (e(X;Y )e1(X + Y )� e1(X)e1(Y )) eih�;�(X+Y )i

E
= 0:

(3.33)
Conversely, a direct proof of this identity (for all u; v; �) from the properties of
the e-function would lead to a natural proof of the above theorem. It bears
some similarity to an identity arising from the associativity (eu � ev) � ew =eu � (ev � ew) for any K-invariant test functions u; v; w. Indeed, applied to a
function ef it implies by (3.4)
< u(X)v(Y )w(Z);

; (e(X;Y )e(X + Y; Z)� e(X;Y + Z)e(Y; Z))f(X + Y + Z) >= 0

or, by Lemma 3.15 on the variable Z,

hu(X)v(Y ); (e(X;Y )e(X + Y;Z)� e(X;Y + Z)e(Y;Z)) f(X + Y + Z)i = 0
(3.34)

for any Z 2 p and K-invariant functions u; v; f ; here again the K-invariance
of u; v and e has been taken into account. It is now tempting to replace Z
by tH, H 2 a+, and let t tend to +1 so as to prove (3.33)... For lack of
a complete proof along these lines, we shall now infer Theorem 3.18 from
Harish-Chandra�s study of spherical functions.
(f) The spherical function is thus formally expressed as

'�(ExpX) = J(X)�1=2 e1(@�)'
0
�(X)

��
�=i���

where � 2 p�c (the complexi�ed dual of p) and '0�(X) =
R
K
eh�;k

�1�Xidk is
the generalized Bessel function.

Proof of Theorem 3.18. Proposition 3.16 and the functional equation of
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spherical functions imply

J(X)1=2'�(ExpX)'�(Exp tH) =

=

Z
K

'�(Exp(k
�1 �X + tH))

�
J(k�1 �X + tH)

J(tH)

�1=2
e(k�1 �X; tH)dk

(3.35)

for X 2 p, H 2 a, � 2 a�c and t 2 R. Referring to [28] Chapter IV for a
detailed study of spherical functions, we shall estimate both sides as t! +1
for H 2 a+, on the basis of Harish-Chandra�s asymptotic formula:

lim
t!+1

eh��i�;tHi'�(Exp tH) = c(�):

In order to replace this limit by a uniform estimate, we need some notation.
The scalar product on p induces one on a, hence an identi�cation of a with
a� and a scalar product on a�, still denoted by h; i. Let

a�+ := f� 2 a� j h�; �i > 0 for all positive roots �g

be the positive Weyl chamber in a� and �1; :::; �l denote the simple positive
roots. Let a0�c be a speci�c W -invariant connected dense open subset of a

�
c ,

the complement of a union of countably many hyperplanes, on which c(�) is
holomorphic ([28] p. 434). We �rst prove two lemmas.

Lemma 3.19 Given " > 0 and � 2 a0�c such that � Im� 2 a�+, there exists
C > 0 such that H 2 a and �1(H) � C; :::; �l(H) � C imply���eh��i�;Hi'�(ExpH)� c(�)��� � ":

Proof. Harish-Chandra�s expansion for '� gives ([28] p. 430)

eh�;Hi'�(ExpH) =
X
w2W

c(w�)ehiw�;Hi
X
�2�

��(w�)e
�h�;Hi

for H 2 a+, � 2 a0�c , where � is the set of all n1�1+ � � �+nl�l with n1; :::; nl 2
N and the coe¢ cients �� are obtained inductively from �0 = 1. The recursion
formula implies that for any � as above and any H0 2 a+ there exists a con-
stant M > 0 (depending on � and H0) such that jc(w�)��(w�)j �Meh�;H0i

for all � 2 �, w 2 W ([28] p. 428). Separating the term with w = e and
� = 0 we obtain

eh��i�;Hi'�(ExpH)� c(�) =

= c(�)
X
�6=0

��(�)e
�h�;Hi +

X
w 6=e

c(w�)eihw���;Hi
X
�

��(w�)e
�h�;Hi;
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whence the estimate���eh��i�;Hi'�(ExpH)� c(�)��� �
�M

0@X
�6=0

eh�;H0�Hi +
X
w 6=e

ehIm��w Im�;Hi
X
�

eh�;H0�Hi

1A
�M

0@f(H �H0)� 1 + f(H �H0)
X
w 6=e

ehIm��w Im�;Hi

1A
with f(H) :=

P
�2� e

�h�;Hi =
Ql
j=1

�
1� e�h�j ;Hi

��1
.

FixingH0 we have 0 < f(H�H0)�1 � � for any given � > 0 if �1(H); :::; �l(H)
are large enough. Furthermore the assumption � Im� 2 a�+ implies that, in
the basis of a� given by the simple roots, w Im� � Im� =

Pl
j=1 �j�j with

coe¢ cients �j � 0, not all 0 if w 6= e (see [27] p. 292-293). The lemma
follows.

Lemma 3.20 Let C be a compact subset of p. Given X 2 C and H 2 a+,
(i) there exists k(t) 2 K such that

X + tH = k(t) � (tH + �(X) + "(t))

with "(t) 2 a and "(t) = O(t�1) as t! +1, uniformly for X 2 C
(ii) (J(X + tH)=J(tH))

1=2 ! eh�;�(X)i as t! +1, uniformly for X 2 C.

Proof. (i) Let u = t�1. Since H 2 a+, for t large enough H + uX belongs
to the open set p0 of regular elements. By the polar decomposition on p0, a
di¤eomorphism of K=M �a+ onto p0 ([28] p. 195), there exist two functions5
Z(u) 2 k and R(u) 2 a+, smooth near u = 0 and such that

H + uX = eZ(u) �R(u) , Z(0) = 0 , R(0) = H:

The derivative at u = 0 is X = R0(0) + [Z 0(0);H]. The latter term, which
belongs to [k; a], is orthogonal to a in view of the invariance of the Killing
form together with [a; a] = 0. Therefore R0(0) = �(X) and

H + uX = eZ(u) �
�
H + u�(X) +O(u2)

�
.

The result follows by multiplication by t. The remainder depends smoothly
on X and the estimate is uniform for X 2 C.
(ii) By (i) J(X+tH) = J(H(t)) with H(t) = tH+�(X)+"(t) 2 a, therefore�

J(X + tH)

J(tH)

�1=2
=
Y
�>0

�
sh h�;H(t)i
sh t h�;Hi

t h�;Hi
h�;H(t)i

�m�=2

;

5We choose a section of K ! K=M in a neighborhhod of the origin.
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a product taken over all positive roots �.
Since h�;Hi > 0 we have h�;H(t)i =t h�;Hi ! 1 and

sh h�;H(t)i
sh t h�;Hi = eh�;�(X)+"(t)i

1� e�2h�;H(t)i
1� e�2th�;Hi ! eh�;�(X)i

for t ! +1, uniformly for X 2 C. The result follows, with � = 1
2

P
m��.

Going back to the proof of Theorem 3.18 we rewrite (3.35) as

J(X)1=2'�(ExpX)e
h��i�;tHi'�(Exp tH) =Z

K

eh��i�;tHi'�(Exp(k
�1�X+tH))

�
J(k�1 �X + tH)

J(tH)

�1=2
e(k�1�X; tH)dk

and apply Lemma 3.19 to both sides of this equation. Given H 2 a+, � 2 a0�c
and � Im� 2 a�+ the left-hand side tends to c(�)J(X)1=2'�(ExpX) as t !
+1. By Lemma 3.20 (i) in the right-hand side '�(Exp(k�1 � X + tH)) =
'�(ExpH(t)) with H(t) = tH + �(k�1 � X) + "(t) and "(t) ! 0 in a as
t ! +1, uniformly for k 2 K. Then eh��i�;H(t)i'�(ExpH(t)) �! c(�)
hence

eh��i�;tHi'�(Exp(k
�1 �X + tH)) �! ehi���;�(k

�1�X)ic(�)

since e"(t) ! 1 (uniformly in k). Besides�
J(k�1 �X + tH)

J(tH)

�1=2
e(k�1 �X; tH) �! eh�;�(k

�1�X)ie1(k�1 �X)

by Lemma 3.20 (ii), uniformly for k 2 K. Limits can thus be taken under
the integral sign, which implies our claim for � 2 a0�c and � Im� 2 a�+ (the
factors c(�) cancel out), hence for all � 2 a�c by analytic continuation. �

3.6.2 Link with the Iwasawa Projection

Let us take a closer look at the function e1. Still working on a Riemannian
symmetric spaceG=K of the noncompact type with j = J1=2, let c : p�p! K
and  X(Y ) := c(X;Y )�Y satisfy the assumptions of Corollary 3.17. Together
with Lemma 3.20 (ii) it shows that, for H 2 a+, e1(X) = limt!+1 e(X; tH)
exists if and only if D(X) := limt!+1 detpD X(tH) exists; then

e1(X) = J(X)1=2e�h�;�(X)iD(X):

By Theorem 3.18 the spherical functions are then

'�(ExpX) =

Z
K

ehi���;�(k
�1�X)iD(k�1 �X)dk (3.36)
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where X 2 p and � runs over the complexi�ed dual a�c . As noted in 3.6.1
Remark (c), this is actually an integral over K=M .
We now try to compare this expression with Harish-Chandra�s classical

formula

'�(ExpX) =

Z
K

ehi���;A(k
�1�X)idk; (3.37)

where A is the Iwasawa projection de�ned at the beginning of this section.
SinceM normalizes N we have A(m �X) = A(X) and this is again an integral
over K=M .
The link between both formulas for '� can be understood by means of

a new expression of detD 
X
. The «polar coordinates» map (kM;H) 7!

Y = k � H is a di¤eomorphism of K=M � a+ onto the dense open subset
p0 of regular elements in p, with Jacobian ��(H)m� (product taken over all
positive roots �; see [28] p. 195). Restricted to p0 the map  X decomposes
as

Y 7�! (kM;H) 7�! (c(X; k �H)kM;H) 7�! c(X; k �H)k �H =  X(Y ):

The Jacobians of the �rst, resp. third, map are ��(H)�m� , resp. ��(H)m� ,
therefore detD X(Y ) is the Jacobian of the map kM 7! (k)M of K=M into
itself with H 2 a+ �xed, X 2 p and (k) := c(X; k �H)k = kc(k�1 �X;H).
By Corollary 3.17 this map is, for each H 2 a+, a di¤eomorphism of K=M
onto itself. Its Jacobian actually means the Jacobian of the map taken back
to the origin o of K=M by the action of K (see [28] p. 93), that is k0M 7!
(k)�1(kk0)M at k0M = o. Since (km) = (k)m for k 2 K and m 2 M ,
the restriction to M of the map k0 7! (k)�1(kk0) is the identity. The
tangent space to K=M at o identi�es with the orthogonal of m in k, and it
follows that our Jacobian equals the Jacobian of the latter map at k0 = e
in K. Remembering the de�nition of  we �nally obtain (Dk0 meaning the
di¤erential with respect to k0)

det pD X(Y ) = det k Dk0
�
c(k�1 �X;H)�1k0c(k0�1k�1 �X;H)

���
k0=e

with X 2 p, Y = k �H, k 2 K, H 2 a+; it only depends on k�1 �X and H.
In particular, for k = e,

det pD X(H) = det k Dk0
�
c(X;H)�1k0c(k0�1 �X;H)

���
k0=e

: (3.38)

Replacing now H by tH with t > 0 we discuss the behavior as t! +1.
For any X 2 p and any sequence tn ! +1 the sequence c(X; tnH) in the
compact group K admits a convergent subsequence; its limit is called a limit
point of c(X; tH) as t! +1.
Proposition 3.21 Let c : p � p ! K be such that for any X;Y 2 p,
eXec(X;Y )�Y belongs to KeX+YK (assumption (iii) of Corollary 3.17).
Fixing H 2 a+ let c(X), for X 2 p, denote a limit point of c(X; tH) in K
as t tends to +1. The Iwasawa projection A and the orthogonal projection
� are then linked by

A(c(X)�1 �X) = �(X):
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The proof rests on the following lemma, linking the orthogonal projection
� : p! a and the Iwasawa projection A : p! a with the radial component
R : G! a+ de�ned by the Cartan decomposition ([27] p. 402)

g = keR(g)k0

for some k; k0 2 K.

Lemma 3.22 For X 2 p, H 2 a+ we have the following asymptotic expan-
sions of radial components as t tends to +1:

R
�
eX+tH

�
= tH + �(X) +O(t�1)

R
�
eXetH

�
= tH +A(X) +O

�
e�t�(H)

�
with �(H) := inf�>0 �(H) > 0 (in�mum over the set of positive roots �).
These estimates are uniform for X in a compact subset of p.

Proof. The �rst result is a restatement of Lemma 3.20 (i). The latter is
proved in Appendix A.

Proof of Proposition 3.21. The assumption on c implies the equality of
radial components

R
�
ec(X;tH)

�1�XetH
�
= R

�
eX+tH

�
and Lemma 3.22 gives

tH +A
�
c(X; tH)�1 �X

�
+O(e�t�(H)) = tH + �(X) +O(t�1);

whence A
�
c(X; tH)�1 �X

�
= �(X) +O(t�1) and the conclusion.

Formulas (3.36) and (3.37) for spherical functions can now be compared
by the following heuristic arguments. The factor D(X) in (3.36) is D(X) =
limt!+1 detpD X(tH). From (3.38) we may expect that, in the notation of
Proposition 3.21,

D(X) = det k Dk0
�
c(X)�1k0c(k0�1 �X)

���
k0=e

(heuristic formula). For X 2 p and k 2 K let

�(X; k) := kc(k�1 �X) = k�(k�1 �X; e);

a limit point in K of kc(k�1 �X; tH) = c(X; tk �H)k as t tends to +1 with
H 2 a+. As above for  the Jacobian detDk�(X; k) of the map k 7! �(X; k)
(assumed to be smooth) is actually

det k Dk0
�
�(X; k)�1�(X; kk0)

���
k0=e

=

= det k Dk0
�
c(k�1 �X)�1k0c(k0�1k�1 �X)

���
k0=e

= D
�
k�1 �X

�
:
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Formula (3.36) becomes

'�(ExpX) =

Z
K

e<i���;�(k
�1�X)> detDk�(X; k)dk (3.39)

with detDk�(X; k) = D
�
k�1 �X

�
. But �(k�1 � X) = A(�(X; k)�1 � X)

by Proposition 3.21 and the change of variable k 7! �(X; k) �nally gives a
(heuristic) proof of Harish-Chandra�s formula (3.37).
A rigorous proof of (3.39) from (3.37) was given by Duistermaat [20] by

means of a direct construction of a map k 7! 	(X; k), similar to �, such that
�(k�1 �X) = A(	(X; k)�1 �X). He obtained it as the value for t = 1 of a one-
parameter family of di¤eomorphisms k 7! 	t(X; k), the �ow of a carefully
chosen time-dependent vector �eld vt(X; k) on K (or K=M); his construction
of vt uses the root system of (g; a). Besides 	(X; k) = k	

�
k�1 �X; e

�
and,

as above for �, the Jacobian detDk	(X; k) only depends on k�1 �X.
On the other hand Lemma 4.7 below proposes a construction of our

c(X;Y ) by means of a vector �eld Ct(X;Y ) on K depending on the pa-
rameters X;Y ; Duistermaat�s vector �eld vt might thus be a limit of ours
as Y goes to in�nity in a+. Turning this into a satisfactory argument seems
di¢ cult however, for lack of an explicit de�nition of our Ct(X;Y ).

3.6.3 Extension of Du�o�s Isomorphism

Remembering the quote from Helgason in the preface, one may expect that
an e-function for S = G=H provides the appropriate tool to construct an
isomorphism T of a space ofH-invariant distributions on S onto a space ofH-
invariant distributions on its tangent space s, so that T (U �S V ) = T U �s T V
for all H-invariant U; V . This isomorphism should encompass both the Abel
transform of symmetric spaces of the noncompact type and the map e of
special spaces. Specializing to the case suppV = f0g, this would imply the
existence of a fundamental solution for all operators in D(S), hence their
local solvability, and suppU = suppV = f0g would give a generalized Du�o
isomorphism (cf. Section 3.3.4). An obvious necessary condition for that is
the commutativity of the convolution �S (and of D(S) in particular), which
holds true if e is symmetric: e(X;Y ) = e(Y;X).
We discuss here this issue for a Riemannian symmetric space S = G=K

of the noncompact type, keeping to the semisimple notation of 0.5 and the
previous subsections.

a. Using spherical harmonic analysis on S. This will easily lead to a
�rst construction of T . We recall some classical results from [28] Chapter IV.
Let f be a K-invariant test function on S, with supp f contained in the ball
with center o and radius R. Its spherical transform FSf , de�ned by

FSf(�) :=
Z
S

f(x)'��(x)dx
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where � 2 a�c and '�� is the spherical function (3.37), is a Weyl group
invariant entire function of exponential type R. A linear form on a identi�es
with a linear form on p vanishing on the orthogonal of a in p, thus a�c may be
identi�ed with a subspace of p�c . By the «holomorphic Chevalley theorem»
in [28] p. 468, FSf extends uniquely to a K-invariant entire function on p�c of
the same exponential type, therefore the Fourier transform of a test function
T f on p with supp T f contained in the ball with center 0 and radius R:

FSf(�) = FpT f(�) with Fpu(�) :=
Z
p

u(X)e�ih�;XidX , � 2 p�c :

By the functional equation for '�� we have FS (f �S g) (�) = FSf(�):FSg(�)
for � 2 a�c , which extends to � 2 p�c and gives

T (f �S g) = T f �p T g

for allK-invariant test functions f; g on S. Because '�� is an eigenfunction of
all di¤erential operators D 2 D(S), we have FS(Df)(�) = �(D)(i�)FSf(�)
where � : D(S) ! S(a)

W is Harish-Chandra�s isomorphism. By Chevalley�s
theorem again, � 7! �(D)(i�) extends to a K-invariant polynomial on p� and
we infer that there exists a di¤erential operator T (D) 2 D(p)K such that

T (Df) = T (D)T f:

The operator T can also be obtained from the Abel transform A as
follows. Remembering the Iwasawa decomposition G = KAN we set

Af(H) := eh�;Hi
Z
N

f
�
eHnK

�
dn , H 2 a;

for K-invariant f . It easily follows from (3.37) that, for � 2 a�c ,

FpT f(�) = FSf(�) = FaAf(�) , with Fau(�) :=
Z
a

u(H)e�ih�;HidH:

Let q denote the orthogonal complement of a in p and X = H + Y with
H 2 a, Y 2 q, the corresponding decomposition of X 2 p. Then

FaAf(�) =
Z
a�q

T f(H + Y )e�ih�;HidHdY = FaA0T f(�)

where A0 is the «�at Abel transform» de�ned (for K-invariant functions) by

A0u(H) :=
Z
q

u(H + Y )dY;

whence A = A0T by the injectivity of Fa and �nally T = A�10 A since A0
is invertible by Helgason�s Theorem 5.3 of [29], Chapter IV. An explicit for-
mula for T can be extracted from the proof of this theorem. Let !(�) :=
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Q
�>0 h�; �i

m� (product over all positive roots) and let j!(@)j denote the
pseudo-di¤erential operator on a with symbol j!(�)j, that is Fa (j!(@)ju) (�) =
j!(�)jFau(�). If all multiplicities m� are even, j!(@)j is a di¤erential opera-
tor; otherwise it is a di¤erential operator composed with a Hilbert transform.
Helgason�s formula implies, for f 2 D(S)K ,

T f(X) = C

Z
K=M

(j!(@)jAf) (�(k�1 �X))d(kM);

where C is a constant and � : p! a is the orthogonal projection.
Summing up, we see that the linear bijection

T = F�1p � FS = A�10 � A : D(S)K ! D(p)K ;

de�ned by means of spherical harmonic analysis on S = G=K, satis�es

T (f �S g) = T f �p T g , T (Df) = T (D)T f:

b. Using an e-function. We now try to link T with an e-function of
S associated to j = J1=2, assuming here the existence of e1 (see Theorem
3.18), smooth on a neighborhhod of the origin in p. The spherical functions
are then '� = e � with

 �(X) :=

Z
K

eih�;�(k
�1�X)ie1(k�1 �X)dk , � 2 a�c , X 2 p:

As already mentioned, a similar formula has been proved by Duistermaat
[20], with e1 replaced by some (smooth) Jacobian.
Since '� is an eigenfunction of all operators in D(S) we have eP e � = c(P; �)e �
for P 2 D(p)K , where the scalar c(P; �) is given by

c(P; �) = eP e �(o) = P �(0) = P (@X)
�
eih�;�(X)ie1(X)

����
X=0

= (P (@X + i�) e1) (0)

in view of the K-invariance of P (here � 2 a� is identi�ed with � ��, a linear
form on p vanishing on the orthogonal of a). The latter expression shows that
c(P; :) is a polynomial function on a� having the same highest order terms as
P (i�) (since e1(0) = 1). Because 'w�� = '� for w 2W it is W -invariant.
Besides ( eP � eQ)e � = c(P; �)c(Q;�)e � for P;Q 2 D(p)K , and Theorem 3.9
implies

c(P �Q;�) = c(P; �)c(Q;�):

The eigenvalues c(P; �) are also given by Harish-Chandra�s isomorphism �,
which is therefore linked with e1 by

�( eP )(i�) = c(P; �) = (P (@X + i�) e1) (0) = e1 (@�)P (�)j�=i�
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for P 2 D(p)K ; the last expression follows from the symmetry of the Fischer
product. By Chevalley�s theorem the W -invariant polynomial c(P; :) on a�

extends to a uniqueK-invariant polynomial on p�; we still denote it by c(P; :).
Knowing that the restriction map S(p)K ! S(a)W and Harish-Chandra�s
map � : D(S) ! S(a)W are isomorphisms of algebras, we infer that the
map  : c(P; :) 7! eP is an isomorphism of the algebra S(p)K (with standard
product) onto D(S) (with composition of di¤erential operators), that is a
generalized Du�o isomorphism. Writing (P ) = ]"(P ) as in Section 3.3.4,
the corresponding map " is here c(P; :) 7! P , an isomorphism of

�
S(p)K ; �

�
onto

�
S(p)K ;�

�
. Note that this map may di¤er from that in 3.3.4 Example

2 however, as the latter depended on a choice of generators of S(p)K . For
instance, taking the Laplace operator � of p as one of the generators we had
"(�) = � by the construction in 3.3.4 (Example 3), whereas here

"�1(�)(�) = c(�; �) = e�'�(o) = �j�j2 � j�j2 + (n=12)
by Proposition 3.11 (iv).
More generally, the inverse "�1 : P 7! c(P; :) can be written down explic-

itly under a slightly stronger assumption on e. Assume6 that, for any �xed
H 2 a+, the limit

e1(X;H) := lim
t!+1

e(X; tH)

exists, with uniform convergence for X running in any K-orbit in p, and
de�nes a smooth function of X 2 p. The abridged notation e1(X) used up
to now disregarded the dependence on H. Let T� 2 p correspond to � 2 p�
under the identi�cation given by the scalar product on p; thus Tk�� = k � T�
for k 2 K and T� 2 a if � 2 a� (identi�ed as above with a linear form on p
vanishing on the orthogonal of a). For � 2 p�0, the set of regular elements in
p�, we have T� = k(�) � T� for some k(�) 2 K and a unique T� 2 a+. Under
our assumption, the K-invariance e(X; tT�) = e(k(�)�1 �X; tT�) implies the
existence of e1(X;T�) := limt!+1 e(X; tT�) for any X 2 p. Considering

 �(X) :=

Z
K

eih�;k
�1�Xie1(k�1 �X;T�)dk , � 2 p�0 , X 2 p;

we see that it extends the above de�nition of  � and  k�� =  � for k 2 K.
Therefore '� := e � is a spherical function on S with eigenvalue

�1( eP )(�) = "�1(P )(�) = c(P; �)

= P �(0) = P (@X + i�)e1(X;T�)jX=0 (3.40)

for P 2 D(p)K ; this gives an explicit formula for the K-invariant extension
of c(P; �).

6This assumption holds for special spaces (G complex) and for rank one spaces (Propo-
sition 3.24).
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An expression of the operator T can be obtained similarly. For u 2 D(p)K
the spherical transform of eu 2 D(S)K extends to p� as

FSeu(�) = Z
S

eu(x)e ��(x)dx = Z
p

u(X) ��(X)dX

=

Z
p

u(X)e1(X;T��)e
�ih�;XidX: (3.41)

This equality holds for � 2 p�0 but we know the left-hand side extends to an
entire function of � 2 p�c . De�ning as above the operator T by FS = Fp � T
we obtain

T eu(Y ) = Z
p�
FSeu(�)eih�;Y id� = Z

p�p�0
eih�;Y�Xie1(X;T��)u(X)dXd�

(the measure d� being suitably normalized). The latter is an oscillating
integral, de�ning a pseudo-di¤erential operator of order 0 with symbol e1.
Again

T (eu �S ev) = T eu �p T ev , T (Deu) = T (D)T eu (3.42)

for u; v 2 D(p)K , D 2 D(S), where T (D) 2 D(p)K is de�ned by T (D)(�) =
�1 (D) (�i�).
Summing up, under our assumption about e1, this function allows con-

structing an operator T which intertwines the G-invariant di¤erential oper-
ators in D(S) with constant coe¢ cients di¤erential operators in D(p)K and,
more generally, the convolutions products on S and p.

c. Harish-Chandra�s c-function. We �nally note the following link be-
tween e1 and Harish-Chandra�s function c(�). Here again we consider e1
as a (smooth) function on p only, forgetting its dependence upon the second
variable which is not needed any more. According to a fundamental theorem
of spherical harmonic analysis, the function �(�) := jc(�)j�2 is W -invariant
and tempered on a�, and gives the inversion formula of the spherical trans-
form

u(0) = eu(o) = Z
a�
FSeu(�)�(�)d� = h�(�);Fp(e1u)(�)i

for u 2 D(p)K ; the latter equality follows from (3.41). Writing as above
p = a� q and X = H + Y the corresponding decomposition we have

Fp(e1 u)(�) =

Z
a

e�ih�;HidH

Z
q

(e1u) (H + Y )dY:

Thus, using the Fourier transform of the tempered distribution �,

u(0) =

�
(Fa��) (H);

Z
q

(e1u) (H + Y )dY

�
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for any K-invariant test function u. To write it more concisely let ��T =
T � � 2 D0(p) denote the pullback of a distribution T 2 D0(a) by the sub-
mersion � : p ! a, that is hT � �(X); f(X)i = hT (H)
 1(Y ); f(H + Y )i,
and UK the K-invariant mean of U 2 D0(p), that is hUK(X); f(X)i =

U(X);

R
K
f(k �X)dk

�
. We obtain the following relation between e1 and

the Plancherel measure �:

(e1 � ((Fa��) � �))K = �0;

the Dirac measure at the origin of p.

d. Remark. Let '0i�(X) =
R
K
ei<�;k�X>dk, with � 2 p�, X 2 p, be the

generalized Bessel function already introduced. With T = F�1p �FS as above
we have the following formal relations

tT '0i� = '� , � 2 p�;�
T �1'0i�

�
(x) =

�
T �1'0i�

�
(o)'�(x) , x 2 G=K;

and
�
T �1'0i�

�
(o)d� is the Plancherel measure in the inversion formula for

the spherical transform.
Indeed, for any K-invariant test function f on S,Z

p

T f(X)'0�i�(X)dX =

Z
p

T f(X)e�ih�;XidX = FpT f(�)

= FSf(�) =
Z
S

f(x)'��(x)dx;

whence the �rst result using the formal transpose tT . Moreover

T f(X) = F�1p � FSf(X) =
Z
p�
FSf(�)eih�;Xid� =

Z
p�
FSf(�)'0i�(X)d�

and, applying T �1 (formally) under the integral sign,

f(x) =

Z
p�
FSf(�)

�
T �1'0i�

�
(x)d�: (3.43)

For x = o this shows that
�
T �1'0i�

�
(o)d� is the Plancherel measure.

Our second formal relation now follows from a classical calculation. We note
that, for g 2 G and k 2 K,Z

S

f(gkx)'��(x)dx =

Z
S

f(x)'��(g
�1kx)dx;

as given by the change x 7! k�1gkx. Let fg(x) :=
R
K
f(gkx)dk. Integrating

with respect to k we infer

FSfg(�) = FSf(�)'��(g�1K) = FSf(�)'�(gK)
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from the functional equation of spherical functions and a symmetry property
of '�, known for � 2 a� ([28] p. 419) and extended here to p�. The inversion
formula (3.43) at the origin gives

f(gK) = fg(o) =

Z
p�
FSfg(�)

�
T �1'0i�

�
(o)d�

=

Z
p�
FSf(�)

�
T �1'0i�

�
(o)'� (gK) d�

and our claim follows by comparison with (3.43).

3.7 An e-Function for Symmetric Spaces of Rank
One

In this section we consider a Riemannian symmetric space G=K of the non-
compact type and of rank one, that is one of the hyperbolic spaces (real, com-
plex, quaternionic or Cayley). Standard semisimple notation will be used
throughout, as de�ned in Helgason�s books [27][28]; see Section 0.5. Let �,
and possibly 2�, be the positive roots with respective multiplicities p � 1
and q � 0; thus dimG=K = n = p + q + 1. On the Lie algebra g it will be
convenient to use the norm

kXk :=
�
� 1

2(p+ 4q)
B(X; �X)

�1=2
(3.44)

where B is the Killing form and � the Cartan involution, so that H 2 a and
�(H) = 1 imply kHk = 1 by the root space decomposition of adH. We now
construct an explicit e-function7 .

Theorem 3.23 Let G=K be a Riemannian symmetric space of the non-
compact type and of rank one. Let �(t) := sh t=t, x = kXk, y = kY k,
z = kX + Y k for X;Y 2 p and

A(x; y; z) =
1

�(x)�(y)�(z)
�

� �
�
x+ y + z

2

�
�

�
x+ y � z

2

�
�

�
x� y + z

2

�
�

�
�x+ y + z

2

�

B(x; y; z) =
1

chx ch y ch z
�

� sh
�
x+ y + z

2

�
sh

�
x+ y � z

2

�
sh

�
x� y + z

2

�
sh

�
�x+ y + z

2

�
7This theorem is (unpublished) joint work with Mogens Flensted-Jensen.
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Then

e(X;Y ) := A(x; y; z)(n�3)=2 2F1

�
1� q

2
;
q

2
;
n� 1
2

;B(x; y; z)

�
is an e-function of G=K associated with j = J1=2 (the square root of the
Jacobian of Exp), analytic on p� p.

Remarks. (a) The hypergeometric factor 2F1 is identically 1 if q = 0, that is
when G=K is a real hyperbolic space Hn(R). Among them H3(R) is special;
this results from Proposition 3.7 too, since H3(R) = SL(2;C)=SU(2).
(b) Note that e(X;Y ) is here globally de�ned and invariant under all permu-
tations of the three variables x; y; z. Further properties of e will be given in
Proposition 3.24.
(c) A and B may also be written as

A(x; y; z) =
4xyz

shx sh y sh z

ch(x+ y)� ch z
(x+ y)2 � z2

ch z � ch(x� y)
z2 � (x� y)2

B(x; y; z) =
(ch(x+ y)� ch z)(ch z � ch(x� y))

4 chx ch y ch z
:

Example. For Hn(R) the function log e = n�3
2 logA expands as

log e(X;Y ) =
3� n
120

�
kXk2 kY k2 � (X � Y )2

�
+ � � �

in a neighborhhod of the origin, where � � � have order � 6 with respect to
(X;Y ) and

X � Y = 1

2(n� 1)B(X;Y )

is the scalar product on p associated with the norm (3.44). Proposition 4.31
below gives a similar expansion for arbitrary symmetric spaces.
Indeed log �(t) =

�
t2=6

�
�
�
t4=180

�
+O

�
t6
�
, the second order terms in logA

cancel out and it is easily checked that

logA =
1

240

��
x2 + y2 � z2

�2 � 4x2y2�+ � � �
= � 1

60

�
kXk2 kY k2 � (X � Y )2

�
+ � � �

3.7.1 Outline of the Proof

Not surprisingly the proof of Theorem 3.23 is a bit technical; we only give
here a brief sketch of its main steps and refer to Appendix B for full details.
What we are looking for is an integral formula of the formZ

K

f(Z(X; k � Y ))dk =
Z
K

f(X + k � Y )D(X; k � Y )dk;
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valid for any K-invariant continuous function f on p and any X;Y 2 p,
where the factor D is to be explicitly computed and, as above, Z(X;Y ) 2 p
is de�ned by eZ(X;Y )K = eXeYK. In view of Proposition 3.16 (ii) this will
exhibit an e-function for G=K.
By the polar decomposition of X 2 p we have X = kX � (kXkH) for some

kX 2 K, since our space has rank one and kHk = 1. Letting '(t) = f(tH) it
is therefore su¢ cient to prove thatZ

K

' (kZ(X; k � Y )k) dk =
Z
K

' (kX + k � Y k)D(X; k � Y )dk (3.45)

for any continuous function ' on [0; 1[. This will be achieved �rst in the
special case X;Y 2 a+ : taking X = xH and Y = yH with x; y > 0 we will
prove that Z

K

' (kxH + k � yHk) dk =
Z x+y

jx�yj
'(z)a(x; y; z)dz (3.46)Z

K

' (kZ(xH; k � yH)k) dk =
Z x+y

jx�yj
'(z)b(x; y; z)dz (3.47)

with a; b given by explicit formulas. Replacing '(z) by '(z)b(x; y; z)=a(x; y; z)
in (3.46) it will follow thatZ
K

' (kZ(xH; k � yH)k) dk =
Z x+y

jx�yj
'(z)

b

a
(x; y; z)a(x; y; z)dz

=

Z
K

' (kxH + k � yHk) b
a
(x; y; kxH + k � yHk)dk

which is (3.45) for X;Y 2 a+ with

D(X;Y ) =
b

a
(kXk ; kY k ; kX + Y k) .

The general case X;Y 2 p follows by K-invariance, writing X = kX �xH and
Y = kY � yH and changing k into k�1X kkY in both integrals over K. This will
�nally give the e-function

e(X;Y ) =
j(X)j(Y )

j(X + Y )

b

a
(kXk ; kY k ; kX + Y k) . (3.48)

The main point is therefore to prove (3.46) and (3.47). The former is
elementary (Lemma B.2). For the latter (Lemma B.5) let g = k(g)eH(g)n(g)
be the Iwasawa decomposition of g 2 G according to G = KAN , let M be
the centralizer of A in K, and N = �N where � is the Cartan involution. The
proof relies on the classical integral formula (valid for arbitrary rank, see [28]
p. 198): Z

K

f(k)dk =

Z
N

f(k(n))e�2h�;H(n)idn ,
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if f is any M -bi-invariant continuous function on K, � is the half-sum of
positive roots counted with mutiplicities and the Haar measure dn is suitably
normalized. In the rank one case A is one-dimensional and the right-hand
side can be computed by SU(2; 1)-reduction (Lemma B.4). Applying this
to the M -bi-invariant function f(k) = ' (kZ(xH; k � yH)k), we shall �nally
obtain (3.47).

3.7.2 Properties of the Rank One e-Function

The main properties of the function obtained in the rank one case can be
easily read from the explicit formula in Theorem 3.23. Let us emphasize
their similarity with the properties of the e-function constructed in the next
chapter by a completely di¤erent method (cf. Section 4.4). Proposition 3.25
explains this, for real hyperbolic spaces at least.

Proposition 3.24 Let G=K be a Riemannian symmetric space of the non-
compact type and of rank one. The e-function of Theorem 3.23 has the fol-
lowing properties.
(i) It is analytic and strictly positive on p� p.
(ii) For any k 2 K and X;Y 2 p,

e(k �X; k � Y ) = e(X;Y ) = e(�X;�Y ) = e(Y;X) = e(X;Z)

whenever Z 2 p and X + Y + Z = 0.
(iii) @Y e(X; 0) = 0 and @Xe(0; Y ) = 0.
(iv) e(X;Y ) = 1 whenever [X;Y ] = 0 .
(v) Let X;Y 2 p with Y 6= 0, x = kXk and x0 = (X � Y ) = kY k, where kXk
is the norm (3.44) and X � Y the corresponding scalar product on p. Then

lim
t!�1

e(X; tY ) =

=

�
2
x

shx

chx� chx0
x2 � x02

�(n�3)=2
2F1

�
1� q

2
;
q

2
;
n� 1
2

;
chx� chx0
2 chx

�
;

uniformly for �xed Y and X running in an arbitrary compact subset of p.
The right-hand side is an analytic function of (X;Y ) on p� (pnf0g).

Proof. We retain the notation A;B of Theorem 3.23 and Remark (c) imme-
diately after. They are even analytic functions of x; y; z, therefore analytic
in (X;Y ) 2 p� p.
(i) In view of the expressions (B.6)(B.7) of B in Appendix B we have 0 �
B(x; y; z) < 1=2 for jx � yj � z � x + y and the hypergeometric factor of
e is analytic with respect to (X;Y ) 2 p � p. It is strictly positive too (see
the end of proof of Lemma B.5). Besides A(x; y; z) is strictly positive for
(x; y; z) 2 R3.
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(ii) is easy. By Remark (b) following Theorem 3.23 e is a symmetric function
of x; y; z, hence

e(X;Y ) = f(kXk ; kY k ; kX + Y k) = f(kXk ; k�X � Y k ; k�Y k)
= e(X;�X � Y ):

(iii) Di¤erentiating e(X;Y ) = e(�X;X +Y ) with respect to X at X = 0 we
obtain

@Xe(0; Y ) = �@Xe(0; Y ) + @Y e(0; Y ):

But e(0; Y ) = 1 hence @Y e(0; Y ) = 0 and we infer @Xe(0; Y ) = 0. Then
@Y e(X; 0) = 0 because e(X;Y ) = e(Y;X).
(iv) By K-invariance it su¢ ces to consider the special case X = xH, x � 0.
If x = 0 we have e(0; Y ) = 1. If x > 0 the assumption [X;Y ] = 0 and Y 2 p
implies Y = tH for some t 2 R, therefore y = �t, z = �(x + t) and it is
easily checked that A = 1 and B = 0 whence e(X;Y ) = 1.
(v) Let Y 2 p with kY k = y > 0. Since e(X; tY ) = e(�X;�tY ) we may
assume t > 0. First

z = kX + tY k = ty + x0 + r with 0 � r � x2=2ty ;

indeed z2 = x2+t2y2+2tx0y and 2ty(z�ty�x0) = x2�(ty�z)2 lies between
0 and x2. We can now study the behavior of the factors of A(x; ty; z) as
t! +1 and X remains in a compact subset of p, say kXk = x � C. First

1

�(x)
�

�
x� ty + z

2

�
�

�
x+ ty � z

2

�
=

1

�(x)
�

�
x+ x0 + r

2

�
�

�
x� x0 � r

2

�

tends to �
�
x+x0

2

�
�
�
x�x0
2

�
=�(x), uniformly for kXk � C. Furthermore

these factors remain uniformly bounded for kXk � C and t � 1=2y because
jx� x0 � rj � 2x+ x2 � 2C + C2 and �(x) � 1. The remaining factors of A
are

�
�
ty + x0+x+r

2

�
�
�
ty + x0�x+r

2

�
�(ty)�(ty + x0 + r)

= A1A2 ,

with A1 :=
�
1� chx

ch(2ty + x0 + r)

��
1� ch(x0 + r)

ch(2ty + x0 + r)

��1
A2 :=

�
1 +

x0 + r

ty

��
1 +

x0 + x+ r

2ty

��1�
1 +

x0 � x+ r
2ty

��1
:

No problem arises from the denominators for t large enough (independently
of X). Thus A1 and A2 converge to 1 as t ! +1, uniformly for kXk � C.

Gathering all factors we see thatA(x; ty; z) tends to �
�
x+x0

2

�
�
�
x�x0
2

�
=�(x),

uniformly for kXk � C, and remains bounded.
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A similar argument shows thatB(x; ty; z) tends to sh
�
x+x0

2

�
sh
�
x�x0
2

�
= chx,

uniformly for kXk � C, and remains bounded. This completes the proof of
the proposition.

We end this section with a discussion of uniqueness of e-functions.

Proposition 3.25 (i) On the real hyperbolic space Hn(R), n � 3, for any j
there exists a unique e-function associated to j. For j = J1=2 it is

e(X;Y ) = A(x; y; z)(n�3)=2

in the notation of Theorem 3.23, with X;Y 2 p, x = kXk, y = kY k, z =
kX + Y k.
(ii) This formula also holds for n = 2 but e is not unique in this case.

Proof. Existence for n � 2. For j = J1=2 the result follows from Theorem
3.23 with q = 0. Any other function j may be written as j(X) = �(x)J1=2(X)
with x = kXk. By Remark (a) in 3.1.2, multiplication of the previous func-
tion e by �(x)�(y)=�(z) gives an e-function associated to j.
Uniqueness for n � 3. Let " = e1� e2 where e1 and e2 are two e-functions of
G=K associated to the same j. By Proposition 3.16 (ii) with j�1f instead
of f we have Z

K

f(X + k � Y )"(X; k � Y ) dk = 0 (3.49)

for any K-invariant smooth function f on p and any X;Y 2 p. The unique-
ness of e for G=K = Hn(R) will stem from a Cartan type decomposition
K =MLM , where L is here a one-dimensional subgroup, allowing to replace
(3.49) by an integral with respect to a single variable and �nally conclude
that " = 0.
Here Hn(R) = G=K with G = SO0(n; 1), K = SO(n) � f1g and, as in the
proof of Lemma B.3, we identify an elementX of p withX = (x1; :::; xn) 2 Rn
for short. The adjoint action of K on p is then the natural action of SO(n)
on Rn. Taking the unit vector H = (1; 0; :::; 0) as a basis of a, the stabilizer
of H in K isM = f1g�SO(n�1)�f1g. The groupM rotates the n�1 last
components of vectors in Rn therefore, given any k 2 K, there exist m 2M
and � 2 R such that

mk �H = (cos �; sin �; 0; :::; 0) = l� �H (3.50)

where l� 2 L, the one-dimensional subgroup of rotations in the (x1; x2)-
plane. This implies k = m�1l�m

0 for some m;m0 2 M and l� 2 L; thus
K = MLM . For n � 3, M is a non-trivial group and we may even choose
m 2M such that sin � � 0 in (3.50), whence l� �H = (t;

p
1� t2; 0; :::; 0) with

t = cos � = �(l� �H) = �(k �H), � denoting the orthogonal projection p! a.
Going back to (3.49), we take X = xH, Y = yH with x; y > 0 at �rst. The
invariances allow replacing k by l� in f(xH + yk � H)"(xH; yk � H), which
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therefore only depends on the a-component t (and x; y). Now Lemma B.1
and the proof of Lemma B.2 in Appendix B lead toZ
K

f(xH + k � yH)"(xH; k � yH)dk =
Z x+y

jx�yj
f(zH)"(xH; l� � yH)a(x; y; z)dz;

with z linked to � 2 [0; �] by z = kxH + l� � yHk =
p
x2 + y2 + 2xyt and

a as in Lemma B.2. The vanishing of this integral for any (K-invariant) f
implies "(xH; l� �yH) = 0 for � 2]0; �[ and x; y > 0, whence "(xH; k �yH) = 0
for k 2 K and �nally "(X;Y ) = 0 for all X;Y 2 p by K-invariance and
continuity, as claimed.
Non-uniqueness for n = 2. The above argument breaks down for n = 2.
In this case, with X = (x1; x2) and Y = (y1; y2) as above, let "(X;Y ) :=
'(x1y2 � x2y1) where ' is an arbitrary analytic odd function on R. Then
"(k �X; k � Y ) = "(X;Y ) and we claim that the integralZ 2�

0

f(X + k� � Y )"(X; k� � Y )
d�

2�
,

with k� =
�
cos � � sin �
sin � cos �

�
2 K, vanishes for any K-invariant function f .

Indeed, �xing X = xH and Y = yH 2 a (which will su¢ ce in view of the
K-invariance of f and "), we see that f(X + k� �Y ) is a function of cos � and
"(X; k� � Y ) = '(xy sin �) is an odd function of sin �, hence our claim. Thus,
if e is an e-function of H2(R), e+ " is a new one.

3.7.3 Application to Spherical Functions

As above let H 2 a be de�ned by �(H) = 1 (so that kHk = 1) and let
� : p ! a denote the orthogonal projection. Applying Proposition 3.24
(v) with X 2 p and Y = H, we obtain x0 = �(X) (under the obvious
identi�cation of a = RH with R) and

e1(X) =

 
2
kXk
sh kXk

ch kXk � ch�(X)
kXk2 � �(X)2

!(n�3)=2
�

� 2F1

�
1� q

2
;
q

2
;
n� 1
2

;
ch kXk � ch�(X)

2 ch kXk

�
;

analytic on p, in the notation of Theorem 3.18 which applies to rank one
spaces. Thus, identifying a� with R too,

J(tH)1=2'�(Exp tH) =

Z
K

eit��(k�H)e1(tk �H)dk

for all t; � 2 R, that is�
sh t

t

�(n�1)=2
(ch t)

q=2
'�(Exp tH) =

Z
K

f(�(k �H))dk
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with

f(u) := eit�u
�

2

t sh t

ch t� ch tu
1� u2

�(n�3)=2
2F1

�
1� q

2
;
q

2
;
n� 1
2

;
ch t� ch tu
2 ch t

�
:

The integral over K can be expressed by means of Lemma B.1 in the Appen-
dix and it follows easily (with s = tu) that

�
�
n�1
2

�
�
�
1
2

�
2(n�1)=2�

�
n
2

� (sh t)n�2 (ch t)q=2 '�(Exp tH) =
=

Z t

0

cos�s (ch t� ch s)(n�3)=2 2F1

�
1� q

2
;
q

2
;
n� 1
2

;
ch t� ch s
2 ch t

�
ds:

Obtained here by means of e1, this is a formula proved by Koornwinder ([33]
p. 149 or [34] p. 47-48) for all Jacobi functions.

3.8 Extension to Line Bundles

Given a symmetric space S = G=H and a character � of H we consider
the line bundle L�, keeping to the notation of Section 2.2. Elements of L�
are denoted by (x; z) with x 2 G, z 2 C. Given j as in De�nition 3.2, the
transfer of a smooth function f on s0 is now the section ef of L� above Exp s0
de�ned by ef(ExpX) = �eX ; j(X)�1f(X)�:
For a distribution u on s0 the distribution eu on L� is de�ned byDeu; efE = hu; fi
for all f 2 D(s0). The transfer map preserves H-invariance. When restricting
to H-invariant distributions supported at the origin, that is u = tP�0 with
P 2 D(s)H , we obtain an order preserving linear isomorphism P 7! eP of
D(s)H onto D(L�). If s(xH) = (x; f(x)) is a smooth section we have

( ePs)(xH) = (x; g(x)) with g(x) = P (@X)
�
j(X)f(xeX)

�
X=0

:

De�nition 3.26 An e-function of L� is an analytic function e� : 
! R
on an open neighborhood 
 of (0; 0) in s0 � s0 such that:
(i) for all h 2 H and (X;Y ) 2 
 one has (h�X;h�Y ) 2 
 and e�(h�X;h�Y ) =
e�(X;Y )
(ii) for any H-invariant distributions u; v and any smooth function f on open
neighborhoods of the origin in s0 (with suitable supports),Deu � ev; efE = hu(X)
 v(Y ); e�(X;Y )f(X + Y )i :



106 CHAPTER 3. THE ROLE OF E-FUNCTIONS

The product � is here the convolution on L� de�ned in Section 2.2.2. The
existence of such a function on some suitably chosen 
 and its link with
an e-function of S will be given by Theorem 4.25. We now derive some
consequences of this de�nition. Theorems 3.8 and 3.9 generalize as follows,
with the same proof.

Theorem 3.27 Let e� : 
 ! R be an e-function of the line bundle L� and

1 = fX 2 sj(X; 0) 2 
g.
(i) For P 2 D(s)H the equation

P�(X; @X)f(X) := P (@Y ) (e�(X;Y )f(X + Y ))jY=0 ;

f 2 C1(
1), de�nes an H-invariant di¤erential operator P� with analytic co-
e¢ cients on 
1 and symbol P�(X; �) = e�(X; @�)P (�). For any H-invariant
distribution u on 
1

t eP eu = �tP�(X; @X)u�eon Exp
1:
(ii) If H is compact and f is any H-invariant smooth function on 
1eP ef = (P�(X; @X)f)eon Exp
1:
(iii) The map P 7! eP is an order preserving isomorphism of algebras of�
D(s)H ;�

�
onto (D(L�); �), where the product � is de�ned by

(P �Q) (�) := e�(@�; @�) (P (�)Q(�))j�=� :

Remarks. (a) The algebra D(L�) is therefore commutative if e�(X;Y ) =
e�(Y;X) (see Theorem 4.28).
(b) As in 3.3.4 Example 2 we obtain the following corollary: assuming D(L�)
is commutative and (S(s)H ; �) is a polynomial algebra with generators P1,...,
Pl, there exists a unique generalized Du�o isomorphism of algebras  :�
S (s)

H
; �
�
! (D(L�); �) such that (Pj) = fPj for j = 1; :::; l.

The line bundle L� is called special if De�nition 3.26 holds with e� =
1. Examples are provided by Theorem 4.27. Let us recall the notation
Z0(X;Y ) = X + Y .

Proposition 3.28 Assume L� is a special line bundle. Then
(i) Let u; v be H-invariant distributions on open subsets of s0 and f 2 C1(s)
such that 
 \ (suppu� supp v) \ supp (f � Z) and 
 \ (suppu� supp v) \
supp (f � Z0) are compact. ThenDeu � ev; efE = Dû �s v; efE = hu �s v; fi :
If P 2 D(s)H and u is an H-invariant distribution on an open subset U of
s0, gtPu = t eP eu;
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an equality of distributions on Exp (
1 \ U).
(ii) The map P 7! eP is an algebra isomorphism of D(s)H onto D(L�).
(iii) Any non-zero di¤erential operator in tD(S) has an H-invariant funda-
mental solution on 
1 and is locally solvable.
(iv) Let � 2 s� be such that the coadjoint orbit H � � is tempered, and let
T� be the Fourier transform of an orbital measure on H � �. Then fT� is an
H-invariant eigendistribution: for all P 2 S(s)H

t ePfT� = P (i�)fT� on Exp
1:
Proof. (i) to (iii) are proved as in Proposition 3.5.
(iv) The coadjoint action of H on s� is de�ned by hh � �;Xi =



�; h�1 �X

�
.

We assume here that H � � carries a measure �� which is a tempered distrib-
ution on s such that, for all h 2 H,Z

H��
'(h � �)d��(�) = jdet sAdhj

Z
H��

'(�)d��(�):

The Fourier transform of �� is T� de�ned by

hT�; fi =
Z
H��

bfd�� , bf(�) := Z
s

f(X)e�ih�;XidX

where dX is a Lebesgue measure on s. Then T� is an H-invariant distribution
on s,

tP (@X)T� = P (i�)T�

for all P 2 S(s)H and we conclude with (i).

3.9 Open Problems

a. Much work remains to be done in order to extend to symmetric spaces and
line bundles the Du�o isomorphism for bi-invariant di¤erential operators on
Lie groups. As noted in Section 3.3.4, where this is achieved under various
assumptions, the problem is to construct an isomorphism of algebras " :�
S (s)

H
; �
�
!
�
S (s)

H
;�
�
, and it seems reasonable to expect that it can be

obtained from the e-function itself. An example is given by (3.40) for a G=K
of the noncompact type, using e1 - if this limit exists.
As explained in the notes below, a di¤erent approach to Du�o�s isomorphism
for symmetric spaces has been developed by Torossian [52][53] by means of a
generalized Harish-Chandra homomorphism; see also his paper [56]. It would
be interesting to compare both methods.
One may then look for a further extension of the isomorphism to convolution
of H-invariant distributions, encompassing the special case of composition of
invariant di¤erential operators and possibly leading to solvability theorems
for D(S). See (3.42) and the discussion in Section 3.6.3.
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b. Find a direct proof of (3.33), implying Theorem 3.18, from the general
properties of e(X;Y ) (Remark (e) in Section 3.6.1).

c. Extend the explicit construction of e(X;Y ) in the rank one case (Section
3.7) to all spaces G=K of the noncompact type. The existence and properties
of e1 might then be read from the result.
A link was noted in 3.6.3.c between Harish-Chandra�s c-function and e1.
But can c(�) be explicitly obtained from e? Some additional information
would be needed here about the K-invariants on p: when G has a complex
structure, e and e1 are identically 1 whereas c(�)�1 = C

Q
�>0 h�; �i with

some constant factor C (product over all positive roots, see [28] p. 432).

d. Investigate the link between c(X;Y ), e1 and Duistermaat�s Jacobian in
3.6.2, so as to clarify the heuristic arguments in this section.

Notes

When trying to extend to a symmetric space S = G=H the Kashiwara-
Vergne method for Lie groups, the �rst step is to focus on those spaces for
which H-invariant convolution products on S and its tangent space s exactly
correspond under the transfer map e. This is the «special» case studied in
Section 3.2, taken from [43] and motivated by previous work by Michel Du�o,
and by Yves Benoist [10] for nilpotent symmetric spaces.
It soon becomes clear, however, that this property no longer holds for

general symmetric spaces (see Proposition 3.7), unless the convolution on s
is twisted by some factor e(X;Y ). The necessity of such an «e-function»

appears when computing
Deu �S ev; efE (for H compact and u; v; f functions,

say) as an integral over s � s by means of the di¤eomorphism � of Section
4.2.4; details are given at the beginning of 4.3.2. It was �rst introduced in [44]
and its link with invariant di¤erential operators (Section 3.3) was developed
in [45]. Also taken from [45] is the application to spherical functions (Section
3.4), extended here to mean value operators as in [49]. An expansion of mean
values similar to Theorem 3.13 was proved by Sigurður Helgason in 1959 (see
[29] p. 77) for general Riemannian homogeneous spaces; con�ning ourselves
here to the case of Riemannian symmetric spaces, we obtain a more precise
form of his result by means of e.
Solvability theorems for invariant di¤erential operators on Riemannian

symmetric spaces of the noncompact type have been proved by Helgason
(1964, 1973), reducing them to operators with constant coe¢ cients by means
of the Abel transform; see [29] Chapter V, §1.
Except for a brief sketch of Proposition 3.21 in [46] (without proof) the

material in Sections 3.5 and 3.6 was unpublished. The introduction of e1
was suggested to me by Mogens Flensted-Jensen. For Riemannian symmetric
spaces of the noncompact type, Piotr Graczyk and Patrice Sawyer study in
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[23] an interesting variant of the integral formula (3.28), written as an integral
over a certain convex subset of a.
An obvious prerequisite for constructing a generalized Du�o isomorphism

is the commutativity of the algebra D(S), known (for Riemannian symmetric
spaces) from earlier work by Gelfand (1950) and Selberg (1956). In 1964,
only assuming the symmetric space S has an invariant volume element, Lich-
nerowicz [36] proved that the transpose tD of D 2 D(S) is the image of D
by the symmetry, whence an easy proof of this commutativity. A purely al-
gebraic proof was later given by Du�o [19] in the more general case of line
bundles.
In [52][53] Charles Torossian constructs a generalized Harish-Chandra ho-

momorphism, giving an injective morphism of algebras from the (commuta-
tive) algebra of invariant di¤erential operators on the line bundle of half-
densities over S into the �eld of H-invariant fractions of s. He conjectures
that it is actually an isomorphism onto the algebra S(s)H (the «polynomial
conjecture» ) and proves the conjecture for quadratic or solvable symmetric
pairs; in the latter case Torossian�s isomorphism is the inverse of our transfer
map e . In [56] he proves a similar result for quadratic symmetric pairs with
a skew-invariant bilinear form; see also 4.7.c below.
The �rst explicit example of an e-function was found by Flensted-Jensen

for the real hyperbolic space Hn(R) (unpublished). Then, drawing inspira-
tion from his calculations with Tom Koornwinder in the more general frame-
work of Jacobi analysis ([22] or [34] §7.1), Flensted-Jensen and I extended the
result to all Riemannian symmetric spaces of rank one, leading to Theorem
3.23 (as yet unpublished). The �rst appearance of the kernel a in (3.46) was
in Fritz John�s study of iterated spherical means in Euclidean space (1955;
see [29] p. 356). The kernel b in (3.47) was introduced by Flensted-Jensen
and Koornwinder in [22] §4.
An explicit e-function for Riemannian symmetric spaces of the compact

type is put forward in Anthony Dooley�s survey paper [17]; the detailed proof
hasn�t appeared yet.
Taken from [47], the extension to line bundles in Section 3.8 answers a

question asked me by Du�o.
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Chapter 4

e-Functions and the
Campbell-Hausdor¤
Formula

Throughout this chapter S = G=H denotes a connected and simply con-
nected symmetric space, where G is a simply connected (we may assume
this, see 0.4) real Lie group with involutive automorphism � and H is the
connected component of the identity in the �xed point subgroup of � in G.
The main use of these topological assumptions is to specify the open sets we
are working on. We still denote by � the corresponding automorphism of the
Lie algebra g, whence the decomposition g = h� s.
The goal of this chapter is to extend to any such space S the Kashiwara-

Vergne method of Chapter 1 for Lie groups. We show that S admits an
e-function, which can be constructed by means of the Campbell-Hausdor¤
formula, and we prove some properties of this function. As explained in
Section 3.1.2 we want a function e(X;Y ) on an open subset of s� s, relating
convolutions of invariant distributions on S and s, namely�
u(X)
 v(Y ); j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�
= hu(X)
 v(Y ); e(X;Y )f(X + Y )i

for any H-invariant distributions u; v and any function f (with suitable sup-
ports), where Z(X;Y ) 2 s is de�ned by

ExpZ(X;Y ) = expX � ExpY:

This will be done by

� studying Z(X;Y ), de�ned on a domain O in s � s (Section 4.2.2), in
order to obtain a symmetric space analog of the Campbell-Hausdor¤
formula, written by means of Lie series A;B;C in a speci�c form similar

111
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to the �rst Kashiwara-Vergne equation (KV1) for Lie groups (Section
4.2.3)

� then transforming Z(X;Y ) into its �at analog X + Y by a local di¤eo-
morphism � of s� s (Section 4.2.4), linked to contractions of the sym-
metric space into its tangent space at the origin (Section 4.1) and given
by adjoint action of elements a(X;Y ), b(X;Y ) of H, viz. Z(�(X;Y )) =
X + Y with �(X;Y ) = (a(X;Y ) �X; b(X;Y ) � Y ). This � is the sym-
metric space analog of F in Section 1.3 for Lie groups.

Along the way we point out some properties of the element c(X;Y ) =
a(X;Y )�1b(X;Y ) of H and of the H-component h(X;Y ) de�ned by
eZ(X;Y )h(X;Y ) = eXeY (Section 4.2.5). The latter is needed when deal-
ing with line bundles.
The Jacobian of � is an essential factor of our e-function, constructed in

Section 4.3.2 and studied in detail in 4.4. Roughly speaking, e conveys the
lack of validity of the second Kashiwara-Vergne equation (KV2) for general
symmetric spaces; see Proposition 4.19 for a precise statement.
The results are extended in Section 4.5 to the line bundle over S de�ned

by a character � of H. The Taylor expansions in Section 4.6 aim at getting
a better grasp of the objects introduced in this chapter. Section 4.7 suggests
a few open problems.
Though it draws inspiration from the Kashiwara-Vergne method for Lie

groups the present chapter can be read, to a large extent, independently
from Chapter 1. The main results are Theorem 4.6 (construction of �),
Theorem 4.12 (construction of a «Campbell-Hausdor¤ e-function» ), Theo-
rem 4.20 (structure of this e-function), Theorem 4.22 (e = 1 identically for
solvable symmetric spaces and strongly symmetric spaces), Theorem 4.24
(symmetry e(X;Y ) = e(Y;X) in many cases, implying the commutativity
of the algebra of invariant di¤erential operators on S) and their extensions
to line bundles (Theorems 4.25, 4.27, 4.28). Theorem 4.16 expresses invari-
ant di¤erential operators on S in exponential coordinates by means of the
e-function.

4.1 Contractions of Symmetric Spaces

Though not essential for the sequel this section explains the geometrical back-
ground of all subsequent work in this chapter with a parameter t.
For the general theory of symmetric spaces we refer to the classical books

by Kobayashi-Nomizu [31], Loos [37] and, for the Riemannian case, Helgason
[27]. Let us simply recall the equivalence between the category of simply con-
nected pointed symmetric spaces (S; o) and the category of �nite dimensional
Lie triple systems (s; [:; :; :]). Here s is the tangent space to S at the origin o,
with trilinear structure

[X;Y; Z] := �Ro(X;Y )Z = [[X;Y ]; Z]
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where Ro is the curvature tensor at o and the latter brackets are the Lie
brackets of g; see [37] chapter II for details.
Given a Lie triple system (s; [:; :; :]) and a real parameter t, we de�ne

the contracted Lie triple system st as the vector space s with trilinear
product

[X;Y; Z]t := t2[X;Y; Z]:

Let (St; o) be the corresponding simply connected pointed symmetric space,
unique up to isomorphism; its curvature tensor at the origin is t2Ro. The
subscript t will always refer to notions relative to this contracted space.
For t 6= 0 the map f t : X 7! tX is an isomorphism of the Lie triple

system st onto s. Still denoting by f t the corresponding isomorphism of St
onto S = S1 we have

f t(ExptX) = Exp tX for X 2 s , t 6= 0:

The �at space S0 is not, in general, isomorphic with other St�s; it can be
identi�ed with the tangent vector space at the origin of S. We call this
process contraction of S into its tangent space.
If s is given by a symmetric Lie algebra (g; �), we may extend f t to

g = h � s by f t(A + X) = A + tX, A 2 h, X 2 s. For t 6= 0, f t is an
isomorphism of gt onto g = g1 where gt is the vector space g with Lie bracket

[A+X;B + Y ]t :=
�
[A;B] + t2[X;Y ]

�
+ ([A; Y ]� [B;X]) ;

A;B 2 h, X;Y 2 s, and st is given by the symmetric Lie algebra (gt; �).
This de�nition agrees with the classical «contraction of g with respect to h»
(Dooley-Rice [16]), or with the contraction of a �ltered Lie algebra into its
graded algebra (Guillemin-Sternberg [25] p. 447). Besides g0 is the semi-
direct product of the vector space s (an abelian Lie algebra) by h.
Likewise, when S is given by (G;H; �) the space S0 is G0=H where G0 is

the semi-direct product s�H.
The dual s� of a Lie triple system s is de�ned as the same vector space s

with trilinear product [X;Y; Z]� = �[X;Y; Z] ([37] p. 150, [31] p. 253); this
gives, in particular, the classical duality between compact and noncompact
types. An obvious but useful remark is that s� may be formally considered
as st with t = i.

Example. As a typical example let us consider the hyperbolic unit disk
S = H2(R) with G = SU(1; 1), H = SO(2). Then St can be realized, for
t > 0, as the disk jzj < 1=t in C with Riemannian metric

ds2 =
4jdzj2

(1� t2jzj2)2
:

Here f t(z) = tz and the curvature of St is �t2. The space S0 is the Euclidean
plane and G0 its motion group. The same S0 and G0 arise from the unit
sphere with G = SO(3), H = SO(2) too, with St realized then as a sphere
with radius 1=t as a Riemannian submanifold of R3.
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4.2 The Di¤eomorphism �

4.2.1 Lie Series

We work with Lie series, that is series of Lie brackets in g of the form

A(X;Y ) = aX + bY + c[X;Y ] + d[X; [X;Y ]] + e[Y; [X;Y ]] + � � �

(where a, b, etc. are scalars). In this chapter Lie series are assumed to con-
verge for (X;Y ) in some neighborhood of the origin of g� g. More precisely,
writing (in multi-index notation)

A(X;Y ) = aX +
X
�;�

a�� Z�� with Z�� = x�1y�1x�2y�2 � � � y�n�1x�nY;

x = adX, y = adY , we assume
P
�;� ja�� jRj�j+j�j < 1 for some R > 0.

If we pick a norm on g such that k[X;Y ]k � kXk kY k, the above series is
absolutely convergent for kXk < R and kY k < R.
A Lie series is equivariant under any automorphism of the Lie algebra, in

particular g �A(X;Y ) = A(g �X; g �Y ) for g 2 G (adjoint action of the group)
and �A(X;Y ) = A(�X; �Y ). An even Lie series maps s� s into h.
If A is a Lie series then

adA(X;Y ) =
X
�;�

a0�� u�� with u�� = x�1y�1x�2y�2 � � �x�ny�n ; (4.1)

a (non-commutative) power series in x, y. This follows from the identity
(where the Crp�s are the binomial coe¢ cients and V 2 g is arbitrary)

ad (xpyqV ) =
X
r;s

(�1)r+sCrpCsqxp�ryq�s (adV ) ysxr;

applied to each Z�� . Since kadZ��k � kZ��k � Rj�j+j�j+1 (with the opera-
tor norm for endomorphisms of g) we have

X
j�j=k;j�j=l

a0��u��

 =


X
j�j=k;j�j=l�1

a�� adZ��

 �
X

j�j=k;j�j=l�1

ja�� jRk+l

and the series (4.1) converges in the following sense:

X
k;l


X

j�j=k;j�j=l

a0��u��

 <1 for kXk < R; kY k < R:

The partial di¤erentials @XA, @YA de�ned by

@XA(X;Y )V = @tA(X + tV; Y )jt=0 , @YA(X;Y )V = @tA(X;Y + tV )jt=0
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for V 2 g are also given by series of the form (4.1). This follows from the
identity, for p � 1,

@X (x
pyqF (X;Y )) = xpyq@XF (X;Y )�

X
0�r<p

xp�r�1 ad (xryqF (X;Y )) ;

applied to each Z�� .
A linear endomorphism u : g! g commutes with � if and only if it maps

h into h and s into s. Thus

u� = �u implies trg u = trh u+ trs u (4.2)

where trh u etc. means the trace of the restriction of u to h etc.
An endomorphism u of g anticommutes with � if and only if it maps h

into s and s into h. Then, u; v being two endomorphisms of g,

u� = ��u and v� = ��v imply trh uv = trs vu: (4.3)

If furthermore uv = vu then (4.2) also applies to uv and trg uv = 2 trh uv =
2 trs uv.
These trace identities will be used several times with endomorphisms de-

�ned by series similar to (4.1): if X;Y 2 s we have �x = �x�, �y = �y�
and u commutes (resp. anticommutes) with � if it is given by a series of even
(resp. odd) terms.

4.2.2 O, Z, h
We need to gather some information on our basic tool, the map Z : O ! s
de�ned on an open set O � s� s by

ExpZ(X;Y ) = expX � ExpY:

We �rst discuss its domain O then Z and, at the same time, theH-component
h(X;Y ) de�ned by eZ(X;Y )h(X;Y ) = eXeY , which is useful when dealing
with line bundles.

All maps we consider will be de�ned on suitable neighborhoods of the
origin only. As in 1.3 let g0 be a connected open neighborhood of 0 in g,
invariant under all automorphisms of g and all maps X 7! tX, t 2 [�1; 1],
and such that exp : g0 ! exp g0 is a di¤eomorphism; log will denote the
inverse map. The group G being simply connected we may take as g0 the set
of all X 2 g such that j Im�j < � for all eigenvalues � of adX (see [58] p.
113). Having chosen such a g0 let

U :=
�
(X;Y )j 2X; 2Y 2 g0 and e2tXe2tY 2 exp g0 for all t 2 [0; 1]

	
:

Slightly di¤erent from (1.10) in use throughout Chapter 1, this de�nition of
U with factors 2 is more convenient when working with symmetric spaces. By
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Lemma 1.1 the set U is a connected open neighborhood of (0; 0) in g� g, in-
variant under the maps (X;Y ) 7! (tX; tY ), t 2 [�1; 1], (X;Y ) 7! (Y;X) and
(X;Y ) 7! (AX;AY ) with A 2 AdG or A = �. Thus (X;Y ) 7! 1

2 log e
2Xe2Y

de�nes an analytic map U ! 1
2g
0.

For the symmetric space S = G=H the set s0 = s\ 1
2g
0 of Lemma 3.1 is a

connected open neighborhood of 0 in s, invariant under AdGH and all maps
X 7! tX, t 2 [�1; 1], such that Exp : s0 ! Exp s0 is a di¤eomorphism. Let

O := f(X;Y )j X;Y 2 s0 and exp tX � Exp tY 2 Exp s0 for all t 2 [0; 1]g :

This O is a natural domain for studying the map (X;Y ) 7! expX � ExpY .
In geometrical terms, denoting by sx the symmetry with respect to the point
x in S,

ExpZ(X;Y ) = expX � ExpY = sExp(X=2)so(ExpY ) = sExp(X=2)(Exp(�Y )):

Remark. If G is a solvable exponential group we may take g0 = g, whence
exp g0 = G, U = g�g, s0 = s and O = s�s. If Exp is a global di¤eomorphism
of s onto S (e.g. if S is a Riemannian symmetric space of the noncompact
type, see [27] p. 253) we may take s0 = s, O = s�s, even though g0 is smaller
than g in that case.

Lemma 4.1 We have O = U \ (s0 � s0) = U \ (s� s), and O is a connected
open neighborhood of (0; 0) in s� s, invariant under all maps
(i) (X;Y ) 7! (tX; tY ) for t 2 [�1; 1]
(ii) (X;Y ) 7! (h �X;h � Y ) for h 2 H
(iii) (X;Y ) 7! (Y;X).

Proof. The equality U \ (s0 � s0) = U \ (s� s) is clear from the de�nitions
of U and s0. Let (X;Y ) 2 s0 � s0. To prove that (X;Y ) belongs to O if and
only if it belongs to U , let g := etXetY , t 2 [0; 1]. Using the symmetry � we
have �X = �X, �Y = �Y therefore

e2tXe2tY = etXg(�g)�1e�tX .

Due to the AdG-invariance of g0 we see that e2tXe2tY 2 exp g0 is equivalent
to g(�g)�1 2 exp g0, that is g(�g)�1 = e2Z with Z 2 1

2g
0, and in fact Z 2

s0 (as follows from the behavior under � and the injectivity of exp on g0).
Therefore e2tXe2tY belongs to exp g0 if and only if there exists Z 2 s0 such
that e�Zg = �

�
e�Zg

�
or else

g = etXetY = eZh

where h belongs to the �xed point subgroup G� of � in G. But g, Z and h
are continuous functions of t 2 [0; 1]; for t = 0 we have gH = Exp 0 = ExpZ
hence Z = 0 by the injectivity of Exp on s0, and h = e. It follows that,
for all t, h belongs to the identity component of G�, which equals H by our
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assumptions. We conclude that e2tXe2tY belongs to exp g0 for all t 2 [0; 1] if
and only if g = eZh with Z 2 s0 and h 2 H, that is exp tX � Exp tY 2 Exp s0
for all t 2 [0; 1]. This implies our claim.
The invariance properties of O are immediate consequences of the corre-
sponding properties of U .

For (X;Y ) 2 O the point expX � ExpY = eXeYH lies in S0 = Exp s0,
whence a unique Z 2 s0 such that ExpZ = expX � ExpY . This de�nes a
map Z : O ! s0, a symmetric space analogue of the Campbell-Hausdor¤
function, expressing the action of G on S = G=H in exponential coordinates.
The following proposition extends Z to U , as well as the corresponding H-
component. We write x = adX, y = adY , z = adZ(X;Y ).

Proposition 4.2 The formulas

Z(X;Y ) :=
1

2
e�x log(e2Xe2Y ) =

1

2
ex log

�
e2Y e2X

�
=
1

2
log(eXe2Y eX)

h(X;Y ) := e�Z(X;Y )eXeY

de�ne an analytic map Z : U ! 1
2g
0, given by an odd Lie series, and an

analytic map h : U ! G such that, for all (X;Y ) 2 U ,
(i) Z(�X;�Y ) = �Z(X;Y ) and h(�X;�Y ) = h(X;Y )
(ii) Z(g � X; g � Y ) = g � Z(X;Y ) and h(g � X; g � Y ) = gh(X;Y )g�1 for all
g 2 G
(iii) Z(Y;X) = h(X;Y )�1 � Z(X;Y ) and h(Y;X) = h(X;Y )�1

(iv)  (h(X;Y )) = 1 for any character  of the group G.
(v) For (X;Y ) 2 U , Z = Z(X;Y ) and h = h(X;Y ) we have

sh z

z
@XZ = Adh �

�
ch y

shx

x
+ sh y

chx� 1
x

�
,
sh z

z
@Y Z = Adh �

sh y

y
;

as endomorphisms of g.
(vi) When restricted to (X;Y ) 2 O, Z(X;Y ) and h(X;Y ) are characterized
by

Z(X;Y ) 2 s0 , h(X;Y ) 2 H and eXeY = eZ(X;Y )h(X;Y ):

Proof. For (X;Y ) 2 U the point e�X(e2Xe2Y )eX = eX(e2Y e2X)e�X =
eXe2Y eX belongs to exp g0, by the AdG-invariance of g0. Thus Z(X;Y ) is
well-de�ned and belongs to 1

2g
0.

(i) First Z(�X;�Y ) = 1
2 log

�
e�Xe�2Y e�2X

�
= �Z(X;Y ). Then

h(�X;�Y ) = eZ(X;Y )e�Xe�Y = e�Z(X;Y )eXeY = h(X;Y ) (4.4)

because e2Z(X;Y ) = eXe2Y eX .
(ii) is straightforward.
(iii) The formula for Z(Y;X) follows from

Z(Y;X) =
1

2
e�y log

�
e2Y e2X

�
= e�ye�xZ(X;Y )
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and h(X;Y )�1 = e�Y e�XeZ(X;Y ). Therefore, remembering (4.4),

h(Y;X) = e�Z(Y;X)eY eX = h(X;Y )�1e�Z(X;Y )h(X;Y )eY eX = h(X;Y )�1:

(iv) Similarly

h(X;Y )2 =
�
eZ(X;Y )e�Xe�Y

��
e�Z(X;Y )eXeY

�
thus  (h(X;Y ))2 = 1, whence  (h(X;Y )) = 1 since h(0; 0) = e and U is
connected.
(v) Let Lg, resp. Rg, denote the left, rep. right, translation by g in G. Using
e2Z = eXe2Y eX and the di¤erential of exp at X:

DX exp = DeLeX �
1� e�x

x
;

di¤erentiation with respect to X gives

DeLe2Z
1� e�2z

z
@XZ = (DeXLeXe2Y +DeXRe2Y eX ) �DX exp :

ButDeXLeXe2Y �DeLeX = DeLe2Z , andDeXRe2Y eX�DeLeX is the di¤erential
at e of the map

g 7! eXge2Y eX = eXge�Xe2Z = e2Z(e�2ZeX)g(e�2ZeX)�1;

thus

DeXRe2Y eX �DeLeX = DeLe2Z �Ad(e�2ZeX) = DeLe2Z � e�2zex:

Simplifying by DeLe2Z and multiplying by ez on the left we obtain

2
sh z

z
@XZ = ez

1� e�x
x

+ e�z
ex � 1
x

:

From (4.4) we know that eXeY = eZh and e�Xe�Y = e�Zh therefore, by
the adjoint representation,

ez = Adh � eyex , e�z = Adh � e�ye�x

whence

2
sh z

z
@XZ = Adh �

�
ey
ex � 1
x

+ e�y
1� e�x

x

�
:

Writing ex � 1 = chx� 1 + shx and 1� e�x = 1� chx+ shx we obtain the
�rst result.
Computing @Y Z is similar but easier, and left to the Reader.
(vi) Restricting now to X;Y 2 s0, that is (X;Y ) 2 O, we obtain by means of
the symmetry �

�Z(X;Y ) =
1

2
log(e�Xe�2Y e�X) = �Z(X;Y )
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therefore Z(X;Y ) belongs to s\ 12g
0 = s0. Then, by (4.4),

�h(X;Y ) = eZ(X;Y )e�Xe�Y = h(X;Y ):

Thus h(X;Y ) belongs to the �xed point subgroup of � in G, in fact to its
identity component since h(O) is connected, therefore to H. Conversely,
given (X;Y ) 2 O, eX �ExpY belongs to Exp s0 whence a unique Z 2 s0 such
that eX � ExpY = ExpZ, then a unique h 2 H such that eXeY = eZh.

4.2.3 A, B, C

We can now extend to symmetric spaces the Kashiwara-Vergne method of
Chapter 1. The present section is motivated by our aim, Theorem 4.6 below:
construct a di¤eomorphism � of s� s (near the origin) transforming the map
Z of 4.2.2 into its �at analogue i.e. Z ��(X;Y ) = X +Y . Following Moser�s
method we shall take � = �1 where �t : (X;Y ) 7! (Xt; Yt), 0 � t � 1, is a
one-parameter deformation of the identity �0 given by the �ow of a suitably
chosen (time-dependent) vector �eld on s� s. More precisely we want �t to
be given by the adjoint action of elements at, bt of H (depending on X and
Y ):

�t(X;Y ) = (Xt; Yt) = (at(X;Y ) �X; bt(X;Y ) � Y )
and Zt(Xt; Yt) = X + Y

with Zt(X;Y ) := t�1Z(tX; tY ) for t > 0, which extends by Z0(X;Y ) =
X + Y . The latter line is thus equivalent to

@tZt + (@XZt) @tXt + (@Y Zt) @tYt = 0

where all derivatives of Zt are taken at (Xt; Yt). In a matrix Lie group we
have Xt = at �X = atXa

�1
t whence @tXt =

�
(@tat) a

�1
t ; Xt

�
. This extends to

the general case as

@tXt = [At(Xt; Yt); Xt] , @tYt = [Bt(Xt; Yt); Yt]

At(Xt; Yt) = (DeRat)
�1
@tat , Bt(Xt; Yt) = (DeRbt)

�1
@tbt ,

where Ra denotes the right translation by a in H and DeRa its tangent map
at the identity. Thus At and Bt belong to h and depend on (X;Y ).
Summarizing, we want a map (t;X; Y ) 7! (At(X;Y ); Bt(X;Y )) from a

neighborhood of the origin in R� s� s into h� h such that

@tZt = (@XZt) [X;At] + (@Y Zt) [Y;Bt] ,

an equality now written at (X;Y ) instead of (Xt; Yt) above. The construction
of At and Bt will be given by Proposition 4.5 and the properties of at, bt and
�t by Theorem 4.6. We �rst give equivalent forms of this equation.
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Proposition 4.3 Let Zt(X;Y ) := t�1Z(tX; tY ), let A;B be given elements
of g and C = B � A. For (X;Y ) 2 U the following relations are equivalent
(with x = adX, y = adY ):
(i) @tZt(X;Y )jt=1 = (@XZ)(X;Y )[X;A] + (@Y Z)(X;Y )[Y;B]
(i�) @tZt(X;Y )jt=1 = [Z(X;Y ); A] + (@Y Z)(X;Y )[Y;C]
(ii) Z(Y;X) = (ch y)(X + Y )� (ch y shx+ sh y chx)A� (sh y)C .

Later on (Proposition 4.5) A and C will be chosen, depending on (X;Y ), so
that (ii) holds identically.
Proof. (i),(i�) is immediate from (a) in the next lemma.

Lemma 4.4 (a) Let U be an open subset of g� g and F : U ! g be di¤er-
entiable, such that F (g � X; g � Y ) = g � F (X;Y ) whenever (X;Y ) 2 U and
(g �X; g � Y ) 2 U , g 2 G. Then

@XF (X;Y ) � adX + @Y F (X;Y ) � adY = adF (X;Y )

as endomorphisms of g.
(b) Let O be an open subset of s� s and F : O ! g be di¤erentiable, with
F (h � X;h � Y ) = h � F (X;Y ) whenever (X;Y ) 2 O and (h � X;h � Y ) 2 O,
h 2 H. Then

@XF (X;Y ) � adX + @Y F (X;Y ) � adY = adF (X;Y )

as linear maps of h into g.

Proof. (a) is Lemma 1.7.
(b) is proved similarly, looking at the derivative at t = 0 of F (etV �X; etV �Y ) =
etV � F (X;Y ) with V 2 h.

(i) , (ii). We have @tZtjt=1 = (@XZ)X+(@Y Z)Y �Z and (i) is equivalent
to

Z = (@XZ) (X � xA) + (@Y Z) (Y � yB) , (4.5)

where everything is computed at (X;Y ). For (X;Y ) 2 U we have 2Z 2 g0
and, exp being a di¤eomorphism on g0, the map sh z=z = ez

�
1� e�2z

�
=2z is

an invertible endomorphism of g. We thus obtain an equivalent equality when
applying it to both sides of (4.5). Since f(x)X = f(0)X for any power series
f (and similarly with Y or Z) the resulting equality is, in view of Proposition
4.2 (v),

Z(X;Y ) = h � ((ch y)(X + Y )� (ch y shx+ sh y chx)A� (sh y)C) .

This is (ii) since h�1 � Z(X;Y ) = Z(Y;X) by Proposition 4.2 (iii). �

Before stating our next proposition we recall the �rstKashiwara-Vergne
equation (KV1): the Campbell-Hausdor¤ formula for the Lie algebra gmay
be written as

1

2
log
�
e2Y e2X

�
= X + Y �

�
1� e�2x

�
F (X;Y )�

�
e2y � 1

�
G(X;Y ); (KV1)
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F;G : U ! g being analytic and given, in a neighborhood of the origin, by
convergent series of Lie brackets of X and Y . The existence of such Lie series
is proved in 1.5.2.a. Note our slight change of notation in comparison with
Section 1.3: if F 1; G1 denote the functions we used in Chapter 1 we have
F (X;Y ) = 1

2F
1(2X; 2Y ) and G(X;Y ) = 1

2G
1(2X; 2Y ) here. The present

notation is more convenient in this chapter.

Proposition 4.5 (i) There exist two maps A;C : U ! [g; g], given by even
Lie series of brackets of X and Y , mapping the subset O = U \ (s� s) into
h� = [s; s] and such that, for (X;Y ) 2 U ,

Z(Y;X) = (ch y)(X + Y )� (ch y shx+ sh y chx)A(X;Y )� (sh y)C(X;Y ) .
(4.6)

Besides the functions de�ned by Zt(X;Y ) := t�1Z(tX; tY ), At(X;Y ) :=
t�1A(tX; tY ), Ct(X;Y ) := t�1C(tX; tY ) and Bt := At+Ct are analytic with
respect to (t;X; Y ) on the open subset of R� g� g de�ned by (tX; tY ) 2 U .
For 0 � t � 1, (X;Y ) 2 U ,

@tZt = (@XZt) [X;At] + (@Y Zt) [Y;Bt] (4.7)

= [Zt; At] + (@Y Zt) [Y;Ct] . (4.8)

(ii) If F and G are Lie series on U satisfying the Kashiwara-Vergne equation
(KV1) one can take, for example,

A(X;Y ) = e�xF (X;Y ) + exF (�X;�Y ) , (4.9)

C(X;Y ) = (G� F ) (X;Y ) + (G� F ) (�X;�Y ) , (4.10)

and B = A+ C, Bt(X;Y ) = t�1B(tX; tY ).

Equation (4.6), restricted to (X;Y ) 2 O, is the symmetric space analog of
the Kashiwara-Vergne equation (KV1) for Lie groups. There is no analog
of (KV2) in general; the e-function introduced below expresses the failure of
this trace equality (see Proposition 4.19).
Proof. It su¢ ces to prove (ii). According to Proposition 4.3 the main point
is to prove (4.6). Let F;G satisfy (KV1); then, for all (X;Y ) 2 U ,

Z(Y;X) =
1

2
e�y log

�
e2Y e2X

�
= e�y(X + Y )�

�
eyex � e�ye�x

�
e�xF � (ey � e�y)(G� F )

= e�y(X + Y )� 2(ch y shx+ sh y chx)e�xF � 2 (sh y) (G� F ) .

Changing signs of X and Y we get a similar expression of Z(�Y;�X) =
�Z(Y;X) and the half di¤erence is

Z(Y;X) = (ch y)(X + Y )� (ch y shx+ sh y chx)(e�xF + exF_)�
� (sh y)(G� F +G_ � F_) ,
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with F = F (X;Y ), F_ = F (�X;�Y ) and similarly for G. Choosing A and
C as given by (4.9) and (4.10) we thus obtain (4.6).
Besides the Lie series F begins as F = �X + �Y + [X;Y ] + � � � where
�; �;  are scalars, and (4.9) implies that A is an even series of brackets of
X and Y beginning as A = 2( � �)[X;Y ] + � � � . Thus, for (X;Y ) near the
origin, A(X;Y ) belongs to [g; g]. Let (�i) be a �nite family of linear forms
on g such that

T
i

ker�i = [g; g]. By analytic continuation the functions �i �A

vanish identically on the connected open set U , therefore A maps U into [g; g].
Similarly A maps O into [s; s], and the same properties hold for C and B.
By Proposition 4.3 our claim is proved for @tZtjt=1 and, replacing (X;Y ) by
(tX; tY ), we obtain (4.7)(4.8).

Remarks. (a) If (F;G) is an �- and �-invariant solution of (KV1) (see Sec-
tion 1.7), Proposition 1.13 shows that (with the suitable factors 2 included)

2e�xF (X;Y ) = H(2X; 2Y ) +
1

4
e�x log

�
e2Xe2Y

�
� 1
2
X

= H(2X; 2Y ) +
1

2
(Z(X;Y )�X)

where H is an even Lie series. The function A of (4.9) is then A(X;Y ) =
H(2X; 2Y ) since Z(X;Y )�X is odd (Proposition 4.2).
(b) Any solution (A;C) of (4.6) can be replaced by the even solution�

1

2
(A+A_) ;

1

2
(C + C_)

�
since Z(Y;X)� ch y(X + Y ) is odd.

4.2.4 a, b and �

With the above tools we can now construct a di¤eomorphism � transforming
the map Z into its �at analog Z0(X;Y ) = X + Y . As before dots denote the
adjoint action.

Theorem 4.6 There exists a connected open neighborhood 
 of the origin in
s� s, contained in O and having the same invariance properties as O (Lemma
4.1), and an analytic di¤eomorphism � of 
 onto �(
) � O endowed with
the following properties:
(i) �(X;Y ) = (a �X; b � Y ) where a = a(X;Y ) and b = b(X;Y ) are given by
even analytic maps from 
 into the Lie subgroup H� of H with Lie algebra
h� = [s; s].
(ii) �(�X;�Y ) = ��(X;Y ), �(h � (X;Y )) = h � �(X;Y ) (diagonal adjoint
action of H) for all (X;Y ) 2 
, h 2 H.
(iii) If (X;Y ) 2 
 and [X;Y ] = 0, then a(X;Y ) = b(X;Y ) = e and
�(X;Y ) = (X;Y ).
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(iv) (Z � �)(X;Y ) = X + Y for all (X;Y ) 2 
.
(v) Assume H is compact and Exp : s! S is a global di¤eomorphism. Then
the above is valid on 
 = s� s and � is a global di¤eomorphism of s� s onto
itself.

For later reference we collect here a few facts taken from the proof below. The
di¤eomorphism � is obtained from maps At; Bt : O ! h� chosen according
to Proposition 4.5 (i) (for example those given by (4.9)(4.10)), and taking
a = a1, b = b1, � = �1 where at, bt, �t solve, for 0 � t � 1, the di¤erential
equations�

@tat(X;Y ) = (DeRat)At(at �X; bt � Y ) , a0(X;Y ) = e
@tbt(X;Y ) = (DeRbt)Bt(at �X; bt � Y ) , b0(X;Y ) = e

(4.11)

�t(X;Y ) = (Xt; Yt) = (at �X; bt � Y ) (4.12)�
@tXt = [At(Xt; Yt); Xt] , X0 = X
@tYt = [Bt(Xt; Yt); Yt] , Y0 = Y

(4.13)

�0 = Id , �1 = � .

Besides, for all (X;Y ) 2 
, t 2 [0; 1], h 2 H,

at(h �X;h � Y ) = hat(X;Y )h
�1 , bt(h �X;h � Y ) = hbt(X;Y )h

�1 (4.14)

at(X;Y ) = a(tX; tY ) , bt(X;Y ) = b(tX; tY ) (4.15)

�t(X;Y ) = t�1�(tX; tY ) , (Zt � �t) (X;Y ) = X + Y: (4.16)

The Jacobian of �t is positive and given by

@t log det s�sD�t(X;Y ) =

= trs (ad(At +Bt)� x � @XAt � y � @YBt) � �t(X;Y ): (4.17)

Proof. (i) and (ii) Let us consider the di¤erential system (4.11) on the
manifold H� � H�, with parameters (X;Y ). The functions At and Bt are
analytic with respect to (t;X; Y ) in the open neighborhood of [0; 1] � O
in R � s � s de�ned by (tX; tY ) 2 O, and their values belong to h�. It
follows that there exist " > 0, an open subset ! of O, which may be assumed
invariant under (X;Y ) 7! (tX; tY ) for �1 � t � 1 and (X;Y ) 7! (Y;X), and
two unique analytic functions at(X;Y ); bt(X;Y ) 2 H�, solutions of (4.11) for
jtj � " and (X;Y ) 2 !. In particular (tat �X; tbt � Y ) belongs to O at such
points. From the uniqueness and the properties of At, Bt we infer that

at(�X;�Y ) = at(X;Y ) , at(sX; sY ) = ast(X;Y )

for (X;Y ) 2 !, jtj � ", 0 � s � 1, and the same for bt. Replacing ! by "!
we can therefore assume " = 1. Likewise

at(h �X;h � Y ) = hat(X;Y )h
�1
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for h 2 H, whenever (X;Y ) and (h �X;h � Y ) belong to !, and the same for
bt. We can therefore replace ! by 
 := H � ! (diagonal adjoint action of H
on s � s). This set 
 is star-shaped, therefore connected, and meets all our
requirements. Our at, bt extend to 
 as solutions of (4.11) up to t = 1; they
still belong to H� since H� is a normal subgroup of H.
Now Xt := at � X, Yt := bt � Y satisfy the di¤erential equations (4.13) for
0 � t � 1, with initial conditions (X0; Y0) = (X;Y ) 2 
. By the general
theory of time-dependent vector �elds the map �t : (X;Y ) 7! (Xt; Yt) is
an analytic di¤eomorphism of 
 onto the open set �t(
). As noted above
(tXt; tYt) belongs to O for 0 � t � 1. Thus, writing � instead of �1, we see
that �(
) is an open subset of O and � satis�es (i) and (ii) in the theorem.
(iii) If (X;Y ) 2 
 and [X;Y ] = 0 we have A(X;Y ) = B(X;Y ) = 0, since
A and B are series of brackets of X and Y . It follows that at(X;Y ) =
bt(X;Y ) = e is the (unique) solution of (4.11), whence �(X;Y ) = (X;Y ) in
this case.
(iv) By (4.13) and Proposition 4.5 we have

@t (Zt(Xt; Yt)) = (@tZt) (Xt; Yt) + (@XZt) @tXt + (@Y Zt) @tYt = 0;

therefore Zt(Xt; Yt) = Z0(X;Y ) = X + Y for 0 � t � 1.
Finally @t log det�t(X;Y ) is the divergence, computed at (Xt; Yt), of the
vector �eld ([At(X;Y ); X]; [Bt(X;Y ); Y ]) 2 s � s de�ning the �ow �t, that
is

trs�s

�
adAt � x@XAt �x@YAt
�y@XBt adBt � y@YBt

�
(Xt; Yt) =

= trs (ad(At +Bt)� x � @XAt � y � @YBt) � �t(X;Y );

and (4.17) is proved.
(v) If Exp is a global di¤eomorhism we may take O = s� s (as noted before
Lemma 4.1) and At; Bt are analytic functions of (t;X; Y ) in R� s� s. Fur-
thermore, if H is compact, ((DeRat)At(at �X; bt �Y ); (DeRbt)Bt(at �X; bt �Y ))
is an analytic time-dependent vector �eld on the compact manifold H � H
for any given (X;Y ) 2 s� s. It follows that at, bt and �t are globally de�ned
and analytic on R � s � s. Moreover, if �(X;Y ) = (a � X; b � Y ) belongs to
a compact subset K1 �K2 of s� s, then (X;Y ) belongs to the compact set
(H �K1)� (H �K2). Thus � is a proper mapping of s� s into itself, hence a
global di¤eomorphism onto by Hadamard�s theorem.

4.2.5 c, h and �

Keeping to the notation of Theorem 4.6, we now study

ct(X;Y ) := at(X;Y )
�1bt(X;Y ) 2 H . (4.18)

A remarkable symmetry of our e-function (Theorem 4.24) will follow from
the properties of ct.
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In order to lighten notation in all proofs of this section we shall compute
as in a matrix Lie group, writing e.g. (@tat) ct rather than (DatRct) @tat,
and sometimes aXa�1 for a �X = Ad a(X).
We �rst show that ct can be obtained from a simple di¤erential equation.

Lemma 4.7 Let C(X;Y ) = B(X;Y )�A(X;Y ), Ct(X;Y ) = t�1C(tX; tY ).
Then ct = ct(X;Y ) is given by the di¤erential equation, for (X;Y ) 2 
,
0 � t � 1,

@tct = (DeRct)Ct(X; ct � Y ) , c0 = e (4.19)

and Ut := ct � Y by

@tUt = [Ct(X;Ut); Ut] , U0 = Y . (4.20)

Proof. From atct = bt it follows that (in our simpli�ed notation)

at (@tct) + (@tat) ct = @tbt

that is, with (4.11),

at (@tct) +At(at �X; bt � Y )atct = Bt(at �X; bt � Y )bt .

Therefore at (@tct) = Ct(at � X; bt � Y )bt and (4.19) follows from the H-
equivariance of A and B, which implies Ct(at �X; bt �Y ) = atCt(X; ct �Y )a�1t .
Then Ut = ctY c

�1
t gives

@tUt = (@tct)Y c
�1
t � ctY c�1t (@tct)c

�1
t

= [(@tct) c
�1
t ; Ut] = [Ct(X;Ut); Ut] .

Remark. The solution (at; bt) of the system (4.11) can thus be obtained
from A and C by solving (4.19) for ct �rst, then solving

@tat = (DeLat)At(X; ct � Y ) , a0 = e

whence bt = atct �nally.

Proposition 4.8 (i) For (X;Y ) 2 
 let c(X;Y ) = a(X;Y )�1b(X;Y ). Then
c(X;Y ) belongs to H� and ct(X;Y ) = c(tX; tY ) for t 2 [0; 1]. Besides

Z(X; c(X;Y ) � Y ) = a(X;Y )�1 � (X + Y ) , c(h �X;h � Y ) = hc(X;Y )h�1

for any h 2 H, and c(X;Y ) = e whenever [X;Y ] = 0.
(ii) Assume F , G satisfy (KV1) with G(X;Y ) = F (�Y;�X), and let C be
de�ned by (4.10). Then C(X;Y ) = C(�X;�Y ) = �C(Y;X) and

c(X;Y ) = c(�X;�Y ) = c(Y;X)�1:
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By Proposition 1.12 we can always assume that F and G satisfy the condition
in (ii) (�-invariance).
Proof. (i) is immediate from Theorem 4.6 and (4.14), (4.15) for a and b.
(ii) We have C(X;Y ) = F (�Y;�X)� F (X;Y ) + F (Y;X)� F (�X;�Y ) by
(4.10) and the assumption on F and G, therefore C(X;Y ) = C(�X;�Y ) =
�C(Y;X). The equality c(X;Y ) = c(�X;�Y ) now follows from uniqueness
of solutions of the di¤erential equation (4.19). Likewise, letting ct = ct(Y;X)
we have c0 = e and

@t
�
c �1t

�
= �c �1t (@tct) c

�1
t = �c �1t Ct(Y; ct �X)

= Ct(X; c
�1
t � Y )c �1t

in view of the skew symmetry and H-equivariance of Ct. Thus c �1t =
ct(X;Y ) by uniqueness.

The function c(X;Y ) is closely related to the e-function constructed be-
low: see Propositions 4.18 and 4.19; see also Corollary 3.17 above, with an
example for the 2-dimensional hyperbolic space.
The next proposition will be useful when extending our e-function to line

bundles, with the H-component h(X;Y ) de�ned by eXeY = eZ(X;Y )h(X;Y )
playing a signi�cant role in that case. Let us begin with a lemma.

Lemma 4.9 For (X;Y ) 2 U let A = A(X;Y ), A = A(Y;X) and similarly
for other functions. If A and C in (4.9)(4.10) arise from F , G satisfying
(KV1) and G(X;Y ) = F (�Y;�X), then
1

4

�
log e2Y e2X + log e2Xe2Y

�
= (ch y)Z = X + Y � (shx)A� (sh y)A

(4.21)
1

4

�
log e2Y e2X � log e2Xe2Y

�
= (sh y)Z = C + (chx)A� (ch y)A: (4.22)

Proof. By (4.9) and the symmetry assumption we have A = e�xF + exG
hence

(shx)A =
1

2

�
1� e�2x

�
F +

1

2

�
e2x � 1

�
G .

Permuting X and Y and adding, we obtain (4.21) in view of the Kashiwara-
Vergne equality (KV1). The expression with Z follows from Proposition 4.2.
Likewise

(chx)A = F +G� 1
2

�
1� e�2x

�
F +

1

2

�
e2x � 1

�
G .

Permuting X and Y , then combining with C = G � F + F � G we obtain
(4.22).

Remark. With V = 1
2 log e

2Xe2Y equation (4.22) may be rewritten as

C =

�
(chx)A+

1

2
V

�
�
�
(chx)A+

1

2
V

�
:
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Proposition 4.10 Assume F , G satisfy (KV1) and G(X;Y ) = F (�Y;�X).
Let � be constructed by means of A, C de�ned by (4.9), (4.10) and let bh :=
h � �. Then, for all (X;Y ) 2 
,
(i) bh(X;Y ) = a(Y;X)b(X;Y )�1 = b(Y;X)a(X;Y )�1, bh(Y;X) = bh(X;Y )�1.
(ii) Let (X1; Y1) := �(X;Y ). Then �(Y;X) = bh(X;Y ) � (Y1; X1) (diagonal
adjoint action of H on s� s).
(iii) eXc(X;Y )eY = a(X;Y )�1eX+Y a(Y;X) ,
and eXec(X;Y )�Y = a(X;Y )�1eX+Y b(Y;X).

The latter equation improves Z(X; c(X;Y ) � Y ) = a(X;Y )�1 � (X + Y ) given
by Proposition 4.8.
Proof. (i) and (ii). Let at = at(X;Y ), at = at(Y;X) (and similar notation
for other functions) and kt := atb

�1
t . The symmetry ct = c�1t (Proposition

4.8 (ii)) gives kt = bta
�1
t = k

�1
t . Besides

�t(Y;X) =
�
at � Y; bt �X

�
= (ktbt � Y; ktat �X) = kt � (Yt; Xt) :

Thus (i) and (ii) will follow from the equality kt = bht with bht(X;Y ) :=bh(tX; tY ) = h(tXt; tYt). Let us prove that kt and bht solve the same di¤eren-
tial equation.
On the one hand

k�1t @tkt = k�1t (@tat) b
�1
t � (@tbt) b�1t :

But (@tat) a
�1
t = At(�t (X;Y )) and (@tbt) b

�1
t = Bt(�t(X;Y )) by (4.11),

hence

(@tat) a
�1
t = At (�t(Y;X)) = At (kt � Yt; kt �Xt)

= At(kt �Xt; kt � Yt) = ktAt (�t(X;Y )) k
�1
t

and �nally
k�1t @tkt =

�
At �Bt

�
� �t:

On the other hand, replacing (X;Y ) by (tXt; tYt) in the de�nition of h(X;Y )
we have bht(X;Y ) = e�t(X+Y )etXtetYt :

Now @t(tXt) = Xt� txt (At � �t), @t(tYt) = Yt� tyt (Bt � �t) by (4.13), with
xt = adXt, yt = adYt; therefore, remembering the di¤erential of exp,

@t
�
etXt

�
= etXt

�
Xt +

�
e�txt � 1

�
(At � �t)

�
@t
�
etYt

�
= etYt

�
Yt +

�
e�tyt � 1

�
(Bt � �t)

�
:

It follows that, at (X;Y ),

bh�1t @tbht = �bht�1 � (X + Y )+

+
�
e�ty

�
X +

�
e�tx � 1

�
At
�
+ Y +

�
e�ty � 1

�
Bt
�
� �t .
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The left-hand side and At, Bt belong to h, whereas the �rst term on the right
belongs to s. Writing e�tx = ch tx� sh tx etc. the h-components separate as

bh�1t @tbht = Ht � �t , with Ht(X;Y ) = t�1H(tX; tY ) and

H(X;Y ) = � (sh y)X + (ch y chx+ sh y shx)A(X;Y )+

+ (ch y)C(X;Y )�B(X;Y );

with C = B � A as above. Now the symmetry assumption G(X;Y ) =
F (�Y;�X) and Lemma 4.9 imply the simpler expression H = A�B: indeed,
to eliminate Z between (4.21) and (4.22) we may apply sh y, resp. ch y, to
both sides of these equalities and substract1 . We infer that kt = bht, which
proves (i) and (ii).
(iii) Replacing (X;Y ) by �(X;Y ) = (a �X; b �Y ) in the equality eXeY = eZh
we obtain

ea�Xeb�Y = eX+Y ab�1;

since Z � �(X;Y ) = X + Y and h � �(X;Y ) = ab�1 by (i) above and
Theorem 4.6 (iv). Writing ea�X = aeXa�1 etc. our claim follows with c =

a�1b = b
�1
a.

4.3 Campbell-Hausdor¤ e-Functions

4.3.1 An Auxiliary Lemma

Terms like detAd(:::) or tr ad(:::) will frequently occur in the sequel and it
will be useful to keep in mind the simpli�cations provided, on many examples,
by the following lemma. As before H� is the (connected) Lie subgroup of H
with Lie algebra h� = [s; s] � h.

Lemma 4.11 Let G=H be a symmetric space. The following properties (i)
to (v) are equivalent:
(i) trh ad h� = 0
(ii) trs ad h� = 0
(iii) the character trh ad of h extends to a character of the Lie algebra g
(iv) dethAdh = 1 for all h 2 H�
(v) detsAdh = 1 for all h 2 H�
Property (vi) implies (i) to (v), and is equivalent to them if G is simply
connected:
(vi) G=H has a G-semi-invariant measure (i.e. G-invariant up to some fac-
tor, which is a character of the group G).

By Theorem 4.24 (ii) below properties (i) to (v) will also be equivalent to
the symmetry of our e-function. They hold true in particular if G=H has a

1Applying ch y, resp. sh y, instead and adding eliminates A and gives back the expres-
sion (4.6) of Z.
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G-invariant measure (which is equivalent, for H connected, to detsAdh = 1
for all h 2 H), e.g. if AdH is a compact group, a fortiori if H is compact.
Proof. (i), (ii) because trh ad[X;Y ] + trs ad[X;Y ] = trg ad[X;Y ] = 0 for
X;Y 2 s.
(iii))(i). A character of g is a linear form f on g such that f([g; g]) = 0 ; a
fortiori f([s; s]) = 0, hence (i) if f extends trh ad.
(i))(iii). If (i) holds trh ad can be extended (by 0 on s) to a character of
g = h� s, since [h; s] � s and [s; s] = h�.
(i),(iv) and (ii),(v), because detAd(eX) = etr adX and exp h� generates
H�.
(vi),(iii). Indeed the space G=H has a G-semi-invariant measure2 with
multiplier � if and only if �(h) = �H(h)=�G(h) for all h 2 H, where �H ,
resp. �G, is the modular function of the group H, resp. G, and such a
measure exists if and only if�H extends to a character of G. Since�H(eX) =
etrh adX for X 2 h the latter property implies (iii), and is equivalent to it if
G is simply connected.

4.3.2 Construction of an e-Function

Let us go back to the transfer map e of De�nition 3.2 associated to a factor
j (analytic, strictly positive and H-invariant on s0, with j(0) = 1). With
the tools a, b, � from Section 4.2.4 we shall now construct an e-function
(De�nition 3.3) on an arbitrary symmetric space.
In order to motivate the de�nition of e in the next theorem let us consider

�rst the simple case of a Riemannian symmetric space, with H compact,
assuming here j = J1=2 so that e agrees for functions and distributions,
with (u(X)dX)e= eu(x)dx (see Example 1 in 3.1.1). If u; v are H-invariant
functions on s (with supports in a neighborhood of the origin) we have, for
f 2 D(s0),Z

S

(eu �S ev) (x) ef(x)dx = Z
S�S

eu(gH)ev(g0H) ef(gg0H)d(gH)d(g0H)
=

Z
s�s

eu(ExpX)ev(ExpY ) ef(ExpZ(X;Y ))J(X)J(Y )dXdY
=

Z
s�s

u(X)v(Y )

�
J(X)J(Y )

J(Z(X;Y ))

�1=2
f(Z(X;Y ))dXdY:

Replacing (X;Y ) by �(X;Y ) = (a � X; b � Y ) and remembering the H-
invariance of u, v and J , the integral becomesZ

S

(eu �S ev) (x) ef(x)dx =

Z
s�s

u(X)v(Y )e(X;Y )f(X + Y )dXdY

with e(X;Y ) : =

�
J(X)J(Y )

J(X + Y )

�1=2
det s�sD�(X;Y )

2See e.g. Bourbaki, Intégration, chap. VII, §2 n�6.
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(remembering that the Jacobian of � is positive). This equality generalizes
as follows.

Theorem 4.12 Let S = G=H be a (simply connected) symmetric space and
g = h � s the corresponding decomposition of the Lie algebra of G. Let u,
v, be H-invariant distributions on open subsets of s and let f 2 C1(s), with
suitable supports. ThenDeu �S ev; efE = hu(X)
 v(Y ); e(X;Y )f(X + Y )i

with

e(X;Y ) :=
j(X)j(Y )

j(X + Y )
det s�sD�(X;Y ) (det sAd a(X;Y )b(X;Y ))

�1
:

(4.23)
Formula (4.23) de�nes an e-function for S = G=H associated with j and
arising from A;B as introduced in Proposition 4.5 (i). It is analytic and
strictly positive on 
.
The convolution equality holds in particular if u; v are H-invariant distrib-
utions on open subsets of s, with supp v = f0g, f 2 C1(s), and suppu \
supp f \ 
1 is compact.

Here 
1 = fX 2 sj(X; 0) 2 
g. For instance, the latter assumption holds
true if U is open in s, u 2 D0(U)H and f 2 D(
1 \ U). A more general
assumption on supports will be speci�ed at the end of the proof, but the
special case mentioned in the theorem su¢ ces for the application to invariant
di¤erential operators. We refer to (4.23) as a Campbell-Hausdor¤ e�
function. More precisely:

De�nition 4.13 We shall call (4.23) the (j;�)� function of S.
If � is de�ned by means of A;B chosen according to Proposition 4.5 (ii), with
F;G satisfying the Kashiwara-Vergne equation (KV1), we shall call (4.23)
the (j; F;G)� function of S.

Remarks. (a) An equivalent expression of e follows from the identity

(det sAd a(X;Y )b(X;Y ))
�1
= det hAd a(X;Y )b(X;Y ):

Indeed det hAd a det sAd a = det gAd a for any a 2 H, and

@t log det gAd at(X;Y ) = trg adAt(�t(X;Y )) = 0;

where the �rst equality is proved as (4.27) below and the latter follows from
At(:::) 2 [s; s]. Thus det gAd at(X;Y ) = 1 which proves our claim.
Recall that, by Lemma 4.11, the detAd factors in e(X;Y ) are identically 1
if S has a G-semi-invariant measure.
(b) Let us emphasize that the (j; F;G)� function is a special case of the
(j;�)� function, corresponding to the speci�c choice of A;B = A+C arising
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from (4.9) and (4.10). Section 4.4 will show the stronger properties of e when
j = J1=2, the square root of the Jacobian of Exp.
(c) According to Theorem 4.6 (v), the above is valid on 
 = s � s if H is
compact and Exp : s! S is a global di¤eomorphism.
(d) If j is even, then e(�X;�Y ) = e(X;Y ) because a and b are even by the
proof of Theorem 4.6.

Proof of Theorem 4.12. For (X;Y ) 2 
 we know from Theorem 4.6
that �(X;Y ) belongs to O and X + Y = Z(�(X;Y )) belongs to s0, hence
j(X + Y ) > 0 and the expression (4.23) of e shows its analyticity on 
. It
is H-invariant because of the invariance of j, �, a and b. No factor of e
vanishes, hence e > 0 on 
 since 
 is connected and e(0; 0) = 1 (see (4.17)
with X = Y = 0). It will therefore be an e-function for S if we prove that
(Proposition 3.4)�
u(X)
 v(Y ); j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�
= hu(X)
 v(Y ); e(X;Y )f(X + Y )i

This is done by deformation according to a parameter t 2 [0; 1]. Recalling
at, bt and the di¤eomorphisms �t from (4.11)-(4.17), let g 2 C1(
) and gt
be de�ned on �t(
) by

(gt � �t) (X;Y ) = g(X;Y ) detD�t(X;Y )
�1 det sAd at(X;Y )bt(X;Y ):

(4.24)
We shall prove that

hu
 v; @tgti = 0; (4.25)

therefore
hu
 v; g1i = hu
 v; g0i :

Applying this to g(X;Y ) := e(X;Y )f(X + Y ) with e de�ned by (4.23),
f 2 C1(s), and remembering the properties of � and the H-invariance of j
we obtain

g1(X;Y ) =
j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y )) , g0(X;Y ) = e(X;Y )f(X + Y ) (4.26)

and our claim will follow. The proof of (4.25) is split in the next two lemmas.

Lemma 4.14 With At, Bt, �t as in (4.11)-(4.17) and gt de�ned by (4.24)
we have

@tgt = trs (x � @X(gtAt) + y � @Y (gtBt))

on �t(
), with x = adX, y = adY .

Proof. From (4.17) we know that

@t log det s�sD�t(X;Y ) = trs (ad(At +Bt)� x@XAt � y@YBt) (�t(X;Y )):
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Besides

@t log det sAd at = trs
��
Ad a�1t �Dat Ad

�
@tat

�
= trs ad

�
(DeLat)

�1
@tat

�
= trs ad

�
Ad a�1t (At � �t)

�
by (4.11), therefore

@t log det sAd at(X;Y ) = trs adAt(�t(X;Y )) (4.27)

@t log det sAd bt(X;Y ) = trs adBt(�t(X;Y ));

and the de�nition (4.24) implies

@t (gt � �t) = (gt trs (x@XAt + y@YBt)) � �t:

On the other hand

@t(gt � �t) = (@tgt + (@Xgt) [At; X] + (@Y gt) [Bt; Y ]) � �t

by (4.13) and, putting together the latter equalities we obtain, after compo-
sition by ��1t ,

@tgt = (@Xgt)xAt + (@Y gt) yBt + trs (gt x@XAt + gt y@YBt)

= trs (x@X(gtAt) + y@Y (gtBt)) :

Lemma 4.15 Let u be a distribution on an open subset U of s. If u is H-
invariant then, for any smooth map F : U ! h such that suppu \ suppF is
compact,

hu(X); trs(x � @XF (X))i = 0: (4.28)

The converse holds true if H is connected.

Proof. Repeat the proof of Lemma 1.4 with a basis (Ei) of h.
Conversely, applying (4.28) to Fs(X) = f(e�s adEX)E where s 2 R and
E 2 h, we get

@s


u(X); f

�
e�s adEX

��
= hu(X); trs (x � @XFs(X))i = 0

and u is H-invariant since H is generated by all exp sE.

Going back to the proof of Theorem 4.12 we apply Lemma 4.15 with u,
H, s, h, X and F respectively replaced by u
 v, H �H, s� s, h� h, (X;Y )
and (gtAt; gtBt) :

hu(X)
 v(Y ); trs (x � @X(gtAt) + y � @Y (gtBt))i = 0;

and (4.25) follows in view of Lemma 4.14.
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As regards supports we need to make sure that, given g 2 C1(
), hu
 v; gti
is well de�ned for 0 � t � 1 and Lemma 4.15 applies. But supp gt =
�t (supp(gt � �t)) = �t(supp g) in view of (4.24) and our proof works if
(suppu� supp v) \ �t(supp g) is compact for all t 2 [0; 1]. In order to apply
it to g = e: F j
 with F (X;Y ) := f(X + Y ), we assume f 2 C1(s) and
(suppu� supp v) \ �t(
 \ suppF ) compact for all t 2 [0; 1].
If supp v = f0g it is easily checked, remembering that �t(X; 0) = (X; 0) for
(X; 0) 2 
, that this assumption boils down to suppu\ supp f \
1 compact.
This concludes the proof of Theorem 4.12. �

4.3.3 Application to Invariant Di¤erential Operators

An alteration of the proof of Theorem 4.12 leads to a more precise form
of Theorem 3.8, extending to symmetric spaces Proposition 4.2 of [30] for
Lie groups. We denote by �V the adjoint vector �eld associated to a vector
V 2 h, de�ned by

�V f(X) := @s
�
f(Ad(e�sV )X) det hAd(e

sV )
���
s=0

= hDf(X); [X;V ]i+ f(X) trh adV (4.29)

where f is smooth on an open subset U of s and X 2 U .
Let I(U) be the left ideal generated by the �V �s with V 2 h� = [s; s] in

the algebra of all di¤erential operators on U with analytic coe¢ cients. As
before H� denotes the Lie subgroup of H with Lie algebra h�.
For R 2 I(U) we have Rf = 0 whenever f(X)dX is an H�-invariant mea-

sure (in particular if it is H-invariant). Indeed this invariance is equivalent
to f(h �X) det sAdh = f(X) for h 2 H�, X 2 U . But for V 2 h� we have
trh adV + trs adV = trg adV = 0 and

det hAd(e
sV ) = exp(s trh adV ) = exp(�s trs adV ) = det sAd(e�sV )

whence �V f = 0.
Furthermore, if trh ad h� = 0 (in particular if G=H admits a G-invariant

measure, see Lemma 4.11) we have Rf = 0 whenever f is an H�-invariant
function (since trh adV = trs adV = 0 in this case).

Theorem 4.16 Let P = P (@) 2 D(s)H be a constant coe¢ cients H-invariant
di¤erential operator on s, let eP 2 D(S)G be the corresponding G-invariant
operator on S (see 3.1.1) and let Pe be de�ned as in Theorem 3.8 by

Pe(X; @X)f(X) = P (@Y ) (e(X;Y )f(X + Y ))jY=0 ,

where e is the (j;�)� function (4.23).
Let 
1 = fX 2 sj(X; 0) 2 
g. There exists a di¤erential operator R =
R(X; @X) 2 I(
1) such that, for all f 2 C1(s),eP ef = gPef + fRf on Exp
1:
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Proof. From the expression (3.3) of eP and the de�nition of the map e we
have

eP ef(ExpX) = P (@Y )
�
j(Y ) ef(expX � ExpY

����
Y=0

= P (@Y )

�
j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�����
Y=0

,

that is eP ef(ExpX) = fQf(ExpX)
where Q = Q(X; @X) is the di¤erential operator with analytic coe¢ cients
de�ned by

Qf(X) := P (@Y )

�
j(X)j(Y )

j(Z(X;Y ))
f(Z(X;Y ))

�����
Y=0

.

To prove the theorem we must show that the operator R = Q � Pe belongs
to I(
1). But, comparing Pe and Q,

Rf(X) = P (@Y ) (g1(X;Y )� g0(X;Y ))jY=0

in the notation gt from (4.24) and (4.26).
We shall therefore study P (@Y ) (@tgt(X;Y ))Y=0. Di¤erentiation with respect
to Y will be easier from the following expression of @tgt, giving up the sym-
metry in Lemma 4.14. Let us recall the notation Zt(X;Y ) = t�1Z(tX; tY ).

Lemma 4.17 Then

@tgt =
�
�Vtf

�
� Zt + trs (y @Y (gtCt)) ;

where Ct = Bt �At and Vt 2 h� is de�ned at the end of the proof.

Proof. By Lemma 4.14

@tgt = trs (x@X(gtAt) + y@Y (gtBt)) = trh u+ trs (y@Y (gtCt)) ;

where u is the endomorphism of h de�ned by u := @X(gtAt)�x+@Y (gtAt)�y.
For W 2 h we have

u(W ) = @s
�
(gtAt)

�
e�sW �X; e�sW � Y

����
s=0

and we must look at the behavior of gtAt under the adjoint action of e�sW 2
H. On the one hand At(h �X;h � Y ) = h � At(X;Y ) for any h 2 H. On the
other hand, remembering that Zt � �t(X;Y ) = X + Y , the de�nition (4.24)
of gt may be rewritten as

gt(X;Y ) = t(X;Y )f(Zt(X;Y ))
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where t is the function gt corresponding to f = 1, that is

(t � �t) (X;Y ) = e(X;Y ) detD�t(X;Y )
�1 det sAd at(X;Y )bt(X;Y ):

But (t � �t) (h �X;h �Y ) = (t � �t) (X;Y ) by the H-equivariance of �t, at,
bt and e, therefore t(h �X;h � Y ) = t(X;Y ). Then, looking back on u,

u(W ) = t @s
�
f
�
e�sW � Zt

�
e�sW �At

���
s=0

.

But for V 2 h and X 2 s we have

�V f(X) = trh
�
W 7! @s

�
f
�
e�sW �X

�
e�sW � V

���
s=0

�
;

since this derivative at s = 0 is hDf(X); [X;W ]iV + f(X) adV (W ). We
�nally obtain

trh u = t
�
�At

f
�
(Zt) =

�
�Vtf

�
(Zt)

with Vt := t(X;Y )At(X;Y ) 2 h� and the lemma follows.

When applying P (@Y ) at Y = 0 to @tgt as given by Lemma 4.17, the
second term vanishes in view of Lemma 4.15 for the H-invariant distribution
tP�0. Thus

P (@Y ) (@tgt(X;Y ))jY=0 = P (@Y ) (�Vtf)(Zt(X;Y ))
��
Y=0

.

Let (Ei) be a �xed basis of h� and �i = �Ei ; decomposing Vt according to this
basis we obtain �Vt =

P
i Vi(t;X; Y )�i where the coe¢ cients Vi�s are analytic

functions. Then, by Leibniz�formula in multi-index notation (with respect
to some basis of s),

P (@Y ) (@tgt(X;Y ))jY=0 =

=
X
i;�

1

�!

�
P (�)(@Y )Vi

�
(t;X; 0) @�Y ((�if) (Zt(X;Y ))jY=0 :

But, Yj denoting the components of Y ,

@Yj ((�if) (Zt(X;Y )) =


D (�if) (Zt(X;Y ); @YjZt(X;Y )

�
and, since Zt(X; 0) = X, each @�Y ((�if) (Zt(X;Y ))jY=0 is obtained by ap-
plying to �if a di¤erential operator with analytic coe¢ cients and evaluating
at X. Finally

P (@Y ) (@tgt(X;Y ))jY=0 =
X
i

Ri(t;X; @X)(�if)(X)

where the Ri are di¤erential operators on 
1 with analytic coe¢ cients. In-
tegrating from 0 to 1 with respect to t we obtain an equality of the form

P (@Y ) (g1(X;Y )� g0(X;Y ))jY=0 =
X
i

Ri(X; @X)(�if)(X) = Rf(X)

with R =
P
iRi(X; @X) � �i 2 I(
1), as claimed. �
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4.4 Properties of Campbell-Hausdor¤e-Functions

We keep to the notation of Section 4.2.

4.4.1 e and c

We �rst give a new expression of e by means of the element c(X;Y ) =
a(X;Y )�1b(X;Y ) of H introduced in 4.2.5, similar to Corollary 3.17 in the
Riemannian case (H compact).

Proposition 4.18 For (X;Y ) 2 
 let  X(Y ) := c(X;Y )�Y and 	(X;Y ) :=
(X; X(Y )). The map 	 is then a di¤eomorphism of 
 onto �(
) and

det s�sD�(X;Y ) = det sD X(Y ) (det sAd a(X;Y ))
3 (4.30)

(where D X is the di¤erential of Y 7!  X(Y ) for �xed X). The (j;�)�
function de�ned in Theorem 4.12 may be written as

e(X;Y ) =
j(X)j(Y )

j(X + Y )
det sD X(Y ) det sAd

�
a(X;Y )c(X;Y )�1

�
:

Proof. Remembering the expression (4.23) of e we only have to study 	 and
prove (4.30). Let h �(X;Y ) := (h �X;h �Y ) denote the diagonal adjoint action
of h 2 H on s� s. The H-invariance c(h � (X;Y )) = hc(X;Y )h�1 implies

	(h � (X;Y )) = (h �X; c(h � (X;Y ))h � Y ) = h �	(X;Y ):

In particular, h = a(X;Y ) gives

	(a(X;Y ) � (X;Y )) = (a(X;Y ) �X; b(X;Y ) � Y );

that is
	 �� = � with �(X;Y ) := a(X;Y ) � (X;Y ):

Because 
 is H-invariant, � maps 
 into itself. Using a(h � (X;Y )) =
ha(X;Y )h�1 with h = a(X;Y ), we obtain (a��)(X;Y ) = a(X;Y ) and infer
that � is a di¤eomorphism of 
 onto itself, with ��1(X;Y ) = a(X;Y )�1 �
(X;Y ). Therefore 	 = � ���1 is a di¤eomorphism of 
 onto �(
).
BesidesD�(X;Y ) = (D	) (a(X;Y )�(X;Y ))�D�(X;Y ) and theH-invariance
of 	 gives (D	) (h � (X;Y )) � Adh = Adh � D	(X;Y ) (where Adh is the
diagonal adjoint action) so that, with h = a(X;Y ) again,

D�(X;Y ) = Ad a(X;Y ) �D	(X;Y ) � (Ad a(X;Y ))�1 �D�(X;Y ):

Since det s�sD	(X;Y ) = det sD X(Y ) it will su¢ ce to show that

det s�sD�(X;Y ) = (det sAd a(X;Y ))
3
:
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Introducing a parameter t let

�t(X;Y ) := t�1�(tX; tY ) = (at(X;Y ) �X; at(X;Y ) � Y )

and 	t(X;Y ) := t�1	(tX; tY ), so that �t = 	t ��t. Let At := At �	t. By
(4.11) we have

@tat = (DeRat) (At � �t) = (DeRat) (At ��t) ;

where all functions are evaluated at (X;Y ), therefore @t log det s�sD�t can
be obtained as @t log det s�sD�t in (4.17), with bt replaced by at and At by
At. Using (4.3) and Lemma 4.4 we infer that

@t log det s�sD�t = trs (2 adAt � x@XAt � y@YAt) ��t
= (2 trs adAt � trh adAt) ��t
= (2 trs adAt � trh adAt) � �t:

But trh adAt = � trs adAt since At 2 [s; s] implies trg adAt = 0, whence
@t log det s�sD�t = 3 trs adAt � �t and our claim in view of (4.27).

4.4.2 Some Deeper Properties of e

Let et(X;Y ) := e(tX; tY ) with e given by Theorem 4.12. By (4.15) and
(4.16) we have

et(X;Y ) =
j(tX)j(tY )

j(tX + tY )
det s�sD�t(X;Y ) (det sAd at(X;Y )bt(X;Y ))

�1
:

(4.31)
All properties of e in this subsection will follow from various expressions of
the derivative @t log et given by the next proposition. The particular choice
j(X) = J(X)1=2 = (dets(shx=x))

1=2 (the square root of the Jacobian of Exp)
now becomes important.
For later reference let us recall theKashiwara-Vergne equation (KV1)

for the Lie algebra g and the trace condition (KV2) (Section 1.5.1), with
(X;Y ) replaced by (2X; 2Y ) for convenience:

1

2
log
�
e2Y e2X

�
= X + Y �

�
1� e�2x

�
F (X;Y )�

�
e2y � 1

�
G(X;Y ) (KV1)

1

4
trg (x cothx+ y coth y � v coth v � 1) = trg (x � @XF + y � @YG) (KV2)

Here (X;Y ) belongs to U (Section 4.2.2) and v = adV with V := 1
2 log e

2Xe2Y .
Any solution of (KV1) alone, or of (KV1) and (KV2), can be modi�ed by
Proposition 1.12 so as to satisfy G(X;Y ) = F (�Y;�X) too. The existence
of Lie series F;G solutions of (KV1) and (KV2) (the «Kashiwara-Vergne
conjecture» ) has been proved in full generality (see Chapter 1).
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Proposition 4.19 (i) Let e be the (J1=2;�)� function of a symmetric space
and et(X;Y ) = e(tX; tY ). Then, for (X;Y ) 2 
,

@t log et(X;Y ) = J � F
with

J :=
1

2
trh

�
x coth tx+ y coth ty � (x+ y) coth t(x+ y)� 1

t

�
(4.32)

=
1

2
trh

�
x coth tx+ y coth ty � z coth tz � 1

t

�
� �t(X;Y ); (4.33)

z = adZ(X;Y ), and

F := trh (@XAt � x+ @YBt � y) � �t(X;Y ) (4.34)

= trh (@Y Ct � y + adAt) � �t(X;Y ) (4.35)

= trh (�@XCt � x+ adBt) � �t(X;Y ): (4.36)

(ii) Let e be the (J1=2; F;G)� function, where F and G satisfy the Kashiwara-
Vergne equations (KV1) and (KV2). Then, for (X;Y ) 2 
,

@t log et(X;Y ) = trh

�
1

2
[y; @Y Ct]� adAt

�
� �t(X;Y ) (4.37)

= trh

�
1

2
[@XCt; x]� adBt

�
� �t(X;Y ): (4.38)

Also, with Ut = ct(X;Y ) � Y given by Lemma 4.7,

@t log et(X;Y ) = trh

�
1

2
[(@XCt) (X;Ut); x]� adBt(X;Ut)

�
: (4.39)

Remarks. (a) The adAt and adBt terms in these equalities can be forgotten
if trh ad h� = 0, for example when the symmetric spaceG=H has aG-invariant
measure (Lemma 4.11). The (J1=2; F;G)� function can then be written in
terms of C only, with Ut given by (4.20). See also Proposition 4.18 above,
applying to the more general (j;�)� function.
(b) Writing @t log et by means of (4.33) and (4.34) shows that it embodies
the obstruction of an analog of (KV2) for symmetric spaces.

Proof. In order to lighten notation we compute derivatives at t = 1 only.
The general case will follow from the behavior of all terms under scalings
(X;Y ) 7! (tX; tY ) (see (4.16)).
(i) The terms in J come from the J1=2 factors in et, those in F from �t,
at and bt. The de�nition J(X) = dets(shx=x) implies @t log J(tX)jt=1 =
trs (x cothx� 1), therefore

@t log

�
J(tX)J(tY )

J(tX + tY )

�1=2
t=1

=

=
1

2
trs (x cothx+ y coth y � (x+ y) coth(x+ y)� 1) :
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We may replace here trs by trh because of (4.3). Since X +Y = Z ��(X;Y )
and �(X;Y ) = (a �X; b � Y ) by Theorem 4.6, this may be rewritten as

@t log

�
J(tX)J(tY )

J(tX + tY )

�1=2
t=1

=
1

2
trh (x cothx+ y coth y � z coth z � 1)��(X;Y )

with z = adZ(X;Y ), and both formulas for J are proved.
Combining this with the derivatives of the determinants in et (see the proof
of Lemma 4.14) we obtain

@t log etjt=1 = J � F , with F = trs (x@XA+ y@YB) � �:

In view of Lemma 4.4 (b) the latter term can be changed into

F = trh (@XA � x+ @YB � y) � � = trh (@Y C � y + adA) � �
= trh (�@XC � x+ adB) � �

with C = B �A. This proves (4.34), (4.35) and (4.36).
(ii) Let us now compare with the Kashiwara-Vergne trace condition (KV2).
Since Z(X;Y ) = e�xV by Proposition 4.2, v can be replaced by z = e�xvex

in the left-hand side. Using Lemma 4.4 (a) to modify the right-hand side we
see that (KV2) is equivalent to

1

4
trg (x cothx+ y coth y � z coth z � 1) = trg (@Y (G� F ) � y + adF ) :

(4.40)
For the symmetric space we have chosen A = e�xF + exF_ and C = (G �
F ) + (G � F )_ in (4.9), (4.10) with F_(X;Y ) = F (�X;�Y ) etc. Adding
(4.40) and (4.40)_, (KV2) implies

1

2
trg (x cothx+ y coth y � z coth z � 1) = trg (@Y C � y) ; (4.41)

indeed Z_ = �Z by Proposition 4.2 and trg ad(F +F_) = 0 because F +F_
is an even series of Lie brackets, thus maps U into [g; g].
Restricting now to (X;Y ) 2 O � s� s we may replace, in view of (4.2) and
(4.3), trg by trh+trs = 2 trh in the left-hand side and by trh+trs in the
right-hand side. Thus, for (X;Y ) 2 O,

1

2
trh (x cothx+ y coth y � z coth z � 1) =

1

2
(trh+trs) (@Y C � y) :

Together with (4.33) and (4.35) we obtain

@t log etjt=1 =
�
1

2
(trs� trh)(@Y C � y)� trh adA

�
� �

on 
, and �nally (4.37) because trs (@Y C � y) = trh (y � @Y C). A similar
proof gives (4.38) - or else (4.38) is equivalent to (4.37) in view of Lemma 4.4
and trg adC = 0.
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With c = a�1b we have �(X;Y ) = (a � X; b � Y ) = a � (X; c � Y ) (diagonal
adjoint action of a 2 H on s� s), thus

ad (B � �) (X;Y ) = Ad a � ad (B(X; c � Y )) �Ad a�1

and similarly for [@XCt; x]. Consequently (4.39) follows from (4.38).

Theorem 4.20 (structure of e-functions) If Lie series F;G satisfy (KV1)
and (KV2) the corresponding (J1=2; F;G)� function has the following prop-
erties: there exist sequences (a2p), (b2p), (c2p), (v2p�1), (w2p�1), of non-
commutative homogeneous polynomials in x = adX and y = adY (with
degrees given by the subscripts) such that, in a neighborhood of the origin of
s� s,
(i) log e(X;Y ) =

P1
1 trh ([x; v2p�1] + [y; w2p�1]) =

P1
1 (trs� trh) a2p =P1

1 (trg�2 trh) a2p
(ii) log e(X;Y ) =

P1
0 trh ([x; y]b2p) +

P1
0 trs ([x; y]c2p).

In particular e(X;Y ) = 1 for any (X;Y ) 2 
 such that [X;Y ] = 0.

Remarks. (a) All series above are absolutely convergent in a neighborhood
of the origin.
(b) Property (i) proves a conjecture of [44] p. 255.
(c) There exists a sequence (fp) of homogeneous polynomials in four (non-
commutative) variables such that log e(X;Y ) =

P1
1 trs fp(x

2; xy; yx; y2).
Indeed log e(X;Y ) =

P1
1 trs u2p by (i) with u2p = [v2p�1; x] + [w2p�1; y],

and an easy induction on the degree shows that each monomial in the even
polynomial u2p may be written as a monomial in x2, xy, yx and y2.
Since xy is the endomorphism V 7! [V; Y;X] of the Lie triple system s (Sec-
tion 0.3) and similarly for x2, yx, y2, we see that e is directly linked to
the structure of Lie triple system corresponding to our symmetric space S.
When replacing S by the contracted space St (Section 4.1), xy etc. is mul-
tiplied by t2 therefore et(X;Y ) = e(tX; tY ) is an e-function for St. When
replacing S by the dual space S�, xy etc. changes into �xy etc. therefore
e�(X;Y ) = e(iX; iY ) is an e-function for S�.
Besides the fp�s are obtained from (F;G) in (KV1), therefore universal for
all symmetric spaces if (F;G) are universal.
(d) From (ii) we infer that there exists a sequence (�p) of scalars such that

log e(X;Y ) =
1X
0

�p trh ad
�
x2p+1Y

�
+O

�
Y 2
�
;

whence @Y e(X; 0) = 0 if trh ad h� = 0; Proposition 4.36 will provide a more
precise result. Indeed log e(X;Y ) is, modulo Y 2, a sum of terms of the form
(with scalars �p, p):

trh
�
[x; y]�px

2p
�
+ trs

�
[x; y]px

2p
�
= (�p � p) trh

�
x2p+1; y

�
= 2�2p(�p � p) trh ad

�
x2p+1Y

�
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by Lemma 4.37.
(e) The equality e(X;Y ) = 1 is actually valid under a weaker assumption:
see Theorem 4.22 (i) below.

Proof. (i) Since e is analytic, even, and e(0; 0) = 1 we know that

log e(tX; tY ) =
X
p�1

t2pe2p(X;Y );

where e2p is homogeneous of degree 2p in (X;Y ), and there exists R > 0 such
that the series converges absolutely for kXk < R, kY k < R and jtj � 1. We
shall obtain the coe¢ cients e2p from (4.39) by identi�cation of formal power
series with respect to t.
Let us consider �rst the solution Ut = c(tX; tY )�Y of the di¤erential equation
@tUt = [Ct(X;Ut); Ut], U0 = Y (Lemma 4.7). On the right-hand side is a Lie
series of the form

[Ct(X;Y ); Y ] =
X
q�1

t2q�1
X

j�j+j�j=2q+1

c��Z��(X;Y )

where the c���s are coe¢ cients and Z��(X;Y ) = x�1y�1 � � �x�nY . We claim
that Ut can be expanded as3

Ut = Y +
X
p�1

t2pU2p+1

where U2p+1 is a homogeneous Lie polynomial in (X;Y ) of degree 2p + 1.
Indeed, substituting Ut for Y ,

Z��(X;Ut) = Z��(X;Y ) +
X
r�1

t2rZr��(X;Y; U3; :::; U2r+1)

where Zr�� is a homogeneous Lie polynomial in (X; :::; U2r+1). The di¤erential
equation for Ut becomesX

p�1
2pt2p�1U2p+1 =

X
q�1

t2q�1�

�
X

j�j+j�j=2q+1

c��

0@Z��(X;Y ) +X
r�1

t2rZr��(X;Y; :::; U2r+1)

1A
and determines the U2p+1�s inductively, Lie polynomials in (X;Y ) of degree
2p+ 1.
Similarly Bt(X;Y ) =

P
p�1 t

2p�1P
j�j+j�j=2p b��Z��(X;Y ). Substituting

Ut for Y and reordering according to the powers of t we obtain Bt(X;Ut) =

3An explicit expression of U3 and U5 is given by Lemma 4.30.
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P
p�1 t

2p�1B2p(X;Y ), where B2p is a homogeneous Lie polynomial in (X;Y )
of degree 2p. Each B2p begins with [X; :::] or [Y; :::] and, separating both
types, it follows that

adBt(X;Ut) =
X
p�1

t2p�1
��
x; b02p�1(x; y)

�
+
�
y; b002p�1(x; y)

��
with b02p�1, b

00
2p�1 homogeneous non-commutative polynomials in (x; y) of

degree 2p� 1.
Next @XCt(X;Y ) =

P
p�1 t

2p�1c2p�1(x; y) with c2p�1 of degree 2p � 1 and,
replacing y by adUt and reordering,

(@XCt) (X;Ut) =
X
p�1

t2p�1c02p�1(x; y):

Finally (4.39) becomes, in similar notation,

@t log e(tX; tY ) = trh

�
1

2
[(@XCt) (X;Ut); x]� adBt(X;Ut)

�
=

X
p�1

t2p�1 trh ([x; f2p�1(x; y)] + [y; g2p�1(x; y)]) ;

whence the �rst claim in (i) with

v2p�1 =
1

2p
f2p�1(x; y) , w2p�1 =

1

2p
g2p�1(x; y):

Then trh[x; v2p�1] = trh(xv2p�1 � v2p�1x) = (trh� trs) (xv2p�1) by (4.3),
hence the second expression of log e with a2p = xv2p�1 + yw2p�1, even. The
third follows since trg a2p = trh a2p + trs a2p.
(ii) The bracket [x; :::] acts as a derivation on all monomials x�1y�1 � � �x�ky�k
in v2p�1, giving

[x; v2p�1] =
X
j

bj [x; y]b
0
j +

X
k

ck[x; y]c
0
k

with bj ; b0j even and ck; c
0
k odd. Thus

trh[x; v2p�1] = trh([x; y]
X

b0jbj) + trs([x; y]
X

c0kck);

the same for trh[y; w2p�1], and (i) implies (ii).
If [X;Y ] = 0 then [x; y] = ad[X;Y ] = 0 and (ii) applies to (tX; tY ) for
jtj small enough, giving log e(tX; tY ) = 0. For (X;Y ) 2 
 the function
t 7! log e(tX; tY ) is analytic on an open interval containing [�1; 1], therefore
log e(X;Y ) = 0 by analytic continuation.

De�nition 4.21 A symmetric Lie algebra (g; �) is called strongly symme�
tric if there exists a linear isomorphism  of g which commutes with all adX
for X 2 g and anticommutes with �. A symmetric space with strongly sym-
metric Lie algebra is called strongly symmetric.
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In other words  maps h onto s, s onto h and  �adX = adX � = ad((X))
for all X 2 g; the latter equality follows from ad((X))Y = � (adY � )X =
� ( � adY )X = ( � adX)Y . This property implies dim g = 2dim h =
2dim s. The basic examples of strongly symmetric Lie algebras are:
(a) (gC; �) where the symmetry � is the conjugation with respect to a real
form h = gR of the complex Lie algebra gC and  is the multiplication by i
(b) (g�g; �) where g is a Lie algebra, �(X1; X2) = (X2; X1), h is the diagonal
subalgebra of g� g and (X1; X2) = (X1;�X2).
These examples are dual to each other: the map X+iY 7! (X;X)+i(Y;�Y )
identi�es (a) with the dual of the symmetric Lie algebra (b) ([31] p. 253).
The corresponding strongly symmetric spaces are GC=GR (a complex Lie
group modulo a real form) and a Lie group viewed as a symmetric space.
Let us recall that a symmetric space is called special if 1 is an e-function.
Properties of special spaces are studied in Section 3.2.

Theorem 4.22 (special symmetric spaces) For a symmetric space with
the (J1=2; F;G)� function constructed from j = J1=2 and Lie series F;G
satisfying the Kashiwara-Vergne equations (KV1) and (KV2), the following
holds.
(i) Let (X;Y ) 2 
 such that X and Y belong to a solvable Lie subalgebra of
g. Then e(X;Y ) = 1. In particular, solvable symmetric spaces are special.
(ii) Strongly symmetric spaces are special.
(iii) e is identically 1 on 
 if and only if trh ad h� = 0 and trh[y; @Y C] = 0
for all (X;Y ) 2 O. Then dets�sD�(X;Y ) = (J(X + Y )=J(X)J(Y ))

1=2.

Proof. Replacing (X;Y ) by (tX; tY ) if necessary, we work in a neighorhood
of the origin where Theorem 4.20 applies. The result will extend by analytic
continuation on t.
(i) Let g0 be a solvable subalgebra of g containing X and Y . By Lie�s theorem
for the adjoint representation of g0 on the complexi�cation gC of g, there exists
a basis of gC in which x = adX and y = adY are given by upper triangular
matrices. The same holds for v2p�1 and w2p�1 in Theorem 4.20 (i) therefore
[x; v2p�1] and [y; w2p�1] are nilpotent, their trh vanishes and log e(X;Y ) = 0.
(ii) Now assume the space is strongly symmetric. Given X;Y 2 s let v be
an odd (non-commutative) monomial in x = adX and y = adY of degree
2p � 1 � 1. Let us write X = (X 0), Y = (Y 0) with X 0; Y 0 2 h, and let v0
denote the monomial obtained from v by replacing x by x0 = adX 0 and y by
y0 = adY 0. Observing that x =  � x0 = x0 � , y =  � y0 = y0 �  and that
x0, v0, 2 are endomorphisms of h, we have

trh (xv) = trh
�
x02pv0

�
= trh

�
2pv0x0

�
= trh (vx) ,

therefore trh[x; v] = 0 for any odd monomial v in x and y. Similarly trh[y; w] =
0 for w odd, hence log e = 0 by4 Theorem 4.20 (i).

4The result also follows from (4.37) directly, since we have here trh ad h� = 0 and
trh [y; @Y C] = 0, C being even.
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(iii) If trh[y; @Y C] = 0 and trh ad h� = 0, then (4.37) implies @t log et = 0 and
e is identically 1. Conversely, the expansion log e(X;Y ) = 1

4 trh ad[X;Y ] +
O4 (Proposition 4.31) shows that e � 1 implies trh ad h� = 0, therefore
trh adA = 0 and �nally trh[y; @Y C] = 0 by (4.37). The latter result, valid in
a neighborhood of the origin in s� s, extends to O by analytic continuation.
The expression of detD� follows from (4.23) and Lemma 4.11.

Remarks. (a) Let Bg, resp. Bh, denote the Killing forms of the Lie al-
gebras g, resp. h. Considering the second term in the expansion of log e in
Proposition 4.31 we see that e � 1 on 
 also implies Bg�2Bh = 0 on h��h�.
(b) The above proof of (ii) shows that, for all strongly symmetric Lie algebras,
trh[x; y] = 0 for X;Y 2 s, that is trh ad h� = 0. Besides, for X 0; Y 0 2 h we
have

(Bg � 2Bh) (X 0; Y 0) = (trh+trs) (x
0y0)� 2 trh(x0y0) = (trs� trh) (x0y0):

But X 0 = (X), Y 0 = (Y ) for some X;Y 2 s, thus x0 = x = x, y0 = y =
y and

trs(x
0y0) = trs (xy) = trh (yx) = trh(y

0x0) = trh (x
0y0) :

Therefore Bg � 2Bh = 0 on h� h for all strongly symmetric algebras.

The next proposition supplements Theorem 4.22. It shows that j = J1=2

is essentially the only choice allowing some symmetric spaces to be special.

Proposition 4.23 Let ej denote the (j;�)� function, where � is constructed
from universal Lie series A and C (see 4.6.4). Assume ej is identically 1.
Then trh ad h� = 0 and there exists a linear form � 2 s� such that j(X) =
J(X)1=2e<�;X> for all X. Thus ej = eJ1=2 = 1, and j = J1=2 if j is even.

Proof. By Proposition 4.36 below the (J1=2;�)�function satis�es

log eJ1=2(X;Y ) =
1

2
trh ad

��
th
x

2

�
Y
�
+O(Y 2):

Let f be de�ned by j(X) = J1=2(X)ef(X), an analytic function on a neigh-
borhood of 0 in s with f(0) = 0. If

log ej(X;Y ) = log eJ1=2(X;Y ) + f(X) + f(Y )� f(X + Y )

vanishes identically near the origin, the �rst order terms in Y give

1

2
trh ad

��
th
x

2

�
Y
�
= (Df(X)�Df(0))Y: (4.42)

At �rst order in X this implies 1
4 trh ad[X;Y ] = D2f(0)(X;Y ) and both

sides must vanish identically, the right being symmetric and the left skew-
symmetric with respect to (X;Y ). Thus trh ad[s; s] = 0. Besides�

th
x

2

�
Y =

�
X;
thx=2

x
Y

�
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belongs to [s; s] and the left-hand side of (4.42) vanishes, hence Df(X) =
Df(0). Since f(0) = 0, f is a linear form on s and ej = eJ1=2 . If f is even,
it must vanish identically and j = J1=2.

Theorem 4.24 (symmetry of e-functions) Let e be the (j; F;G)� func-
tion of a symmetric space, constructed from functions F;G satisfying the
Kashiwara-Vergne equation (KV1) and G(X;Y ) = F (�Y;�X). Then
(i) The function e!(X;Y ) := e(X;Y ) (dethAd(h � �(X;Y ))�1=2 is symmet-
ric on 
, that is e!(Y;X) = e!(X;Y ).
(ii) e(X;Y ) = e(Y;X) for all (X;Y ) 2 
 if and only if trh ad h� = 0.

As shown in the next section e! is the natural e-function for the line bundle
of half-densities.
By Lemma 4.11 the symmetry of e in (ii) holds true if (and only if for
simply connected G) the space S = G=H has a G-semi-invariant measure.
By Theorem 3.9 this symmetry implies the commutativity of the algebra
D(S).
Proof. The skew-symmetry of C(X;Y ) (Proposition 4.8) is the key to the
proof. In view of the de�nition (4.23) of e the factor j plays no role here and
we may as well assume j = J1=2 and use Proposition 4.19.
(i) Let e!;t := et � (dethAdbht)�1=2 with bht(X;Y ) = h � �(tX; tY ). Writing
as before At(X;Y ) = At(Y;X) etc. we know from the proof of Proposition
4.10 that bh�1t @tbht = �At �Bt� � �t, therefore

@t log
�
det hAdbht��1=2 = �1

2
trh ad

�
At �Bt

�
� �t:

Besides we have by (4.32), (4.35) and (4.36)

@t log et = J �
1

2
trh (�@XCt � x+ @Y Ct � y + ad(At +Bt)) � �t

with J (X;Y ) = J (Y;X). But Ct = Bt � At = �Ct by Proposition 4.8 (ii),
therefore @Y Ct = �@Y Ct = �@XCt and �@XCt � x + @Y Ct � y is invariant
under permutation of X and Y . From this we infer an equality of the form

@t log e!;t(X;Y ) = trh (ut(X;Y ) + vt(�t(X;Y )))

where ut, vt are non-commutative series in adX, adY such that ut(X;Y ) =
ut(Y;X) and vt(X;Y ) = vt(Y;X).
The map �t is not symmetric but, in view of Proposition 4.10 (ii) with
(Xt; Yt) = �t(X;Y ) = t�1�(tX; tY ),

vt (�t(Y;X)) = vt(bht � (Yt; Xt)) = Adbht � vt(Yt; Xt) �Adbh�1t
= Adbht � vt(�t(X;Y )) �Adbh�1t

Thus trh vt(�t(X;Y )) is symmetric and (i) is proved.
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(ii) Since At � Bt belongs to h� we have dethAdbht = 1 if trh ad h� = 0 and
(i) implies the symmetry of e.
Conversely the Taylor expansion log e(X;Y ) = 1

4 trh ad[X;Y ] + O4 (Propo-
sition 4.31 below) shows that the symmetry of e on 
 implies trh ad h� = 0.

4.5 Extension to Line Bundles

In this section we extend the construction of e and the above results to line
bundles over symmetric spaces, using the notation L�, (x; z) etc. of Sections
2.2 and 3.8. The previous study coresponds to the trivial character � = 1.
The symbol e, resp. �, now denotes the transfer map, resp. the convolution,
for the line bundle. Our �rst theorem generalizes Theorem 4.12.

Theorem 4.25 Let S = G=H be a symmetric space and � a character of H.
Let u; v be H-invariant distributions on open subsets of s and let f 2 C1(s),
with suitable supports. ThenDeu � ev; efE = hu(X)
 v(Y ); e�(X;Y )f(X + Y )i

with
e�(X;Y ) := e(X;Y ) � (h � �(X;Y ))�1 (4.43)

where e is the (j;�)� function (4.23) of S.
The convolution equality holds in particular if u; v are H-invariant distrib-
utions on open subsets of s, with supp v = f0g, f 2 C1(s), and suppu \
supp f \ 
1 is compact.

Here again 
1 = fX 2 sj(X; 0) 2 
g. More generally, the result holds under
the assumption on supports speci�ed at the end of the proof of Theorem 4.12,
but the special case mentioned here su¢ ces for the application to invariant
di¤erential operators. We shall call (4.43) the (j;�; �)� function of the
line bundle L�.
Proof. From the de�nitions of e and � we haveDeu � ev; efE = Du(X); j(X)Dev; efexpXEE ;
where the section efexpX of the line bundle is given by efexpX(ExpY ) =
e�X � ef �eXeYH�. Using the decomposition eXeY = eZh with Z = Z(X;Y )
and h = h(X;Y ) we obtain

efexpX(ExpY ) = e�X �
�
eZ ; j(Z)�1f(Z)

�
=
�
eY h�1; j(Z)�1f(Z)

�
=
�
eY ; �(h)�1j(Z)�1f(Z)

�
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and it follows thatDeu � ev; efE = �u(X)
 v(Y ); j(X)j(Y )
j(Z(X;Y ))

�(h(X;Y ))�1f(Z(X;Y ))

�
:

We can then use (4.25) with g(X;Y ) := e�(X;Y )f(X + Y ) and e� de�ned
by (4.43). The resulting equality is hu
 v; g1i = hu
 v; g0i, with

g1(X;Y ) =
j(X)j(Y )

j(Z(X;Y ))
�(h(X;Y ))�1f(Z(X;Y ))

g0(X;Y ) = e�(X;Y )f(X + Y );

which implies our claim.

Given a character � of H we denote by �0 its di¤erential at the origin,
which is a character of the Lie algebra h (that is �0 ([h; h]) = 0); thus �

�
eV
�
=

e�
0(V ) for V 2 h. A character of h extends to a character of g = h� s if and

only if it vanishes on the ideal h� = [s; s] of h: indeed extending it by 0 on s
proves the «if» part, and the converse is obvious.

Proposition 4.26 The function e� de�ned by (4.43) has the following prop-
erties.
(i) It is analytic on 
, strictly positive, and e�(X;Y ) = e�(h �X;h � Y ) for
all h 2 H. Besides e�(X;Y ) = e�(�X;�Y ) if j is even.
(ii) Given two characters �1, �2 of H we have e�1 = e�2 if and only if the
character �01 � �02 of h extends to a character of g.

Under the assumption of (ii) the line bundles L�1 and L�2 are isomorphic.
Proof. (i) is clear by Proposition 4.2 (i), Theorem 4.6 (ii) and Remark (d)
after Theorem 4.12.
(ii) Assume �01 � �02 extends to g. Then, G being simply connected, �1�

�1
2

extends to a character of G. By Proposition 4.2 (iv) it follows that �1(h��) =
�2 (h � �) hence e�1 = e�2 .
Conversely e�1 = e�2 implies �1�

�1
2 (h��(X;Y )) = 1 for all (X;Y ) 2 
. But

h��(X;Y ) = exp
�
1
2 [X;Y ] +O4

�
by Lemma 4.30, therefore (�01 � �02) [X;Y ] =

0 for all X;Y 2 s. The character �01��02 of h, which vanishes on [s; s], extends
to a character of g.

Let us consider the following characters of H, resp. h,

!(h) := (det hAdh)
1=2 , resp. !0 :=

1

2
trh ad :

Since detgAdh = (dethAdh)
�
detg=hAdh

�
extends to a character of G we

see that, up to isomorphism, ! de�nes the same bundle as
�
detg=hAdh

��1=2
,

that is the bundle of half-densities on G=H (Section 2.2.1).
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The line bundle L� is called special if the convolution equality of Theo-
rem 4.25 holds with e� = 1. In the next theorem we specialize to j = J1=2, an
assumption motivated by an easy extension of Proposition 4.23: if j is even,
A, C are universal and the (j;�; �)-function of a line bundle is identically 1,
then j = J1=2.

Theorem 4.27 (special line bundles) Let e� be the (J1=2;�; �)� func-
tion of a line bundle L�, where � is constructed from Lie series F;G satis-
fying the Kashiwara-Vergne equations (KV1) and (KV2). Then
(i) e� is identically 1 on 
 if and only if e! is identically 1 on 
 and �0�!0
extends to a character of g.
(ii) e�(X;Y ) = 1 if (X;Y ) 2 
, if X;Y belong to a solvable Lie subalgebra
of g and �0 � !0 extends to a character of g.
(iii) e� is identically 1 on 
 if the space G=H is strongly symmetric and
�0 � !0 extends to a character of g.

Thus, among bundles equipped with e� de�ned by (4.43), only the bundle
L! of half-densities can be special (up to isomorphism). It actually is if G is
a solvable Lie group or if G=H is strongly symmetric. See Proposition 3.28
for some properties of special bundles.
Proof. (i) The "if" part follows from Proposition 4.26 (ii). Conversely the
expansion log e�(X;Y ) = 1

2 (!
0 � �0)[X;Y ] + O4 (Proposition 4.31) shows

that e� = 1 implies the vanishing of �0 � !0 on [s; s]. Thus it extends to a
character of g and e! = e� = 1 by Proposition 4.26 (ii) again.
(ii) By Theorem 4.22 (i) we have e(X;Y ) = 1 and it remains to show that

� (h � �(X;Y )) = 1:

We know from the proof of Proposition 4.10 that bht(X;Y ) := h � �(tX; tY )
solves the di¤erential equationbh�1t @tbht = Ht � �t

and the right-hand side belongs to [s; s] (note that the assumption G(X;Y ) =
F (�Y;�X) of Proposition 4.10 was not used for that). Therefore h��(X;Y )
belongs to H�, the connected Lie subgroup of H generated by exp[s; s]. But
for V 2 [s; s] we have �

�
eV
�
= e�

0(V ) = e!
0(V ) since �0 � !0 vanishes on

[s; s], and !0(V ) = 1
2 trh adV = 0 since adV is nilpotent as in the proof of

Theorem 4.22.
(iii) The proof is similar to (ii): here e = 1 and trh ad[s; s] = 0 by Theorem
4.22, hence �0(V ) = !0(V ) = 0 and � is trivial on H�.

Theorem 4.28 (symmetry of e�) Let e� be the (j;�; �)� function of a
line bundle L�, where � is constructed from functions F;G satisfying the
Kashiwara-Vergne equation (KV1) and G(X;Y ) = F (�Y;�X). Then
(i) e�(Y;X) = e!2��1(X;Y ) for (X;Y ) 2 

(ii) e� is symmetric on 
, that is e�(X;Y ) = e�(Y;X), if and only if e� = e!,
that is if the character �0 � !0 of h extends to a character of g.
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Remarks. (a) The bundle of half-densities is thus (up to isomorphism) the
only line bundle over S with a symmetric function e�. By (ii) the convolution
of H-invariant distributions and the algebra D (L�) (see Theorem 3.27) are
commutative whenever �0 � !0 extends to a character of g; the latter result
was originally proved by Du�o [19].
(b) Combining Theorem 3.27 (iii) with Proposition 4.31 the following nec-
essary condition is easily obtained (cf. [45] p. 125): if D (L�) is commuta-
tive, then (�0 � !0) [X;Y ] = 0 whenever X = DP (�) and Y = DQ(�) with
P;Q 2 S(s)H and � 2 s�. The di¤erentials DP (�), DQ(�) are here identi�ed
with elements of s.
(c) For the trivial bundle (� = 1), (ii) shows that e� = e is symmetric if
and only if !0 = 1

2 trh ad vanishes on [s; s]. Thus Theorem 4.28 generalizes
Theorem 4.24.

Proof. (i) By (4.43) we have e�(X;Y ) = e!(X;Y )
�
!��1

�
(h � �(X;Y )).

Under permutation of X and Y the factor e! is invariant (Theorem 4.24
(i)) whereas the second factor changes into its inverse (Proposition 4.10 (i)),
hence

e�(Y;X) = e!(X;Y )
�
!�1�

�
(h � �(X;Y )) = e!2��1(X;Y ):

(ii) By (i) e� is symmetric if and only if e� = e!2��1 , in other words if
�0 � (2!0 � �0) = 2 (�0 � !0) extends to a character of g (Proposition 4.26
(ii)). This is equivalent to the vanishing of �0�!0 on [s; s], or else to e� = e!.

4.6 Taylor Expansions

In this section we expand all important expressions considered in the chapter,
�rst up to order 4 or 5 with respect to (X;Y ), then up to an arbitrary order
with respect to X but up to order 1 with respect to Y . These expansions
aim at giving a better understanding of the functions we have introduced,
and possibly testing conjectures about their properties. They are also used
in the course of several proofs in 4.4 and 4.5.
In the following On means terms of order � n with respect to (X;Y )

- not to be confused with the degree with respect to t in expressions like
At(X;Y ) = t�1A(tX; tY ).
As usual we write x = adX, y = adY . All terms in our expansions will be

written as x�1y�1 :::x�nY , which is short and convenient but not unique: for
instance [[X;Y ]; [X;Y ]] = 0 gives xyxY = yx2Y because ad[X;Y ] = xy� yx
and [X;Y ] = xY . Such relations will be taken into account.

4.6.1 Expansions of Z; h;A;B;C

Recall the de�nitions Z(X;Y ) = 1
2e
�x log

�
e2Xe2Y

�
, h(X;Y ) = e�Z(X;Y )eXeY

(Proposition 4.2). Moreover A;B;C are even Lie series such that B = A+C
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and

Z(Y;X) = (ch y) (X + Y )� (ch y shx+ sh y chx)A(X;Y )� (sh y)C(X;Y )
(4.44)

for (X;Y ) 2 U (Proposition 4.5 (i)).

Lemma 4.29 For X;Y near the origin of g� g we have

Z(X;Y ) = X + Y � 1
6
(x2 + 2yx)Y+

+
1

360

�
7x4 + 16yx3 + 12xyx2 + 48y2x2 � 16xy2x+ 8y3x

�
Y +O7:

h(X;Y ) = exp

�
1

2
xY � 1

24

�
x2 + 3xy + y2

�
xY +O6

�

A(X;Y ) = �1
3
xY +

1

90

�
7x2 + 12yx+ 4y2

�
xY +O6 (4.45)

C(X;Y ) = �1
3
xY +

1

45

�
2x2 + 3yx+ 2y2

�
xY +O6: (4.46)

Proof. From the classical Campbell-Hausdor¤ expansion up to order 5:

log(eXeY ) = X + Y +
1

2
xY +

1

12
x2Y � 1

12
yxY � 1

24
yx2Y+

+
1

720

�
�x4 + 2yx3 � 6xyx2 + 6y2x2 � 2xy2x+ y3x

�
Y +O6

the expansion of Z(X;Y ) is easily obtained. Since Z(�X;�Y ) = �Z(X;Y )
all even terms may be neglected during the calculations.
The expansion of h = e�Z

�
eXeY

�
follows, applying twice the Campbell-

Hausdor¤ formula up to order 4.
It turns out that the expansion of Z together with (4.44) uniquely determine
A and C up to order 4. Indeed the expansions (4.45) and (4.46) are easily
obtained by identi�cation: we may look for

A = axY + bx3Y + cyx2Y + dy2xY +O6

(where a; b; c; d are unknown coe¢ cients) and a similar expression for C ;
all terms have di¤erent degrees with respect to X and to Y , and xyxY =
yx2Y . The result drops down from (4.44) and the expansion of Z after some
computations. Note that (4.46) implies C(Y;X) = �C(X;Y ) necessarily, up
to order 4 at least.

Then At = t�1A(tX; tY ) and Bt = At + Ct are given by

At(X;Y ) = �
t

3
xY +

t3

90

�
7x3 + 12yx2 + 4y2x

�
Y +O6 (4.47)

Bt(X;Y ) = �
2t

3
xY +

t3

90

�
11x3 + 18yx2 + 8y2x

�
Y +O6: (4.48)
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4.6.2 Expansion of �

Let � and �t be given by Theorem 4.6, from A;C satisfying (4.44) and
B = A+ C, and let ct = a�1t bt.

Lemma 4.30 In a neighborhood of the origin of s � s, �t(X;Y ) = (Xt; Yt)
and Ut = ct(X;Y ) � Y expand as

Xt = X +
t2

6
x2Y +

t4

360

�
�7x4 � 12xyx2 + 5yx3 � 4xy2x

�
Y +O7

Yt = Y +
t2

3
yxY +

t4

360

�
�11yx3 + 12y2x2 � 20xy2x� 8y3x

�
Y +O7

Ut = Y +
t2

6
yxY +

t4

360

�
�4yx3 + 4y2x2 � 5xy2x� 4y3x

�
Y +O7:

Also

ct(X;Y ) = exp

�
� t

2

6
xY +

t4

360

�
4x2 + xy + 4y2

�
xY +O6

�

h � �(X;Y ) = exp
�
1

2
xY � 1

24

�
x2 + xy + y2

�
xY +O6

�
:

Proof. In view of Theorem 4.6 we must solve

@tXt = [At(Xt; Yt); Xt] , X0 = X

@tYt = [Bt(Xt; Yt); Yt] , Y0 = Y

in the form of Xt = X+ t2X3+ t
4X5+O7, Yt = Y + t2Y3+ t

4Y5+O7. Taking
into account the identities

x2yxY = xyx2Y , ad(x2Y ) = x2y � 2xyx+ yx2

yxyxY = y2x2Y , ad(y2X) = y2x� 2yxy + xy2

and the above expansions of At, Bt, the result is easily obtained by identi�-
cation.
The expansion of Ut follows similarly from @tUt = [Ct(X;Ut); Ut] , U0 = Y
(Lemma 4.7).
According to Proposition 4.8, ct = exp t with t 2 h� = [s; s] and t(�X;�Y ) =
t(X;Y ), thus

t = t2axY + t4
�
bx2 + cxy + dy2

�
xY +O6

where a; b; c; d are scalars. These coe¢ cients may be obtained by identi�ca-
tion of ct � Y = exp (ad t)Y with the above expansion of Ut, or else from
the di¤erential equation (DeRct)

�1
@tct = Ct (X;Ut) (Lemma 4.7) which is

equivalent to

ead t � 1
ad t

0t =

�
1 +

1

2
ad t +

1

6
(ad t)

2
+ � � �

�
0t = Ct (X;Ut) :
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The de�nition of h and the properties of � imply

h � �(X;Y ) =
�
e�X�Y eX1

�
eY1 .

Knowing that

X1 = X +
1

6
x2Y +O5 , Y1 = Y +

1

3
yxY +O5:

the result for h � � follows from the classical Campbell-Hausdor¤ formula,
applied twice up to order 4. Note that the remainder is actually O6 since
h � � is an even function.

4.6.3 Expansions of e and e�
We can now expand the (J1=2;�)� function de�ned by (4.23) with j =
J1=2. Let us introduce T := [X;Y ] = xY and the Killing forms Bg(U; V ) :=
trg(adU adV ), resp. Bh(U; V ) := trh(adU adV ), of the Lie algebras g, resp.
h. For line bundles we recall the notation �0 (the di¤erential at the origin of
the character � ofH), !0 = 1

2 trh ad (that is �
0 for the bundle of half-densities)

and the de�nition (4.43) e� = e � �(h � �)�1.

Proposition 4.31 In a neighborhood of the origin of s� s the logarithm of
the (J1=2;�)� function e expands as

log e(X;Y ) =
1

4
trh ad

�
T � 1

12
(x2 + xy + y2)T

�
� 1

240
(Bg�2Bh)(T; T )+O6:

More generally, for any character � of H,

log e�(X;Y ) =
1

2
(!0��0)

�
T � 1

12
(x2 + xy + y2)T

�
� 1

240
(Bg�2Bh)(T; T )+O6:

Note that the �rst term of log e vanishes if trh ad h� = 0. More generally, the
�rst term of log e� vanishes if �0 � !0 extends to a character of g.
Proof. By Proposition 4.19 (i):

@t log et(X;Y )jt=1 =
1

2
trh (x cothx+ y coth y � (x+ y) coth(x+ y)� 1)�

� trh ((@Y C) � y + adA) (X1; Y1):

Having computed this for t = 1 the general case will follow, observing that
log est(X;Y ) = log es(tX; tY ) hence

@t log et(X;Y ) = t�1 (@s log esjs=1) (tX; tY )

by taking the derivative with respect to s at s = 1; then log et(X;Y ) =
log e(tX; tY ) is obtained by integration. To perform the calculations one
uses the following:



4.6. TAYLOR EXPANSIONS 153

� x cothx = 1 + x2

3 �
x4

45 +O6

� x2yx � yx3 (and similar relations), where a � b means trh a = trh b

� y2xY = � ad(yxY )Y = �y ad(xY )Y , implying

@Y (y
2xY ) = y2x� ad(yxY )� y ad(xY )

(and similar relations), to compute @Y C

� ad(x3Y ) = x3y � 3x2yx + 3xyx2 � yx3 � 4(x3y � yx3) (and similar
relations) to compute adA

� replace x by adX1 = x + 1
6 ad(x

2Y ) + O5 and y by adY1 = y +
1
3 ad(yxY ) +O5 in view of Lemma 4.30.

We skip the details, lengthy but easy. One checks that

(Bg � 2Bh)(T; T ) = 2 trh(xy2x� x2y2) = trh
�
[xy2; x] + [yx2; y]

�
ad
�
(x2 + xy + y2)T

�
� [x; 4y3 + yxy]� [y; 4x3 + xyx];

and the expansion of log e can �nally be written as claimed.
Moreover log�(h � �)�1 = ��0 (log(h � �)) and the result for log e� follows
from the expansion of h � � in Lemma 4.30. �

In the following examples jT j2 = tr (tTT ) denotes the Hilbert-Schmidt
norm of a matrix T .
Example 1. For the real hyperbolic space Hn(R) = SOo(n; 1)=SO(n)
Proposition 4.31 gives

log e(X;Y ) =
3� n
240

jT j2 +O6

with X;Y 2 s, T = [X;Y ] 2 g = so(n; 1), and this expansion agrees with the
example following Theorem 3.23.
Indeed trh ad h = 0 since H = SO(n) is a compact group. Besides Bh(T; T ) =
(n�2) tr

�
T 2
�
by a classical result for the Killing form of so(n) ([27] p. 189),

and we must evaluate Bg(T; T ). Let

X =

�
A V
tV 0

�
, or X = (A; V ) for short ,

denote an element of g = so(n; 1), where A 2 so(n) is a skew-symmetric n�n
real matrix and V 2 Rn is a column vector. The subalgebra h of g is de�ned
by V = 0 and the subspace s by A = 0. Let H 2 s be de�ned by A = 0 and
tV = (1; 0; :::; 0). Computing brackets it is easily checked, with the root space
decomposition of g de�ned by the abelian subspace RH, that the eigenvalues
of adH are 1, 0 and �1, with respective multiplicities n � 1, 1 and n � 1.
Thus Bg(H;H) = tr (adH)

2
= 2(n� 1) and H is a unit vector with respect
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to the norm k:k of Section 3.7 with p = n� 1, q = 0. Extending this remark
by H-invariance (with H = SO(n)) to any X 2 s, we see that kXk coincides
with the canonical norm of V in Rn and Bg(X;X) = 2(n� 1) kV k2.
Now let X = (0; V ), Y = (0;W ) 2 s; then T = [X;Y ] = (A; 0) 2 h with
A = V tW �W tV . Observing that Bg(T; T ) = Bg(xY; xY ) = �Bg(Y; x2Y )
and x2Y = [X;T ] = (0;�AV ), we obtain

Bg(T; T ) = �2(n� 1) (W � (�AV ))

= 2(n� 1)
�
(V �W )2 � kV k2 kWk2

�
= 2(n� 1)

�
(X � Y )2 � kXk2 kY k2

�
:

But 2
�
(V �W )2 � kV k2 kWk2

�
= tr

�
T 2
�
= �jT j2, therefore

(Bg � 2Bh) (T; T ) = (3� n) tr
�
T 2
�

= 2(n� 3)
�
kXk2 kY k2 � (X � Y )2

�
:

This implies our claims.
The same expansion of log e holds for the n-sphere Sn = SO(n + 1)=SO(n)
since Bg(T; T ) = (n� 1) tr

�
T 2
�
and we still have Bh(T; T ) = (n� 2) tr

�
T 2
�
.

Example 2. For the symmetric space SL(n;R)=SO(n) Proposition 4.31 gives

log e(X;Y ) =
1

60
jT j2 +O6

where jT j2 = tr (tTT ) is again the Hilbert-Schmidt norm of the matrix T =
[X;Y ] 2 g = sl(n;R).
Indeed, by [27] p. 187 and 189,

Bg(T; T ) = 2n tr
�
T 2
�
, Bh(T; T ) = (n� 2) tr

�
T 2
�
;

therefore (Bg � 2Bk) (T; T ) = 4 tr
�
T 2
�
= �4jT j2 for T 2 so(n).

Remark. The expansions in Examples 1 and 2 seem to disagree for the space
H2(R) = SOo(2; 1)=SO(2) = SL(2;R)=SO(2)... but it should be noted that
the Lie algebra so(2; 1) is isomorphic to sl(2;R) under the map

X =

0@ 0 t u
�t 0 v
u v 0

1A 7�! X 0 =
1

2

�
u v + t

v � t �u

�

and that jXj2 = 4jX 0j2.
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4.6.4 Expansions of Z; h;A;C Modulo Y 2

We now give several expansions up to an arbitrary order with respect to
X but up to order 1 only with respect to Y . All functions we deal with
are analytic in (X;Y ) so that f(X;Y ) = O

�
Y 2
�
will mean: there exist a

neighborhood U of the origin in g � g (or s � s) and a constant C > 0 such
that kf(X;Y )k � C kY k2 for all (X;Y ) 2 U .
Lie series A;C are called universal solutions of (4.44) if, for any �nite

dimensional real Lie algebra g, this equality holds identically in some neigh-
borhood of the origin in g.

Lemma 4.32 (i) Let Z(X;Y ) and h(X;Y ) be de�ned as in Proposition 4.2.
Then

Z(X;Y ) = X +
x

shx
Y +O(Y 2) (4.49)

Z(Y;X) = X + (x cothx)Y +O(Y 2) (4.50)

h(X;Y ) = exp
��
th
x

2

�
Y +O(Y 2)

�
: (4.51)

(ii) Let A and C be even Lie series which are universal solutions of (4.44).
Then

A(X;Y ) =
1� x cothx

shx
Y +O(Y 2) (4.52)

C(X;Y ) =
x� shx chx
2 sh2 x

Y +O(Y 2) (4.53)

Proof. (i) In view of Proposition 4.2 (v) we have

Z(X;Y ) = Z(X; 0) + @Y Z(X; 0)Y +O(Y
2) = X +

x

shx
Y +O(Y 2)

Z(Y;X) = Z(0; X) + @XZ(0; X)Y +O(Y
2) = X + (x cothx)Y +O(Y 2)

for X;Y near the origin of g. Then @Y h(X; 0) is obtained by taking the
derivative at t = 0 of eZ(X;tY )h(X; tY ) = eXetY . Since Z(X; 0) = X and
h(X; 0) = e it gives

@Y h(X; 0)Y = Y � 1� e
�x

x
@Y Z(X; 0)Y =

�
1� 1� e

�x

shx

�
Y =

�
th
x

2

�
Y;

whence the expansion of h(X;Y ).
(ii) As in Section 1.8.7.d we shall prove that (4.44) and the universality
determine the expansions of A and C modulo Y 2. They are even Lie series,
therefore

A(X;Y ) = a(x)Y +O(Y 2) , C(X;Y ) = c(x)Y +O(Y 2) (4.54)
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where a and c are odd power series in the variable x = adX. Writing (4.44)
modulo Y 2 at �rst we obtain

Z(Y;X) = X + (x cothx)Y +O(Y 2) = X + Y � (shx) a(x)Y +O(Y 2);

hence a(x) = (1� x cothx)= shx) in view of the next lemma.

Lemma 4.33 Let u be a power series in one variable, convergent in a neigh-
borhood of the origin. The following are equivalent:
(i) for all Lie algebras u(x)Y = 0 for all X;Y in a neighborhood of 0 in g
(ii) for all symmetric spaces u(x)Y = 0 for all X;Y in a neighborhood of 0
in s
(iii) u is identically 0.

Proof. Only (ii)) (iii) needs to be proved. For the symmetric space
SL(2;R)=SO(2), s is the space of symmetric 2 � 2 matrices with trace 0.
Taking

X =

�
t=2 0
0 �t=2

�
, Y =

�
0 1
1 0

�
we obtain

u(x)Y =

�
0 u(t)

u(�t) 0

�
and the lemma.

To reach c(x) we need to consider the second order terms in (4.44) as
follows. Let Z(t) := Z(tY;X) and z(t) := adZ(t). Then, according to
Proposition 4.2 (v),

Z 0(t) = (@XZ) (tY;X)Y =
z(t)

sh z(t)
�Adh(tY;X) � (chx)Y:

But h(tY;X) = e�Z(t)etY eX = eZ(t)e�tY e�X by (4.4), hence

Adh(tY;X) � ex = ez(t)e�ty , Adh(tY;X) � e�x = e�z(t)ety

and Adh(tY;X) � (chx)Y = (ch z(t))Y , therefore

Z 0(t) = f(z(t))Y with f(z) := z coth z = 1 +
X
n�1

fnz
2n:

The �rst order expansion Z(t) = X + tf(x)Y + O(t2) gives z(t) = x +
t ad (f(x)Y ) +O(t2) whence

Z 0(t) = f
�
x+ t ad (f(x)Y ) +O(t2)

�
Y

= f(x)Y + t
X
n�1

fn
X

1�p�2n
xp�1 ad (f(x)Y )x2n�pY +O(t2):
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A more convenient expression of Z 00(0) =
P
n�1 (� � � ) is obtained by means

of Petracci�s notation

(�(x1; x2)jY; Y )) :=
X
p;q

�pq[x
pY; xqY ]

where �(u; v) =
P
p;q �pqu

pvq is any (commutative) power series. In particu-
lar, as in Section 1.8.7.d,

X
1�p�2n

xp�1 ad (f(x)Y )x2n�pY =

 
(x1 + x2)

2n � x2n2
x1

f(x1)

�����Y; Y
!

and we infer that Z 00(0) = (�(x1; x2)jY; Y )) with

�(x1; x2) =
f(x1 + x2)� f(x2)

x1
f(x1):

Thus

Z(tY;X) = X + tf(x)Y +
t2

2
(�(x1; x2)jY; Y )) +O(t3):

Similarly, let

A(X; tY ) = ta(x)Y + t2 (�(x1; x2)jY; Y )) +O(t3)

denote the Taylor expansion of A up to order 3. Transferring this and
C(X; tY ) = tc(x)Y +O(t2) into (4.44) the coe¢ cients of t2 lead to the identity
(E(x1; x2)jY; Y )) = 0, where

E(x1; x2) :=
1

2
�(x1; x2) +

1

2
x2 + a(x2) chx2 + c(x2) + sh(x1 + x2)�(x1; x2):

Lemma 4.34 Let E(u; v) be a (commutative) power series, convergent in a
neighborhood of the origin. The following are equivalent:
(i) for any Lie algebra g, (E(x1; x2)jY; Y )) = 0 identically for X;Y in a
neighborhood of the origin of g
(ii) E is symmetric: E(u; v) = E(v; u).

Proof. Let E(u; v) =
P
Epqu

pvq be the given series.
(ii))(i) clearly, since [xpY; xqY ] is skew-symmetric with respect to (p; q).
(i))(ii). Splitting E as the sum of a symmetric and a skew-symmetric
series we may assume E is skew-symmetric and, replacing X by tX in the
assumption (i), we infer that

P
p+q=nEpq[x

pY; xqY ] = 0 for any n � 1, or
else X

p+q=n; p>q

Epq[x
pY; xqY ] = 0 (4.55)
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for all X;Y 2 g. Let us apply this to the nilpotent Lie algebra of strictly
upper triangular (n+ 3)� (n+ 3) real matrices and choose the elements

X =

0BBBBBB@

0 1 � � � 0 0

0
. . .

...
...

. . . 1 0
0 0
0

1CCCCCCA , Y =

0BBBBBB@

0 y0 � � � 0 0

0
. . .

...
...

. . . yn 0
0 1

0

1CCCCCCA ;

which lead to simple computations. Then, for p+q = n, the matrix [xpY; xqY ]
is �lled with 0 everywhere except in its upper right corner, equal to

fp(y)� fq (y) with fp(y) = (�1)p y0 + (�1)p�1 C1py1 + � � � � Cp�1p yp�1 + yp

(where the Ckp�s are the binomial coe¢ cients). Therefore (4.55) impliesX
n=2<p�n

Ep;n�p (fp(y)� fn�p(y)) = 0

hence Ep;n�p = 0 since the linear forms y = (y0; :::; yn) 7! fp(y) � fn�p(y)
are linearly independent. The lemma is proved.

Our previous calculations and Lemma 4.34 imply that

f(x1 + x2)� f(x2)
2x1

f(x1) +
1

2
x2 + a(x2) chx2 + c(x2) + sh(x1 + x2)�(x1; x2)

is a symmetric function of (x1; x2). In particular, taking x1 = �x, x2 = x,
we see that

f(x)� 1
2x

f(�x) + x

2
+ a(x) chx+ c(x)

is an even function of x, thus identically 0 since f is even and a; c are odd.
We �nally obtain

c(x) =
1� f(x)
2x

f(x)� x

2
� a(x) chx = x� shx chx

2 sh2 x
;

which completes the proof of Lemma 4.32. �

4.6.5 Expansion of � Modulo Y 2

Lemma 4.35 Let � be constructed from a solution (A;C) of (4.44). Then

�(X;Y ) =
�
X +

�
1� x

shx

�
Y +O(Y 2); Y +O(Y 2)

�
(4.56)

h � �(X;Y ) = exp
��
th
x

2

�
Y +O(Y 2)

�
: (4.57)
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Proof. We refer to 4.2.4 for the de�nition and properties of �t(X;Y ) =
(Xt; Yt) = t�1�(tX; tY ) ; in particular �t(X; 0) = (X; 0) (Theorem 4.6 (iii)).
Let us recall (4.13):

@tYt(X;Y ) = [Bt � �t(X;Y ); Yt(X;Y )]:

Taking derivatives with respect to a component Yj of Y (with respect to some
basis of s) we obtain @t

�
@YjYt

�
(X; 0) = 0 since Bt ��t(X; 0) = Bt(X; 0) = 0

and Yt(X; 0) = 0. Thus @Y Yt(X; 0) does not depend on t. Since Y0(X;Y ) = Y
it is the identity, and the second component of �(X;Y ) is Y +O(Y 2).
Let (X1; Y1) = �(X;Y ). We have Z(X1; Y1) = X + Y by the fundamental
property of � therefore, by di¤erentiation with respect to Y at Y = 0,

@XZ(X; 0) � @YX1(X; 0) + @Y Z(X; 0) � @Y Y1(X; 0) = 1;

the identity mapping of s. The derivatives of Z are given by Proposition 4.2
(v), with Z = X and h = e for Y = 0, and @Y Y1(X; 0) = 1 by the �rst part
of the proof. It follows that

@YX1(X; 0) = 1�
x

shx
;

whence our claim for the �rst component of �.
Then h � �(X;Y ) = h(X + O(Y ); Y + O(Y 2)) and Lemma 4.32 (i) implies
(4.57).

Remark. For (Xt; Yt) = t�1�(tX; tY ) the lemma gives

Xt = X +

�
1� tx

sh tx

�
Y +O(Y 2) , Yt = Y +O(Y 2);

whence a new proof of the expansion (4.52) of A. Indeed, writing A(X;Y ) =
a(x)Y + O(Y 2), the �rst order terms with respect to Y in the di¤erential
equation @tXt = [At(Xt; Yt); Xt] lead to

@t

�
1� tx

sh tx

�
Y = �xa(tx)Y;

hence, for t = 1, �
1� x cothx

shx
� a(x)

�
xY = 0

and the result by the universality of A (Lemma 4.33). Thus A is uniquely
determined modulo Y 2 by its universality and the properties of �.

4.6.6 Expansions of e and e� Modulo Y 2

For a line bundle L� we recall the notation �0 (the di¤erential of the character
� at the origin), replaced by !0 = 1

2 trh ad for the bundle of half-densities.
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Proposition 4.36 Let e be the (J1=2;�)�function, where � is constructed
from even Lie series A;C which are universal solutions of (4.44). Then, for
X;Y near the origin of s,

log e(X;Y ) =
1

2
trh ad

��
th
x

2

�
Y
�
+O(Y 2) =

1

4
trh[thx; y] +O(Y

2):

More generally, for any character � of H,

log e�(X;Y ) = (!
0 � �0)

��
th
x

2

�
Y
�
+O(Y 2):

Proof. By (4.32) and (4.35) in Proposition 4.19 (i) we have, with t = 1 for
simplicity and f(x) := x cothx,

2 @t log et(X;Y )jt=1 =
= trh(f(x)� f(x+ y) + f(y)� 1)� trh (2@Y C � y + 2adA) � �(X;Y ):

We know from Lemmas 4.32 and 4.35 that

C(X;Y ) = c(x)Y +O(Y 2) , A(X;Y ) = a(x)Y +O(Y 2)

�(X;Y ) = (X +O(Y ); Y +O(Y 2))

with 2c(x) = (x� shx chx) = sh2 x = �f 0(x) and a(x) = (1� x cothx) = shx.
Since f(y)� 1 = O(Y 2) we infer

2 @t log et(X;Y )jt=1 =
= trh(f(x)� f(x+ y))� trh (�f 0(x)y + 2ad(a(x)Y )) +O(Y 2):

Lemma 4.37 (i) For any even power series f in one variable

trh (f(x+ y)� f(x)) =
1

2
trh (f

0(x)y + yf 0(x)) +O(Y 2):

(ii) For any odd power series a in one variable

2 trh ad(a(x)Y ) = trh[a(2x); y]:

Proof. (i) is easily checked for f(x) = x2n.
(ii) Since ad(xn+1Y ) = [x; ad (xnY )] it follows that

ad (xnY ) =
nX
k=0

(�1)kCknxn�kyxk

inductively, where Ckn is the binomial coe¢ cient. Replacing n by 2n+1 we can
separate out even and odd k�s so as to obtain, after repeated commutation
of x2 with even monomials,

ad
�
x2n+1Y

�
=

 X
k

C2k2n+1

!
x2n+1y �

 X
k

C2k+12n+1

!
yx2n+1 + [x2; v2n]
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where v2n is an even monomial in (x; y). Thus

2 ad
�
x2n+1Y

�
= [(2x)2n+1; y] + 2[x2; v2n]

and the lemma follows.

Going back to the proof of Proposition 4.36 we now obtain by elementary
computations

@t log et(X;Y )jt=1 =
1

4
trh ([f

0(x); y]� 2[a(2x); y]) +O(Y 2)

=
1

4
trh

�
thx+

x

ch2 x
; y

�
+O(Y 2):

Then

(@t log et) (X;Y ) = t�1 (@s log esjs=1) (tX; tY )

=
1

4
tr h

�
th tx+

tx

ch2 tx
; y

�
+O(Y 2)

=
1

4
trh [@t(t th tx); y] +O(Y

2)

and integration from t = 0 to t = 1 gives

log e(X;Y ) =
1

4
trh [thx; y] +O(Y

2):

The other expression of log e follows from (ii) in the lemma.
For the line bundle

log e� = log e� �0 (log(h � �)) = log e� �0
��
th
x

2

�
Y
�
+O(Y 2)

= (!0 � �0)
��
th
x

2

�
Y
�
+O(Y 2)

by (4.57) and the proof is complete. �

4.7 Open Problems

a. Characterize special symmetric spaces in a more explicit way than Theo-
rem 4.22 (iii). Give other examples (see c below).

b. Characterize the line bundles L� such that D (L�) is a commutative
algebra (see Remarks after Theorem 4.28).

c. Besides solvable and strongly symmetric spaces (Theorems 4.22 and 4.27),
another interesting candidate for a special line bundle was introduced by
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Alekseev and Meinrenken in [4]. These authors consider a quadratic sym-
metric algebra (g; �) with skew �-invariant quadratic form, that is a nonde-
generate symmetric bilinear form B such that B([X;Y ]; Z) = �B(X; [Y; Z])
and B(�X; �Y ) = �B(X;Y ) for all X;Y; Z 2 g; examples are given in Sec-
tion 8.2 of [4]. Using their non-commutative Chern-Weil homomorphism,
they prove a version of Du�o�s isomorphism in this case: our transfer mape is an isomorphism of the algebra of H-invariant di¤erential operators with
constant coe¢ cients on s onto the algebra ofG-invariant di¤erential operators
on the bundle of half-densities on G=H. A di¤erent proof (and a generaliza-
tion) was given by Torossian [56]. It is therefore natural to conjecture that
our function e! is identically 1 in this case.
Yet another proof of the same result appears in Section 3.6 of the paper5

[15] by Cattaneo and Torossian who, more generally, propose a completely
di¤erent approach to e-functions. Using Kontsevich diagrams they construct
a function E�(X;Y ) for the line bundle L�, which has many similarities to
our e!��1(X;Y ). It would be interesting to know whether both functions
coincide.

d. Can the
�
J1=2; F;G

�
�function of 4.4.2 be written as

log e(X;Y ) = trh ad (a(x; y)T ) + (Bg � 2Bh) (T; b(x; y)T )

where T = [X;Y ] and a(x; y), b(x; y) are even non-commutative series? This
result (suggested by the expansion in Proposition 4.31) would improve The-
orem 4.20 (i): since a(x; y)T = [X;V ] + [Y;W ] for some V;W 2 s and
b(x; y)T = T 0 belongs to h, the above expression would imply

log e = trh ([x; v] + [y; w]) + (trs� trh) ((xy � yx)t0)
= trh ([x; v � t0y] + [y; w + t0x])

with v = adV , w = adW , t0 = adT 0. It would also give a direct proof that
strongly symmetric spaces are special (see Remark (b) after Theorem 4.22).

e. The property e(X;Y ) = e(X;Z) whenever X + Y + Z = 0 holds true for
the rank one function of Section 3.7 (Proposition 3.24 (ii)) and obviously for
special spaces. Is is true in some other cases?

Notes

This chapter collects several facts on e-functions directly related to their
construction by means of the Campbell-Hausdor¤ formula, in the spirit of
the fundamental work [30]. A large part of the chapter is taken from my
papers [43] - [47]. Most proofs have been rewritten however, because their
counterparts in those papers made use of a speci�c choice of the Lie series

5See also the correction in [14].
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F;G, given by some integrals which we do not need any more. Theorem
4.16 is new. The function c(X;Y ) was introduced in [46]. Section 4.4, which
contains our main theorems, is partly new, with some results relying on the
Kashiwara-Vergne conjecture now proved in full generality (see Chapter 1).
The proof of Lemma 4.32 is adapted from Alekseev and Petracci [6] (arXiv
version).
In [55] Torossian gives a new proof of Theorem 4.22 by means of the

Kontsevich star product adapted to symmetric spaces.
Theorem 4.28 implies the commutativity of the algebra D (L�) if �0 � !0

extends to a character of g. It gives a new proof of a result due to Michel
Du�o [19], generalizing a previous theorem by André Lichnerowicz [36] which
states that D(S) is commutative if S is a symmetric space with G-invariant
measure.
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Appendix A

Proof of Lemma 3.22

Keeping to the semisimple notation in use in Section 3.6, we recall that the
radial component of g 2 G is de�ned as the unique R(g) 2 a+ such that

g = keR(g)k0

for some k; k0 2 K (Cartan decomposition in G, see [27] p. 402). Let jXj =p
hX;Xi denote the norm on g, o the origin of G=K and d(:; :) its distance

function.

Lemma A.1 For all g; g0 2 G

jR(g)�R(g0)j � d(g � o; g0 � o):

Remark. This inequality is equivalent to d(a � o; a0 � o) � d(ka � o; a0 � o) for
all a; a0 2 exp a+ and k 2 K.

Proof. 1 The classical decomposition G = (exp p)K reduces the problem to
the case g = eX , g0 = eX

0
with X;X 0 2 p. We split the proof into two steps.

(i)
���R �eX��R(eX0

)
��� � jX �X 0j.

Indeed, by Cartan decomposition in p we may write X = k �H, X 0 = k0 �H 0

for some k; k0 2 K, H;H 0 2 a+ and Proposition 5.18 in [28] p. 196 implies���R �eX��R(eX0
)
��� = jH �H 0j � jk �H � k0 �H 0j = jX �X 0j:

(ii) jX �X 0j � d(ExpX;ExpX 0) = d(eX � o; eX0 � o).
Indeed d(ExpX;ExpX 0) is the length of the geodesic segment � joining both
points. Let  be the corresponding curve segment in the chart Exp, joining
X to X 0 in p. Then (` denoting length) jX �X 0j � `() in the Euclidean
space p. Besides `() � `(�) by a general property, due to Élie Cartan, of

1 I am indebted to Sigurður Helgason for shortening my original proof of the lemma.
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the exponential chart in a Riemannian manifold of negative curvature ([27]
p. 73). Thus jX �X 0j � `(�) and the proof is complete.

Remark. For G=K Cartan�s theorem is easily proved as follows. The
point is to show that j(DX Exp)V j � jV j for X;V 2 p, with DX Exp =
Do�

�
eX
�
� (sh adX= adX). By Cartan decomposition of X it su¢ ces to

consider X 2 a. In the orthogonal decomposition p = a � (��>0p�) the en-
domorphism (adX)

2 is then diagonal with respective eigenvalues 0, �(X)2,
therefore sh adX= adX = 1+

P1
1 (adX)

2n
= (2n+ 1)! is diagonal with eigen-

values � 1 and the result follows.

Proof of Lemma 3.22. We now explain how Lemma A.1 implies the
estimate

R
�
eXetH

�
= tH +A(X) +O

�
e�t�(H)

�
as t! +1 for X 2 p, H 2 a+, with �(H) := inf�>0 �(H).
First, replacing g by eH

0
g and g0 by eH

0
with H 0 2 a+, the lemma gives���R(eH0

g)�H 0
��� � d(eH

0
g � o; eH

0
� o) = d(o; g � o): (A.1)

Then let eX = k(X)eA(X)e�X� be the Iwasawa decomposition for X 2 p,
with k(X) 2 K, A(X) 2 a, X� 2 g�, the sum � running over all positive
roots �. Fixing H 2 a+ and remembering [H;X�] = �(H)X� we obtain

eXetH = k(X)etH+A(X)eV (t) with V (t) :=
X
�>0

e�t�(H)X� 2 n:

Since �(H) > 0 for all positive roots �, we have tH + A(X) 2 a+ for t
large enough (uniformly for X in a compact subset of p) and (A.1) applies
to R

�
etH+A(X)eV (t)

�
= R

�
eXetH

�
:��R �eXetH�� tH �A(X)

�� � d(o; eV (t) � o):

The latter distance can be evaluated by means of the decomposition G =
(exp p)K. Forgetting t for the moment let us write esV = eW (s)k(s) with
W (s) 2 p and k(s) 2 K, smooth functions of s 2 R, hence e2W (s) = esV e�s�V

and d(o; eV � o) = jW (1)j. Disregarding a trivial case we assume V 6= 0. For
the s-derivative W 0 we obtain, with w = adW (s),

1� e�2w
2w

2W 0 =
�
e�2w � 1

�
V + (V � �V ) :

Since
�
1� e�2w

�
=2w = e�w(shw)=w is, for W 2 p, an invertible endomor-

phism of p it follows that 2W 0 = V � �V + [W; � � � ] and, by scalar product
with W ,

2 hW (s);W 0(s)i = hW (s); V � �V i ;
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hence f 0(s) � jV � �V j
p
f(s) with f(s) = jW (s)j2. To integrate this, ob-

serve that f(0) = 0 and f(s) > 0 for s 6= 0 because W (s) = 0 implies
esV = es�V 2 N \ �N = feg hence s = 0. Thus

p
f(s) � s

2 jV � �V j and

d(o; eV � o) =
p
f(1) � 1

2
jV � �V j :

For V = V (t) de�ned above we have jV � �V j � Ce�t�(H) with �(H) =
inf�>0 �(H) > 0 and a constant C uniform for all X in a compact subset of
p. This completes the proof of Lemma 3.22.
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Appendix B

Proof of Theorem 3.23

Here G=K is a rank one Riemannian symmetric space of the noncompact
type and we use the notation of Section 3.7. As explained in the outline 3.7.1
our main task is to make explicit the kernels a; b in the integral formulas
(Lemmas B.2 and B.5 below)Z

K

' (kxH + k � yHk) dk =

Z x+y

jx�yj
'(z)a(x; y; z)dz (B.1)Z

K

' (kZ(xH; k � yH)k) dk =

Z x+y

jx�yj
'(z)b(x; y; z)dz; (B.2)

where ' is a continuous function on [0;1[, H 2 a with �(H) = 1, kHk = 1
and x; y > 0. As usual the Haar measure dk over K is normalized by

R
K
dk =

1. After identi�cation of a = RH with R the orthogonal projection � : p! a
is �(X) = X �H (the dot denotes here the scalar product on p corresponding
to the norm k:k in (3.44)).

Lemma B.1 Let f be a continuous function on [�1; 1]. ThenZ
K

f(�(k �H))dk =
�
�
n
2

�
�
�
n�1
2

�
�
�
1
2

� Z 1

�1
f(t)

�
1� t2

�(n�3)=2
dt:

Proof. The map k 7! k � H = Ad(k)H induces a di¤eomorphism of K=M
onto the unit sphere � of p. The classical spherical measure d� on � is
invariant under all isometries preserving the origin of p, therefore under the
adjoint action of K, and d� corresponds to a K-invariant measure on K=M :
there exists a positive constant C such thatZ

K

f(�(k �H))dk =
Z
K=M

f(�(k �H))d(kM) = C

Z
�

f(x1)d�(X):

Here X = (x1; :::; xn) are coordinates with respect to an orthonormal basis
of p, with H as the �rst basis vector. Given t 2 [�1; 1] the intersection of �
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with the hyperplane x1 = t is (for n � 3) a (n� 2)-dimensional sphere with
radius

p
1� t2 and it follows that (with another constant C 0)Z

K

f(�(k �H)) dk = C 0
Z 1

�1
f(t)

�
1� t2

�(n�3)=2
dt;

which remains valid for n = 2 too. Taking f = 1 we obtain the value of C 0

and the lemma.

Lemma B.2 Given x; y > 0 let ' be continuous on [jx � yj; x + y]. Then,
for all rank one spaces,Z

K

' (kxH + k � yHk) dk =
Z x+y

jx�yj
'(z)a(x; y; z)dz

with

a(x; y; z) =
23�n�

�
n
2

�
�
�
n�1
2

�
�
�
1
2

��
� z ((x+ y + z)(x+ y � z)(x� y + z)(�x+ y + z))

(n�3)=2

(xy)n�2

One has a(x; y; z) > 0 for x; y > 0 and jx� yj < z < x+ y.

Proof. Since kxH + k � yHk2 = x2 + y2 +2xy�(k �H), this follows from the

previous lemma with f(t) = '
�p

x2 + y2 + 2xyt
�
and the change of variable

t 7! z =
p
x2 + y2 + 2xyt.

Remark. A similar proof would give John�s formula for the iterated spherical
means (see [29] p. 356), where the same factor a(x; y; z) appears.

Lemma B.1 turns out to imply (B.2) too in the simple case of real hyper-
bolic spaces, as follows.

Lemma B.3 Given x; y > 0 let ' be continuous on [jx � yj; x + y]. Then,
for Hn(R), Z

K

' (kZ(xH; k � yH)k) dk =
Z x+y

jx�yj
'(z)b(x; y; z)dz

with

b(x; y; z) =
2n�3�

�
n
2

�
�
�
n�1
2

�
�
�
1
2

� (chx ch y ch z)(n�3)=2
(shx sh y)

n�2 sh z B(n�3)=2

and

B =
1

chx ch y ch z
�

� sh
�
x+ y + z

2

�
sh

�
x+ y � z

2

�
sh

�
x� y + z

2

�
sh

�
�x+ y + z

2

�
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Proof. Here Hn(R) = G=K with G = SO0(n; 1), K = SO(n) � f1g, and p
is the set of matrices

Y =

0BBB@
0 0 0 y1

0 0 0
...

0 0 0 yn
y1 � � � yn 0

1CCCA ;

identi�ed with Y = (y1; :::; yn) 2 Rn for short. We take the unit vector
H = (1; 0; :::; 0) as a basis of a. The adjoint action of K on p is the natural
action of SO(n) on Rn. Since

eY = I +
sh y

y
Y +

ch y � 1
y2

Y 2

with y = kY k =
�Pn

1 y
2
i

�1=2
, the equality eZK = exHeYK implies (looking

at the element in the last row and column) ch z = chx ch y + shx sh yy y1with
z = kZk, hence z 2 [jx� yj; x+ y]. Taking Y = k � yH with y 2 R and k 2 K
we see that z = kZ(xH; k � yH)k is given by

ch z = chx ch y + �(k �H) shx sh y:

Then, by Lemma B.1,Z
K

'(z)dk =
�
�
n
2

�
�
�
n�1
2

�
�
�
1
2

� Z 1

�1
f(t)

�
1� t2

�(n�3)=2
dt

if ' and f are related by '(z) = f(t) and ch z = chx ch y + t shx sh y.
Expressing the latter integral with the variable z, the result now follows
since

1� t2 = 4chx ch y ch z
sh2 x sh2 y

B(x; y; z):

Our goal is now to prove Lemma B.5, giving (B.2) for the other hyperbolic
spaces, by the classical technique of reduction to SU(2; 1) ([27], Chapter IX,
§3). Let V 2 g�� and W 2 g�2� be �xed, with kV k = kWk =

p
2. The

next lemma reduces integration of M -bi-invariant functions on K to a 2-
dimensional integral; for a similar lemma with di¤erent coordinates see Orlo¤
[39] p. 588. Let us recall that dimG=K = n = p + q + 1 with p = dim g��,
q = dim g�2� and let g = k(g)eH(g)n(g) denote the Iwasawa decomposition
of g 2 G.

Lemma B.4 Let k(r; !) := k(n) be the K-component of n = exp(vV +wW )
2 N = �N , where v > 0, w > 0 are related to (r; !) by

1 + rei! =
2

1 + v2 � 2iw :
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Then, for any continuous function f on K such that f(mkm0) = f(k) for
m;m0 2M and k 2 K,
(i) if q > 1 (quaternionic and exceptional hyperbolic spaces)Z

K

f(k)dk =

=
2�
�
n
2

�
�
�
p
2

�
�
�
q
2

�
�
�
1
2

� Z 1

0

(1� r2)(p=2)�1rqdr
Z �

0

f(k(r; !)) sinq�1 ! d!

(ii) if q = 1 (complex hyperbolic spaces)Z
K

f(k)dk =
p

2�

Z 1

0

(1� r2)(p=2)�1rdr
Z �

��
f(k(r; !))d!:

Proof. (i) The M -invariance of f impliesZ
K

f(k)dk =

Z
N

f(k(n))e�2<�;H(n)>dn

by a classical integral formula valid for arbitrary rank ([28] p. 198), if
the Haar measure dn is suitably normalized. In the rank one case N =
exp (g�� � g�2�); if q > 1 we may use polar coordinates (v; �) in g��, resp.
(w; �) in g�2�, and obtainZ

K

f(k)dk =

= C

Z
f(k(exp(v� + w�)))e�2<�;H(exp(v�+w�))>vp�1wq�1dvdwd�d�

where C is a constant, v; w run over ]0;1[ and �; � over the unit spheres
S1, S2 of g��, g�2� with measures d�; d� . By a theorem of Kostant ([60]
p. 265) AdM acts transitively on S1 � S2 if q > 1 so that, in view of
kV k = kWk =

p
2, we have v� + w� = m � ( vp

2
V + wp

2
W ) for some m 2M .

But M commutes with A and normalizes N , therefore

k(mnm�1) = mk(n)m�1 , H(mnm�1) = H(n)

for m 2M , n 2 N and, by the M -invariance of f ,Z
K

f(k)dk =

= C 0
Z
f(k(exp(vV + wW )))e�2<�;H(exp(vV+wW ))>vp�1wq�1dvdw; (B.3)

an integral over v > 0, w > 0 with another constant C 0.
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The relation
�
1 + rei!

� �
1 + v2 � 2iw

�
= 2 de�nes a change of variables

(v; w) 7! (r; !) (which will be convenient to prove the next lemma), a di¤eo-
morphism of ]0;1[�]0;1[ onto ]0; 1[�]0; �[ inverted by

v =

�
1� r2

1 + 2r cos! + r2

�1=2
, w =

r sin!

1 + 2r cos! + r2
:

Besides
vdvdw =

�
1 + 2r cos! + r2

��2
rdrd!:

As usual let � denote the Cartan involution of g. To compute the Iwasawa de-
composition of n = exp(vV +wW ) it su¢ ces to work in the Lie subalgebra of g
generated by V ,W , �V and �W , a method known as SU(2; 1)-reduction since
this subalgebra corresponds to a Lie subgroup of G isomorphic to SU(2; 1).
By [27], Chapter IX, Theorem 3.8 we have (remembering our choice (3.44)
of the norm and kV k = kWk =

p
2)

e�2<�;H(n)> =
��
1 + v2

�2
+ 4w2

��(p=2)�q
= 2�p�2q

�
1 + 2r cos! + r2

�(p=2)+q
and the integral formula follows, with C 0 given by the case f = 1.
(ii) For q = 1 the group AdM acts transitively on the unit sphere of g��
by Kostant�s theorem and trivially on g�2�. The integral (B.3) now runs
over v > 0 and w 2 R and the change (v; w) 7! (r; !) is a di¤eomorphism of
(]0;1[�R) n ([1;1[�f0g) onto ]0; 1[�] � �; �[. The result follows as above.

Lemma B.5 Given x; y > 0 let ' be continuous on [jx � yj; x + y]. Then,
for all rank one spaces,Z

K

' (kZ(xH; k � yH)k) dk =
Z x+y

jx�yj
'(z)b(x; y; z)dz

with

b(x; y; z) =
2n�3�

�
n
2

�
�
�
n�1
2

�
�
�
1
2

� (chx ch y ch z)(p=2)�1
(shx sh y)

n�2 �

� sh z (ch z)q B(n�3)=2 2F1

�
1� q

2
;
q

2
;
n� 1
2

;B

�
and

B =
1

chx ch y ch z
�

� sh
�
x+ y + z

2

�
sh

�
x+ y � z

2

�
sh

�
x� y + z

2

�
sh

�
�x+ y + z

2

�
One has b(x; y; z) > 0 for x; y > 0 and jx� yj < z < x+ y.
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Proof. For q = 0 the hypergeometric factor is 1 and the result is given by
Lemma B.3, where n = p+ 1.
We shall prove the lemma for q > 1; the case q = 1 is similar with minor
changes.
(i) Since the function k 7! z = kZ(xH; k � yH)k is M -bi-invariant we only
need to compute it, by the previous lemma, for k = k(r; !). In order to �nd
z � 0 such that

exHk(r; !)eyH = k0ezHk00

for some k0; k00 2 K, we use SU(2; 1)-reduction again. By [27] Chapter. IX,
Th. 3.1, the Lie subalgebra of g generated by V , W , �V and �W contains H
and is isomorphic to su(2; 1). Under this isomorphism H;V;W respectively
correspond to

H0 =

0@ 0 0 1
0 0 0
1 0 0

1A , V0 =

0@ 0 1 0
�1 0 �1
0 �1 0

1A , W0 =

0@ i 0 i
0 0 0
�i 0 �i

1A :

All computations can now be performed in SU(2; 1) with the maximal com-
pact subgroup S(U(2)�U(1)); we use subscripts 0 for all notions relative to
this group. Let n0 = k0e

tH0n0 be the Iwasawa decomposition of

n0 = exp (vV0 + wW0) =

0@ 1� v2

2 + iw v �v2

2 + iw
�v 1 �v

v2

2 � iw �v 1 + v2

2 � iw

1A ;

with

k0 =

0@ a b 0
c d 0
0 0 u�1

1A ,
�
a b
c d

�
2 U(2) , ad� bc = u , juj = 1:

Applying n0 to the (column) vector v = t(1; 0; 1) it is easily checked, since
H0v = v and n0v = v, that

au =
1� v2 + 2iw
1 + v2 � 2iw = rei!

with
�
1 + rei!

� �
1 + v2 � 2iw

�
= 2 as in the previous lemma.

Besides, a look at the matrix element on third column and third row of
exH0k0e

yH0 = k00e
zH0k000 gives (with u

0, u00 corresponding to k00, k
00
0 )

uu0�1u00�1 ch z = chx ch y + au shx sh y:

Setting ei := uu0�1u00�1 we conclude, �rst in SU(2; 1) then in G, that
exHk(r; !)eyH = k0ezHk00 implies

ei ch z = chx ch y + rei! shx sh y (B.4)
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for some  2 R.
(ii) Keeping x; y > 0 �xed let us look at the map (r; !) 7! (z;  ) de�ned by
(B.4), with 0 < r < 1, 0 < ! < � and z � 0, �� �  � �. Taking the
imaginary part we have

ch z sin = r sin! shx sh y; (B.5)

thus sin > 0 and 0 <  < �. Taking the modulus, ch(x � y) < ch z <
ch(x+y), thus jx�yj < z < x+y. With B de�ned in the lemma it is readily
checked that

B =
(ch(x+ y)� ch z)(ch z � ch(x� y))

4 chx ch y ch z
(B.6)

1� 2B = ch2 x+ ch2 y + ch2 z � 1
2 chx ch y ch z

; (B.7)

thus 0 < B < 1=2. Furthermore (B.4) implies jei ch z � chx ch yj2 =
r2 sh2 x sh2 y, that is

2 chx ch y ch z (cos � 1 + 2B) =
�
1� r2

�
sh2 x sh2 y: (B.8)

Therefore cos > 1 � 2B > 0 and we conclude that (r; !) 7! (z;  ) is a
di¤eomorphism of ]0; 1[�]0; �[ onto the open set de�ned by

jx� yj < z < x+ y , 0 <  < �=2 , cos > 1� 2B(x; y; z):

By Lemma B.4 the integral I =
R
K
' (kZ(xH; k � yH)k) dk is

I = C

Z �

0

'(z)(1� r2)(p=2)�1 (r sin!)q�1 rdrd!

with z = z(r; !) given by (B.4) and C by the previous lemma. Using (B.5),
(B.8) and sh z ch z dzd = sh2 x sh2 y rdrd! the integral becomes

I = C
(2 chx ch y)(p=2)�1

(shx sh y)n�2
�

�
Z
'(z)(ch z)(p=2)�1+q sh zdz

Z
(cos � 1 + 2B)(p=2)�1 (sin )q�1 d :

Considering the domain of  for a given z it is now natural to introduce a
variable t, running over ]0; 1[, such that

cos = 1� 2tB:

Then sin2  = 4tB(1� tB) and the integral with respect to  becomes

2(p=2)+q�2B(n�3)=2
Z 1

0

t(q=2)�1(1� t)(p=2)�1(1� tB)(q=2)�1dt =

= 2(p=2)+q�2
�(p=2)�(q=2)

�((n� 1)=2) B
(n�3)=2

2F1

�
1� q

2
;
q

2
;
n� 1
2

;B

�
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by Euler�s integral representation of the hypergeometric function. Since 0 <
B < 1=2 the left-hand side is strictly positive. This implies the lemma, with
b(x; y; z) > 0 for jx� yj < z < x+ y.

Remarks. (a) Similar computations appear in the study of generalized
translation operators by Flensted-Jensen and Koornwinder ([22], or [34] §7.1)
in the more general framework of Jacobi functions.
(b) The easy Lemma B.2 may be viewed as a �at limit of Lemma B.5. Indeed
on the left-hand side of the integral formula "�1Z("X; "Y ) tends to X+Y as
" tends to 0 whereas, replacing x; y; z by "x; "y; "z respectively in the right-
hand side, B tends to 0, the hypergeometric factor to 1 and "b("x; "y; "z) to
a(x; y; z).

Proof of Theorem 3.23. We now combine Lemmas B.2 and B.5. The
function

b

a
(x; y; z) =

�
ch z

chx ch y

�q=2
�(z)

(�(x)�(y))
n�2 2F1

�
1� q

2
;
q

2
;
n� 1
2

;B

�
�

�
�
�

�
x+ y + z

2

�
�

�
x+ y � z

2

�
�

�
x� y + z

2

�
�

�
�x+ y + z

2

��(n�3)=2
(where �(t) = sh t=t and B is de�ned in the previous lemma) is continuous
on the set of (x; y; z) 2 R3 such that jx�yj � z � x+y. Indeed 0 � B < 1=2
in this domain by (B.6)(B.7), and the hypergeometric factor is continuous.
Taking ' continuous on [jx � yj; x + y] we may therefore replace '(z) by
'(z)(b=a)(x; y; z) in Lemma B.2, whenceZ
K

' (kZ(xH; k � yH)k) dk =
Z x+y

jx�yj
'(z)

b

a
(x; y; z)a(x; y; z)dz

=

Z
K

' (kxH + k � yHk) b
a
(x; y; kxH + k � yHk)dk:

Our claim follows, as explained in the outline 3.7.1, with

e(X;Y ) =
j(X)j(Y )

j(X + Y )

b

a
(kXk ; kY k ; kX + Y k) :

We now specialize to j = J1=2. In the rank one case any X 2 p may be
written as X = k � xH with x � 0, k 2 K. Since �(xH) = x = kXk the
Jacobian of Exp is

J(X) = J(xH) =

�
shx

x

�p�
sh 2x

2x

�q
= �(x)n�1 (chx)

q
:

For j = J1=2 we thus obtain

e(X;Y ) = A(x; y; z)(n�3)=2 2F1

�
1� q

2
;
q

2
;
n� 1
2

;B(x; y; z)

�
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as claimed, with x = kXk, y = kY k, z = kX + Y k. Clearly e(k �X; k � Y ) =
e(X;Y ) for k 2 K.
Besides, A and B are analytic functions of (x; y; z) 2 R3, even with respect
to each variable, therefore de�ne analytic functions of (x2; y2; z2). Thus
A (kXk ; kY k ; kX + Y k) is an analytic function of (X;Y ) 2 p � p and the
same holds for B. Since jx � yj � z � x + y for the chosen values we have
0 � B(x; y; z) < 1=2, which implies analyticity of the hypergeometric factor
too. The theorem now follows from Proposition 3.16.
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