On shifted Mascheroni Series and hyperharmonic numbers - Université Côte d'Azur Access content directly
Journal Articles Journal of Number Theory Year : 2016

On shifted Mascheroni Series and hyperharmonic numbers

Paul Thomas Young
  • Function : Author
  • PersonId : 977111


In this article, we study the nature of the forward shifted series σ r = n>r |bn| n−r where r is a positive integer and b n are Bernoulli numbers of the second kind, expressing them in terms of the derivatives ζ (−k) of zeta at the negative integers and Euler's constant γ. These expressions may be inverted to produce new series expansions for the quotient ζ(2k + 1)/ζ(2k). Motivated by a theoretical interpretation of these series in terms of Ramanujan summation, we give an explicit formula for the Ramanujan sum of hyperharmonic numbers as an application of our results.
Fichier principal
Vignette du fichier
coppo-youngVfinale2.pdf (362.2 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01277623 , version 1 (22-02-2016)
hal-01277623 , version 2 (07-04-2016)


  • HAL Id : hal-01277623 , version 2


Marc-Antoine Coppo, Paul Thomas Young. On shifted Mascheroni Series and hyperharmonic numbers. Journal of Number Theory, 2016, 169, pp.1-20. ⟨hal-01277623v2⟩
181 View
293 Download


Gmail Mastodon Facebook X LinkedIn More