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Abstract

We are interested in the optimal filter in a continuous time setting. We want to show
that the optimal filter is stable with respect to its initial condition. We reduce the problem
to a discrete time setting and apply truncation techniques coming from [ORO05]. Due to the
continuous time setting, we need a new technique to solve the problem. In the end, we show
that the forgetting rate is at least a power of the time ¢. The results can be re-used to prove
the stability in time of a numerical approximation of the optimal filter.

filtering, signal detection, inference from stochastic processes.

1 Introduction

1.1 Exposition of the problem

We are given a probability space (2, F,P). We are interested in the processes (X¢)i>0 and (Y3)t>o,
solutions of the following SDE’s in R

t
X, =X0+/ F(Xa)ds + Vi,
0

t
Yt:/ hXds + W, (h #0),
0

where V', W are two independent standard Brownian motions, Xy is a random variable in R, of
law m9. We set (F;)i>0 to be the filtration associated to (V;, W;). For ¢t > 0, we call optimal filter
at time ¢ the law of X; knowing (Ys)o<s<t, and we denote this law by 7. Let 7 > 1, this parameter
will be adjusted later. For any t > 0, we set @y to be the transition kernel of the Markov chain
(Xkt)e>0. We set Q = Q.

Before going further, we mention that we believe the results we have could be transposed to
processes in R? for any d. This would result in a more technical paper and we chose not to pursue
this goal.

Hypothesis 1. We suppose that f is C' and that || f]|co, ||f/l|cc are bounded by a constant M.

Hypothesis 2. We suppose that there exists positive constants vy, vo such that, for all nonnegative
A,
mo([~A, AJS) < viem2A"

(This means that the tail of o is sub-Gaussian.)



We are interested in the stability of (m;);>0 with respect to its initial condition. As explained
below in Equation (1.2), for all ¢, m; can be written as a functional of (Y)o<s<: and mp. Suppose
now we plug a probability 7 instead of 7 into this functional, we then obtain what is called a
“wrongly initialized filter” m; (Equation (1.3)). It is natural to wonder whether m; — 7} goes to
zero when t goes to infinity in any sense, and at which rate it does so. We would then say that
the filter (m;) is stable with respect to its initial condition. We give such a result with a rate of
convergence, in Theorem 1.2, under Hypothesis 1 and 2. This question has been answered for
more general processes (X;) and (Y;) evolving in continuous time. Here is a brief review and the
existing results. We stress the differences with our setting (see [CR11] for other references).

— There is a proof of stability with respect to the initial condition in [AZ97]. In this paper,
the process (X;) has to stay in a compact space. The rate is exponential.

— There are stability results in [Ata98|, [KV08]. There, the process (X;) has to satisfy some
ergodicity conditions. The rate is exponential.

— In [BCL04, CvHOT], the process (X;) has to take values in a finite state space.

— The article [Sta05] is the closest to our results. There are some assumptions on the drift
coefficient f(...) (see Section 1.3 of [Sta05] , f would have to be of the form ¢’ /¢, ¢ € C3(R)),
which are different from ours. The rate is exponential.

In the case of an exponential rate, the filter would be called “exponentially stable” (with respect to
its initial condition). The widespread idea is that exponential stability induces that a numerical
approximation of the optimal filter would not deteriorate in time. Such an approximation is usually
based on a time-recursive computation and it is believed that exponential stability will prevent an
accumulation of errors. In order to use a stability result in a proof concerning a numerical scheme,
one might like the distance between m; and 7, to be expressed in term of the distance between
mo and 7, and there is no such result, at least when the time is continuous. We do not prove
such a result in this paper. We explain below that there is another way to prove that a numerical
approximation of the optimal filter does not deteriorate in time.

Again, our aim in this paper is to show stability in such a way that the results can be used
in a proof that a numerical scheme remains good uniformly in time. This has not been done
in the literature we cited above. We follow [OR05] by introducing a “robust filter” restricted to
compact spaces. We show that this filter remains close to the optimal filter uniformly in time and
this is enough to prove the stability of the optimal filter with respect to its initial condition. As
in [ORO05], we do not show that the optimal filter is exponentially stable, nor can we write the
dependency in mp, 7, in the stability result. However, in a future work, we will use the stability
properties of the robust filter to show that there exists a numerical approximation that remains
uniformly good in time.

In the case where f satisfies

f'(@) + f(2)? + h?a® = P(x), (1.1)

where P(z) is a second-order polynomial with positive leading-order coefficient, then 7 is called
the Benes filter (see [Ben81], [BC09]) and there exists an explicit formula for the density of ¢, for
all t. The study of the Benes filter is developed in [Oc099]. Under Hypothesis 1, we have (1.1) if
and only if f(z) = f(0)(1 + zf(0))~!. What we present here is a case in the neighborhood of the
Benes filter.

We present the main results and our strategy in Section 1.2 below. Before this, we have to go
through some definitions.

For all ¢ > 0, the law of Yj.; under P and conditionally on Xy, X; has a density denoted
by yot — ¥i(yo:t, Xo, X,) with respect to the Wiener measure (see Lemma 2.2 below). The
Kallianpur-Striebel formula (see [BC09|, p. 57) gives us the following result (see the proof in
Section 7.1).



Lemma 1.1. For allt > 0 and all bounded continuous ¢,

- ( ) _ f]R @(y)Qt (:L', dy)"/)t(YO;t, Z, y)Wo(dSC)
e fR Qt(zady)"/)t(yo;t,z,y)ﬂo(dz)

For any probability law 7, on R, we define the wrongly initialized filter (with initial condition
7y) by, for any t > 0,

(1.2)

m(p) = Jo ¢ (W) Qi (x, dy)e (Yo, , y)mo (d)
' f]R Qt(zady)"/)t(YO:t;z,y)ﬁé(dz) '

(1.3)

1.2 Main results and outline of the proofs

All the results are given under Hypothesis 1 and 2. The first main result is the following (|| ...]|
is the total variation norm when applied to measures).

Theorem 1.2. There exists vy > 0 such that, if mg and 7 are comparable,
E(||m — mi]) = O@™),
when t — 400 (see Section 3.1 for the definition of comparable).
Remark 1.3. We have here a polynomial stability whereas filters in discrete time are usually expo-

nentially stable. We believe this result is not sharp (mainly because the proof is very convoluted).

In order to prove this Theorem, we first reduce the problem to a problem in discrete time by
looking at the sequences (mg, 77, Tar, . .. ), (74, T, Thy, ... ). We then introduce a truncated filter
(72 )k>0 and a wrongly initialized truncated filter ((7')% )x>0, where A is a truncation parameter.
We do not get into more details since to get a closed definition of the truncated filter, one would
have to look at Equations (4.29), (4.28), (3.1), (4.25), (4.19), (4.20), (4.26), (4.3), (7.19), (7.4),
(7.21), (2.6), (2.7), (2.8), (2.5), (2.10), (2.13) and Lemma 2.3. The truncated filter can be viewed
as a restriction of (mk;)k>0 to some compacts. Equation (4.29) tells us that

e = RkARkAA . .RlA(ﬂ'O) Jorall k> 1,
for some operators EvA”. We define
(') = E?E?_l . .ElA(ﬂ'é) Jorall k> 1.

=A
We first prove that the operators R are contracting (see Section 5, Equations (5.3), (5.8) for the
definitions of €, € ).

Lemma 1.4. We suppose that T and h are chose such that Equation (4.4) holds. Forn > 1 and
kin {1,2,....,n—1}, for all p, u' in P(R),

—A—A —A —A—=A —A
HRn Rn—l e Rk-{-l(u) - Rn Rn—l e Rk-{-l(//)
/2 I — |
< H (1- 6%-‘,—21’—1(6;@4-21')2) X 4inf (L (6;C )2él > .
i=1 +2 k+1

We then write a telescopic sum (Equation (6.2)) for the optimal filter

=A =A =A A
ITor = 72l < Inr = Ry (W)l + D [ Rokegr (7hr) = Bd (R (ma—1)2))|

1<k<n—1

—=A A=A A . .
where, for all n > k, R, = R, oR,,_y0---0 Ry, is a composition of operators (and we
write a similar sum for the wrongly initialized filter). Due to the contractivity of the operators

—A
R, we are then able to prove that the truncation error is uniform in time (see Section 2.5 for the
definition of <).



Proposition 1.5. There exist a function of h , X (h) and a constant oo such that, if T > Teo,

we have

sup log(E(||mnr — mpy 1)) = =A% x Xj(h); (1.4)
Ajc

nrt
n>0

and, if mo and w(, are comparable,

suplog (E(||m,, — ()7, 1)) < =A% x Ni(h). (1.5)
n>0 Ac

(See Section 3.1 for a definition of comparable.)

The proof of Theorem 1.2 then start with the inequality
A A A A
Hﬂ-n"' - ﬂ-;m'” < ||7Tn7- - Trn‘r” + ||7rn7' - (ﬂ-/)n‘rH + ||(7r/)n7' - ﬂ-;m'” .

We choose A as a function of n to make sure all the terms on the right go to zero when n goes to
infinity. After some technicalities, we are able to get rid of the discrete time index n7 and write
a result for any t > 0.

The second main result of the paper is that these results can be used to show that a numerical
approximation of the filter does not deteriorate in time. Suppose we have a numerical approxi-
mation 7N of 72 for all n > 0 (with 70’ 2 — 78) ; A is again the truncation parameter and N
is the approximation parameter (one can think of a number of particles in case of a particle filter

approximation). We write
1nr = TR 2 < Mlmnr — me |l + Iy — w22, for all n > 0.

We already have the result that ||7,, — 72 || is small when A goes to infinity (Proposition 1.5).
For the second term, we write a telescopic sum
A A A PA_NA 54 N,Ay _ BA S, N,A
I —wd ) < et — Bl O+ Y (B (1) = R (B (m3 )1
1<k<n—1

Using Lemma 1.4 again, we would be able to show that ||[72;® — 72 || remains small uniformly in
n (when N is big). Choosing A as a function of N _ in the same way as in [OR05] _ would then
allow to show that ||m,,, — 72| remains small uniformly in the time n, when N is big.
The fact that stability results have the potential to be used to show that a numerical approx-
imation does not deteriorate in time is a novelty compared to the other papers in the area.
Another novelty lies in the proof of Lemma 1.4. In Proposition 5.6, we exhibit a representation

of the truncated filter Eﬁl(wo) as the n-th point of a Feynman-Kac sequence based on a mixing
Markov kernel (see Section 3 for the definition of the term Feynman-Kac sequence). This is not
straightforward because the observations are given as a process in continuous time. Whatever
transformation we adopt, the problem remains more difficult than in discrete time. We will write
more comments about the novelty of the proof in Section 5 (it requires more notations to develop
on the subject).

The outline of the paper is as follows. In Section 2, we compute useful estimates concerning
1. In Section 3, we recall useful notions on filtering. In Section 4 and 5, we introduce the
truncated filter and its properties. At the beginning of Section 5, we elaborate on our strategy.
In Section 6, we prove that the optimal filter can be approximated by robust filters uniformly in
time (Proposition 1.5), and that the optimal filter is stable with respect to its initial condition
(Theorem 1.2).

2 Computations around v

2.1 Estimation of the transition density and the likelihood
We begin by bounding the transition density by above and below (see the proof in Section 7.1).



Lemma 2.1. For all z,y € R, Q(z,dy) has a density Q(x,y) with respect to the Lebesgue measure

and
—wo)? M a2 oxD— (w=a)?
e T — —x|— Mo M X T M
E LMl () < ga,y) < B2 oMl
2rT 2rT

Following [BC09] (Chapter 6, Section 6.1), we define a new probability P by (for all ¢ > 0)

t
%:%f/ﬂde
0
~ 1 t
=Z;=e (/f Vf—/f ds+/hXSdYs—/h2X52ds)
Fi 2 0

We define, for all 0 < s <,

dP
dP

We set

~ ~ t 1 t
’l/)t(yOStv:COv:Cl) = EP (eXP (/ thdYs - 5/ (th)2d5>
0 0

We set

Xy =m1,Y04 = yO:t) .
(2.1)

=1, 1; = 127 .
We have the following bounds for the likelihood (see the proof in Section 7.1).

Lemma 2.2. For all t > 0, the law of Yy.: under P and conditionally on Xo, X; has a density
denoted by yo.r — Vi(Yo:t, Xo, Xr) with respect to the Wiener measure. This density satisfies, for
all x, z € R and any continuous trajectory yo.+

*2IV[|Z*I|*T<M+%2) 2M\z71\+7<1\/[+%2)

QZt(yo:ta%Z)@ S wt(yo:taxaz) S € {p\t(yo:taxaz) .

2.2 Change of measure

Under P, V is a standard Brownian motion. So, using a standard representation of a Brownian
bridge, we can rewrite ¢ as

(o, 7, 2) = E (exp (/Orh( (1 - —) +z— n (BS - zBT)) dy,s
-2 st (2 )

where B is a standard Brownian motion (under P). As we want to compute the above integral,
where B is the only random variable involved, we can suppose that B is adapted to the filtration
F. We have (using the change of variable s’ = s/7 and the scaling property of the Brownian
motion)

o~

1
Y(yo.r,x,z) =E (exp (/ h(z(1 —8")+ 28 + Brg — 8 By )dyrgs
0

h2T
2 Jo

=E (exp (/01 h(z(1—§") + 28 +/7(Bsy — 8'B1))dy,s

1
(x(1 =8+ 28 + Brg — S’BT)2 ds/>)



h2r !
2 Jo

(x(1 —§') + 28’ + V/7(By — S’Bl))2d5’>)

In the spirit of [MYO08] (Section 2.1), we define a new probability Q by (for all ¢)

d h2r? [t !
@ = exp ( i / B?ds — hT/ BSdBS) .
dP ]_—t 2 0 0

By Girsanov’s theorem, under the probability Q, the process
t
ﬂt == Bt +/ h,TBSdS, Vi Z 0 (22)
0
is a Brownian motion. We get
—~ 1 h27_ 1
»(Yo.r, X, 2) = €xp (/ h(z(1 — 8) + z8)dy,s — - / (x(1—s)+ z5)2ds)
0 0
1 1
x EQ (exp (/ h\/7(Bs — $B1)dy.s — h273/2/ (x(1 — s) + 2z5)(Bs — sB1)ds
0 0

h27.2 1 1
~ / 5235725B5B1ds+h7/ BSdBS)). (2.3)
0 0

2

Using the integration by parts formula, we can rewrite the last expectation as
1 1 1 2 2
1—
E2 ( exp —h\/;/ (Yrs —/ Yrudu)dBs + h273/2/ fx(is) pl 422 dBs
0 0 0 2 2 6 6

B 1 g2 B2 1
R*r’By (= — | =dBs)+ht| = — = =
+h°T 1<3 /0 5 )+ ’r<2 2

h273/2

1 1 1 1
EQ <exp (h\/?/ (Yrs — / Yrudu)dBs + h27—3/2z/ sdBg + T(z — x)/ s2dB;
0 0 0 0

22 hr K272 1 hr
—h273/2 (E + E) B + < + —) B? — Bl/ s°dB, — _>> . (24)
3 6 3 2 )1 2 0 2

2.3 Covariances computation

The last expectation contains an exponential of a polynomial of degree 2 of 4 Gaussians:

1 1 1 1
G =B > Ga = / Sd357 G3 = / SQdBS; Gy = / (y‘rs */ y‘rudu) dB; .
0 0 0 0

So this expectation can be expressed as a function of the covariance matrix of these Gaussians.
We compute here the covariances, which do not depend on yg.,. We set

0 =hr. (2.5)
Lemma 2.3. We have:

1—e 20
20 ’

1\’ (1—e20) 1 2 2
Q _ —0
Var (G2>—(1+5) T*ﬁ—(o—ﬁﬁ)(l—@ ),

Var®(G,) =

2 2\? (1 —e2 2 2\%¢ 8 4 2 2
vty = (1020 2) U L (24 2)'0 L 8 a1z, 2)



e ?—1
g2
1

2
29 + ) (1 € ) 92 I
1 1 1 1 2 2 1
Q _ - 0 —9
cot@nn) = (1+5) (55+ 93>162 (Frarw)o- g
See the proof in Section 7.2

Let Uy, Us, Us, Uy be i.i.d. of law N(0,1). We can find «, 8,7, a,b,¢c, A1, A2, A3, Ay € R such
that (under Q)

1 —26
Cov (G1,G2) = (29—1— )1 e ) +

COV Gl,G3 :<

Gl CYUl

G la_w BU, +vUs

Go - alUy +bUs +cUj3

Gy MU +2U2 +A3Us +MUy

(There is no mistake here, we do intend to look at the vector (G1,Gs, G2,G4).) Indeed, we take

Q
vard(a), p= OO L Nt -, (2.6
Q Q _
_ Qo1 Gr) 4y CovilGaGo) maB | NGy — a2 — 12, (2.7)
a gl
And we find Ay, ..., s by solving

a = COVQ(Gl,G4)
B +’}/>\2 = COVQ(Gg,G4) (2 8)
adi  +bhy  +chs = Cov¥%(Ga,Gy) '
A2 2 42 402 = varld(qy).

We observe that «, 3,7, a, b, c can be written explicitly in terms of the parameters of the problem.

2.4 Integral computation

The last part of (2.4) is equal to
B (exp((Z+ 02— Larc 7h273/2<£+f)6‘
3 2) 7t 27 36/
B2.3/2 9

9% 0 92 T oz
/R oP (( E 5) o = e (Bur +yuz) = W2 (34 ) e

h273/2

+h273 120Gy +

0
+h273 22 (auy + bug + cus) + (z — 2)(Buy +yuz) — hv/T(Aur + -+ + Aaug) — 5)

exp (7 (uf+2+ui)) ] ]
(27‘(‘)2 Uy ...aUqs =
1 0%ary x oz
/ul,...,meR exp {—E [ul - Uf (— 5 ugy — h273/? (§ + 6) a+ h2r3%zq
h273/2 2

+

(2 —2)8 - h\/?)\l)]
§2r/2

2

2

J_% [ 920ﬁu2 _ p2.3/2 (f

2 2 3" %) o+ h*r za +

(z—2)8 — h\/ﬂl]



h273/2 0

5 (2 — 2)yug — h/T(Aaug + -+ + A\qug) — B
(u3 4 - -+ uj) 1

2 (2m)2

+ h2732 2 (bug + cus) +

du1 e dU4 5 (29)

where

92 0 0208 1)) '
T= —=+=)a? = : 2.1
= (2(-(F+3)+552+3)) (2.10)
As the above expectation is finite then o7 is well defined. We set

2 2 3/2 (% 2_3/2 h273/2
my =o; | —h°T (§ + 6) a+h*mra+ ——(z — )8 — hvTA1 ) . (2.11)

The above expectation (2.9) is equal to:

/ i)
eXp | —=—= |U1 O]——Uz — My
u,...,us €R 207 b2

1

202 2 202
o707 ary 5 1 mi 1 o707 ary
—5 X2
+ ( 2 ) Y2552 T 557 T 552 g )M

B273/2

+ h2732 2 (bug + cus) + (z — z)yusg

2, .92, .2 9 1
—h/T(Auz + Azuz + Agug) — (3 + s + i) - _) (27)?

5 5 duy...duy =

/ 1 [ 5 0%ary ]2
exp — |u1 + o7 U2 — My
ul’...,u4€R 2 2

2,.3/2 02 2
2—12[ uy — 03 <h2 3/2xb+h; (z — )y — h/TAg — a'yml)}
o

2
2 2, .2
my 2 3/2 (uz +uz) 0 1
— h*T — hyv/T(A A - = 2.12
+2 + 2% 2 + zcusz \/_( 3u3 + 4’LL4) 2 2 (277)2 ) ( )
where
) o20%a2y? 1 -1
=12l ——+= 2.13
AR ) 29
and 2,.3/2 2
h 0
my = o5 (h27'3/2xb + 2T (z —2)y — h/TAa — gvml) . (2.14)
Then (2.12) is equal to:
1 5, 0%ary 2 1 s m3  m?
Lo (‘2_ ot s | gl 5 g

1 2 1
-3 [u3 Y, S h\/ag} — 5 [ua+ b7 2

1 0 1
2,_3/2 - 2 _Z I dus =
2( het cx+h\/_)\3) 2( h\/?)\4) 2) (2ﬂ)2du1... Uy
1
2

2 2 0
102 €Xp (% 52+ S (R e + ) + (th4 - —) (2.15)
1 2



2.5 Asymptotic 7 — +0

From (2.3), (2.4), (2.9), (2.12), (2.15), we see that 7,2(3;0:77 x,z) x exp(P(x, z)) with P a polynomial
of degree 2 in z, z. Let us write —Az(0) for the coefficient of 22 in P, —By(0) for the coefficient
of 2% in P, C1(0) for the coefficient of zz in P, A;() for the coefficient of = in P, By(f) for the
coefficient of z in P and Cy(6) for the “constant” coefficient. We will write AY*"(6) = A4 (yo.r, 0)
(or simply AY*"), etc, when in want of stressing the dependency in y. When there will be no
ambiguity, we will drop the y. superscript. The coefficients A", B> C¥*" do not depend on
y as it will be seen below. We have

o~

(Yo.r, T, 2) = 0109 €Xp (—Ag.’L‘Q — Boz? + AV x4 BYT 2 4+ OV + Cg"’*) ) (2.16)

We are interested in the limit 7 — +o00, with h being fixed (or equivalently § — +oo with h being
fixed).

Lemma 2.4. We have

h h 3h 1
A0 T2 5 B0 T2 5 1) = g e (5) -

The proof relies partly on a symbolic computation program (see Section 7.2).
Let us set, for all s <,

Ws,t = sup |W51 - WS2| ) Vs,t = sup |V51 - VS2| .

(51132)6[37t] (51,82)€[S,t]

Definition 2.5. Suppose we have functions fi, fo going from some set F' to R. We write

fizfa

if there exists a constant B in R, which does not depend on the parameters of our problem, such
that f1(z) < Bfa(z), for all z in F.
In the particular case when we are dealing with functions of a parameter A € R |, we write

fi 2 faor fi(A) < fa(A)
A A

if there exists a constant B; in R, which does not depend on the parameters of our problem, and
a constant Ay, which may depend on the parameters of our problem, such that

A>Ag= f1(A) < Bifa(AD).
If, in addition, Ay depends continuously on the parameter 7, we write

fi 2 fo.

A,c

The notation < is akin to the notation O(...). It has the advantage that one can single out

A
which asymptotic we are studying.
We state here (without proof) useful properties concerning the above Definition.

Lemma 2.6. Suppose we have functions f, fi, fo, h1, ha.
L If f < fi+ f2 and f1 = fa then [ X fa.

2. If f < fi+ f2 and log(f1) = hi and log(f2) =< he, with hi(A), ha(A) L o0 then
A A —00
log(f) 2 sup(h1, ha).



3. If we have f1 =X fa, say forT > 19 (19 > 0), then there exists a constant By and a continuous
(&

A,
function Ag such that, for all 7 > 179 and A > Ag(7), f1(A) < By fa(A). In particular, for
any T > To, ZfT S [7’0,7’1] and A > SUD¢¢ [, 71] Ao(t) then fl(A> < Blfg(A)

We have the following “variational” bounds on Bj (see the proof in Section 7.2).

Lemma 2.7. For all k € N,

1
‘Bl (Ykr:(k—i-l)‘ra 9) - B (}/(k—i-l)‘r:(k-i-Q)Ta 9>| = Mht + hvk‘r,(k—i—2)‘r + (h + ;)WkT,(k-'rQ)T )

and
1
|Bl(Yb:‘r; 9)| < Mht + hVO,2‘r + (h + ;)WO,QT .

3 Definitions and useful notions

We follow here the ideas of [ORO05].

3.1 Notations
We state here notations and definitions that will be useful throughout the paper.
— The set R, R? are endowed, respectively, with B(R), B(R?), their Borel tribes.

— The elements of R? are treated like line vectors. If (z,2) € R? and § > 0, B((,2),¢) =
{(',2") € R? : \/(z —2')2+ (2 — 2/)2 < €} (the ball of center (z,z) and radius €). The
superscript T denotes the transposition. For example, if (x, z) € R?, then (z,2)7 is a column
vector.

— The set of probability distributions on a measurable space (E, F) and the set of nonnegative
measures on (E,F) are denoted by P(E) and M (FE) respectively. We write C(E) for
the set of continuous function on a topological space E and C; (E) for the set of bounded,
continuous, nonnegative functions on F.

— When applied to measures, | ... || stands for the total variation norm (for u, v probabilities
on a measurable space (F,F), ||u — v| = supqer |u(A) —v(A)]).

— For any nonnegative kernel K on a measurable space E and any p € MT(E), we set
Ku(dv') = / p(dv)K (v, dv").
E

— If we have a sequence of nonnegative kernels K7, K5, ... on some measured spaces E7, Fs,
. (meaning that for all i > 1, € E;_1, K;(z,.) is a nonnegative measure on E;, then for
all ¢ < j, we define the kernel

Ki+1:j(xi, d.CCJ) = /

Tit1€F 1

. / Ki+1(xi7 dziJrl)KiJrQ (.TiJrl, d:riJrQ) . Kj ($j,1,d$j) .
T 1€E; 1

— For any measurable space F and any nonzero y € M™T(E), we define the normalized non-
negative measure,

o1
et
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— For any measurable space E' and any nonnegative kernel K defined on E, we define the
normalized nonnegative nonlinear operator K on M™(E), taking values in P(E), and defined
by

— Ku Kpu —,
(1) = - SR K, (3.1)
(Kp)(E)  (KR)(E)

for any u € M*(E) such that K u(E) # 0, and defined by K (1) = 0 otherwise.

— A kernel K from a measurable space E; into another measurable space Fs is said to be
e-mixing (e € (0,1)) if there exists A in M (Es3) and €1, €2 > 0 such that, for all 21 in F,

1
61)\(') S K(xla ) S _)\()Wlth €1€2 = 62 .
€2

This property implies that, for all A, p, K(u)(A) > €X(A). If K is Markov, this last
inequality implies that K is (1 — €2)-contracting in total variation (see [DGO1] p. 161-162
for more details):

Vi, v € P(E), [K(p) = K@) < (1 —e)|u—v].

— For any measurable space E and any 1) : E — R* (measurable) and p € M™(F), we set

() = /E Y(x)u(dz).

If in addition, (u,1) > 0, we set

¥ o pu(dv) = —— x Y(L)u(dv).

(1, 9)

— For p and p/ in MT(FE) ((E,F) being a measurable space), we say that p and p’ are
comparable if there exist positive constants a and b such that, for all A € F,

ap'(A) < p(A) < bp'(4).

We then define the Hilbert metric between p and p’ by

A
SUPAcF: 1 (A)>0 %

h(, p') = log | -
lane]::u’(A)>O %

It is easily seen (see for instance [Oud00], Chapter 2) that, for any nonnegative kernal K
and any A in F,

MEp, Kp') < h(p,p'), (3:2)
h(, W) < h(p, '),
exp(—h(p, 1)) < 7(A) < exp(h(p, 1)), if p'(A) > 0. (34)
In addition, we have the following relation with the total variation norm:
[y ey (3.5)
~ log(3)

— We set @ to be the transition of the chain (Xpr, X(k41)7)x>0-

— We write « between two quantities if they are equal up to a multiplicative constant.

11



— For ¢ : R? — R, we write (0,.) for the function such that, for all z in R, (0,.)(z) =
(0, ).

— We write Ay for the Wiener measure on C([0, 7]).

We suppose here that the observation (Y;);>0 is fixed. For k € N* and z, z € R, we define

¢k($7z) :w(}ik—l)‘r:krazaz> (36)

(the density v is defined in Lemma 2.2). For 21 € R, 2 € R and n € N*, we introduce the
nonnegative kernel

Rn(ml,dl‘g) = ’lbn(wl,mg)@(wl,dl‘g). (37)

Using the above notations, we now have, for all n € N*, and for all probability law 7}y (with (7}):>0
defined in Equation (1.3))

Tnr = En(ﬂ'(nfl)r) ) Moy = Rn(ﬂgn—l)r)

and for 0 < m < n,

Ty = §n§n71 - Rm(ﬁ(m—l)r) ) ,

nTt

S Y R N (T ) (3.8)

3.2 Representation of the optimal filter as the law of a Markov chain

Regardless of the notations of the other sections, we suppose we have a Markov chain (X,),>0
taking values in measured spaces Ey, E1, ..., with nonnegative kernels 1, Qo, ... (it might be a
non-homogeneous Markov chain). Suppose we have potentials ¥; : B} - Ry, Uy: Fy - Ry, ...
(measurable functions with values in R;) and a law 7 on Ey. We are interested in the sequence

of probability measures (n)k>1 , respectively on Eq, Eo, ..., defined by
En, ((Xk) H1< i<k Wi (X))
Wk > 1,V € CGF(BL), mi(f) = — == : (3.9)
’ Eno(l_hgigk \Ilz(%z))

where 19 € P(Ep) and the index ny means we start with Xy of law 79 . We will say that (nx)r>0
is a Feynman-Kac sequence on (Ej),>0 based on the transitions (Qg)r>1, the potentials (Uy)x>1
and the initial law 79. Suppose we have another law 7, we then set

B (0(Xk) H1<'<k (X))
Vk > 1,V € Cf (Br), mi(f) = — == :
’ g En{)(ngigk q’z(xz))
If the functions ¥} ’s are likelihood associated to observations of a Markov chain with transitions
1, Qo, ... and initial law 79, then the measures n;’s are optimal filters. We fix n > 1. We would

like to express 7, as the marginal law of some Markov process. We will do so using ideas from
[DGO1]. We set, for all k € {1,...,n},

R (z,dx’) = Uy (2)Qp(z,da’) . (3.10)

We suppose that, for all k, Ry, is ex-mixing (notice that Qj being ex-mixing implies that Ry, is
ex-mixing). By a simple recursion, we have, for all n,

Rip = RnRpo1... R (3.11)

We set, for all k € {0,1,...,n— 1},

W () =/ / Ri1(z,dorr) [ Rilwior,day).
Ik+1€Ek+1 xn€E,

k+2<i<n

12



If k = n, we set W¥,,|,, to be constant equal to 1. For k € {1,2,...,n}, we set

\Iln\kJrl (:CI)

From [DGO1], we get the following result (a simple proof can also be found in [OR05], Proposition
3.1).

Sy, da’) = Rir1(z,dz’).

Proposition 3.1. The operators (& ,)o<k<n—1 are Markov kernels. For all k € {0,...,n — 1},
Sk 18 €xr1-mizing. We have

T = Gn\nflc‘sn\nfl s Gn\O(lI/nlO i 770) )

77':1 = Gn\n—lgn\n—l S Gn\o(‘l’mo d 776) )

and

mn =l < J] (0= €2) x [ %njo @m0 = Trpo @ 0 -
1<k<n

Following the computations of [OR05], p. 434 (or [Oud00], p.66), we have, for all measurable
¥ : R2 - RT,

V(z) . 190 /
II‘P°770*\P°77’||§2/ ——~Ino — ol (dx) < 2inf <1, o —moll ) - (3.12)
0 z€Ey <770’\I/> 0 <770an> 0
For all z in Ey, as R is €1-mixing,
\I/n‘o(x) _ fZEEl 9%271 ZvEn)%l( ,dZ)
<770; \Iln\0> nyEo szEl 9%2 n\%, En)%l( dZ)?]()(dy)

(3.13)

(
(
Jecm Ron(z Bn) M (d2
B fzeEl Ro.n (2, En)ef M (dz

(for some €}, €/, A\iwith €]} = €2)

<

4 Truncated filter

We introduce in this section a filter built with truncated likelihoods. We will call it truncated filter
or robust filter, the use of the adjective “robust” refers to the fact that it has stability properties
(it appears in the proof of Proposition 1.5 below).

4.1 Integrals of the potential

We are look here at 7,2(3;0:77 x, z) for some z, z in R and a fixed observation yo., between 0 and 7.
All what will be said is also true for observations between k7 and (k + 1)7 (for any & in N). From
Equations (7.21), (7.23), (7.24), we see that AY"", BY"" are polynomials of degree 1 in Ay, ...,
A3 and that C; does not depend on yp.,. We fix z and z in R. Recall that, by Equation (2.8),
Lemmas 7.1 and 7.2, A1, A2, A3 are functions of yo.» and that they can be expressed as integrals
of deterministic functions against dy., (this requires some integrations by parts, see Lemma 7.4).
Under the law P (defined in Equation (7.1)), conditioned to Xy =z, X, = z, we can write

Xt:(1—f)x+fz+§s—fBT, (4.1)
T T T

where (Es)szo is a Brownian motion, independent of W. And we can write, using integration by
parts and Equation (7.24) (see Lemma 7.5),

A¥or = / "(Fu()AW, + fo(s)dX,). (42)
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for some deterministic functions fi, f» (and the same goes for B, see Equation (7.23)).
We set

oz \'? C
P11 = (1 - 4A;Bg) s P21 = *ﬁ s P22 =1. (4.3)
+

Fact 4.1. We now fiz a parameter ¢ € (1/2,1). From now on, we suppose that the parameter T is
chosen such that

h h h 1 4 1 1
0>1,A,>—=,By>—~,01 < —, ——— —(24—)Baps.16' " >0, > =, <=-. (44
> 227 22 01 s g 1+ pou (+h) 2P2,1 P11 3 |I72,1|_2 (4.4)
This is possible because of Lemma 2.4 and because this Lemma implies: po; = O(671),
P11 — 1.
6——+o0
Let us set o
Ay -5 ]
K= 4.5
4w )
If we take /
o2 \1/2
P:[pu 0 }_[(1—4@92) , (4.6)
P2,1 P22 _ G
2B
then
A 0
_ pT 2
k=P {0 BQ]P' (4.7)
We have
1
-1 P11 0
Vi = _Pé,l 1
P1,1

First, we have to rule out the case where A" and B}”" are colinear.
Lemma 4.2. The quantities AY*" and B{*" are not colinear (as functions of yo.r ).

Proof. Suppose there exists A € R such that BY*™ = AAY*" for Ay -almost all yo.,. We have, for
all ¢ in C; (R), using Lemma 2.2 (remember Equations (2.3), (2.4), (2.9), (2.12), (2.15))

/ Sa(A:gO:T )7/)(?J0:n$72)/\w(dy0:r)
c([os7])

rT—z|+T M2 : i
< oIMlz—z|+ (M+ B) )/C([ ])@(All/o-*)z/;(yo:ﬂx,z))\w(dyo:r)
057

2
= 0'10'262M‘17Z‘+T<1\/1+%) / gO(t) exp(—AQ:CQ — B22’2 + Cl.fCZ +tx + )\tZ)\p/(t)dt, (48)
R

where

V(1) = B (exp(CY o)A = 1)

We know the last integral is finite (because fC([O ) ¥(yo.r, 2, 2) = 1 and because of Lemma 2.2).
We introduce ¥ such that

U'(t) = exp(f%(t, M), M)W (1),

and
2 1 —1 T
V(tl,t2> S R y Q(tl,tQ) = exp (Z(tl,tQ)fi (t11t2) ) .
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We have, for all ¢, (remember that P is defined in Equation (7.1))

Mt _ M2t dP Mt
e~ MIXo=Xo|-F =25+ « 2 < eMIXe—Xo|+5*

T dP|g,

(this can be deduced from the computations in the proof of Lemma 2.1). Thus, we have, for all ¢
(the first equality being a consequence of Lemma 2.2)

/ P(AY)(Yor, w, 2)Aw (dyor) = BF(p(AY7)[Xo = 2, X, = 2)
c([0;1])

Eﬁ (QD(A%/OT) %‘}_ ‘XO = ZC,XT = Z)

Eﬁ(%}; on,XTz)
(by Equation (4.2)) > e 2Mle=sl=r(M+2£) / p()Q . (t)dt  (4.9)
R

for some Gaussian density Q/ . (the density of A}/‘” knowing Xog = z, X, = z, under ﬁ)
From Equations (4.8), (4.9), we deduce that, for (z, z) fixed, we have for almost all ¢,

eiQM‘ziz‘iT(MJr%Z) Qy .(t) < eQM\ziZHT(MJF%Z)alagQ((t, At) — 2(x, 2)k) V(1) . (4.10)

In the same way, for (z,z) fixed, we have for almost all ¢,

e?M\zsz>T<I\/[+%) e 672IV[|I72|7T<IV[+%)0102Q((t’ M) — 2z, 2)R) W, (1) (4.11)

Looking at Equations (4.1), (4.2), we can say that the density QJ ,(¢) is of the form

1 1
Q' (t) = —=ex (——t—ax—l—bz 2),
,() \/W p 20_8( (0 0))

with og, ag, b independent of (z,z). So, looking at the above inequalities in (x,z) = (0,0), we
see there exists € > 0 and a constant C¢, such that, for almost all ¢ in (—e¢, €),

(Ceorog) e TEMEMD) < W (1) < Ce(or0p) ~HeBMHM) (4.12)
For any ¢, the quantities log(Q7 ,(t)), log(Q((t, \t)—2(x, z)«)) are polynomials in z, z, of degree

less than 2. Using the above remarks and studying adequate sequences (z, 2n)n>0 (for example,

with z, —Jr) +00, 2, remaining in a neighborhood of 0), one can show that the coefficients in
n—-+0oo

22, 2% and zz in these two polynomials the same. We then have
2 2
a b aobo
—02— 2,—02:]327—2*01
204 204 o

By Equation (4.4), we have

aob h h
0—20:2\/142322§>—

oG 8
and C < h/8, which is not possible, hence the result. O

We can now write for any test function ¢ in C;f ([0,7]) (remember Equation (2.16))

L e B, o 2w ) =
c([o,7)

15



0’10‘2/ (p(tl, tg) exp [—A2$2 — 3222 + Cixz + t1x +t22] X \I/(tl, tg)dtldtg s (413)
RF

where
U(ty,t1) = EP(eXp(CgV‘”HA‘fV‘” =1y, BYV‘” =t9).

We know the integral is finite (because fc([o ) V(Yo.r, T, 2)Aw (dyo.-) = 1 and because of Lemma
2.2). Let us define ¥y by the formula
1 —1 T
\I/(tl,tg) = exp —Z(tl,tg)ﬁ (tl,tg) ‘I’l(tl,tg).
The next result tells us that, somehow, log(¥1(t1,2)) is negligible before t2 +t3 (when (t1,t2) —
+00).
Lemma 4.3. There exists a constant Cy(h,T) (continuous in (h,7)) and € > 0 such that for all

(x,z) and for almost all (t1,t2) in B(2(x,2)k,€),

1
Ci(h,7) oxp (—4M |z — 2| — 7 (2M + M?)) < Wi (t1,t2)
< Ci(h,7)exp (AM |z — 2| + 7 (2M + M?)) . (4.14)

Proof. We fix (z,z) in R%. Similarly as in Equation (4.8), we get, using Lemma 2.2, for all
v € CF(R?),

/ o(AY, BY* " )b (yo.r, z, 2) Aw (dyo:r)
c(lo,7])
S/ (AT, pror) Mt (M) B (o)
c([o,7])

_ M2
_ 0_10_262]\/I|z Z|+T(M+ 5 ) / s0(1517t2)efAzx27B2Z2+C1xz+t1:nthQZ\Il(tl7t2)dt1dtz

]R‘Z
2
OM|z—z|+7( M+ 22
= 0103¢€ o=l ( 2 )/

. ©(t1,t2) exp (—i((tl,tg) —2(z, 2)k) " ((t1, t2)T — 2k(x, z)T))

X \Ifl(tl,tg)dtldﬁg . (415)

Similarly as in Equation (4.9), we get, for all ¢,

2
/ (AP BT )y 2, 2) A (dyony) < €2V (M) / (1, 12)Q, (11, o)t dt
c(lo,7]) R2

- z—x|—T a2 : :
¢ M el (M257) / (1, 12)Q, (b, o) dtydty < / (AT B (your 2, 2)w (dyors)
R2 c([o,7])

for some Gaussian density Q;,z with covariance matrix which does not depend on z, z (see Equation

(4.2)). This is the density of (AY*", BY®") knowing Xo = z and X, = z, under P. We then have,
a.s. in (t1,t2) (for the Lebesgue measure),

Q! (t1,t2) < groae ™M TCMIMY) O (1) 1) — 22, 2)) U (t1, 1) . (4.16)
Using the lower bound in the inequality in Lemma 2.2, we get in the same way, a.s. in (¢1,t2),
Q. (tr,t2) > oyoae  MIT=2=TCMAM) O (4 15) — 2(a, 2)R) W1 (11, t2) (4.17)

We deduce from Equation (4.17), that there exists e; > 0 such that, for all (z,z) and for almost
all (t1,t2) in B(2(z, 2)k, €1)

Uy (b1, t5) < O (7, h)et Mozl (204007)

)
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for some function Cj(7,h) of the parameters 7, h (continuous in (h,7)). Looking at Equations
(4.1), (4.2), one can also see that Q, , reaches its maximum at (x, z)x’, where #’ is fixed in M3 2(R)
(the set of 2 x 2 matrices with coefficients in R). From Equation (4.16), we get that there exists
€2 > 0 such that, for all z, z and for almost all (¢1,t2) in B((z, 2)x’, €}),

Q((t1,t2) — 2(x, 2)K) > %Q;,z((%Z)H’)(0’10’2)71€_4M‘$_z‘_T(4M+2MZ)(C{(haT))fl

1
X exp (—4M ‘5(% )k (1, —-1)T

).

and so, by continuity,
1
Q((, 2)8' =22, 2)) 2 5Q (2, )Y (r072) e M= (1238 (g, 7))

1
X exp (—4M ’5(:1:, 2)k k(1, =1)T

If 5" # 2k, we can find a sequence (¥, 2,) such that z2 + 22 —+> +o00 and
n—-+4oo

og(Q((n, 2n)K — 2(n, 20)K)) = —(mi + Zi) )

whereas

2 1
108 e ()W) or02) e 00020 gy (|Gt (1, -7

))

= —lxn] = [zn,

which is not possible. So k' = 2k.
So, we get from Equations (4.16), (4.17) that there exists e3 > 0 such that for all z, z, and for
almost all (¢1,t2) in B(2(x, 2)k, €3),

—4M|z—z|—T(2M+M?)
Ci(h,T)
(with, possibly, a new Cf(h,7)). O

Ci(h7T)e4M|z—z|+T(2M+M2) > Uy (t, 1) > €

Lemma 4.4. If we have a set A = {yo.r € C([0;7]) : (AY*",B{*") € B} for some measurable
subset B of R?, then

/ {p\(y():‘r; Z, Z))\W(dyOT) S 0'10-201 (ha T)
A

/ o
X exp{ ———
(t2,t2)€EB 4

Byt

2
)
4

x exp (AM*(1,—1)k ' (1,=1)" + 7 (2M + M?) + AM|z — z|) dtydt»,

o p2ate
P11 P11

1
—AM|— + P21
P11 P11

— 2A2p1,1$

([t — 2Ba(p2az + 2)| — 4M)3_}

and

/ {p\(y():‘r; Z, Z))\W(dyOT) Z 0'10-201 (ha T)_l
A

i +(
X expq ———
(ta2,t2)EB 4

-1

)2
72
4

x exp (AM*(1,—-1)r ' (1,-1)" — 7 (2M + M?) — AM |z — z|) dt,dt5 .

i p2ats
P11 P11

1
L P
P11 P11

+4M

— 2A2p171$

(|t — 2Ba(poix + 2)| + 4M)2}
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Proof. We have (computing as in Equation (4.15))
/ D (Yoer T, 2) Aw (dyo:r)
A

4

(by Lemma 4.3, for a complete proof see Lemma 7.6)

< Ulag/BeXp <%[(t1,t2)T —26(z, 2) 1) kT (t, t2)T — 2k(x, z)T])

x Cy(h,7)exp (2M x |(1, —1)k ™ (t1,t2)"| + 7 (2M + M?)) dt1dts,

1
— 0102/ exp (f(:c, 2)k(x, Z)T +tiz+ tgz) exp (—(tl,tQ),il(tl,tQ)T> Uy (ty,te)dtidts
B

and we can bound by below by

0102/ exp (_i[(tl’ to)T — 2k(x, 2) 11Tk (t1, t2) T — 2k(x, z)T])
B
1
X m exp (—2M X |(1, —1)/{/_1(1‘:1, t2)T| — T (2M + M2)) dtldtQ ,

For (t1,t2) € R%, we have, for any § € {—1,1}

exp (i[(tl,tz)T = 2n(2, 2) )T KT (b1, t2) " — 26(x, 2) ]+ 20M x (1, 1)“1(t17t2)T>

—_

= exp (——[(tl, to)! —2k(x, 2)T — 46 M (1, —1)T) k7 [(t1, t2)T — 26(2, 2)T — 46M (1, —1)7]

W~

+4M?(1, -1~ (1, —-1)" + 46M (z, 2)(1, -1)T)

— exp (i[(Pl)T(tl,tg)T 9 { c o ] P(z,2)7 — 46M(P~)T (1, ~1)7]7

X { Ag Bi)—l ] [(Pl)T(tl,t2>T2[ 1‘(1)2 32 }P(z,z)TZL(SM(Pl)T(l,l)T])
x exp(AM2(1, = 1)~ (1, = 1)T + 46 M (z, 2)(1, - 1)7)..

From there, we get the result. O

4.2 Truncation

In the following, the parameter A > 0 is to be understood as a truncation level. For k£ > 0 and
A > 0, we set (for all b)

CkJrl(A,b) = {Z : |232(1 +p271)2 - b| S A} (418)
(which indeed does not depend on k),
Crr1(A) = Crpr (A, B*0T) (4.19)

and
b

- > 4.20
2B(1 4+ p21) ( )

My+1(b)

(which indeed does not depend on k) and

Yier: (ot 1)
ME+1 ka+1(31k (i )
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We suppose that mg is a point in the support of my (the law of X) and we set

A A

Co(A) = |mp— —2 g ——
o(&) 0 2By(1+p21) 0 2B3(1+p21)

Under Hypothesis 2, there exists constants Cy and C{, such that
m0(Co(A)8) < Che 2" WA > 0.

From Equation (4.4) and Lemma 2.7, we see that there exists a universal constant C' such that

C(M _ 1+ _ if k> 2
|mk B mk71| < ( T+ V(k 2)1, kT +( + 9))1/\}(143 2)T,k'r) 1 — 4 (421)
|m0| + C(MT + VO,QT + (1 + §)W0,27—) ifk=1.
We set
d(A) = = (2 + 16)3 01 A —AM (4.22)
= 1+p271 A 2P2,1 ) .
(because of Equation (4.4), we have d(A) AT +00) and
— 400
1( o=a \?
CyvTexp =3 (126\/?)
T(A) =
( ) 01— A
(1+p21) / Boe26MT+ 5 +40M? /1 1 2 —CoA?
M~—=" 4+ /A h ———d(A 08",
+< i + 2 | C1(h,T)o102p1.1 B exp 1B, (A | +e
(4.23)
We define, for all £ > 1, z and 2’ in R (recall that 1) is defined in Equation 3.6)
Ve (z,2') = Yz, ) le,a)(@'), (4.24)
Dk = |mk - mk,1| 5 (425)
and for D > 0,
2
A
1 (D + Bz (1+p2 1)) A T 7-2
D,A) = exp | — : exp(-M(D+r—" ) (T4 )\ M),
&l ) \V2nT P 27 P ( ( Bs(1 erz,l)) (2 2 ) )
(4.26)
2
A
DA 1 <(D - Bz(1+p2,1))+> (M (D A ) TM)
,A) = exp | — ex + )+ = ,
2 VorT P 2T P Ba(1+p21) 2
(4.27)
and,
A / d / if (A
RkA(Z',dSC/) — ’l/)kA(zazl)Q(za $) ) 1 HAS Ck 1( )7 (428)
i (@, 2" )61 (D, A)da'  if ¢ Cr—1(A) .

We define (5'),>0 by the following

i = o (4.29)
7 = ReRe ... Ri(m) forallk>1. '

The next lemma tells us that the measures 7, are concentrated on the compacts Ci(A).
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Lemma 4.5. If
0'~*A > 3|mg| + 3CMT and d(A) >0, (4.30)
then we have, for all k >0,
E(mer (Ci(A)E) = T(A).

Proof. We suppose k > 1 (the proof is similar for k = 0). For a measure y in M*(R), we define

Qu(dz,dz') = p(dz)Q(x,dx’") , Vo, 2’ € R, (4.31)

(recall @ has been defined as a Markov kernel on R?, so the above is an extension of the definition
of Q). We have

T (Cr(A)8) X Ly [<ppt— =

Yy (v, 2') A ’
Ly —mms 17L/ —1 e(x)(1g, x)+1 o(2))Qmp—1(dx,dz’"),
[mg—mi_1|<AQ (w.2)eR? (QTp—1, k) Cr(A) (z)(1c, 1(2A)( ) Cr_1(24) (2)) 1( )

E 1|mk—mk71\<aelﬂ/ Mﬂckm)c(w’)ﬂckA(zA)(x)@m—l(dwadw')
- R? (QTp—1, Vi)

and (using the same computations as in [LOO03], proof of Proposition 5.3, [Oud00], p. 66)

%:(kl)'r)
B / L (BY)—mp_1 <001+
yeC([0,7])

’ (/R @ﬁfii’é,)., i oneon e e e dzl))

X </ @Wkl(u,du/)tb(y,u,u')) Aw (dy)
(u,u’)ER?

(by Fubini’s theorem)

= / o) Ly (BY)—mp_y | <201 /}R2 w(y,x,x’)]lck(A7Bly)c(:C’)]lckfl(gA)(m)@ﬂk_l(dx,dx’))\W(dy)
ye )

(using Lemma 2.2 and Lemma 4.4)

’ 2 2 -1 T
< JIJQC{(;%T)/ / eOM|z—a'|+7(3M+3M?/2)+4M |1, -1)r 1 (1,17
(w,2")ER? J(t1,t2)ER? : [myp (t2) —mp—1|<AOT

2

1 t1 p2,1t2 24 | 1+p2 1 |)
(] - o|—am ’
1A, ( P11 P11 2P1,1 P11

X e‘ﬁ(|t2—232(:02,1z+m')|—4M)2+

X Loy (a2 Loy, 20y (@)dty dt2Qry—y (do, da’) . (4.32)
’L/Jk(l',l'/) A /
E / ~ 1 D(ZL')]]. 1 D(SC)QTrkfl(dSC,dl' ) Yo:(k—1)r
( R? (Qp—1,Vk) Nl M (=)

:/ con T/J(y,96,z')]lck(A,Bf)B(zl)]lck,l(m)ﬂ(z)éﬂkfl(dz,d$/>>\W(dy)
yec([o, 2

X e

By a similar computation, we get

< / Lo, 2n)8 (2)Q@mi—1(dz, da’) < m_1 (Cre1(2A)°) .
RQ
For all t5 such that |mg(t2) — mi_1] < 1A, for x € Cr_1(2A), 2’ € Ck(A,tg)E,

|ty — 2Ba(p2az + ')
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t
2 + P21

= |—2Boa’ +
2 p21+1  p21+1

ﬁg — 232]72,1.%'

= T4 o — 2Bspo 1|my(te) — mg—1| — 2Baps 1|mi—1 — x|

16
— (24 —)Bape 0 T"A L (4.33)

using Equation (4.4)) >
(nsing Baquation (14)) = 1==— ~ (24

So
E(mi (Cr(A))) < P(jms — my_1] > 07" A) + E(mi—1(Cr-1(24)°))
+ 0102C) (h,T)

(z,z’)ER? /(tl,tz)ERZ : |t2—232(102,1@4-1’)\>ﬁ—(2+%)A9lftBZP2,1

66M\m—m’|+r(3M+3Mz/2)+4M2(1,—1)n*1(1,—1)T

1 t P21t 14+p2, 2
5 €_W< ﬁ_ 12911,12 _2A2p1'1l|_4M‘ 191,211 |)+
1 _ otz — 2 ~
y e—m(hz 2B3(p213+2")] 4M)+dt1dt2Q7rk71(d:c,dz/).
We have, for all z > 0,
PWVoor>z) = P( sup Vo— inf V,>uzx)
s€[0,27] s€[0,27]
< P(sup Vi>z/2)+P(— inf Vi>ux/2)
s€[0,27] s€[0,27]

= AP(Var > z/2)

And so, we can bound (for all z)
P(V(k—2)+r,kr > :L') < 2]P)(2|W2T| > SC), (434)

P(W(k72)+7',k7' Z ,T) S 2P(2|W27—| Z ,T) . (435)

So (with the constant C' defined in Equation (4.21)), using the inequality
+o0 exp (f%) o exp (f%)
Vz >0, dt <

2 V2mo? V21

and using Equation (4.21), as 017*A > 3|mg| + 3CM T, we get

: (4.36)

01— A

IP’(|mk - mk_1| > el_bA) 4P (2 X |W27-| > —)

IN

6C

1—LA
4P (|W1| > 97)
120271

96C\/7 1/ 607 A N\
< vV (== . .
S TAVE exp( 5 (120@) ) (4.37)

For all z, 2/, we have

/(751,752)611%2 : \t2*QBz(P2,1I+1’)\>ﬁ*(ﬁr%ﬁ)Aelﬂszm

_ 1 t; P2ty _ 1+P2,1D2
e 4A9 <|P1,1 P1,1 2A2p1711‘ 4]\/1| P1,1 +
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« 674é2(|t2 2B2(p2 1I+CE | 41\/[)+dt1dt2

/
(change of variables : ( i,l ) =P HT ( il ))
2 2

14+p21 )2
t 72A2p1 1T 41\/[| > D
e 4A2 (| | P1,1 +

/(tivtlz)GRz :[th—2B2 (p2,1x+a’)

¢ \>71+§2 ;= (2+32) 201"t Bapa s

X 674%2(“ —2B3(p2, 1+’ | 4IL[)

+P1,1 dt/ dt2
1
(by (4.36)) < (SMM + 2\/7TA2)
P11

X ;(ZQ) exp (_%Bgd(A)Q) p11. (4.38)

We have, by Lemma 2.1 and Equation (4.4)

/ 66M|z—z/|+r(3M+3Mz/2)+4M2(1,—1)n*1(1,—1)TQvﬂ_k_1 (dac dx’)
(z,z")ER?

< / L. (-M + M|z —2'| +7 (zM + §M2> + 40M2> da'my,_1 (dx)
- (z,z')eR2 V 27T P 2T 2 2 k-l

49 7 3 40M2
< 2exp <?M2T +7 <§M + 5M2> + > . (4.39)

h

So we have

E(mk(Cr(A)®)) < E(mp—1(Cr1(2A)8)) + 96CVT <1< o1t A > )

91— LA\/_ m
1+ oD
+ 8Mﬂ+2\/w—Az Cl(h T)oroapra g~
. d(A)
. 7 40M?
———d(A)? +26M*7 + -TM ‘
xexp( 4Bgd( )° +26 7‘+2T + h )

Then, by recurrence,

k—1

E(m (Cr(A ) )) < E(mo(Co(28A)%)) + Z

9607 oL (Qiel—LA)Q
20— Ar 2 \12Ccv2r

1 8B 26 M2 7+ I M+40M?/h
<8MM + 2\/7rA2) Ci(h,T)o109p1 1 2¢ - exp <

1 .
. ——d(2'A)?
p171 d(QlA) 432 ( ) >
We have
1 n 1 n 1 n < 1 n 1 n 1
A(A) T dRA) T dEA) T T dA) T ) T g(a) 424 (ks - (24 1) Bap 1)
1
+ + ..
d(A) + 4A (1+p ( —|— )ngg 191 L)
< 2 " 1 < 3
- AR A (1+p2 = — (2+ 32) Bapa,1 01~ L) — d(A)
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E(mi(Cu(A)F)) < E(mo(Co(2 A1) + ooV ( : ( s ))

exp| —= | ——=—
o—ayz P\ T2 \acver
1
+ (8M| + p2,1| + 2\/7T—Ag> C{(h’7_)0_10_2p1,1832626M2T+%7—]\/1+4O]\/12/h
P11
3 1
— ——d(A)?) .
< (-2
And we can conclude because of Hypothesis 2. O

Corollary 4.6. We suppose that 7y € P(R) is such that mo and 7}, are comparable. We suppose
that (m})i>0 is defined by Equation (1.8). Under the assumption of the previous Lemma, we have,
for allk >0,

E(m}r (Ci(8)%) < T(A)eh(roms).

Proof. By Equations (3.2), (3.3), (3.8), we have, for all k,

h(r)r, Tkr) < h(m), o) - (4.40)
So, by Equation (3.4),
E(mh, (Cr(A)F) < E("m0om)m, (Cr(A)F))
< T(A)ehmom)

O

_ The next result tells us that Ry, and EkA (k > 1) are close in some sense (recall that 7}, =
Bty 1y,)

Proposition 4.7. We suppose that A satisfies the assumption of the previous Lemma (Equation
(4.80)). We suppose that (7], )n>0 satisfies the assumptions of the above Corollary. For all k > 1,
we have A )

E(|[mhr — R (n(_1),)[l) X T(A)e2rmomo).,

Proof. We define measures on R? (remember Equation (4.31)):

n= éﬂ-zkfl)r
= QLo a1y (dz,dz’) + (Lo, (a) (@) + Lo,y (@) QLo (a)T(k—1), ) (dz, da’)

' (dz, dz’) = Loy a) (@)Q(Lo, _, (a)T(—1)- ) (dw, dz’)
+ 7 1yr (Ce1 (D)) (D, A) gy (o) (2 )dada

where (by a slight abuse of notation)

Q(]]'Ckfl(A)ﬂ-Ek—l)‘r)(d‘r7 dl'/) = ]]'Ck—l(A) (1">7TE]€—1)T (dZE)Q(SC, dl'/) ?

Qe (apm sy )(dr,da’) = 1o a0 (@) ]y, (d2)Q(x, da’)
By the definition of R® (Equation (4.28)) and computing as in [OR05], p. 433 (or as in [Oud00],
p.66), we get
/ B4 / /
[Ther — Bi (M) )l = Mo @ = o ||

/ ~
(using Equation (3.12)) < (@) X [Ty aye(@)Q(Lo, _, (a)T(5—1), ) (dz, dz’)

2 =
B /R2 <Q7T;471awk>
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+Q(]1Ck71(A)C7TEk,1)T)(d.T, dac')
+7TE]€*1)T (Cr—1 (A)E)fl (D, A)]lck(A)(:C/)d:Cd:C/] .

We have, by Lemma 2.2,

E(Lp,01-ca)(Imr — mr_1])

2D 1 o) @ L a1y ) Yo )
R? <Qﬂ-;g_1a 1/}k>

; Yk—2)r:(k—1)r
:/ 1o 1oy (i (BYO7) — gy (B #7007 ) )
yo:~ €C([0,7])

’l/)(yOCT)Z"z/) nA / ’
< = Lo, a0 (@) (Lo, () Th—1yr) (A, )
w2 (Qrl_ 0(Yorr, ) AP BT

X (/ @W(k—l)r(d%dU/W(yOmU,U/)) /\W(dyo:'r)
R2
(using Equations (3.4), (4.40))

’ . Yk _—2)yri(k—1)r

<o) [ s (e (B — i (B
yo:- €C([0,7])
x/ 1/)(y0:.r,z,z/)]lck(Anyo:r)n(z/)lckil(A)(x)@ﬂk,l(dz,d:c’))\W(dyO;T)
R2

(using (4.32), (4.33), (4.38), (4.39) and the fact that Cr_1(A) C Cr_1(24A))
< T(A>€2h(7rg,7r6) )

We have, in the same way,

W) s , ,
E = 1 da. da')| Yoo

< chmomy) / B Yoirs 52"y (e () Q1) (A, o’V (dyorr)
yU:TEC([OvT]) R2

= "ol (Ceea(A)°)
z,x'
E (/ ipk/(i) X 1y (Che1 (A1 (Di, A) L, (a, 51y (&) drda! Yo:(k1)f>
R2 <Q7Tk71awk>

< ehlmomo) / V(o @2 )17 (Chor (A)0)& (ma(BY™7) = my 1, A)
yO:TGC([OvT]) R2

and

X Lo, (a,py) (@) dzdz \w (dyo.-)
< €h(7r°’w{’)772k—1)r(ck—1(A)C) ‘

So, using Equation (4.37) and Corollary 4.6, we get the result.

5 New formula for the truncated filter

We have reduced the problem to a discrete-time problem. For all n, 7, is the marginal of a

Feynman-Kac sequence based on the transition @ and the potentials (1 )r>1 (see Equations (3.6),
(3.7), (3.8), Section 3.1 for the definition of @, Section 3.2 for the definition of a Feynman-Kac
sequence). As in [OR05], we restrict the state space to the compacts (Ci(A))g>0. If @ restricted
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to compacts was mixing, then, due to Proposition 3.1 (and to the remark below Equation (3.10)),
74 could be viewed as the law at time n of a Markov chain with contracting Markov kernels ; and
so Lemma 1.4 would be relatively easy to prove. By construction, @ restricted to some compacts
cannot be mixing. This is an effect of the fact that the observations are continuous in time.

The purpose of this Section is to find another representation of the sequence (mpr)n>0 as a
Feynman-Kac sequence, in such a way that the underlying Markov operators would be mixing,
when restricted to compacts. Looking at Equation (3.9), we see that a Feynman-Kac sequence is
a result of the deformation of a measure on trajectories (we weight the trajectories with potentials
(¥r)k>1)- The main idea of the following is to incorporate the deformations delicately (in two
steps), in order to retain something of the mixing property of the operator @) (which is mixing
when restricted to compacts).

In this Section, we work with a fixed observation (Ys)s>0 = (Ys)s>0-

5.1 Filter based on partial information
We define, for all z = (21,22), ' = (2}, 75) in R%, k in N*, n in N*, n > k, (recall that ¢% is
defined in Equation (4.24) and that &, & are defnied in (4.26), (4.27))
. 1 / A I\O)2 d / if Cr_o(A
fOI‘ k Z 2, RkA(SC,dZL'/) _ Ck—l(A)(‘T/l)ka(xl)Q (‘T’ x ) ) 1 T2 E. k 2( )’ (51)
Loy (ay (@)Y ()61 (D1, A)dx’  otherwise ,

R5,RS, 5. RS, ,(x,R?) ifk<n-—1,

A —
"/)2n|2k(1'> - {1 ifk=n,

(so 1/)2An|2k (z) does not depend on x1),

w2n\2k+2(z )RA d / if b < -1
Somjor(@,da’) = ¢ Vonpr(@ 2hsa(0d2) iFR<n =1,

dx’ fk=n-1.

These notations come from [DGO01]. As @ has a density with respect to the Lebesgue measure on R,
so has SzAn|2k (with respect to the Lebesgue measure on R?). We write (z,2') € E? — SQAnl%(ac, x')
for this density We fix n in N* in the rest of this subsection and in the following subsection. We

A (p)
define SQn\Qk’ ¢2n|§k’

except we replace 1/)2n by 1. For all D > 0, we set

for 0 < k < n, with the same formulas used above to define 5’2"‘%, w2n|2k,

_ 51 (Da A)
e(D,A) = m ) (5.3)
and, for all k,
ex = €(Dg, A).

Lemma 5.1. Fork <n—1, S5 2k i & Markov operator and S5 ok 08 (1— €34.41)-contracting for

the total variation norm, S, ‘2,2 is a Markov operator and 52n|(2plz is (1

total variation norm

— €31,41)-contracting for the

Proof. We write the proof only for the kernels S2, it would be very similar for the kernels S é*(p)
By Proposition 3.1, S |2k is a Markov operator. We set, for all kK > 1, 1, 22 in R,

>\k (d:Cl, d:L'Q) = ]]-Ck,l(A)(zl)]]-Ck(A)(z2)"/)k (:L'l, Z'Q)Q(:Cl, :L'Q)dl'ldl'g .

By Lemma 2.1, we have, for all 1, @9, 21, 20 in R, & > 2 (we use here the second line of Equation

(5.1))
E1(Dp—1, AN (dz1,dzo) < R (w1, 20, d21,d22) < E2(Dy—1, A) N (dz1,dzs) . (5.4)
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So ]%,CA is \/€x_1-mixing. So, for all z in R?, all k such that 0 < k <n —1 (the convention being

that, if k =n — 1, (RS, ... RSy, ,)(y,dz) = 6,(d2))

1/12An\2k (‘r) = / (§2An s '§2Ak+4)(y’ dz)égk—ia (xa dy)
R2 xR2
< /]R . (RS, .. 'E%MA)(%dz)§2(D2k+17A)/\2k+2(dy)7
2>< 2

and, for 2’ in R, B
R2Ak+2 (‘rv dm,) > & (D2k+1, A)dogpto (dl‘/) ,

S0 _
E1(Dags1, D) Ry g0 (@, R2) Moy (da)

S8 (x, da’) > s . 5.5
a2 (7> ) &(D2ir1,8) [, RE 4o (4, R) Aakra(dy) (5:5)

In the same way as above, we can also obtain
SéAn|2k (.CC, dl'/) < 52 (D2k+1a A) x R2k+4z2n (xla R2)/\2k+2 (dl'/) (56)

" &(Dws+1,A) [, Rokraon (4, R2) Aojya (dy)

This implies that S2An‘2k is (1 — €3,,,)-contracting for the total variation norm (see Subsection

3.1). One can also use Proposition 3.1 to prove this result. We did it this way because we will
re-use Equations (5.5), (5.6). O

We set Zj to be of the form Zy = (0, Z(()2)), with Z(()2) a random variable. We set (Zag)o<k<n tO
be a non-homogeneous Markov chain with kernels SzAn\o’ S;‘np, cee SgAn|2n72 (for kin {1,2,...,n},

the law of Zs; knowing Zog_o is SQAn‘Qki2(Z2k_2, .)). For Zsi being a element of this chain, we

denote by Zéi) and Zéi) its first and second component respectively. Recalling Proposition 3.1

(or Proposition 3.1, p. 428 in [OR05], or similar results in [DGO1]), if the law of Zj is chosen
2)

properly, then Zé
this Subsection.
Remark 5.2. We have that, for all £ > 1, Zéi) takes values in Ca(A) and Zéi) takes values in
Cor—1(A).

has the same law as Xo, knowing Y:.27, ..., Y(2,—1)r:2n+, hence the title of

We set (Z8P)o<k<n to be a non-homogeneous Markov chain with Z”) = Z, and with kernel
ga:p)  gA.(p) g2 ()
2n]0 2 P2n|2 0 0 Ponj2n—2-

We set Uspy1 = (Zéi),ZQ(,?H) for k € {0,1,...,n — 1} and UQ(Tll)Jr1 = 2(31) We set UQ(]ZZH =

(Z@ 7P for k € {0,1,2,...,n— 1}.

5.2 New Markov chain

Lemma 5.3. The sequence (Uy,Us, ..., Usp_1, UQ(;)JA) is a non-homogeneous Markov chain. The

sequence (Ul(p), Uép), cee Uéfllg, Uéﬁll) is a non-homogeneous Markov chain.

If Zéz) is of law g, then the law of Uj is given by, for all (z,2’) in R?,

P(U; € (dz,dz")) :/ RSZAn\O((O’Z)’ (d2',dz))p(dz) . (5.7)
S
We write S2Unl2k+1 for the transition kernel between Usg—1 and Usgqq (for k=1,2,...,n — 1)
and Sgn|2n+1 for the transition between Us,_1 and UQ(,ll)_H. We write Séi)lgk-i-l for the transition
kernel between U2(Z)|2k—1 and UQ(Z)‘%H (for k=1,2,...,n—1)
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Proof. We write the proof ounly for (Uy,Us,...,Us,—1, UQ(Tll)H)7 it would be very similar for the
sequence (Ul(p) U( ). Uéz) 1) Let ¢ be a test function (in C;"(R?)). For k € {1,...,n—1}, we
have (for 282), zél), zé? in R)

E(p(Uas1)|U1 = (257,280, o Usimr = (2575, 25))) =

2 1) (2 2 2 1 1
E(p (Zék)azékw”z )= ((J : Zék) 2 = Zék) 2’Z2(k) = 2 )) =
2) (1 2 1
E(p (ZQ(k)’ZQk)JrQ)|Z2 Zék) Q’Z(k) = Zék))

as Sﬁlukd(zéi)d, zéi)d, .,.) does not depend on zéi)d So the quantity above is equal to, for any

z e Cgk_l(A),

2 1 2
2 (1 S2An\2k 2((272513—2) (Zék)’zék)))
e(2a1 2k+2)

f]R on|2k— 2((2725?—2) (Zék)’ ))dz’

1) (2 1 2 2 2), (1
(/ S2n|2k((zék)7zék)) (Zék)-i-Q’Zék)-i-Q))d ék)+2> dzé )dzék)-ﬂ

A similar computation can be made for E(y ( n+1 NU1, ... Uzp—1). O

We set, for all &,

Bops; 1 A 2
€(D,A) =exp | — -+ — || =——+D
(D, 8) = exp < 2 T ar )\ Bo(l+pan)

A M M?
—Apar 3 (—2— D)3 (2L 20 58
(A2 )<Bz(1 +p2,1) ) < 2 4 ﬂ (58)

€, = € (|mr — mi—1],A).

Proposition 5.4. For anyk = 1,2,...,n, the Markov kernel S2Unl2k+1 is (€2),_1 (€h;.)%)-contracting.

For any k=1,2,...,n—1, the Markov kernel Sén)‘QkJrl is is (€351 (€hy.)?)-contracting.

Before going into the proof of the above Proposition, we need the following technical result.
We are interested in the bounds appearing in Lemma 4.4. We suppose that t1, t2, x, z in R are
fixed. To simplify the computations, we introduce the following notations:

(&)= ().

2M (|1 + p21])
P11 '

M, =

Lemma 5.5. Suppose that, for some D > 0,
|z — 2| < D,

|2Ba(p12 + 1)z —t5| < A
then

1
exp (= g s = 2Bl + 020 = Bagh, D° — 1 DA )
1
< exp (E(té - 232(]72,1:0 + Z))Q)

1
S exp <4—BQ(t/2 — 232(])271 + 1)2)2 +p211DA> .
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Proof. We have

1
exp (E(té — 2Bs(p2,1 + z))2)
1
= exp <E(t/2 — QBQ(pQJ —+ 1)2) —+ 2B2p271(2’ — ZL'>>2>
2
1
< exp (_E(té —2B5(pa.1 + 1)2)* — Baps 1 (2 — ) + |pa,1(z — )| x [ty — 2Ba(p2 + 1)Z|)

1
< exp (—E(té — 2B5(pa,1 + 1)2)? +P271DA)

and
1 / 2
exp —E(tz —2Bs(p2,17 + 2))
1
> exp (E(té —2Bs(pa,1 + 1)2)* — Bapi 1 (2 — 2)% — p21(z — x)| X [ty — 2Ba(p21 + 1)Z|>
1
Z exp (E(té — 2B2(p211 + 1)2’)2 — B2p§71D2 pgleA)
2

O

Proof of Proposition 5.4. We write the proof in the case k € {1,2,...,n—1} and for SQUn|2k+1 (the

other cases being very similar). Let ¢ be a test function (in C;"(R)). By Remark 5.2, we have that

U2(,2€)_1 takes its values in Cax—1(A). We write, for any ch)—z € R, zéi) € Cor—1(A), z € R (like in
the proof of Lemma 5.3)

E(p(Uap1)|Uze-1 = (250 5, 28)) =
(2) () _(2)

/ ECIRONS Somjan—a((2, 201_0), (231, 231 )

2k » Z2k42 2 1
R? f]R S?mzkfz((z’ Zék)—2>’ (Zék)v 2'))dz’'

A 1 (2 1) 2) 2) ), (1
x (/R S2n|2k((22k)’ Zék ), (Z§k+2’ Z§k+2>d’zék+2> dZQk)dZQk)JrQ 2
(by Equations (5.5), (5.6))
2) (1
/}R2 ‘P(zék)’ Zék)+2>€§k—1

> 1) (2 1 2 1) (@2 1) (2
% R2An:2k+2((zék)a Zék))v R2)]]'C2k—1(A) (Zék))]lC%(A) (Zék)>w2k(zék)’ Zék)>Q(Z£k)’ Zék)>

S Bona (25 27) RO L,y a9 (253 Lo ) (2o (257, ) Q=35 #)d=

1 2 1 2 2 2 1
(Sl I, A A2 D) e, (59)

From Lemma 2.2 and using the same kind of computation as in the proof of Lemma 4.4 and

Equation (4.15), we get, for all z9; such that zéi) € O (A),

(1) (2) M2
(1) _(2) —2M|zy,) —z5, | —7( M+ 25—
VYor 29y, s 293, ) = 0102€ 2Tk ( 2 )
(1)\2 (2)\2 (1) _(2) Yek—1)r:(2k)r _(1) Yk—1)r:(2k)r _(2) Y(2k—1)7:(2k) T
X eXp (7/12(22,€ )" — Ba(2zyy )" + Crzyy 25y, + AJ 2oy, + By 2oy, + C
Y(2k—1)7:(2k) 7 Y(2k—1)7:(2k) T 2
_ —2M|25) =5 |- (M+2£2) 1 (A P21 B4 ©)
= 0q09€ xexp | —— — — 2A2p1,125),
44, D11 P1,1
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1

2
_ (Bf(Zk—l)T:(Qk)T _ 232(172 1z§k) (i))) n Cg(Zk—l)T:(Zk)T
4B,

L v
(2k—1)7:(2k)T Y(2k—1)1:(2k)T -1 Y(@2k—1)7:(2k)T Yer—1)r:(2k)T\T
+- (A7 , By JET (A4 , By )

—2M )~y CRITERT (M)

> (by Lemma 5.5) oy02e 2K %2k
1 Ayl!(”*l)“(%)* Do le(Zk—nr:(zk)T (1)> 2
X exp |——— _ be oA ;
p 4142 ( P11 D11 2P1,1%9;,
1 o )
4B, (Bf(% T = 2Ba(pa + l)zéi)) o ng% (Zék) - Zéi)) —Ap2; |Z2k - Z2k)|

Ly
(2k—1)7:(2k)T Y(2k—1)1:(2k)T -1 Y@2k—1)7:(2k)T Yerk—1)r:(2k)T\T
+- (44 , By )T (A , By ) -

We set,

2
1 Ay(zk—l)r:@k)r P2 1By(2k—1)ﬂ-:(2k2)ﬂ-
() =exp | ——7 ( ! - = - 2A2p1,1$) ;
Qk( z) = 44, P11 D11

1 . 2
) (2) = exp | —— (BY®77 —2By(pyy + 1)z)
4By

In the same way as above:

1 @ oM |2y =25 |47 (M+ 242 ) 40, BT ERT (1) 1)y (2) 0 (2)
Vor(z9y » 29y ) < 01026 T ( ) Vo (291 J¥oy (295
XeXp (Ap2,1|212 sz)l 4= (Ay(zk 1)7:(2k)T By(2k 1)7: (Zk)ﬂ-) —1(A111(2k71)q—:(2k)q— , Bi}(Qk*l)T:(Zk)T )T) .

From Lemma 2.1, we get for all zé}c) € Cor—1(A), zéi) € Cor(A)

1 1 A 2 A M M?
exp(-2 (B py) M B D) (MM
V2nT Xp( 27 <B2(1 +p2,1) 2k> <B2(1 + p2,1) 2k> T< 2 2 )>
1 A Mt
< QY. 24y < S s P (M (7 +D2k) S )

Looking back at (5.9), we get

E(p(Uzit1)|Unk-1 = (255, 281)) =
ing 2 1 2 2
. R s (251 250) R Loy, o) (25 Do) (25053 (5)
= 1 2
S B o (25 2) . R Ly, () (285 Ly () (250003 ()2
1 2 2 1
(/ S2n|2k sz ’Z2k)) (Zék)+2’ ék)+2)d ék)+2) dzék)d ék)JrQ

As RQn:2k+2((Z£}C),Z/),.) and S@l‘%((zé?, "),.) do not depend on z( ) for any z', we get that
Sgn\QkJrl is (1 — €2;,_,(eh;)?)-contracting (remember Section 3.1).

2
/R2 Sﬁ(zék)v%k)m)f%k 1 (€3,

5.3 New representation

Proposition 5.6. Let n > 1. If we suppose that Z(()2) s of law 1/)2An|0(0, .) ® w, then, for all test
function ¢ (in C; (R)),

E(‘P(UQ(;) 1) H1§i§n ¢§,1(U2i,1)) A—A N
E(ﬁlgign Y& (Uzi1)) (Ranzn 11 (u)) (). (5.10)
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If we suppose that ZSQ) s of law wsn’l(g)(O, .) ® i1, then, for all test function ¢ (in C; (R)),

E(o(UL D) Tcicn U551 (US))
E(IT1cicn V51 (US))

Remark 5.7. Recall that we are working with a fixed observation (Ys)s>0 = (ys)s>0. The above

- (E%HEZAH .- ﬁf(u)) () (5.11)

—A—=A —A
Proposition tells that, for all n, R,, R,,_; ... R; (1) can be written as the n-th term of a Feynman-
Kac sequence based on mixing kernels (by Proposition 5.4). We can apply Proposition 3.1 to
this Feynman-Kac sequence. This representation and this result are also true for a measure

E$§$71 . .RkA(n) for any k < n, n probability measure on R.

Proof. We write the proof only for Equation (5.10). The computation leading to Equation (5.11)
would be very similar. It would simplify nicely because we replace ¥4, by 1 in the definition of

the s;‘,jf?,, w@fﬁ}.

We have, for any test function ¢ (in C;"(R)),

E(p(Usy) T w5 1(Uzim1)) =

1<i<n

/ ez 11 [SQAnIQk(z%aZ2k+2)w§lc+1(zéi)’zéi)+2)}
Rx (R2)n

0<k<n—1

So(dzg") (W 10(0,.) @ ) (d2 )z .. dzoy =

A
(2) w?n\2k+2(z2k+2) SA A (2) (1)
©o(23,)) ——————R5 o (22k, dzok2) V51 (21, 2o s)
/RX(RZ)" ’ Oﬁgl—l [ 1/}2An\2k(22k) 2 TRk ok

x 00 (dz5") (10(0,.) @ p)(dz§?)dzs . . dza, =

2 o 2 1
[ el T [Rateandsaa)idin (5 00)]
Rx (R2)™

0<k<n—1

1 (1) @)
X ——————0o(dzy p(dzy ' )dza . . . dzoy =
U(ngn‘o(Ov )) 0 0

2 1 2 2 1 ~
/]R(R2) ‘P(Zén)) H {w§c+2('z§k)+2aZék)JrQ)ngkJrl(zék)’Zék)JrQ)QQ(ZQk’dz2k+2)}
< (R2)7

0<k<n—1

1 (1) @)
X ——————do(dzg " )p(dzy ™ )dza . . . dzay ,
U(ngn‘o(Ov )) 0 0

which proves the desired result (recall Equation (3.11)). O

6 Stability results

In this section, the observations are non longer fixed.

6.1 Stability of the truncated filter

We show here that a product of coefficients 7. decays geometrically in expectation (see the Lemma
below). These coefficients are the contraction coefficients of the operators SV, SU:(P) which are
related to the truncated filter through Proposition 5.6. This is why we say that the result below
means the stability of the truncated filter.

We set, for all t in R, k> 1,

T(t, A) =1 — (¢'(t, A)e(t, A))?,
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e =1— (ehen_1)>.

ooy 10 L
L) = Lym p( 2(120@))’

L > 3lmo| +3CM7 and &(L) <

We set, for L > 0,

We fix L > 0 such that

1=

We set

(L, A) +/7(L, A)? + 4a(L)(1 — 7(L, A))
5 .

p:

Lemma 6.1. For 0 < k <n—1, we have

E(Tont17on—1 - - Toks 3 Fo:2k41)r) < (1 -

(L, A)2¢(L, A)2) (=]
; ,

(n—k—2)4 ~|

(L, A)2¢(L, A)2) (=
2

E(7onTan—2 - . - Tak+2| Fo:2kr) < (1 -

Proof. We only write the proof of the second Equation above (the proof of the other equation is
very similar). We take L > 0 and we set

0 _ T(L, A) if |7’I’L2]€ — mgk_1| < L and |m2k_1 - mgk_2| <L
2k 1 otherwise.

For all k, we have 7o, < 0op,. For any k > 1, [my —my_1] is a function of Y(,_oy, r.kr. So, for all
k, oy is a function of Y(o_3) r.on, We fix £ > 0 and we define, for n > 0,

- E(@Qnogn,Q e 92k+2|f2k7> if k& S n—1 5
€2n|2k+2 = .
1 otherwise.
We suppose now that n > k 4+ 2. We then have
eanj2kt2 = E(E(O2n02n 2| F2n—3)r)02n—a ... 02y 2| Forr)

and

E(02n021—2|F2n—3)r)
= E(02n—2(1 — Ljo,0)(D2n)Lj0,2)(D2n-1)) + 7(L, A)b2n—2110,1)(D2n) Lj0,2)(D2n—1)F(2n—3)r)
= E(02—27(L, A) + (1 — 7(L, A))02n,—2(1 — Lo,y (D2n)Lo,1)(D2n—1))|F(2n—3)7)
< 7(L, A)E(O2n—2|F2n-3)7) + (1 = 7(L, A))[P(|m2n — man—1] > L|F(2n_3)r)
+ P(|lman—1 — man—2| > L|Fan_3)7)] -

Using Equation (4.21), we get
E(02102n—2|F2n—3)-) < 7(L, A)E (92n 2| F(2n—3)r)

1 L
+ (1 _T(L A)) ( (CV 2n—2)T, 2nr = |]:(2n 3) ) +P (CW 2n—2)T, 2n‘r(1 + 9) > _|]:(2n 3)7’))

3
1
(1 T(L A)) ( (CV(Qn 3)1,(2n— 1)7- = |f(2n 3)T> +P (CW(Qn 3)7,(2n— 1)7’(1 + 9) |f(2n 3)T>)

L
< 7(L, A)E(O2n—2|Fon—3)r) +4(1 — 7(L, A))P (CVOQT > g>
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(like in Equations (4.34), (4.35))
L
7(Ly A)E(O2n—2| Fan—3)7) + 8(1 — 7(L, A))P (20|W27| > )

(using Equation (4.36))
< T(La A)E(GQn—2|f(2n73)7) + (1 - T(L’ A))&(L) :

The constant p is the positive root of the polynomial X? — 7(L, A)X — (1 — 7(L, A))a(L). So we
have

1>p=1(L,A)+ %(1 —7(L,A))a(L) > 7(L,A) + (1 —7(L,A))a(L) .

So, we have
eanjzit2 < T(L, A)ean_gjaks2 + (1 — 7(L, A))a(L)egn—_aj2k+2 < p X SUP(€27 22612, C2n—a|2k+2) -
Suppose now that k is fixed. We have
€an+2)2k+2 < 1, €apqapopt2 < 1.

So, by recurrence,

|'(n7k—2)+‘|
€ml2kt2 < P 7
As a(L) < 1/4, we have
2/ 2
p< %( (L,A) + /7(L, A2 + 1 — (L, A)) < 7@’2)“ —1- (G(L’A);(L’A))

O

Proof of Lemma 1.4. We write the proof in the case where n and k are even. If k was even and n
was odd, we would have to use the operators S_(_’_’)U. If k was odd, the proof would be very similar
but would require to introduce new and heavy notations.

By Proposition 5.6, Remark 5.7 and Equation (5.7), we have, for all x in P(R) and all test
function ¢ in G (R),

(n—k)/2
—A—=A —A
(BeF s T ) @ o [ | TT oo ()
=1

(n—k—2)/2
U
X H Sptkt2it1 (Ukt2i—1, dUkt2i41)

X SY 1 (e dull)) (/ 530, ul))), (du,&?hdw)(sk(o,) W(@,),
z'eR

where we integrate over u,(cl_zl ER, Ups1, Upt3, ..., Un_1 € RZ, uSJ)rl €R.
By Proposition 5.4, we know that S7[L]|k+21+1 is (€24 9i_1 (€ 10;)?)-mixing for all ¢ in {1,2,...,1+

(n—k)/2}. We now apply Proposition 3.1 with the SY, k2041 playing the roles of the . and the

wk+2i_1 playing the roles of the ¥ . By Equations (3.12), (3.13), we then have, for all x4 and p’
in P(R),

—A—A —A —A—=A —A
HRn Rnfl e RkJrl(M) - Rn Rnfl te RkJrl(MI)

D 193 (0,
s H (1= €ynim1(€hani)?) x 2inf <1, !
i=1

) e =1, (0, w’l)_

6k+1(€k+2)2
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By Equations (5.4), (3.12), (3.13), we have

16840, o= 0850 ol < 2int (1, W@ e
e e B (e (0,))
o
< 2inf (1, M) .
€k+1
From which we get the result. |

6.2 Approximation of the optimal filter by the truncated filter
We recall that “=<” is defined in Definition 2.5.
A

Proof of Proposition 1.5. We write the proof only for Equation (1.4), the proof for Equation (1.5)
being very similar. We have

A —A —A —A —A
|7Tnr = 7o | < [Tnr = Ry (M)l + D W Rpgs (Thr) = Bt (B (me—nye )l - (6.2)

1<k<n—1

Let us fix k € {1,2,...,n—1}. From Lemma 1.4, we get

—A —A —A
E(HRn:k-i—l(ﬂ-kT) - Rn:k-l—l(Rk (ﬂ-(kfl)‘r))H)

(6;4:+2 )26i+1

—A
T R —1)7
<E|E I I (1- (6i+2i71(6;c+2i)2)) ]'—(k+2)r X 2inf (17 I . (W(k D )”> )

3<i<[ 5%
(6.3)

with the convention that a product over indexes in the null set is equal to one. From Lemma 6.1,
we get

R - = € 2./ 2 (%(L"g’w—th]
E(HRS:JCH(MT) - RikH(RkA(W(kq)T))H) < <1 _ (e(L,A) ‘ (L,A)) )

—A
T R —1)7
x 2 | inf | 1, I : ’“2(71(’“ Il (6.4)
(Ek+2) € k+1
As in [ORO05], p. 434, we can bound

—A —A
nT_R —1)7 nT_R —1)7 2
m%Lw MMHM>SMOT£%%ﬁ+MGJF kwwmm>wm)

(624-2)26%4-1 6%4—2) €kr1 T(A)

We have, if A satisfies the assumption of Proposition 4.7,

. ||7Tk7— 7§A(7T(k—1)7')”2
E (mf (1, ;(A) ))

—A —A
_ g (e = By (rgemno)l? (ks = By (o)1
T(A) 0.1) T(A)

—A
7T — Ry, (T(r—1)r)|I?
+ P ( ) > 1

= Bl — B (m-y))
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(using Prop. 4.7) X /T(A). (6.6)

We look now at the term inf(l,T(A)(eQHQ)_‘*e,;fl). Using Equations (4.4), (4.22), (4.23),
(7.12), (7.17), (7.18), (7.20) and the remarks below Equation (4.4), we have, for all k,

2
h71+LTL7% 1 T%*thfbA
T(A) = ——exp | -5 [ —F2—
BE—=a = 2( 12012

he26M2 T+ T +40M? /h
A93/2 exp

+ (M + \/E) Ld(A)Q) Cl(h,7) + e O | (6.7)

4By

and using Equations (4.26), (4.27), (5.3),

2
2 A
D+ —=2 ) ((DB(1+ ,)) > Gy
G(D,A)_l = exp ( Ba(1+p2,1) B 2(14p2,1) ) | 62M<D+52(1+;72,1))+(7’+7)M

27 27
2DA A 2 i . S—
exp (732(1+P2,1) +2M (D + B2(1+P2,1)) T (T + ?) M) iD=z Ba2(1+p2,1)”
_ Dy N 2 ) (6.8)
exp (%4,2]\4 (Der)Jr(TJr%) M) otherwise .

and using Equation (5.8),

1 A 2
Bop? — ——+ D
< 22 ¥ 27) (Bz(l +p2,1) - )

et ron (o) ear (1 20)] o

(€ (D,A))™2 = exp

We note that the above expressions are nondecreasing functions of D. From Equation (4.21), we
get, for j=k+1, k+ 2.

D < C(TM + Vir—1)r,(k+2)r + 2Wh—1)r,(k2)7) - (6.10)

The variables V(5 _1)r, (k42)r and W _1)r, (k+2)- are independent and can be controlled as in Equa-
tions (4.34), (4.35). So we can bound

x
Ve € R, P(Vi-yr, (k+2)r + 2V h-1yr,(bt2)r 2 2) < 2P(2V037 2 5) < 4P(8|War | 2 @)

So, by Lemma 7.7,

E (inf (1, ﬁ)) < /;OO inf {1, T(A)e(CTM + Cz,A)~®

ZZ
8exp (5 )
V21 x 19271

XEI(C’T’M+CZ,A)_4} dz. (6.11)

We have

8 exp (_ 2(129227))
CTM +Cz,A) 8 (CTM + Cz,A)™* d
(CTM + Oz, A)7€ (CTM +Cz,4) 9w < 1021

/(Wm,n—””)+€
0
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_8 _4
< 8¢ (7A ,A) ¢ (7A ,A)
Ba(1+pa1) Ba(1+p21)

20 A 2 ( MA ) ( 7_2) , ( A )2
N\ on) "Rl s ) 87t 5 | M+8B =
T (32(1 +p2,1)) Ba(1+p21) 92 2P2,1 Bal )

1+p21
A A M?
+8A 7) + 24 M (7) + 67 (M+ —):| . 6.12
b2 (32(1 +p21) Ba(1+p21) 2 (6.12)

From Subsection 2.5 (remember also Equation (4.3)), we get

1 h
p271 = O (5) y BQ 9_>—+>OO 5 . (613)

So there exists 79, such that, for 7 > 79,

= 8exp

(CB2(1+172 1) TM)Jr . _8 ' _4
log inf{1,T(A)e(CTM + Cz,A)"° x (CTM + Cz,A)™ "}
0

8 exp (_ 2(129227)) 1
dz| =< —inf ( —,Co ) A%. (6.14
V<1927 ) me (h 0) (6.14)

‘We now want to bound

—+o0

| o 2o (o)
inf{1, T(A)(COTM + Oz, A) 7 x €(CTM + C2, A) " —m=mare—dz
e T

A
(CBZ(1+P2,1) -TM +

A
Let us set, for z > (m — TM)+,

B(A, 2) = T(A)e(CTM 4+ C2z,A) 8 x €(CTM + Cz,A)~*

16(CTM + Cz)A ( A > < 72) >
=T(A +16M(CTM+Cz4+ ——— | +8 + =M
(4) xexp< TBy(1 + p2.1) T ? By(1+p21) ’

2

X exp

1 A
2Bop3 1 + — (7 +CTM + Cz)
( 2p2,1 7_) BQ(l +p211)

A M2

Forzg(

A
CHRm TM) , we define ®(A, z) by

+
D(A,2) =
16(CTM + Cz)A A i
16M | CrM ————— ) +38 - | M
T(A) > exp ( 7B (14 p2,1) 10 <CT ot Bs(1 +p2,1)> i <T i

(2B 1
2p2 1+ 7_

X exp

2
JrC’TMJrC’z)
B2 1+p21

M2
M M+ — .
+(4Ap21 + 12M) <le+p21 +Ct +Cz>+67< + > ﬂ

For a constant C' bigger than C, we define

A, z) to have the same expression as ®, except that
we replace C by C. We choose a

— 1
C= C,——= 6.15
s (€52 ) (.15
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so that z — ®(A, z) x exp(—22/(2 x 1927)) is nondecreasing in z. We have ®(A, z) — co when
z — +o0o and A is fixed. Let us set, for a fixed A,

2o = inf{z : ®(A,z2) > 1}.
There exists Ay > 0 and 71 > 0 such that for all 7 > 74,

T(A)e(CTM + ChVTA, A)=3¢ (CrM + ChV/7TA, A)~ R 0.
—400

Looking at the definition of ps 1 (Equation (4.3)) and at Equations (7.22), (7.20), we see that A
can be chosen as a function of h, which we denote by A1(h). And there exists Ao > 0 and 75 > 0
such that for all 7 > 7,

T(A)G(GTM +6}\2\/¥A, A)_Sﬁl(aTM +€)\2\/;A, A)_4 A_+> +o0.
—+00

So there exists Ay such that, for A bigger than A; and 7 bigger than sup(r, 72),

MVTA < 29 < MV/TA.

We can then bound, if 7 > sup(r,72) ,

22
8 exp (_ 2(1927))

Z2
zo' 86Xp (—W) Zo' _
inf(1,®(A, z)) dz < inf(1, ®(A, z))
0 27(1927) 0 27(1927)

— 8 exp (*LT)

< 2B(A, 2) 2(1927)

27(1927)
22
8 exp (_ 2(15)27))

= z

O 2n(1921)
2A2
8 exp ( 2)\x1192)

< doy/TA

27 27(1927)
So, if 7 > sup(7o, 71, 72), we get, using again Equation (4.36)
+oo
/ inf{1, T(A)e(CT>M + Cz,A)™8 x (CT*M + Cz,A)~*}
(Wq?zw)
2 P21 +

8 exp (_ 2(12927))
V21 x 19271

2 2

%o A e (i077) d too o (1027 J
< B(A, 2)—=dz + S—
o /0 ( )\/27r x 19271 20 V2w x 1927

A2A? 22
8exp (‘3174) ¢~ 2T

< Ao/TA + x V1927, (6.16
27 or(1027) | 20v2r (6.16)
and so
1 /m' F(L, T(A)e(CTM + Cz, A)~ x &(CTM + Cz, )~ il
X e —
og N inf(1, e(Ct z, e(Ct z, PSR T z

= A%nf<1,co,/\§> . (6.17)
Ac h
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In the remaining of the proof, we will suppose 7 > sup(7p, 71, 72). Looking at Equation (6.2),
we see that we can now bound all the terms on its right-hand side. We have

E(|[Tr — Ry (m(n_1)2) ) < T(A),

by Proposition 4.7. Recall, that, from Equations (6.7), (4.22), we get

log(T'(4)) = —AZinf <%,CO) . (6.18)

For k in {1,...,n — 1}, we have bounded

—A —A —A
E(HRn:kJrl(ﬂ-kA) - Rn:kJrl(Rk (ﬂ.(kfl)A) ‘

by
(1 L, AL, A)2) 51

<

n—k|_y4 -S4
*1-1) | or it (1 1Tkr — Ry (T(k—1)7)|| .
2 , (€;c+2)26i+1

And the last expectation can be bounded by the sum of the following expectations :

. ke — Ry (7eyr)|12
E (mf <1, YE(A) )) =VT(4A),

E (inf (1, #)) < exp (ElAQ inf <%, C’O,)\%>) for A > Ay(7),

3
€k+2) €k+1

for some constant B; and some function Ag, where the bounds come from Equations (6.6), (6.11),

(6.17) (we also use Lemma 2.6). The constant By above is universal and A, is continuous in 7.
So we get, for all A > Ag(7), using Equation (6.18),

3 (1 _ G(L,A)4e’(L,A)2) [4(12551-1), ]

~ 1
E(mr —721]) < exp (—m? inf (E,co,xf)) ‘

)

k>0

(for some universal constant C;) from which we get

suplog E(||mnr — 75| Aj, —log(e(L,A)é' (L, A)) — A% inf (%,Cg,)\?) .

nt
n>0

Looking at Equations (6.8), (6.9), we see there exists 73, such that, for 7 > 73,

1
suplog E(||m,, — 75 ||) = —AZinf (—,CO,)\%) .
n>0 A,c h

6.3 Stability of the optimal filter
Proof of Theorem 1.2. We decompose, for all n,

=A =A =A =A =A =A
1Tnr = Tor |l < Nl = Ry o By (o)l + Ry, - By (m0) — Ry, .o Ry (mo) |

—A =A
+ IR, - Ry (o) — |-

Let 7o be the parameter defined in Proposition 1.5. Recall that the operators (Ry,)n>0, (Rﬁ)nzo
depend on 7. Suppose that L is such that (as in Equation (6.1))

L > 3|mo| +3CM7 , a(L) <

e
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Then, as in Equation (6.4), we have, for all T € [7, 27c], for all n > 0,

—A  =A —A =A
E(|R, ... Ry (m) — R, ... Ry (m)|)

o (1o dLareLaR) -] o (1. 1m0

2 (€)%t

e(L, A)2e/ (L, A2 [3(131-4),]
o1 T

We have (using Equations (6.8), (6.9))

A? (BZP§,1 + %) A? P2,1A2
TB3(1+p21)?  B3(1+p21)?  Ba(l+p2i)

log(e(L, A)é'(L, A)) Ec - (

We now take a sequence A, = y/vlog(n), for some v > 0. By Lemma 2.6, 3, there exist a
constants b; and an integer ng such that, for all 7 € [T, 275], for n > ng,

<1 (e An)eQ’(L, An))2> [5(121-1),]
<o [3(51-9),

1 B2P% 1t 1 P21
x exp | —b A2 + T+ ’
g ( 1 (TBg(l +p2,1)?  Bi(1+p21)?  Ba(l+p2)

el 43510, o

with

v =bv L + BQp%’l i % P21
— U1
TB3(14+p21)?>  B3(1+p21)?  Ba(l+p21)

By Proposition 1.5, we know there exists a constants b] and a integer ng such that, for all 7 €
[Too, 2Too] and n > ny,

A n
n

A n

— An
R

— —A,
(mo)[), E(l|w),, — Ry, - By (mp))
<exp (B AZN|(h) <n V",

sup(E(||mpr — R

with v/ = bjv | (h). Let us set € € (0,1). We choose

—1
(1—¢) ( 1 Bopsy + 1 P21
) b

V=

by TB3(1+p21)?  B3(1+p21)? Ba(l+pas

which leads to ¥ =1 —e. We set vy = v”’. For any t > 7o, if we set n = |t/7 ], then t = nr
with 7 € [Teo, 2700], and so :

E(|/m — mil) < 207 + 2exp (é E (1514 W ”) ,
+

E(|lme — will) = O@™).

O

Remark 6.2. One could seek to obtain a sharper bound in the above Theorem by choosing another
sequence (Ay)n>0. Up to some logarithmic terms, the bound would still be a power of ¢.
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7 Appendix

7.1 Proofs of Section 1
Proof of Lemma 2.1. Following [BC09] (Chapter 6, Section 6.1), we introduce the process

t
Vt:Vt+/ F(X)ds, t>0.
0
We introduce a new probability P defined by

2l e (/ X7 - L / t P (r1)

P

dP
By Girsanov’s theorem, V is a standard Brownian motion under P. We set F to be a primitive of
f. We have, for all t > 0,

t R l t ) _ t 71 t )
| reoav. =5 [rocras = [ ecgax. - [y

= F(Xt)—F(XO)—%/O f’(Xs)ds—%/O f(X,)?%ds

S MK, - Xl - MM
> t 0 5 5
So, for any test function ¢ in C;"(R) (the set of bounded continuous functions on R), ¢ > 0
E(p(X:)) = E¥(p(X0))
7 dpP
= ]EP @(Xt) -
dP |,
7 Mt M?t
> E° <<P(Xt)exp <M|Xt = Xo| — - - T)) :
Similarly:
i Mt
E(p(Xt)) <E° { p(X¢)exp | M|X; — Xol + >
So we have the result. O

Proof of Lemma 2.2. For any test function ¢ in C; ([0,¢]) and any ¢ > 0,

EP (w(yo:t) L ‘XO,Xt>

EP ( dp
dP | £,
B ((o(ros" ( £ E’Xo,xt,yo:t) ’ Xo. Xi)
7 (8 x0x)
By Girsanov’s Theorem, (‘A/,Y) is a standard two-dimensional Brownian motion under P. So,

conditionally on X, X;, the law of Yj.; under P has the following density with respect to the
Wiener measure:

EF (p(Yo:)| X0, Xe) =

XO) Xt)

Yo:t — wt(%:t;XOaXt) =
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We have

—}_texp<F(X1) F(X,) f—/f dsf—/f
+/O hX,dY, — ;/h2X2d)

—~ dP —~
EF < 5 XO,Xt> =FEF <exp <F(X1) F(Xo) — —/ f(X)ds — —/ f(X d8> ‘ Xo,Xl) ,
Fi
(7.2)
=)
t(M + M? dP tM
exp <M|Xt — Xo| - %) < EF ( i XO,Xt> < exp <M|Xt Xo| + —>
Using the above calculations (Equation (7.2)), we can write:
t(M + M?
exp <M|Xt — Xo| - %) Vi (Yout, T, 21) <
5 ( dP ~
E" | —| |Xo, Xt Yo | <exp | M[X; — Xol + — | ¥(Yout, zo, 1) -
dP|r,
So we have the result. O

Proof of Lemma 1.1. We define a new probability P by

dP ¢ 1/t
= exp </ hX.dY, — 5/ h2X§ds> LVt >0.
0 0

B,
By Girsanov’s Theorem, (Y;) is a Brownian motion under P. For all bounded continuous ¢ and
all ¢ > 0, we have (Kallianpur-Striebel, see [BC09], p.57)

EF (X t) Yo
E(o(X,)|You) = < ‘ " >

o (2] )

and
5 dP 5 5 [ dP
E' | o(X)) —=| [You | =EF | o(X)DE" | =| |You, Xo, Xt | [You | ,
<<,0( t) Jb }_t| 0.t> (90( t) (d]P’ }_t| 0:ty X0 t>| 0.t>
and
. dP EIP (d_i F Z; |Y0 thOaXt)
E” (d_lp’ |Yo:taX0,Xt> = — -
T ]E (d_E |Y0t7XOaXt>
d Fi
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- wt(YO:t)XOaXt)-

As the law of (X)s>0 is the same under P or P, we get the desired result. O

7.2 Proofs of Section 2

We first prove two technical Lemmas.

Lemma 7.1. For any t > 0, for any function g : R — R which is measurable with respect to the
Lebesgue measure and such that fot g(s)%ds < 0o, we have :

/Otg(s)st = /Ot (9(5) — fef* /Steeug(u)du) dfs .

Proof. Under Q, B is an Ornstein-Uhlenbeck process (see Equation (2.2)). We can write B as the
strong solution of (2.2):

t
By =e / e dB, ¥t > 0. (7.3)
0

We use the integration by parts formula to compute:

/Ot <g(s) — e /: e"“g(u)du> dBs
- /Ot <g(s) — fef /Ot e"“g(u)du> dBs + /Ot <9ef’s /Oseeug(u)du> dBs
- /Otg(s)dﬁs - (/Oteeug(u)du) (/Ot 969%1/38) +/Ot (9695 /O e"“g(u)du) dBs
= [Catas— [(eoratw ([Toeras ) au— [ ([ rgtuian) ocas,
+ /0 t (9698 /0 ) e—‘)“g(u)du) dBs

/Otg(s)dﬂs/Oth(u)Budu/Otg(S)st-

Lemma 7.2. We have, for all s,t > 0,

. ef(s—t) if g(u) =1, Vu,
g(s) — 9605/ e g(u)du = (t+3)efls= 1 if g(u) = u, Vu,
: (4 3+ 2) 0 (B4 F) o) = e

Proof. The proof in the case g(u) =1 is straightforward. We compute, for all s,¢ > 0:

905 ! 70ud _ 905 u 1 79ut
s —ve ue u = Ss—ve —5—9_2 e

I
)
|
S
7N
|
|+
|
w}—‘
~_
o
)
@
|
N2
+
S
7N
|
| ®»
|
| =
N~



Proof of Lemma 2.3. Lemma 7.1 tells us that the variables G, G2, G3, G4 are centered Gaussians
under Q. Using Lemma 7.2, we compute the following expectations:

1
E%(G?) = /629(8_1)d8
0

1— 6_20

! 1 1\?
EQGE) = / (1 + 5) efle=b) 5) ds
0
2
) Q206-1 L 12 (1 n é) O0s—1) g
- 1\ 2 (20(s—1) N - 1\ 2666-17"
0 20 02 0 02 0

2 —
A=) 1 (2 2Y ., _
> 0w T\ te) )

25 2\\°
(G3) = ((1+ + )e9<5—1>—(§+—2)) ds =
2
2 26(s—1) 2s 2 2 2\ g2, 2
7 Zir2) 2014242 25 2\ g
( 9 )e T 9+92 +9+92€ 9—1—92 ds
1
2 2 2629(s—1)+ 25+ 2\% ¢ 9 1+2+ 92 %2 beon)|
9 9 20 0 "62) 6 o te)\g2)¢ O =
0 62 20 0 02 6 605 62 0 92 s
1 1 )
E%(G1Gy) :/ fs=1) <<1+ _) QOls=1) _ _) ds
0 0 0

A ! (R U
_[( +§) 20 62 ]0_(29+W)(_6 )t

! 2 2 2s 2
EQ _ 0(s—1) 1424 = 0(s—1) _ [ 22
(Gng)—/O e +0—|—02 e 0 +92 ds

1

2 20 26D 9, 11 1 2
_ “ & A2 0(s—1) I - - 20 2
[<1+9+92) 20 2° ]O (29+e2+93)(1 g

1 1 1 2 2 2s 2
EQ _ 1 - 0(s—1)  — 1 z & 0(s—1) [ =2 & d
(G2G3) /0<<+9)e 5) % +o+3)e 7T s
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>




! 1 2 2 1 2 2
— 1 - 1 “ = 20(571)7_ 1 = -~ 9(5 1)
A <+9><+9+w)e AR R I
1\ gy (28 2 1/25 2
(14 = (s=1) (22 L = il el
(+9)e (9+92)+9(9+92)d5

Y (122 e20(s—1) 12 2 6D
—K +a>< +5+9—2> 20 —(5+e—z+e—3>T

Proof of Lemma 2.4. The coefficient of 22 in P is

9 o2 2
— Aa(6) = ~h + %he?’ (% - g +a)

2 2 2
92 1 p3 v 0oy , a 3,2
% _ T a2 4
(o1 (2 2L e
We compute (using [WR15] software):
- + (1) Vn > 1 (7.5)
ao=—=+o0|—|,n>1, .
V20 or

20 02
1 2 2 1
ﬂ - i + \/_ +ol|l—x],
/20 03/2 95/2

0
52i2+ii+0<i), (7.8)

1 1 1
COVQ(Gl,Gg): ——+9—3+0<

20 02 63 64 04

VMWngzé £2+0(%), (7.9)
- i ().
CW%GhGQé%§%+O<%>, (7.11)
afg+§+$§%+o<%), (7.12)
(i)
Var?(Gy) = é; i%+o<%>, (7.14)
-V <9i3) (7.15)
0221%—:£3+ (;), (7.16)
agféﬁf%+2+ %). (7.17)
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From which we deduce

The coefficient of 22 in P is

0 2 2 2 92
~Ba(6) = —hg + %h93 (g + é) + Zppe (1 - %ﬁ <O‘

6 2

We have:

2 2
o5, a7 0oy o
2pe3 (L —

2 (2 2 01(

2 2
o, B\ _, (0 1
2h9( 6+2) —h(6 2+0(1)),

|

SR

NIy
~
~

[\v]

=)

0|

+

3

o

The coefficient of zz in P is

0
C1(0) = ~hg + o7ht? (—% - g +a) (—% n g)

2 2
093 (p_ 0 _ 0oy o a B 7Py
+ o5h0 (b 5 5 01( 3 2+a)) (2 5

(it does not depend on yo.r). We have:

sy sy 2 0Py o a B 7Py [«
o5h0 (b 5 5 01( 3 2+a)) (2 5 o] 6

o (4-0) (59) 12 S

We need the following Lemma before going into the proof of Lemma 2.7.

Lemma 7.3. Forallk €N, s € [k, k+ 1]

k+1 k+1
Yrs — / Yiudu — YT(s+1) =+ / YT(u—i—l)du
k k
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(7.18)

(7.19)

(7.20)

j hTQM + hTVkT,(k—i—l)T + Wkr,(k-l—l)r )



M7 + Vir (k+1)7 + Whr,(k+1)r
; .

0 0
And, for all s € [0,1],

1 _—0 1 —0 .-
e Ysinh(0s e Y sinh(0s
/ AdYTI{F‘rTS */ AdYT(k—kl)—Hﬁs =
0 0

< hr*M + htVo, + Wo.r

1
YTS - / Y‘rudu
0

/1 e~?sinh(6s) ay..| < Mt +Vor+Wo.r '
0 0 0
Proof. We write the proof only for the first two formulas. We have, for all k € N, s € [k, k + 1],

k+1 k+1
Y — / Yrudu — YT(erl) +/ Y‘r(qul)du
k k

T(s+1) k+1 7(u+1)
= —/ hX, du+ W,z — WT(S+1) — / —h/ Xpdv+ W, — W.,-(qul) du
TS k T

u

k+1 T(s+1) T(u+1)
/ h / Xydv — / Xydv | du
k TS TU
k+1 T(s+1)
h/ / Xy — XU-H’(u—s)dU du
k TS
k+1 T(S-‘rl) v
h/ / / F(X)dt +Vy = Vi r(u—s)dvdu
k TS v47(u—s)

< WM + htVir (12yr + Wir (542)7 »

= + Wk‘r,(kJrZ)‘r

=+ Wkr, (k+2)7

+ Wk‘r,(k—i—Q)‘r

and (using integration by parts)

1 -6 . 1 -6 .
e ¥ sinh(0s e ¥ sinh(0s
/ AdYTk*‘rTS - / Adyr(k-i-l)-l-‘rs
0 0

0 0
/T e~?sinh(hs)
0

7 (P(Xrkts — Xr(hs1)4+s)ds + dWopis — dWr(ry1)4s)

™ e~%sinh(hs)
< /o %h(XTHs - X‘r(kJrl)Jrs)dS
e~?sinh(6)
T(WTUH-I) — Wrkt2))
T —9 cosh(h
+ / (Wrkts — Wr(k+1)+s)¥8(5)d5
0
™ e~ ?sinh(hs e~ ?sinh(6 T e~ cosh(hs
j/ %h(TM—’—VkT,(kJrQ)T)dS—F %Wkr,(k+2)r+/ Wkr,(k+2)r%d5
0 0
< h(MT + Vk'r,(k+2)'r) + Wk'r,(k+2)7‘ .
- ho 0
O

Proof of Lemma 2.7. We write the proof in the case k = 0. From (2.3), (2.15), we deduce

1
Bl(Y():T,H) = 70’%}192 <% —+ g) )\1(Y0:T) =+ h/ sdYrs
0

+ o3ht? <1 _ Poqoi (2 + é)) <>\2(Y0:r) + Barod Al(YO:r)> - (7.23)

2 2 6 2 2
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For further use, we also write the formula for A4, (Yp., 0):

1
Ay (Yoir, 0) = h/ (1 - 5)dYsr + o2h6> (% n g - a) A1 (Yorr)
0

92 2 92 2
vozne? (b2 - (Lo B VY (D Vor) + 2997 (Vo) ) — h622s (Yo )e.
2 2 32 2
(7.24)

We have to remember here that Aj, A2, A3 are functions of yg.,. So we might write A\ (yo.r), - - -
to stress this dependency (and the same goes for other quantities). From Lemmas 7.1, 7.2, we get
(g1, g2 defined below)

1 1
COVQ(Gl,G4)(Y0:T) = / =1 (gl(s) — 9698/ e_‘gugl(u)du) ds
0 s

1 1 u
= /91(5)69(8—1)6157/ e—@ugl(u)/ 0e205=9 Jodu

0 0 0
1 1 620u -1
= / g1(s)e?"Vds — / e g1 (u) < > e Vdu
0 0 2
1
= / g1(s)e™? cosh(fs)ds , (7.25)
0
1
Cov®(Gy, Gy)(Yriar) :/ ga(s)e~? cosh(fs)ds (7.26)
0
with
1 1
gl(s) =Y 7/ YTudua 92(5) = YT(s+1) 7/ Y‘r(u-l—l)dua
0 0
and

! 2 2\ 2s 2
_ 2 (s=1) _
Cov(G3, G4)(Yo.r) /0 <<1+ st 92) e (9 + 92))

= (1 + 2 + 3) Cov(G1,Gy)(Yo.r) — /1 %gl(s)ds

0 62 0
1 u 2
Jr/ e_eugl(u)/ (25 + —> e’ dsdu
0 0 0
2 2 )
=(1+-4+—= COV(Gb G4)(YOZT) - / _Sgl(s)ds
0 62 o 0
1
2
+/ e_eugl(u)%e‘gudu
0
2 2
= (1 + 5 + ﬁ) COV(Gl, G4)(Y0;7—), (727)
2 2
COV(Gg, G4)(YT:27—) = (1 + 5 + 9—2) COV(Gl, G4)(YT;27—). (728)

From (2.8), (7.5)-(7.17), we deduce (using again [WR15])

—02ho? (—% + g) A1 (Yorr) = —h(20 + O(1))Cov®(G1, Gy) (Your )
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02 ayo? a f
o2no? (21— T _
sho <2 5 ( 6+2)) hOo (6) ,

0?ayo? Q 1 2 2 p 153 0%~yo?
oY) + =T (Vo) = Covi(Gr, Ga) (Vo) <; (1 ot E) Ty T )
1
= Cov¥G1,Gy)(Yoir) X O <§) . (7.29)
So we get

2 2 2 2
—o7hb? < 5 g) A1 (Yo.r )4+02h6? (g — 90‘% <% + g)) <)\2(Y0:r) + 0 0;701 )\1(Y0:r))
= —2h(0 + O(1))Cov®(G1,Gy)(Yo.r) . (7.30)

We have

Cov®(Gy,Gy)(Yo.r) = /0 1< - / Ymdu)e ? cosh(fs)ds

1 0.
_ <YT Ymdu) e~?sinh(6) 7/ e smh(@s)dYTS
0 ; 7
1 1 —9 -
- / sy, x o smh(0) f/ e sinh(bs) )y (7.31)
0 0 0 0
and so
1 1 1 6729
— 210 + O(1))Cov¥(Gr, Ga) (Your ) + h/ sdYys = —2h(0 + O(1)) </ deT5> <2—9 - >
0 0

1 1 -0 ..
+h/ sdYrs + h(0 + O(1)) x 2/ %211(95)&”
0 0

n ([ save) <o (2 Sheroqy x2 [ CImhO) 1y g g
([ =) <0 5) =5

And so, using Lemma 7.3, Equations (7.30), (7.31), (7.32) (as similar formulas of the ones above
are valid if we replace Yy., by Yo.2,), we get

] M7+ Voo + Wo o
|B1(Yo:7,0) — B1(Yr:27,0)] = ;(hTQM +htVo2r +Wo 27) + h ( T 70 02 )

0
1
= Mht+hVy2r + (h+ ;)WO,QT )

7.3 Technical Lemmas used in Section 4

Lemma 7.4. We have \; = fo f1(8)dyrs for some deterministic function fi. And the same is
true for Az, As.

Proof. We write the proof only for \;. Using Equation (2.8) and Lemmas 7.1, 7.2 and integrations
by parts, we get

ah = Cov®(Gy,Gy)

1 1
Cov¥ (Bl,/ Yrs — (/ ymdu) dBS)
0 0
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1 1 1 1 1
= COVQ </ 66(571)dﬂsa/ Yrs — (/ y'rudu> - 9605/ efﬁu (y‘ru - (/ y'rvd'U)) dudﬂs>
0 0 0 s 0
1 1 1 1
= / 66(571) (y‘rs - (/ y‘rudu> - 9605/ efﬁu (y‘ru - (/ y‘rvdv>> du> dS
0 0 s 0
1 1 1 1 1
= / ee(sfl)y.rsds - / /=D s x / Yrudu — / eieuy‘ru/ 0e?5= 1 dsdu
0 0 0 0 u
1 —0s _ _—0 1
_/ 9@9(23_1)%% % / Yrudu
0 0
1 9(5—1) 1— —0 1 1
- ¥ 7/ 9 dy,s — ( 96 ) <yT f/ udym> —/ Yru sinh(6(1 — u))du
0 0 0
1—e” 16_29))< /1 )
- Yr — udyry
(5 |

1 9(5 1) 6 1 1 -
Yr (I—-e7? / Yr / cosh(0(1 — u))
= — = dy,s — r = Ay, - ——dYru
7 /0 g W 9 <y , W ) o 6 v

Lemma 7.5. We can write
Aor — / (F1(s)dW, + fols))dX
0

for some deterministic functions f1, fa.

Proof. From Lemma 7.4 and Equation (7.24), we know there exists a deterministic function gy
such that

1
A{“” :/ g1(8)dY ..
0

So, integrating by parts, we get (where G is the antiderivative of g1 such that G(0) = 0)

1
AV / 01(5) (hXrgrds + dWy,)
0

1 1
= G(l)hXTT—/ G(s)thXTS+/ g1(8)dW 4
0 0

/OT (G(l)h -G (;) h))dXs + /0 g (;) AW, .

Lemma 7.6. For any measurable B, subset of R? and ® a Gaussian density,

/ q)(tl,tQ)\Ill(tl,tQ)dtldtQ
t1,t2)€EB
< / D(t1,t2)C (b, T) exp (2M|(1, —1)k " (t1,t2)" | + T(2M + M?)) dt1dts
B

(the constant C1(h,T) coming from Lemma 4.5).

Proof. For any € < € (e comes from Lemma 4.3), we can write B = U;c18;, where I C N, Ul means
that this is a partition, and for all 4, the set B; is a subset of B(2(z;, z;)k,€') (for some xz;, z;).
For all 4, for almost all (t1,t2) in B(2(z;, 2;)k, €'), we have, by Lemma 4.3,

Uy (ty,ta) < Cf(h,7)exp(dM|x; — 2| + 7(2M + M?))
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= Ci(h,7)exp(dM|(z;, 2;)
= Ci(h,7)exp(4M|2(z;, 2;

1L, —DT| 4+ 7(2M + M?))

—~

L, =D + r(2M + M?))

~

1
K=
2

IN

Ch(h,T)exp(4M|(t1, t2)=r 11, =1)T| + C'¢ + 7(2M + M?)),

N)I»—A

for some constant C’. So we have

/ B(t1, t2) s (11, t)dtrdts — Z/ B(t, 1)1 (11, t2)dtrdts
(tl tQ)EB (tl tQ)GB

icl

1
<> / ®(t1,t2)Cy(h, ) exp(4M|(t1, @)551(1, DT+ C' 4+ 7(2M + M?))dt,dty
icl J (t1t2)€EB

1
= / B(t1,t9)Cy(h, T) exp(4M|(t1, t2) =k (1, =1)T| + C"€ + 7(2M + M?))dt,dts .
(t1,t2)€B 2
And by taking ¢ — 0, we get the desired result. o

7.4 Technical Lemma used in Section 6

Lemma 7.7. Suppose that fi and fo are two probability densities on Ry and that ¢ is a non-
decreasing function from Ry to Ry. Suppose the distribution functions Fy an Fy (associated
respectively to f1, f2) are such that

1-Fi(zx) < K(1— Fyx)), forallz>0,

for some constant K > 1. Then, for X1 a random variable of density f1 and Xo a random variable
of density fo, we have
E(p(X1)) < KE(p(X2)) -

Proof. Let U be a random variable of uniform law on [0, 1]. Let m be such that Fa(m) =1—-1/K.
Let (K(1 — F»))~! be the inverse of Fy : x € [m, +oo[— K(1 — F(z)) € [0,1]. We have:

&=

E(p(X1)) = E(o((1 - F1)~'(U))
E(p((K(1 - F))~H(V)))

= E(p(X2)[X2 > m)
(sﬂ(Xz)]leroo[(Xz)) x K

E(p(X2))

IN

IN
= &=

O
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