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Abstract

In a chain of nonlinear oscillators, linearly coupled to their nearest

neighbors, all travelling waves of small amplitude are found as solutions

of finite dimensional reversible dynamical systems. The coupling constant

and the inverse wave speed form the parameter space. The groundstate

consists of a one-parameter family of periodic waves. It is realized in a

certain parameter region containing all cases of light coupling. Beyond

the border of this region the complexity of wave-forms increases via a

succession of bifurcations. In this paper we give an appropriate formula-

tion of this problem, prove the basic facts about the reduction to finite

dimensions, show the existence of the ground states and discuss the first

bifurcation by determining a normal form for the reduced system. Finally

we show the existence of nanopterons, which are localized waves with a

noncancelling periodic tail at infinity whose amplitude is exponentially

small in the bifurcation parameter.

1 Introduction

Consider the dynamics of a one-dimensional network of nonlinear oscillators, as
described by the infinite system

Ẍn + V ′(Xn) = γ(Xn+1 − 2Xn +Xn−1), n ∈ Z. (1)

Here, Xn(t̃), t̃ ∈ R, gives the position of the nth particle, V (Xn) its potential
energy, V being a regular function independent of n, and the positive constant
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γ measures the coupling between nearest neighbors, which is assumed to be
linear. Furthermore, the function V satisfies V ′(0) = 0, V ′′(0) = 1.

We shall construct solutions of (1) in the form of travelling waves. In fact,
we shall develop a general method for classifying travelling waves of small am-
plitude via an infinite sequence of bifurcations. We shall discuss in detail the
groundstate and the first of these bifurcations.

With the ansatz Xn(t̃) = x̃(t̃ − nτ), after scaling the time as t̃ = τt, and
denoting x(t) = x̃(τt), system (1) is transformed to

ẍ(t) + τ2V ′[x(t)] = γτ2[x(t− 1)− 2x(t) + x(t+ 1)] (2)

which is a scalar ”neutral” or ”advance-delay” differential equation.
Equations of this type have been subject of various investigations on the

dynamics of lattices. Friesecke and Wattis have shown in [6] the surprising
fact that, in a unidimensional hamiltonian network, solitary waves exist, even
if the coupling is nonlinear. They used a variational approach. How delicate
this result really is, will appear also in the subsequent analysis. Further results
along these lines were given by Smets and Willem [19].

Equation (2) has been investigated by MacKay and Aubry in [15] for the exis-
tence of time-periodic and localized-in-space standing waves, so-called breathers.
Aubry then, while searching for ”multibreathers”, developed in [1] the technique
of ”phase torsion” to study the existence of travelling waves.

Rusticini also studied equations of the type considered here in [17], [18].
His motivation came from problems of optimal control. He proved a Hopf-
bifurcation theorem by constructing 2d-center manifolds for periodic solutions
via a Lyapunov-Schmidt argument. Some of his analysis is close to ours, like the
ad hoc construction of C0-semigroups on the positive and the negative spectral
part – both being infinite dimensional –.

We should also mention the recent work of Mallet-Paret et al. in [3], [13],
[14] on waves in higher dimensional lattices. There, the dynamics is restricted
to discrete systems, but give a global picture of the solutions. The arguments
rely on an advanced form of the Lyapunov-Schmidt method given by X.B. Lin
(c.f. [14]).

With the method being developed here, we exploit two facts: first the ellip-
ticity of (2) in its continuous parts, and the intrusion of hyperbolicity via the
discrete terms. With increasing intensity of coupling, the effect of the latter will
be more and more dominating, and the complexity of the solution behavior will
explode. Nevertheless, one can perform the ”continuous limit” for (1) and thus
obtain travelling wave solutions of the following nonlinear wave equation

ut̃t̃ + V ′(u) = Kuξξ (3)

for the function u(t̃, ξ). Its discretized form (1) is obtained with Xn(t̃) =
u(t̃, nh), and K = γh2, where h is the discretization step. Looking for solu-
tions of (3) of the form of travelling waves

u(t̃, ξ) = x̃(t̃− ξ/c) (4)

2



leads to the discretized form (2) where τ = h/c. Now, (4) implies for (3)

(1−K/c2)
d2x̃

dt̃2
+ x̃ = g(x̃), (5)

where g is defined by V ′(x) = x − g(x), hence g(x) = O(x2). It is then clear
that travelling waves, as solutions of (5), exist near 0, if and only if K/c2 < 1,
i.e. γτ2 < 1. They form a one parameter family in the neighborhood of 0.

In the present work, we prove the existence of the corresponding travelling
waves (if γτ2 < 1) for the above discretized model (1), but we also prove the
existence of infinitely many other types of travelling waves near 0, for values
of (γ, τ) in regions such that γτ 2 > 1. This shows in particular how dangerous
the belief might be that all nontrivial solutions of a discretized version of (5)
survive the limit h→ 0.

The method we shall develop is based on previous work in [11], [16],[20], prov-
ing the reducibility of quasilinear elliptic systems in infinite cylindrical domains.
Treating the system as evolutionary in the unbounded variable, one is able to
show that, under quite general conditions, the original system, if restricted to
a suitable neighborhood of 0, is equivalent to a flow on a finite dimensional
manifold. Extending this idea to the problem under consideration in Section 2,
we are able to prove the validity of a reduction of (2) to a system of ordinary
differential equations whose dimension equals the dimension of the invariant
subspace belonging to the central part of the spectrum of the linearization at
0, and which inherits the ”reversibility” from the original equation (2). This is
done in Sections 4 and 5. It should be emphasized that the extension of the
previous results to the case considered here is by no means straightforward.

In the following sections we analyze the case of small coupling first, when no
bifurcation occurs and all ”small” travelling waves are periodic. Thereafter we
treat the first bifurcation occuring at a critical value of the coupling constant
γ (near 21 for τ = 1). The difficulties of applying previous reduction results
[20] will be apparent in that case and solved in a general way. Exploiting the
reducibility to a finite system of ordinary differential equations, we apply normal
form theory. The resulting system is integrable on this level of approximation
and quite rich in its structure. In order to keep the scope of this paper limited,
however, we suppress the instinct to describe all possible solutions as well as
the proof of persistence for the full system - not just reduced to its normal form
- of the solutions found. That would complete the analysis.

We rather construct some of the most interesting forms of waves, such as
”nanopterons”. These are roughly the superposition of a localized travelling
(solitary) wave, whose principal part is given explicitly, and exponentially small
(in the bifurcation parameter) periodic waves (”phonons”). The proof of their
existence follows from the work of Lombardi in [12]. For other type of solutions,
like periodic or quasi-periodic ones, see the methods developed in [8].
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2 Extended formulation

Instead of treating (2) directly, we introduce a new variable v ∈ [−1, 1] and
functions X(t, v) = x(t + v). The notation U(t)(v) = (x(t), ξ(t), X(t, v))T

indicates our intention to construct U as a map from R into some function space
living on the v-interval [−1, 1]. We use the notations ξ(t) = ẋ(t), δ1X(t, v) =
X(t, 1), and δ−1X(t, v) = X(t,−1). Equation (2) can now be written as follows

∂tU = Lγ,τU +Mτ (U), (6)

where Lγ,τ is the linear, nonlocal operator

Lγ,τ =




0 1 0
−τ2(1 + 2γ) 0 γτ2(δ1 + δ−1)

0 0 ∂v


 ,

and
Mτ (U) = τ2(0, g(x), 0)T ,

where g(x) = x − V ′(x) = ax2 + bx3 + ... = 0(x2) as x → 0. Moreover, we
require the boundary condition X(t, 0) = x(t).

Observe that (6) is somewhat more general than the original equation (2),
if we allow g to depend not only on x, but on ξ, X as well. In that case, the
coupling could be a smooth nonlinear function as indicated in the introduction.

We introduce Banach-spaces H and D for U(v) = (x, ξ, X(v))T

H = R2 ×
(
C0[−1, 1]

)

D =
{
U ∈ R2 × (C1[−1, 1])

/
X(0) = x

} (7)

with the usual maximum norms. The operator Lγ,τ then maps D into H con-
tinuously. The nonlinearity Mτ is supposed to satisfy Mτ ∈ Ck(D,D), k ≥ 1,
and

‖Mτ(U)‖D ≤ c(ρ)‖U‖2
D

(8)

for all U ∈ D with ‖U‖D ≤ ρ; ρ being an arbitrary positive constant. In our
particular case g ∈ C2(Ω) suffices for the validity of the assumption on Mτ ; Ω
denotes an open neighborhood of 0 ∈ R.

It is obvious that Lγ,τ , acting in H with domain D, has a compact resolvent
in H. Moreover, Lγ,τ and Mτ , both anticommute with the reflexion S in H,
given by

S(x, ξ,X)T = (x,−ξ,X ◦ s)T , (9)

where X ◦ s(v) = X(−v). Therefore, (6) is reversible.
Although (6) is illposed as an initial value problem, it is possible to construct,

nevertheless, solutions bounded for all t ∈ R. Using a proper extension of certain
reduction methods for quasilinear elliptic systems (c.f. [11],[16],[20]) one is able
to reduce (6) to a finite dimensional system of ordinary differential equations,
which is reversible and has the property to contain all bounded solutions which
are close to the trivial solution U = 0. The dimension of this reduced system
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will depend on the coupling parameter γ and on the delay-advance parameter
τ . This dependence of the dimension as a function of (γ, τ) is detailed in the
next section.

3 The Spectrum of Lγ,τ

To determine the spectrum
∑

≡
∑
Lγ,τ of Lγ,τ , the resolvent equation

(λI− Lγ,τ)U = F (10)

has to be solved for any given F = (f0, f1, F2)
T ∈ H, with λ ∈ C, and U =

(x, ξ,X)T ∈ D. This is possible provided that N(λ; γ, τ) 6= 0, where

N(λ; γ, τ) = −λ2 − τ2(1 + 2γ) + γτ2(eλ + e−λ). (11)

Indeed, we obtain

x = −[N(λ; γ, τ)]−1(λf0 + f1 + γτ2f̃λ), (12)

ξ = −[N(λ; γ, τ)]−1{[λ2 +N(λ; γ, τ)]f0 + λf1 + γτ2λf̃λ}, (13)

X(v) = eλvx−
∫ v

0

eλ(v−s)F2(s)ds, (14)

with

f̃λ =

∫ 1

0

[−eλ(1−s)F2(s) + e−λ(1−s)F2(−s)]ds.

Since N(λ; γ, τ) is an entire function of λ for every (γ, τ) ∈ R2
+, the spectrum∑

Lγ,τ consists of isolated eigenvalues λ. They are roots of N(λ; γ, τ), and thus
have finite multiplicities.

Remark, that Lγ,τ is real and that SLγ,τ +Lγ,τS = 0 holds.
∑
Lγ,τ is then

invariant under λ 7→ λ and λ 7→ −λ. Thus,
∑
Lγ,τ is invariant under reflexion

on the real – and the imaginary axis in C. Thus, we can restrict the following
considerations to λ = p+ iq with nonnegative p and q.

The central part
∑

0 ≡
∑

0 Lγ,τ =
∑
Lγ,τ∩iR of the spectrum is determined

by N(iq; γ, τ) = 0, q ∈ R, i.e.

q2 + 2γτ2 cos q − τ2(1 + 2γ) = 0. (15)

For eigenvalues of higher multiplicity we have to solve in addition

q − γτ2 sin q = 0 (16)

if the multiplicity is at least two. For triple eigenvalues

1− γτ2 cos q = 0 (17)

has to hold also. There are no eigenvalues of multiplicity greater than 3 in
∑

0.
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In the parameter-space (γ, τ) ∈ R2
+, the set DE, for which there are double

eigenvalues on
∑

0, consists of a sequence of curves which we call ”DEC”. They
are parametrized by q = x ∈ R+ as follows

d(γ, τ)(x) : τ2 = x2 − 2x tanx/2, γ = τ−2x/ sinx. (18)

For triple eigenvalues it follows in addition

x = tanx. (19)

Since d(γ, τ)(x)/dx vanishes on DEC if (19) holds, the triple eigenvalues appear
as cusps on DEC. There are no eigenvalues of multiplicity higher that 3 on

∑
0.

In the following lemma we describe the character of
∑

0 on the bifurcation

curves DEC. To conform with Figure 1, we restrict this description to
∑+

0 , i.e.
those eigenvalues on

∑
0 having positive imaginary part. Due to reversibility

the rest of
∑

0 is obtained by a simple reflexion on the real axis.

Lemma 1 (i) For each (γ, τ) ∈ R2
+, there exists p0 > 0, such that all λ ∈∑

Lγ, τ \
∑

0 satisfy |Reλ| ≥ p0.
(ii) Let λ = p+ iq ∈ ∑ \∑

0, then

|q| ≤ τ + 2
√
γτ2 + 4e−2 cosh(p/2) (20)

holds.
(iii) Given any DEC. It contains exactly one cusp point, (γ∗, τ∗) say, cor-

responding to a triple eigenvalue iq∗ of
∑+

0 . Moreover,
∑

0 Lγ∗, τ∗ = {±iq∗}.
For all other (γ, τ) on that DEC,

∑+
0 Lγ, τ contains either two or one double

eigenvalue. The first case happens where two different DEC’s intersect. - If
(γ, τ) does not belong to any DEC,

∑+
0 Lγ, τ consists of simple eigenvalues.

(iv) For each fixed τ ∈ (0, 2π], there exists a strictly increasing sequence
(γ∗j (τ)), 0 < γ∗1 < ..., such that

∑+
0 Lγ∗j ,τ possesses a double eigenvalue +iq∗j ,

which has largest modulus among all eigenvalues. All other eigenvalues in∑+
0 Lγ∗j ,τ are simple. If γ ∈ (γ∗j (τ), γ

∗
j+1(τ)), γ

∗
0 ≡ 0,

∑+
0 Lγ,τ consists of 2j+1

simple eigenvalues.
For larger values of τ , the situation

∑+
0 Lγ,τ is described in Figure 1.

Proof: Ad (i) Let us denote λn = pn + iqn the roots λ of N(λ; γ, τ) = 0.
Assuming pn 6= 0, and pn → 0 as n→∞, we have

q2n + 2γτ2 cos qn − τ2(1 + 2γ) = εn → 0,

qn − γτ2 sin qn = ε′n → 0.

Hence, qn is bounded, and we can extract a subsequence qkn converging towards
q∗, and q∗ satisfies

q2∗ + 2γτ2 cos q∗ − τ2(1 + 2γ) = 0,

q∗ − γτ2 sin q∗ = 0.
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This means that q∗ is a (double) root of N(iq; γ, τ), contradicting the isolated-
ness of the roots. This completes the proof of (i).

Ad (ii). Denoting λ = p+ iq the roots λ of N(λ; γ, τ) = 0, we have

p2 − q2 = 2γτ2 cosh p cos q − τ2(1 + 2γ),

pq = γτ2 sinh p sin q.

It follows: q2 ≤ τ2 + p2 + 4γτ2 cosh2 p/2 ≤ τ2 + 4(γτ2 + 4e−2) cosh2 p/2, and
assertion (ii) is immediate.

Ad (iii). Since γ ∈ R+, the components of DE are defined by the inequalities
sinx > 0, x− 2 tanx/2 > 0. Hence, to the nth component belongs the interval
In = (2πn, xn), n ∈ N+, where xn is defined by 2nπ < xn < (2n + 1)π, xn =
2 tanxn/2. We have τ(2nπ) = 2nπ, τ(xn) = 0 and γ(x) → +∞ as x → 2nπ−,
or x → x+

n . There is a unique x∗n in In satisfying (19). DEC is a smooth
curve in In \ {x∗n}. It is easy to check that γ(x) resp. τ(x) decreases resp.
increases on (2nπ, x∗n) and reverses its type of growth on (x∗n, xn). The cusp
points [γ(x∗n), τ(x∗n)] are the points of the parameter-space where

∑
0 contains

triple eigenvalues. These are ±ix∗n. Moreover, the coordinates of the cusp points
satisfy

γ = (1 + τ)τ−2, cos
√

2τ + τ2 = (1 + τ)−1, sin
√

2τ + τ2 > 0. (21)

For a given (γ, τ), the double eigenvalues iq are solutions of

[τ2(1 + 2γ)− q2]2 + 4[q2 − γ2τ4] = 0, (22)

which is obtained after elimination of sin q, and cos q in (15,16). This shows that
we cannot have more than 2 double eigenvalues in

∑+
0 Lγ,τ . The case when q

is a double root of (22) corresponds to (γ, τ) satisfying (21), i.e. +iq is a triple
eigenvalue of Lγ,τ . In such a case, ±iq are the only pure imaginary eigenvalues
of Lγ,τ , since for fixed τ = τ(x∗n), we know by a continuity argument starting
with γ = 0, that for γ < γ(x∗n), there is only one pair of simple pure imaginary
eigenvalues in

∑
0 Lγ,τ , or equivalently one positive simple solution q of (15). We

conclude that for every (γ, τ) ∈ R2
+,

∑
0 consists of simple eigenvalues, if (γ, τ)

does not belong to DE. Otherwise
∑+

0 contains exactly one double eigenvalue
if (γ, τ) does not belong to the intersection of two components of DE, or is not
a cusp point. Intersection points of two components of DEC give two pairs of
double eigenvalues on

∑
0 .

Ad (iv). Set hτ (q) = (1−cos q)(q2−τ2)−1, where we assume q > τ. One finds
the set (γ, τ) of (18), in looking for q, γ, τ such that hτ (q) = (2γτ2)−1, dhτ (q)/dq =
0. It is easy to show, for 0 < τ < 2π, that hτ has its minimum value 0 for
q = 2nπ, n = 1, 2, ... and maxima for one value of q in every interval between
these minima, the values of maxima decaying as q increases. Assertion (iv) of
Lemma 1 then follows directly. Notice that for τ > 2π the function hτ may
have one minimum and one maximum before the first minimum of the form
2nπ. The case when hτ has an horizontal inflexion point gives the cusp point.
This completes the proof.
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Remark that the spectrum of Lγ,τ is not sectorial (see part (ii) of the lemma).
This implies, that we cannot use the traditional reduction tools based on esti-
mates of the resolvent operator (iqI−Lγ,τ)−1 of order 1/|q| for |q| large. Indeed,
such an estimate implies the spectrum to be sectorial. Therefore, we have to
solve subsequently the affine linear hyperbolic system (23) ad hoc.

4 Weak coupling and periodic waves

The bifurcations in system (6) will occur when the cardinality of
∑

0 Lγ,τ
changes. Thus, the set {[τ(x), γ(x)]} described in Figure 1 is the critical set
where bifurcations take place. Let ∆0 denote the set of (γ, τ) where

∑
0 Lγ,τ

contains only one pair of simple eigenvalues ±iq1. In this section the case
(γ, τ) ∈ ∆0 is treated. We separate (6) into a central and a hyperbolic part due
to the separation

∑
=

∑
0 +

∑
h of Lγ,τ . Then, we use the Reduction-Theorem

3 in [20] to justify the application of a center manifold argument. It will follow,
that all small nontrivial solutions of (6) are periodic in this case.

Introduce the spaces Eαj (Z) for α ∈ R, j ∈ N, with norms ‖f‖j, and similarly
the vector-valued version Eαj (Z), as follows

Eαj (Z) =

{
f ∈ Cj(R, Z)

/
‖f‖j = max

0≤k≤j
sup
t∈R

e−α|t||Dkf(t)| <∞
}
.

For α > 0, these Banach-spaces consist of functions, which may grow exponen-
tially at infinity. Sometimes we need exponentially decaying functions, which
will be denoted by E−α(Z). If necessary, we use weights cosh(αt) instead of
exp(α|t|).

The eigenprojection P1, on the two-dimensional subspace spanned by eigen-
vectors belonging to ±iq1, is computed as the sum of the residues for the 3
components (12,13,14) of the solution of the resolvent equation (10). This leads
to the following result

Lemma 2 Assume (γ, τ) ∈ ∆0, then
∑

0 Lγ,τ = {±iq1}, and the eigenprojec-
tion P1 is defined in H by

(P1U)0 = a1(U)/N1, (P1U)1 = q1b1(U)/N1,

(P1U)2 =
1

N1
[a1(U) cos q1v + b1(U) sin q1v],
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where

U = (x, ξ,X)T ∈ H,

a1(U) = q1x− γτ2σ(U), b1(U) = ξ − γτ2ρ(U),

σ(U) =

∫ 1

0

sin q1(1− s)[X(s) +X(−s)]ds,

ρ(U) =

∫ 1

0

cos q1(1− s)[X(s)−X(−s)]ds,

N1 = q1 − γτ2 sin q1.

To prepare application of [20] we have to consider the affine linear system
associated with (6) for the hyperbolic part. Set Qh = I− P1, Uh = QhU , then
the equation

∂tUh = Lγ,τUh +QhF (23)

has to be solved for Uh ∈ Eα0 (Dh) ∩ Eα1 (Hh) and for each α ≥ 0. We have

F = (0, f, 0)T , f ∈ Eα0 (R), a1(Uh) = b1(Uh) = 0,

and thus

q1xh = γτ2σ(Uh), ξh = γτ2ρ(Uh), (24)

QhF
def
= Fh =

1

N1
(0,−γτ2 sin q1,− sin q1v)

T f. (25)

Furthermore, Xh is given as

Xh(t, v) = φ(t + v)− 1

N1

∫ t

0

f(s) sin q1(t+ v − s)ds, (26)

and we have to satisfy

xh(t) = Xh(t, 0) =
γτ2

q1

∫ 1

0

sin q1(1− s)[Xh(t, s) +Xh(t,−s)]ds,

hence Xh may now be written as follows

Xh(t, v) = xh(t+ v) +
1

N1

∫ t+v

t

f(s) sin q1(t+ v − s)ds (27)

= xh(t+ v) +
1

N1

∫ v

0

f(t+ v − s) sin(q1s)ds, (28)

which leads to

∂

∂v
Xh(t, v) = ẋh(t+ v) +

q1
N1

∫ v

0

f(t+ v − s) cos(q1s)ds.

Hence, there exists a constant c independent of α ∈ (−α0, α0) such that

||Xh||Eα
0 (C1[−1,+1]) ≤ ||xh||Eα

1
+ c||f ||Eα

0
. (29)
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Now we take the Fourier transform of (23). For being able to do it, we first
assume α < 0 (i.e. the function f and the unknown Uh decay exponentially

at infinity). We then obtain an expression for Ûh analytic with respect to
k ∈ Bα = {k ∈ C; | Im k| < α}, taking values in Dh, and which is solution of

(ikI− Lγ,τ)Ûh(k) = QhF̂ (k). (30)

For α > 0, we use the distributions in S ′α (see Appendix 1), and for α = 0
the tempered distributions in S ′. Henceforth, set S′ = S′0. In such spaces,
we cannot use the formula we established in Section 3 for the resolvent, since
we have no right to divide by N(ik; γ, τ) (see Proposition 4 of Appendix 1),
contrary to the case when α < 0, where Fourier transforms are analytic.

For any α, using properties shown in Appendix 1 for α > 0, the Fourier
transform of Xh(·, v), given by (28), yields

ξ̂h(k) = ikx̂h(k),

X̂h(k, v) = eikv x̂h(k) +
f̂(k)

N1

∫ v

0

eik(v−s) sin(q1s)ds,

N(ik; γ, τ)x̂h(k) = −γτ
2

N1
f̂(k)[− sin q1 + 2q1(q

2
1 − k2)−1(cos k − cos q1)],

and, after noticing that N(ik; γ, τ) = 2γτ 2(cos k − cos q1) + k2 − q21 , and N1 =
q1 − γτ2 sin q1, this leads to

N(ik; γ, τ)[x̂h(k) + Ĥ(k; γ, τ)f̂ (k)] = 0, (31)

where Ĥ is defined by the identity

1

N(ik; γ, τ)
=

q1
N1(k2 − q21)

+ Ĥ(k; γ, τ).

Now, via Proposition 4 of Appendix 1, equation (31) leads to

x̂h(k) + Ĥ(k; γ, τ)f̂(k) =

{
a+δq1 + a−δ−q1 in S′α, α ≥ 0
0 for α < 0

with a± to be determined.

We notice that k 7→ Ĥ is analytic in the strip Bp0 , tending to 0 as 1/k2 at
infinity. So we have the following

Lemma 3 The function k 7→ Ĥ(k; γ, τ) is the Fourier transform of a function
t 7→ H(t; γ, τ) ∈ H1

−δ , for any δ < p0, where H1
−δ is the space of g such that

t 7→ g(t)eδ|t| ∈ H1(R). Moreover, for f ∈ Eα0 , and α ∈ (−α0, α0), α0 < δ, then
H(·; γ, τ) ∗ f ∈ Eα1 and there is a constant C independent of α such that

||H(·; γ, τ) ∗ f ||Eα
1
≤ C||f ||Eα

0
.
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Proof: Let us suppress the parameter (γ, τ) for the moment in H and Ĥ.
For | Im k| ≤ δ < p0, we have

(1 + |k|2)|Ĥ(k)| ≤ const,

hence, k 7→ (1 + |k|2)1/2Ĥ(k) ∈ L2(R) holds. Now, for 0 ≤ δ < p0 we have

eδtH(t) =
1

2π
eδt

∫

R

eit(iδ+s)Ĥ(iδ + s)ds

=
1

2π

∫

R

eitsĤ(iδ + s)ds,

which implies (by Plancherel)

||eδ(·)H(·)||L2 =
1√
2π
||Ĥ(iδ + ·)||L2 .

Moreover,
d

dt
[eδtH(t)] =

1

2π

∫

R

iseitsĤ(iδ + s)ds,

hence (by Plancherel)

|| d
dt

[eδ(·)H(·)]||L2 =
1√
2π
||i(·)eit(·)Ĥ(iδ + ·)||L2

i.e., doing the same estimate with −δ, we get t 7→ eδ|t|H(t) ∈ H1(R).
Now consider for −δ < α < δ

||Ḣ ∗ f ||Eα
0

= sup
t∈R

e−α|t||
∫

R

Ḣ(t− τ)f(τ)dτ |

≤ ||f ||Eα
0
sup
t∈R

∫

R

e−α|t|+α|τ |−δ|t−τ ||eδ|t−τ |Ḣ(t− τ)|dτ

≤ ||f ||Eα
0
||eδ|·|Ḣ(·)||L2

(
sup
t∈R

∫

R

e2[α(|τ |−|t|)−δ|t−τ |]dτ

)1/2

≤ c√
δ − |α|

||f ||Eα
0
.

This estimate completes Proposition 5 of Appendix 1, and the lemma is proved.
Now, let us define Ũh = (x̃h, ξ̃h, X̃h) with

x̃h(t) = −[H(·; γ, τ) ∗ f ](t),

ξ̃h(t) =
d

dt
x̃h(t),

X̃h(t, v) = x̃h(t+ v) +
1

N1

∫ v

0

f(t+ v − s) sin(q1s)ds.

11



Due to (29), it is clear that Ũh ∈ Eα0 (D) for α ∈ (−α0, α0), with an estimate

||Ũh||Eα
0 (D)∩E

α
1 (H) ≤ C(α)||f ||Eα

0
(32)

and C is bounded on (−α0, α0). Moreover Ũh is a solution of (23). For showing
this we first notice that the first and third equation of (23) are easily verified by
construction. Now, the Fourier transform of the second equation is just identity

(31) for ̂̃xh. It results that the second equation of (23) is satisfied.

For α < 0, we have by construction P1
̂̃
Uh = 0, hence P1Ũh = 0. Let us show

that for α ≥ 0, P1Ũh = 0 also holds, since this implies formally exactly the same
computations (see lemma 2 for the definition of P1). Indeed, it is sufficient to

show that a1(Ũh) = 0, because this implies b1(Ũh) = 0 by differentiating σ(Ũh)
with respect to t and integrating by parts. Taking the Fourier transform of
a1(Ũh) (analytic in a strip for α < 0, in S ′ for α = 0, in S′α for α > 0), we
obtain, due to the properties shown in Proposition 2 of Appendix 1,

F
(∫ 1

0

sin q1(1− v)

[∫ v

0

[f(t+ u) + f(t− u)] sin q1(v − u)du

]
dv

)
(k)

= f̂(k)

∫ 1

0

sin q1(1− v)

[∫ v

0

2 cosku sin q1(v − u)du

]
dv,

which is the basic identity for showing that F [a1(Ũh)] ∈ S′α is proportional to

̂̃xh(k)
[
1− 2γτ2

q1

∫ 1

0

sin q1(1− v) cos kvdv

]
−

− f̂(k)2γτ2N−1
1

∫ 1

0

sin q1(1− v)
cos kv − cos q1

q21 − k2
dv

with ̂̃xh(k) = −Ĥ(k; γ, τ)f̂(k). It results that f̂(k) is a factor of a quantity, now
independent of the choice of space for f , i.e. independent of α. Since we know
that a1(Ũh) = 0 for α < 0, the independence with respect to α shows that

a1(Ũh) = 0 for α ≥ 0 also, and thus P1Ũh = 0 holds for all α ∈ (−α0, α0).
For α ≥ 0, the full solution Uh of (31) is obtained by adding to x̃h a linear

combination of the form b+ exp(iq1t) + b− exp(−iq1t), with b± = a±/2π, (see

Proposition 3 of Appendix 1). But, since Ũh ∈ Eα0 (Dh), we conclude P1Uh = 0
if and only if b± = 0. Thus, we have finally

Lemma 4 Assume f ∈ Eα0 , for α ∈ (−α0, α0), α0 < δ < p0, then the system
(23) has a unique solution Uh ∈ Eα0 (Dh)∩Eα1 (Hh), and the linear map Eα0 (R) 3
f 7→ Uh ∈ Eα0 (D) ∩ Eα1 (H) is bounded uniformly in α ∈ (−α0, α0).

Thus, we have verified the assumptions of Theorem 3 in ([20], p. 133) with
the special nonlinearity of Mτ (U) = τ2(0, g(U), 0)T . Therefore, there exists a
neighborhood Ω of 0 in D and, for each (γ, τ) ∈ ∆0, a mapping h ∈ Ckb (Dc; Dh),
where Dc = P1D, Dh = QhD, with h(0; γ, τ) = 0, Dh(0; γ, τ) = 0, such that
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(i) if Ũc : R → Dc is any solution of

∂tUc = Lγ,τUc + P1Mτ [Uc + h(Uc; γ, τ)] (33)

with Ũc(t) ∈ Ωc for all t ∈ R, then Ũ = Ũc + h(Ũc; γ, τ) solves (6).

(ii) if Ũ : R → D solves (6), and Ũ(t) ∈ Ω for all t ∈ R, then

Ũh(t) = h(Ũc(t); γ, τ), t ∈ R,

holds, and Ũc(t) solves (33).

Theorem 5 For any (γ, τ) ∈ ∆0, and for U near the origin in D, the system
(6) reduces to a two dimensional reversible smooth vector field. Moreover, the
set of solutions near 0 of (6) constitutes a one parameter family of periodic
orbits, bifurcating from 0.

Corollary 6 For any (γ, τ) ∈ ∆0, the set of solutions near 0 of equation (2) is
a one parameter family of periodic solutions, bifurcating from 0 (the parameter
is the amplitude of the oscillations).

It then results that, for (γ, τ) ∈ ∆0, the only small amplitude travelling
waves of the original problem (1), belong to a family of time-periodic waves
bifurcating from 0.

Proof of the theorem. Once we reduced our problem into the two-dimensional
reversible smooth vector field for Uc (33), with a linear part having the simple
pair of eigenvalues ±iq1, the result is known as the Devaney-Lyapunov theorem
(see [4]). In fact, it is just a consequence of the implicit function theorem.

5 Reduction near the first critical curve

In this section we define Γ′0 ⊂ Γ0 = boundary of ∆0 as the set of parameters
(γ0, τ0) such that

∑
0 Lγ0,τ0 = {±iq1,±iq0}, where q0 and q1 are positive and

±iq1 are simple, ±iq0 are double eigenvalues of Lγ0,τ0 . Γ′0 is obviously dense in
Γ0. Thus, we are faced with the simplest possible bifurcation of our problem.

Let us proceed as in the previous section. We have

N(iq0; γ0, τ0) = ∂λN(iq0; γ0, τ0) = N(iq1; γ0, τ0) = 0.

The eigenprojection P1 on the two-dimensional subspace, spanned by the eigen-
vectors belonging to ±iq1, was already given in the previous section. We com-
pute the eigenprojection P0 on the four-dimensional subspace, spanned by the
eigenvectors and generalized eigenvectors belonging to ±iq0. This projection is
again given by the sum of the two coefficients of (λ ± iq0)

−1 in the Laurent
expansion (see [10]) of the resolvent operator (λI − Lγ0,τ0)

−1 near the double
poles ±iq0. We obtain the following

13



Lemma 7 Assume (γ0, τ0) ∈ Γ′0, and
∑

0 Lγ0,τ0 = {±iq0,±iq1}, where iq0 is
the double eigenvalue, then the spectral projection Pc on the six-dimensional
subspace belonging to

∑
0 Lγ0,τ0 , is given as Pc = P0 + P1 where P0 and P1 are

projections of rank 4 resp. 2, commuting with Lγ0,τ0 , such that P0P1 = P1P0 =
0. They are explicitly defined, for U = (x, ξ,X)T ∈ H, as follows:

(P1U)0 = N−1
1 a1(U), (P1U)1 = q1N

−1
1 b1(U),

(P1U)2(v) = N−1
1 [a1(U) cos q1v + b1(U) sin q1v],

(P0U)0 = − 2q0
3N2

0

a0(U)− 2

N0
c0(U),

(P0U)1 = −
(

2q20
3N2

0

+
2

N0

)
b0(U)− 2q0γ0τ

2
0

N0
ρ̂0(U),

(P0U)2(v) = (P0U)0 cos q0v −
(

2q0
3N2

0

b0(U) +
2γ0τ

2
0

N0
ρ̂0(U)

)
sin q0v+

− 2b0(U)

N0
v cos q0v +

2a0(U)

N0
v sin q0v,

where

q2j = τ2
0 (1 + 2γ0 − 2γ0 cos qj), j = 0, 1, q0 = γ0τ

2
0 sin q0,

N1 = q1 − γ0τ
2
0 sin q1 6= 0, N0 = γ0τ

2
0 cos q0 − 1 6= 0,

aj(U) = qjx− γ0τ
2
0σj(U), j = 0, 1,

bj(U) = ξ − γ0τ
2
0 ρj(U),

c0(U) = x− γ0τ
2
0 σ̂0(U),

σj(U) =

∫ 1

0

sin qj(1− s)[X(s) +X(−s)]ds, j = 0, 1,

ρj(U) =

∫ 1

0

cos qj(1− s)[X(s)−X(−s)]ds, j = 0, 1,

σ̂0(U) =

∫ 1

0

(1− s) cos q0(1− s)[X(s) +X(−s)]ds,

ρ̂0(U) =

∫ 1

0

(1− s) sin q0(1− s)[X(s)−X(−s)]ds.

The reader can check easily that P0P1 = P1P0 = 0 follows from the 4
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identities

q0 − 2γ0τ
2
0

∫ 1

0

sin q0(1− s) cos(q1s)ds = 0,

1− 2γ0τ
2
0

∫ 1

0

(1− s) cos q0(1− s) cos(q1s)ds = 0,

q1 − 2γ0τ
2
0

∫ 1

0

cos q0(1− s) sin(q1s)ds = 0,

∫ 1

0

(1− s) sin q0(1− s) sin(q1s)ds = 0.

A necessary and sufficient condition for U to be in the hyperbolic invariant
subspace Hh is that the following 6 conditions are realised

aj(U) = bj(U) = c0(U) = ρ̂0(U) = 0, j = 0, 1.

To prepare application of [20], we have to solve the affine linear system,
associated with (6) for the hyperbolic part. Set Qh = I− P0 − P1, Uh = QhU,
then we have to solve

∂tUh = Lγ0,τ0Uh +QhF (34)

for Uh ∈ Eα0 (Dh) ∩ Eα1 (Hh) and for each α ∈ (−α0, α0). We have

F = (0, f, 0)T , f ∈ Eα0 (R), and Fh = QhF,

(Fh)0 = 0,

(Fh)1 = {−q1N−1
1 + (3N2

0 )−1(3γ2
0τ

4
0 − 3− q20)}f,

(Fh)2(v) =
{
−N−1

1 sin q1v + 2q0(3N
2
0 )−1 sin q0v + 2N−1

0 v cos q0v
}
f.

The component Xh is now given by

Xh(t, v) = φ(t+ v) + X̃h(t, v),

X̃h(t, v) =

∫ t

0

f(s)

(
2q0
3N2

0

sin q0(t+ v − s) +
2(t+ v − s)

N0
cos q0(t+ v − s)

)
ds+

−N−1
1

∫ t

0

sin q1(t+ v − s)f(s)ds,
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and

xh(t) = φ(t) +

∫ t

0

f(s)

(
2q0
3N2

0

sin q0(t− s) +
2(t− s)

N0
cos q0(t− s)

)
ds+

(35)

−N−1
1

∫ t

0

sin q1(t− s)f(s)ds,

Xh(t, v) = xh(t+ v) +N−1
1

∫ t+v

t

sin q1(t+ v − s)f(s)ds+ (36)

−
∫ t+v

t

f(s)

(
2q0
3N2

0

sin q0(t+ v − s) +
2(t+ v − s)

N0
cos q0(t+ v − s)

)
ds

= xh(t+ v) +N−1
1

∫ v

0

sin(q1s)f(t+ v − s)ds+

−
∫ v

0

f(t+ v − s)

(
2q0
3N2

0

sin q0s+
2s

N0
cos q0s

)
ds,

which leads to

∂

∂v
Xh(t, v) = ẋh(t+ v) + q1N

−1
1

∫ v

0

cos(q1s)f(t+ v − s)ds+

−
∫ v

0

f(t+ v − s)

(
(

2q20
3N2

0

+
2

N0
) cos q0s−

2s

N0
sin q0s

)
ds.

Hence, there exists a constant c independent of α ∈ (−α0, α0) such that

||Xh||Eα
0 (C1[−1,+1]) ≤ ||xh||Eα

1
+ c||f ||Eα

0
(37)

holds again. Now we take the Fourier transform of (34). For being able to do
it, we proceed as in the previous section. For α < 0, we obtain an expression
for Ûh analytic with respect to k ∈ Bα = {k ∈ C; | Im k| < α}, taking values in
Dh and which is solution of

(ikI− Lγ,τ)Ûh(k) = QhF̂ (k). (38)

For α ≥ 0 we need to use the distributions in S ′α (see Appendix 1).
For any α, we have

ξ̂h(k) = ikx̂h(k),

X̂h(k, v) = eikv x̂h(k) +
f̂(k)

N1

∫ v

0

eik(v−s) sin(q1s)ds+

− f̂(k)

∫ v

0

eik(v−s)
(

2q0
3N2

0

sin(q0s) +
2s

N0
cos q0s

)
ds,

N(ik; γ0, τ0)x̂h(k) = −f̂(k)

(−q1
N1

+
3γ2

0τ
4
0 − 3− q20
3N2

0

+

+ γ0τ
2
0

∫ 1

0

2 cos k(1− s)[
1

N1
sin q1s−

2q0
3N2

0

sin q0s−
2s

N0
cos q0s]ds

)
.
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After using the definitions of N0, N1 and the fact that q1 (resp q0) is a simple
(resp. double) root of N(ik; γ0, τ0) = 0, this leads, after elementary computa-
tions, to

N(ik; γ0, τ0)[x̂h(k) + Ĥ(k; γ0, τ0)f̂(k)] = 0, (39)

where Ĥ is defined by the identity

1

N(ik; γ0, τ0)
=

q1
N1(k2 − q21)

− 2(k2 + q20)

N0(k2 − q20)
2
− 2q20

3N2
0 (k2 − q20)

+ Ĥ(k; γ0, τ0).

(40)
The function C 3 k 7−→ N(ik; γ0, τ0) is entire, and ±q1 (resp. ±q0) are the
unique simple (resp. double) roots of N(ik; γ0, τ0) = 0 in a strip Bp0 where
p0 > α0 was defined in Lemma 1 (i). N behaves as k2 at infinity in Bp0 . Notice

that C 3 k 7→ Ĥ(k; γ0, τ0) is analytic in the strip Bp0 and tends to 0 as 1/k2

for |k| → ∞. It results by the lemma shown at previous section, that Ĥ is the
Fourier transform of a function R 3 t 7→ H(t; γ0, τ0) ∈ H1

−δ, for any δ < p0.
It results from Proposition 4, 3 and 5 of Appendix 1, that the solution of

(39) reads

xh(t) + [H(·; γ0, τ0) ∗ f ](t) =





a+
1 e

iq1t + a−1 e
−iq1t + (a+

0 + itb+0 )eiq0t+
+(a−0 − itb−0 )e−iq0t, for α ≥ 0,

= 0, for α < 0,

a±0 , a
±
1 , b

±
0 being arbitrary constants. Now, define Ũ as in the previous section,

based on the new x̃h = −H(·; γ0, τ0) ∗ f, and formula (36) for X̃h. The same
argument as in the previous section, using Proposition 2 of Appendix 1, shows
that P1(Ũh) = P0(Ũh) = 0 independently of α. Then, for α ∈ (−α0, α0), α0 <
δ < p0, we have a±0 = a±1 = b±0 = 0.

Lemma 8 Assume f ∈ Eα0 , for α ∈ (−α0, α0), α0 < δ < p0, then the affine
system (34) has a unique solution Uh ∈ Eα0 (Dh) ∩ Eα1 (Hh), and the linear map
Eα0 3 f 7−→ Uh ∈ Eα0 (D) ∩Eα1 (H) is bounded uniformly in α ∈ (−α0, α0).

So, as in the previous section, we have verified the assumptions of Theorem
3 in ([20] p.133), and we are now able to use a reduction on a 6-dimensional
center manifold.

6 Normal form near Γ̃0

As we have observed, Γ′0 is dense in Γ0. Exceptional points on Γ0 are the cusp
points, where there is one pair of triple eigenvalues, and the angular points,
where there are two pairs of double eigenvalues and one pair of simple eigenval-
ues. In what follows, we exclude points of the parameter plane which are close to
points of Γ0 where the ratio q1/q0 takes the values 1 (cusps), 1/2, 2, 1/3, 3 cor-
responding to strong resonances. We also exclude neighborhoods of the angular
points of Γ0. As a consequence we consider only those points (γ, τ) ∈ Γ0 near
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points where (q1/q0)(γ, τ) is close to a rational number r/s such that r+ s ≥ 5.

This set of points is denoted by Γ̃0 ⊂ Γ0.
We stay in the parameter plane near the part Γ̃0 of Γ0 where neighborhoods

of strong resonances are avoided. For the computation of the normal form we
need to define, for every point near Γ̃0, the nearest weak resonance. For any
rational number r/s let us define the subset of Γ̃0

Ir/s = {(γ, τ) ∈ Γ̃0; |
q1(γ, τ)

q0(γ, τ)
| < εr+s, and

q1(γ, τ)

q0(γ, τ)
=
r′

s′
implies r′+s′ ≥ r+s}.

It is clear that Γ̃0 is the union of Ir/s for r/s ∈ Q∗
+\{1, 2, 3, 1/2, 1/3}. We then

compute the normal form for q1/q0 = r/s and we shall play on (γ, τ) to cover

the full neighborhood of Γ̃0. The linear operator on the 6-dimensional central
subspace has the form

L(0) =




iq0 1 0 0 0 0
0 iq0 0 0 0 0
0 0 iq1 0 0 0
0 0 0 −iq0 1 0
0 0 0 0 −iq0 0
0 0 0 0 0 −iq1




in the basis ζ0, ζ̃0, ζ1, ζ0, ζ̃0, ζ1 defined by

ζ0 = (1, iq0, e
iq0v)T ,

ζ̃0 = (0, 1, veiq0v)T ,

ζ1 = (1, iq1, e
iq1v)T ,

and which satisfies

Lγ0,τ0ζ0 = iq0ζ0, Sζ0 = ζ0,

Lγ0,τ0 ζ̃0 = iq0ζ̃0 + ζ0, Sζ̃0 = −ζ̃0,

Lγ0,τ0ζ1 = iq1ζ1, Sζ1 = ζ1.

It is easy to check that the projection P0 + P1 may now be defined as follows

(P0 + P1)U = Aζ0 +Bζ̃0 + Cζ1 + c.c. = U0,

with

A =
iq0
3N2

0

[b0(U) + ia0(U)] +
i

N0
[γ0τ

2
0 ρ̂0(U) + ic0(U)],

B = −N−1
0 [b0(U) + ia0(U)],

C = 1/2N−1
1 [a1(U)− ib1(U)].
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The structure of the reversible normal form corresponding to the linear operator
L(0) is computed in Appendix 2. It is shown in particular that the reduced 6-
dimensional system, with its normal form written at order r + s− 2, takes the
following form

dA

dt
= iq0A+B + iAP (u1, u2, u4) +O(|A|+ |B|+ |C|)r+s−1, (41)

dB

dt
= iq0B + iBP (u1, u2, u4) +AQ(u1, u2, u4) +O(|A| + |B|+ |C|)r+s−1,

(42)

dC

dt
= iq1C + iCR(u1, u2, u4) +O(|A| + |B|+ |C|)r+s−1, (43)

where u1 = AA, u2 = i/2(AB−AB), u4 = CC, and P,Q,R are polynomials with
smoothly parameter dependent real coefficients for (γ, τ) in the neighborhood
of any (γ0, τ0) ∈ Ir/s. The 0th order coefficients in P,Q,R correspond to the
critical linear part of system (6). We notice that the normal form, truncated at
order r + s− 2, contains all solutions of the classical 1:1 resonant normal form
(just consider solutions with C = 0).

Let us specify the main coefficients of system (41,42,43). We have at first
orders

P (u1, u2, u4) = a1(γ, τ) + a2u1 + a3u2 + a4u4,

Q(u1, u2, u4) = b1(γ, τ) + b2u1 + b3u2 + b4u4,

R(u1, u2, u4) = c1(γ, τ) + c2u1 + c3u2 + c4u4,

Coefficients a1, b1, c1 cancel for (γ, τ) = (γ0, τ0), and may be easily computed
by using the property that

iq0 ±
√
b1(γ, τ) + ia1(γ, τ),

iq1 + ic1(γ, τ)

and their complex conjugate, are the six eigenvalues of the operator Lγ,τ for
(γ, τ) close to (γ0, τ0). Notice that, b1(γ, τ) = 0 on Γ0 and we have b1(γ, τ) > 0
on the side ∆0 of the curve Γ0.

Now, as for the 1:1 resonance case, the most important coefficient is b2,
which we compute below.

Let us denote the basic differential equation (6) as follows

dU

dt
= Lγ0,τ0U+(γ−γ0)L

(1,0)U+(τ−τ0)L(0,1)+M2,0(U,U)+M3,0(U,U, U)+ ...

with

L(1,0)U = τ2
0 (0,−2x+X1 +X−1, 0)T ,

L(0,1)U = 2τ0(0,−(1 + 2γ0)x + γ0(X
1 +X−1), 0)T ,

M2,0(U,U) = τ2
0 (0, ax2, 0)T ,

M3,0(U,U, U) = τ2
0 (0, bx3, 0)T .

19



The Taylor expansion of the 6-dimensional center manifold reads

U = Aζ0 +Bζ̃0 + Cζ1 +Aζ0 +Bζ̃0 + Cζ1+

+
∑

(γ − γ0)
m(τ − τ0)

nAr0Br̃0Cr1A
s0
B
s̃0
C
s1

Φ
(m,n)
r0r̃0r1s0 s̃0s1

(44)

where the sum does not contain terms withm = n = 0, r0+r̃0+r1+s0+s̃0+s1 =
1, and we have in a classical way

(2iq0I− Lγ0)Φ
(0,0)
200000 = M2,0(ζ0, ζ0),

−Lγ0Φ
(0,0)
100100 = 2M2,0(ζ0, ζ0),

ia2ζ0 + b2ζ̃0 + (iq0I− Lγ0)Φ
(0,0)
200100 = 2M2,0(ζ0,Φ

(0,0)
200000) + 2M2,0(ζ0,Φ

(0,0)
100100)+

+ 3M3,0(ζ0, ζ0, ζ0).

This leads to

Φ
(0,0)
200000 = K1(1, 2iq0, e

2iq0v)T ,

Φ
(0,0)
100100 = 2a(1, 0, 1)T ,

Φ
(0,0)
200100 = ia2ζ̃0 + φζ0 +

b2
2

(0, 0, v2eiq0v)T ,

with a2 and φ still unknown, and

K1 = a[1− 4q20τ
−2
0 (1− γ−1

0 τ−2
0 )]−1,

−N0b2 = τ2
0 {2a2[1− 4q20τ

−2
0 (1− γ−1

0 τ−2
0 )]−1 + 4a2 + 3b}. (45)

Notice that γ0τ
2
0 > 1 due to (16) , and thatN0 may take any sign since it changes

its sign at the cusp points of DEC, hence there are situations in the parameter
plane such that the coefficient b2 is negative. For the truncated normal form
at cubic order, we have solutions with C = 0, corresponding to a flat extra
oscillatory part, and reducing to the solutions of the classical 1:1 reversible
resonance vector field. We know that for b2 < 0 there is a one parameter (a
”circle”) family of orbits homoclinic to 0 (see for instance [9])

A = r0(t)e
i(q0t+ψ(t)+θ), B = r1(t)e

i(q0t+ψ(t)+θ), C = 0

r0(t) =

√
2b1(γ, τ)

−b2

(
cosh[t

√
b1(γ, τ)]

)−1

,

r1(t) =
dr0(t)

dt
,

ψ(t) = a1(γ, τ)t + 2
a2

b2

√
b1(γ, τ) tanh(t

√
b1(γ, τ)),

where θ ∈ R. Two of them are reversible: θ = 0 or π. For the full vector
field (41,42,43), we are now able to use in particular the results of E.Lombardi
[12]: under the non resonance assumptions which are realized here, there exists
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a family of pairs of reversible solutions of (2) homoclinic to periodic solutions
of exponentially small amplitude. This means that this type of solutions, which
are mainly given by the above mentioned reversible orbits homoclinic to 0, now
contain an oscillating part in C which cannot be annihilated, whose size is

O(e−c/b
1/2

1 ) hence exponentially small in the bifurcation parameter b1(γ, τ). So
it remains a ”phonon” at infinity, the central ”localized” part of the solution
being of order

√
b1(γ, τ). More precisely, the principal parts of these ”localized”

travelling waves are obtained up to order O[b1(γ, τ)] (resp. O[
√
b1(γ, τ)]) for

r + s ≥ 6 (resp. r + s = 5), in replacing in the center manifold expansion (44)
of U , amplitudes A,B,C by the above explicit expressions (see [5]).

Theorem 9 For (γ, τ) in a neighborhood of the curve Γ0, except near excep-
tional points (cusps, angular points and strong resonances), and for U near the
origin in D, the system (6) reduces to a 6-dimensional reversible vector field,
with a fixed point at the origin and a linear part possessing a pair of double
eigenvalues ±iq0 and a pair of simple eigenvalues ±iq1. The bifurcation pa-
rameter is b1 = dist[(γ, τ),Γ0], (counted > 0 in ∆0). All generic bifurcating
(periodic, quasiperiodic, homoclinic,...) small bounded solutions of this 6-dim
reversible vector field correspond to ”small” travelling waves, solutions of (2).In
particular, for (γ, τ) in the open set where b2 < 0 [see(45)], there are travelling
waves which are localized in space, with exponentially small oscillating tails,
called ”nanopterons” (following J.P.Boyd’s denomination [2]).

Appendix 1. Construction of a suitable distribu-

tion space

Given α > 0 and Bα := {z ∈ C/| Im z| < α}, define the space Sαas follows

Sα = {f : Bα → C/f holomorphic in Bα, qm,p(f) <∞, (m, p) ∈ N2},

where qm,p(f) = sup
z∈Bα

|zmf (p)(z)|eα|Re z|, and where N is the set of integers

starting at 0.
The pair (Sα, qm,p) defines a Fréchet space. Notice that (coshαz)−1 ∈ Sα if

α2 < π/2, so Sα is nontrivial and we have Sα ⊂ S (space of rapidly decaying
functions).

Proposition 1: The Fourier transform F defines a bijection on Sα, being
continuous in both directions.

Proof: For any φ ∈ Sα , we first show that Fφ =: φ̂ belongs to Sα. Let us
notice that for any p,m ≥ 0, and k ∈ Bα we have

ip+mkmφ̂(p)(k) =

∫

R

xpe−ikxφ(m)(x)dx.
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Now, take k = kr + iki and choose kr > 0 and z = x+ i(ε−α), 0 < ε < α, - for
kr < 0, take z = x+ i(α− ε) and argue analogously - then, one obtains

ip+mkmφ̂(p)(k)eαkr = eεkrei(ε−α)ki

∫

z∈R+i(ε−α)

e−ikrxzpφ(m)(z)exkidz,

whence it follows
|kmφ̂(p)(k)|eαkr ≤ πeεkrCp,m(φ),

where Cp,m(φ) = sup
z∈Bα

(1 + |Re z|2)|zpφ(m)(z)|eα|Re z| <∞ is independent of ε.

The limit ε→ 0+ then yields

qm,p(φ̂) ≤ π[qp,m(φ) + qp+2,m(φ)].

Therefore, to each φ ∈ Sα, there exists a unique φ̂ = Fφ ∈ Sα, and the map
φ 7→ φ̂ is continuous. The surjectivity of this map follows by applying the
inverse Fourier transform; and the above estimate gives the continuity in both
directions.

Now, define the dual space S ′α of linear continuous forms on Sα and provide
it with the weak topology, i.e. pointwise convergence. Then F ′ -which we denote
by F again - is again a bijection on S ′α, and it is continuous in both directions.
Moreover, we have S ′ ⊂ S′α, where S′ is the set of tempered distributions.

Proposition 2: Given α > 0, f ∈ Eα0 (R) and r ∈ C0[0, 1]; then
(i) f ∈ S′α via < f, φ >:=

∫
R
f(t)φ(t)dt, for any φ ∈ Sα, and the embedding

Eα0 ↪→ S′α is continuous.
(ii) [Ff(·+ v)](k) = eikv(Ff)(k), v ∈ R.

(iii) h(t) :=
∫ 1

0
r(s)f(t+ s)ds ∈ S ′α and

(Fh)(k) = (Ff)(k)

∫ 1

0

r(s)eiksds.

Proof:
Ad(i). For every φ ∈ Sα the following inequality is valid

| < f, φ > | = |
∫

R

f(t)φ(t)dt| ≤ π[q0,0(φ) + q2,0(φ)].||f ||Eα
0
.

Ad(ii). This identity is obtained, similar to the case of tempered distributions

< Ff(·+ v), φ >:=< f((·+ v), φ̂ >=

∫

R

f(t+ v)φ̂(t)dt

=

∫

R

f(t)φ̂(t− v)dt =

∫

R

f(t)

[∫

R

φ(s)e−i(t−v)sds

]
dt =

=

∫

R

f(t)F [eiv(·)φ](t)dt =< Ff, eiv(·)φ >=< eiv(·)Ff, φ > .
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Add(iii) The inclusion Eα0 ⊂ S′α is obvious. Now, let

hn(t) =

n∑

j=1

r(sj)f(t+ sj)∆sj ∈ S′α

be any Riemann sum for
∫ 1

0
r(s)f(t + s)ds. Then we have

| < hn − h, φ > | ≤ [q0,0(φ) + q2,0(φ)]

∫

R

e−α|t|

1 + t2
|h(t)− hn(t)|dt.

The integrand tends pointwise to 0 as n→∞ and is dominated by an integrable
function, thus

lim
n→∞

< hn, φ >=< h, φ >, φ ∈ Sα

holds. Similarly, we conclude

< Fhn, φ >=< hn,Fφ > →
n→∞

< Fh, φ >

and the left side converges to the expression on the right side of the assertion
(iii) as n→∞. The proposition is proved.

Proposition 3: For any f ∈ S ′α
[F(Df)](k) = ik(Ff)(k)

holds. Moreover F(eiqt) = 2πδq, and F(iteiqt) = −2πδ′q.

Proof: Same proof as in S ′.

Proposition 4: Let K be an analytic and polynomially bounded function in
the strip Bδ where δ > α. Assume that K has a finite number of roots zj
with multiplicity mj , j = 1, 2, ...N , in the strip Bα. Then the kernel in S ′α of
the linear operator f → Kf is formed by all linear combinations of the form∑N
j=1

∑mj

k=1 ajkδ
(k)
zj with arbitrary ajk ∈ C (where δq is the Dirac distribution

in q which is trivially in S ′α, and δ
(m)
q is the mth derivative of δq).

Proof : Assume first that all roots are simple. For f ∈ kernel defined above,
and for any φ in Sα, we have 0 =< Kf, φ >=< f,Kφ > since Kφ ∈ Sα.
This means that < f, ψ >= 0 for all ψ in Sα which cancel at simple roots
zj , j = 1, 2, ...N. Now, any φ ∈ Sα may be decomposed as the sum of N + 1
functions in Sα

φ(z) =

N∑

p=1

φ(zp)
∏
j 6=p(z − zj)

coshα(z − zp)
∏
j 6=p(zp − zj)

+ ψ(z)

where ψ has simple roots in zj , j = 1, 2, ...N , and < f, φ >=
∑N
p=1 apφ(zp).

This proves the Proposition 4 for simple roots.
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Assume now that z1, ....zr are double roots, and zr+1, ...zN simple roots of
K = 0 in the strip Bα. We conclude from the result above, that

[
r∏

p=1

(z − zp)

]
f =

N∑

j=1

ajδzj .

Hence, for any φ in Sα, we have < f,
[∏r

p=1(z − zp)
]
φ >=

∑N
j=1 ajφ(zj). This

means that for any ψ in Sα having simple roots in zp, p = 1, ...r, we have

< f, ψ >=

r∑

j=1

cjψ
′(zj) +

N∑

j=r+1

bjψ(zj),

where bj = aj

[∏r
p=1(zj − zp)

]−1

, cj = aj

[∏r
p=1,p6=j(zj − zp)

]−1

. Let us take

any φ ∈ Sα, we have the decomposition φ(z) =
∑r

p=1 φ(zp)χp(z) + ψ(z), with
χp(zq) = 0 if q 6= p, and = 1 if q = p where p ∈ {1, ...r}. Now, z1, ...zr are simple
roots of ψ, hence we have

< f, φ >=

N∑

p=1

αpφ(zp) +

r∑

p=1

cpφ
′(zp),

with

αp =< f, χp > −
N∑

j=r+1

bjχp(zj)−
r∑

j=1

cjχ
′
p(zj), p = 1, ...r,

αp = bp, p = r + 1, ...N.

Therefore, Proposition 4 is proved for roots at most double. For roots of arbi-
trary order, the proof is left to the reader.

Proposition 5. Let H ∈ E−δ0 and g ∈ Eα0 , with δ > α ≥ 0, then we have
i) H ∗ g ∈ Eα0 , with ||H ∗ g||0,α ≤ 2(δ − α)−1||H ||0,−δ||g||0,α
ii) F(H ∗ g) = Ĥ.ĝ where Ĥ = FH is the Fourier transform in the usual

sense of functions, and ĝ and F(H ∗g) are Fourier transforms in S ′α for α > 0,
in S′ for α = 0.

Proof: i) comes from the inequality

∫

R

eα(|s|−|t|)−δ|t−s|ds ≤ 2(δ − α)−1.
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Now, for α > 0, F(H ∗ g) ∈ S ′α and satisfies ∀ϕ ∈ Sα,

< F(H ∗ g), ϕ >=< H ∗ g,Fϕ >

=

∫ ∫ ∫
H(t− s)g(s)e−iktϕ(k)dkdtds

=

∫
g(s)

∫
e−iksϕ(k)Ĥ(k)dkds =< g,F(ϕ.Ĥ) >

=< ĝ, ϕ.Ĥ >=< Ĥ.ĝ, ϕ > .

We noticed, in this calculation, that ϕ.Ĥ ∈ Sα because Ĥ is analytic in the strip
Bδ ⊃ Bα, and bounded in Bα. As a corollary, this shows that F−1(Ĥ.ĝ) = H ∗g
in Eα0 .

For α = 0, H ∗ g ∈ E0
0 = C0

b (R),F(H ∗ g) ∈ S′, and all equalities above hold
for φ ∈ S.

Appendix 2. Reversible normal form associated

with L
(0)

As indicated for instance in ([7], p.18 and 23-24) we need to solve

DU0
N(U0).L

(0)∗U0 = L(0)∗N(U0),

SN = −N ◦ S,

where N = (N0, Ñ0, N1, N0, Ñ0, N1)
T , and

S(A,B,C,A,B,C)T = (A,−B,C,A,−B,C)T .

Moreover N has polynomial components of an arbitrarily fixed degree in vari-
ables (A,B,C,A,B,C). Let us define the linear differential operator

D∗f = −iq0A
∂f

∂A
+ (−iq0B +A)

∂f

∂B
− iq1C

∂f

∂C
+

+ iq0A
∂f

∂A
+ (iq0B +A)

∂f

∂B
+ iq1C

∂f

∂C
,

then we must verify

D∗N0 = −iq0N0,

D∗Ñ0 = −iq0Ñ0 +N0,

D∗N1 = −iq1N1.

Independent first integrals of D∗f = 0, are

u1 = AA, u2 = i/2(AB −AB), u3 = iq0B/A+ lnA, u4 = CC, u5 = ArC
s
,
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where we assumed that q1
q0

= r
s . We observe that

A =
u1

A
, B =

A

iq0
(u3 − lnA), B =

2u2

iA
+
u1(u3 − lnA)

iq0A
,

C = u4u
−1/s
5 Ar/s, C = u

1/s
5 A−r/s,

hence, a polynomial in variables (A,B,C,A,B,C) can be expressed as a func-
tion of variables (A, u1, u2, u3, u4, u5), polynomial in (u1, u2, u3, u4), with co-
efficient functions of (A, u5), the dependence in u5 being with polynomials of
(u5)

±1/s. Now, considering polynomial solutions of D∗f = 0, it results eas-
ily, with the variables (A, u1, u2, u3, u4, u5), that f is independent of A, i.e.
f(A,B,C,A,B,C) = φ(u1, u2, u3, u4, u5), where

φ(u1, u2, u3, u4, u5) =
∑

φr1r2r3r4r5u
r1
1 u

r2
2 u

r3
3 u

r4
4 u

r5/s
5 (finite sum)

with integers rj ≥ 0, j = 1, 2, 3, 4, and r5 ≥ 0 or < 0. We can first assert that
φ is independent of u3. This is due to the occurence of lnA at some power in
ur33 , and a study at infinity shows that φ cannot behave polynomially in A if u3

occurs in φ. Now, an examination of the exponents of C and A (making B = 0)
in φ leads to the conditions

r4 + r5 ≥ 0,

sr1 + rr5 is a positive multiple of s.

Hence, r5 = k5s, with rk5 ≥ −r1, sk5 ≥ −r4. It results that in case k5 > 0,
one has a monomial ur11 u

r2
2 u

r4
4 u

k5
5 while in case k5 < 0, one has a monomial

u
r′1
1 u

r2
2 u

r′4
4 u

−k5
5 , with r′1 = r1+rk5, r

′
4 = r4+sk5. Finally the polynomial solutions

of D∗f = 0 can be written as

f = P0(u1, u2, u4) + u5P1(u1, u2, u4, u5) + u5P2(u1, u2, u4, u5),

where Pj are polynomials in their arguments. Notice that, if one has in addition
f ◦ S = ±f, then polynomials Pj have real or pure imaginary coefficients.

Let us now solve D∗N0 = −iq0N0, N0 ◦ S = −N0.
We observe that D∗(AN0) = 0, hence

AN0 = φ0(u1, u2, u4) + u5φ1(u1, u2, u4, u5) + u5φ2(u1, u2, u4, u5),

and u1 should be a factor of the polynomials φ0 and φ1. Finally one obtains,
after using the reversibility condition,

N0 = iA[P0(u1, u2, u4) + u5P1(u1, u2, u4, u5) + u5P2(u1, u2, u4, u5)]

+ iA
r−1

CsP3(u2, u4, u5),

where P0, P1, P2, P3 have real coefficients. Let us consider the equation D∗Ñ0 =

−iq0Ñ0+N0, and observe thatD∗(AÑ0) = AN0,D∗(AB) = u1,D∗(A
r−1

BCs) =
u5, hence (using reversibility again)
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AÑ0 = iAB[P0(u1, u2, u4) + u5P1(u1, u2, u4, u5) + u5P2(u1, u2, u4, u5)]+

+AA[Q0(u1, u2, u4) + u5Q1(u1, u2, u4, u5) + u5Q2(u1, u2, u4, u5)]+

+ iA
r−1

BCsP3(u2, u4, u5) +A
r
CsQ3(u2, u4, u5).

If r = 1, making A = 0, leads to

0 = BCsP3(u2, u4, 0),

and u5 is factor of P3 if r = 1. Finally, we also have D∗(CN1) = 0, then the
normal form reads

N0 = iA[P0(u1, u2, u4) + u5P1(u1, u2, u4, u5) + u5P2(u1, u2, u4, u5)]+

+ iA
r−1

CsP3(u2, u4, u5),

Ñ0 = iB[P0(u1, u2, u4) + u5P1(u1, u2, u4, u5) + u5P2(u1, u2, u4, u5)]+

+A[Q0(u1, u2, u4) + u5Q1(u1, u2, u4, u5) + u5Q2(u1, u2, u4, u5]+

+ iA
r−2

BCsP3(u2, u4, u5) +A
r−1

CsQ3(u2, u4, u5),

N1 = iC[R0(u1, u2, u4) + u5R1(u1, u2, u4, u5) + u5R2(u1, u2, u4, u5)]+

+ iC
s−1

ArR3(u1, u2, u5),

where all polynomials have real coefficients and where u5 is in factor in P3 when
r = 1.
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Figure 1: Pure imaginary eigenvalues of Lγ,τ (upper half). Dots are simple
eigenvalues. A simple cross and a double cross respectively means double or
triple eigenvalue.
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