D. V. Anderson, W. A. Cooper, R. Gruber, S. Merazzi, and U. Schwenn, TERPSICHORE: A threedimensional ideal MHD stability program, Scientific Computing on Supercomputers II, Devreese and Van Camp, 1990.

U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, vol.25, issue.2-3, pp.151-167, 1997.
DOI : 10.1016/S0168-9274(97)00056-1

A. Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Physics of Plasmas, vol.14, issue.5, p.56118, 2007.
DOI : 10.1063/1.2727330

R. Balescu, Transport processes in plasmas, North-Holland, 1988.

X. Bonnin, A. S. Kukushkin, and D. P. Coster, Code development for ITER edge modeling -SOLPS5.1, J. of Nuclear Material, pp.390-391, 2009.

H. Buffereand, B. Bensiali, J. Bucalossi, G. Ciraolo, P. Genesio et al., Near wall plasma simulation using penalization technique with the transport code SolEdge2D-Eirene, Journal of Nuclear Materials, vol.438, pp.5445-5448, 2013.
DOI : 10.1016/j.jnucmat.2013.01.090

J. Blum, C. Boulbe, and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time, Journal of Computational Physics, vol.231, issue.3, pp.960-980, 2012.
DOI : 10.1016/j.jcp.2011.04.005

URL : https://hal.archives-ouvertes.fr/hal-00419608

A. Bonnement, Modélisation numérique par approximation fluide du plasma de bord des tokamaks (projet ITER), 2012.

A. Bonnement, S. Minjeaud, and R. Pasquetti, Towards a Fourier-SEM solver of fluid models in tokamaks, Lecture Notes in Computational Science and Engineering : Spectral and High Order Methods for Partial Differential Equations -ICOSAHOM 2012, pp.169-178, 2012.

S. I. Braginskii, Transport processes in a plasma, Review of Plasma Physics, vol.1, pp.205-311, 1965.

H. Bufferand, G. Ciraolo, Y. Marandet, J. Bucalossi, . Ph et al., Numerical modelling for divertor design of the WEST device with a focus on plasma???wall interactions, Nuclear Fusion, vol.55, issue.5, p.53025, 2015.
DOI : 10.1088/0029-5515/55/5/053025

URL : https://hal.archives-ouvertes.fr/hal-01225195

C. Canuto, M. Y. Hussaini, A. Quarteroni, . Th, and . Zhang, Spectral Methods, 2007.
DOI : 10.1002/0470091355.ecm003m

URL : https://hal.archives-ouvertes.fr/hal-01296839

F. F. Chen, Introduction to plasma physics and controlled fusion. 1. Plasma physics, 1984.

B. D. Dudson, M. V. Umansky, X. Q. Xu, P. B. Snyder, and H. R. Wilson, BOUT++: A framework for parallel plasma fluid simulations, Computer Physics Communications, vol.180, issue.9, pp.1467-1480, 2007.
DOI : 10.1016/j.cpc.2009.03.008

B. Van-es, B. Koren, H. De-blank, and J. Hugo, Finite-difference schemes for anisotropic diffusion, Journal of Computational Physics, vol.272, pp.526-549, 2014.
DOI : 10.1016/j.jcp.2014.04.046

S. Günter, Q. Yu, J. Krüger, and K. Lackner, Modelling of heat transport in magnetised plasmas using non-aligned coordinates, Journal of Computational Physics, vol.209, issue.1, pp.354-370, 2005.
DOI : 10.1016/j.jcp.2005.03.021

O. Czarny and G. T. Huysmans, MHD stability in x-point geometry : simulation of ELMS, Nuclear fusion, vol.47, pp.659-666, 2007.

M. O. Deville, P. F. Fischer, and E. H. Mund, High-order methods for incompressible flows, 2002.

E. M. Epperlein and M. G. Haines, Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker???Planck equation, Physics of Fluids, vol.29, issue.4, pp.1029-1041, 1986.
DOI : 10.1063/1.865901

N. M. Ferraro and S. C. Jardin, Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states, Journal of Computational Physics, vol.228, issue.20, pp.7742-7770, 2009.
DOI : 10.1016/j.jcp.2009.07.015

P. F. Fischer, Anisotropic diffusion in a toroidal geometry, Journal of Physics: Conference Series, vol.16, pp.446-455, 2005.
DOI : 10.1088/1742-6596/16/1/060

V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-pradalier, P. Ghendrih et al., GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations, AIP Conference Proceedings, 2006.
DOI : 10.1063/1.2404543

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.6011-6045, 2006.
DOI : 10.1016/j.cma.2005.10.010

J. L. Guermond, R. Laguerre, J. Léorat, and C. Nore, Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method, Journal of Computational Physics, vol.228, issue.8, pp.2739-2757, 2009.
DOI : 10.1016/j.jcp.2008.12.026

J. D. Huba, The office of naval research, 2009.

L. Isoardi, G. Chiavassa, G. Ciraolo, P. Haldenwang, E. Serre et al., Penalization modeling of a limiter in the Tokamak edge plasma, Journal of Computational Physics, vol.229, issue.6, pp.2220-2235, 2010.
DOI : 10.1016/j.jcp.2009.11.031

URL : https://hal.archives-ouvertes.fr/hal-00386101

S. C. Jardin, J. Breslau, and N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, Journal of Computational Physics, vol.226, issue.2, pp.2146-2174, 2007.
DOI : 10.1016/j.jcp.2007.07.003

S. Jardin, Computational methods in plasma physics, 2010.
DOI : 10.1201/EBK1439810958

G. E. Karniadakis and S. J. Sherwin, Spectral hp element methods for CFD, 1999.

P. J. Knight, A. Thyaragaja, T. D. Edwards, J. Hein, M. Romanelli et al., CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code, Computer Physics Communications, vol.183, issue.11, pp.2346-2363, 2012.
DOI : 10.1016/j.cpc.2012.06.002

L. Lazar, R. Pasquetti, and F. Rapetti, Abstract, Communications in Computational Physics, vol.165, issue.14, pp.1309-1329, 2013.
DOI : 10.1002/fld.1650090405

J. Loizu, P. Ricci, F. D. Halpern, and S. Jolliet, Boundary conditions for plasma fluid models at the magnetic presheath entrance, Physics of Plasmas, vol.19, issue.12, 2012.
DOI : 10.1063/1.4771573

H. Lütjens and J. F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas, Journal of Computational Physics, vol.227, issue.14, pp.6944-6966, 2008.
DOI : 10.1016/j.jcp.2008.04.003

E. T. Meier and U. Shumlak, A general nonlinear fluid model for reacting plasma-neutral mixtures, Physics of Plasmas, vol.19, issue.7, 2012.
DOI : 10.1063/1.4736975

M. Melenk, On condition numbers in hp-FEM with Gauss???Lobatto-based shape functions, Journal of Computational and Applied Mathematics, vol.139, issue.1, pp.21-48, 2002.
DOI : 10.1016/S0377-0427(01)00391-0

S. Minjeaud and R. Pasquetti, High order approximation of a tokamak edge plasma transport minimal model with Bohm boundary conditions, Journal of Computational Physics, vol.285, pp.84-87, 2015.
DOI : 10.1016/j.jcp.2014.12.049

URL : https://hal.archives-ouvertes.fr/hal-01144699

C. Michoski, D. Meyerson, T. Isaac, and F. Waelbroeck, Discontinuous Galerkin methods for plasma physics in the scrape-off layer of tokamaks, Journal of Computational Physics, vol.274, pp.898-919, 2014.
DOI : 10.1016/j.jcp.2014.06.058

D. Reiter, M. Baelmans, and P. Borner, The EIRENE and B2-EIRENE Codes, Fusion Science and Technology, vol.47, issue.2, pp.172-186, 2005.
DOI : 10.13182/FST47-172

P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto et al., Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation, Plasma Physics and Controlled Fusion, vol.54, issue.12, p.124047, 2012.
DOI : 10.1088/0741-3335/54/12/124047

U. Shumlak, R. Lilly, N. Reddell, E. Sousa, and B. Srinivasan, Advanced physics calculations using a multi-fluid plasma model, Computer Physics Communications, vol.182, issue.9, pp.1767-1770, 2011.
DOI : 10.1016/j.cpc.2010.12.048

C. R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel et al., Nonlinear magnetohydrodynamics simulation using high-order finite elements, Journal of Computational Physics, vol.195, issue.1, pp.355-386, 2004.
DOI : 10.1016/j.jcp.2003.10.004

P. Stangeby, The plasma boundary of magnetic fusion devices, 2000.

P. Tamain, . Ph, E. Ghendrih, V. Tsitrone, X. Grandgirard et al., TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks, Journal of Computational Physics, vol.229, issue.2, pp.361-378, 2010.
DOI : 10.1016/j.jcp.2009.09.031

C. J. Xu and R. Pasquetti, Stabilized spectral element computations of high Reynolds number incompressible flows, Journal of Computational Physics, vol.196, issue.2, pp.680-704, 2004.
DOI : 10.1016/j.jcp.2003.11.009