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Abstract

In this paper, we study the travelling gravity waves of velocity c in
a system of two layers of perfect fluids, the bottom one being infinitely
deep, the upper one having a finite thickness h. We assume that the flow
is potential, and the dimensionless parameters are the ratio between den-
sities ρ = ρ2 = 1 − λ(1 − ρ) near 0+, the existence of periodic travelling
waves of arbitrary small amplitude and the existence of generalized soli-

tary waves with ripples at infinity of size larger than ε
5
2 and polynomial

decay rate were established in [7]. In this paper we improve this former
result by showing the existence of generalized solitary waves with expo-
nentially small ripples at infinity (of order O(e−

c
ε )). We conjecture the

non existence of true solitary waves in this case. The proof is based on
a spatial dynamical formulation of the problem combined with a study
of the analytic continuation of the solutions in the complex field which
enables one to obtain exponentially small upper bounds of the oscillatory
integrals giving the size of the oscillations at infinity.
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1 Introduction

Let us consider two layers of perfect fluids (densities ρ1 (bottom layer), ρ2 (upper
layer)), assuming that there is no surface tension, neither at the free surface nor
at the interface, and assuming that the flow is potential. The thickness at rest
of the upper layer is h while the bottom one has infinite thickness (see figure 1).
We are interested in travelling waves of horizontal velocity c. The dimensionless
parameters are ρ = ρ2/ρ1 < 1, and λ = gh

c2 (inverse of (Froude number)2).

Figure 1: Two layers, the bottom one being of infinite depth

The existence of a family of periodic travelling waves, for generic values of
these parameters is known [6]. This paper is devoted to the problem of existence
of solitary waves for λ(1 − ρ) near 1−. This problem can be formulated as a
spatial reversible dynamical system

dU

dx
= F (ρ, λ;U), U(x) ∈ D, (1)

where D is an appropriate infinite dimensional Banach space, and where U = 0
corresponds to a uniform state (velocity c in a moving reference frame). Solitary
waves corresponds to homoclinic connections to 0 of (1) and generalized solitary
waves corresponds to homoclinic connections to periodic orbits. A survey of
the different results obtained for the water waves problems using a reversible
dynamical system approach can be found in [5].

Figure 2: Spectrum of Lε

Considering the linearized operator around 0

Lε = DUF (ρ, λ; 0)

with ε = 1− λ(1− ρ), it was shown in [7] that its spectrum contains the entire
real line (essential spectrum), with in addition a double eigenvalue in 0, a pair of
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simple imaginary eigenvalues±iλ at a distance O(1) from 0 when ε is near 0, and
for ε less than 0, another pair of simple imaginary eigenvalues tending towards
0 as ε → 0−. When ε ≥ 0, this pair completely disappears into the essential
spectrum! (see figure 2). The rest of the spectrum consists of a discrete set of
eigenvalues situated at a distance at least O(1) from the imaginary axis.

For λ(1− ρ) near 1−, the existence of periodic travelling waves of arbitrary
small amplitude induced by the pair of simple purely imaginary eigenvalues ±iλ
like in the Lyapunov Devaney Theorem was proved [7] (despite the resonance
due to the 0 eigenvalue in the spectrum).

For the solitary waves the situation is more intricate. First we cannot expect
the existence of a solitary wave with an exponential decay at infinity because of
the lack of spectral gap induced by the existence of the continuous spectrum on
the whole real line. We can only expect solitary waves with polynomial decay
at infinity. Such solitary waves have been found for two superposed layers, the
bottom one being infinitely deep, and the upper one being bounded by a rigid
horizontal top, with no interfacial tension (see figure 3).

Figure 3: (left) R002 resonance, and (right) shape of the internal solitary wave
in the two-layer system for µ > µc (bottom layer infinitely deep).

A model equation was derived from the Euler equations thanks to a long-
wave approximation of the problem above, by Benjamin [3], Davis and Acrivos
[4], and Ono [11]. The now called Benjamin-Ono equation is non local and reads

H(u′) + u− u2 = 0, (2)

where H is the Hilbert transform, and u is a scalar function. This equation
admits an homoclinic connection to 0, given explicitly by

uh(τ) =
2

1 + τ2
. (3)

All the other solutions of equation (2) have been described by Amick and Toland
[2]. For the full Euler equations, the existence of the solitary waves, with poly-
nomial decay at infinity, has been obtained in this case, independently by Amick
[1] and Sun [14]. More precisely, they both proved that, for µ > µc and close to
µc (we can just play on the velocity c of the wave), the form of the interface for
the solitary wave satisfies

Z(x) = µuh(µx) + µ2u1(µx)
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where

sup
τ∈R

(1 + |τ |)
∣∣∣∣
dju1

dτ j
(τ)

∣∣∣∣ ≤ Kj , j = 0, 1, 2, ..

Therefore, the solitary wave solution (3) of the Benjamin-Ono equation (2)
gives the first order approximation of a solitary wave solution of the full Euler
equations. Neither the approach of Amick, nor the one of Sun was based on
a dynamical system approach. However, we observe that the problem may
be formulated as a reversible dynamical system, for which the differential at
the origin (which corresponds to the rest state) admits the entire real line as
essential spectrum, a zero eigenvalue, and a pair of simple imaginary eigenvalues
for µ < µc tending towards 0 as µ → µ−c . When µ ≥ µc this pair completely
disappears in the essential spectrum (see figure 3).

Observe that for the problem studied in this paper (two layers, the bottom
one infinitely deep, no surface tension, no interfacial tension), the behavior of
the spectrum of the linearized operator Lε is the same as the one of the previous
example, with in addition an extra pair of simple eigenvalues lying on the imagi-
nary axis, not close to 0 (compare figures 2 and 3). These additional eigenvalues
±iλ lead to a competition between the oscillatory dynamics they induce, and
the Benjamin-Ono type of dynamics induced by the essential spectrum with the
0 eigenvalue. This competition causes the appearance of oscillations at infinity
for the solutions. Such a coexistence of an oscillatory dynamics and a hyperbolic
dynamics also occurs for one parameter families of reversible vector fields ad-
mitting a 02iω resonance at the origin, i.e. vector fields admitting the origin as
a fixed point and such that the differential at the origin admits the bifurcation
of spectrum described on figure 4.

Figure 4: (left) 02iω resonance, and (right) shape of the generalized solitary
waves for b < 1/3, f > 1.

For such vector fields it is proved in [10] that there are generically no ho-
moclinic connections to 0, whereas there are always homoclinic connections to
periodic orbits, until they are exponentially small. Such a vector field occurs
after a center manifold reduction for one layer of finite depth in presence of
gravity and surface tension for a Froude number f close to 1, and a Bond num-
ber b less than 1/3. In this case, for f > 1 and b < 1/3 periodic travelling waves
and generalized solitary waves asymptotic at infinity to each of these periodic
waves, have been obtained provided that the amplitude of the ripples is larger
than an exponentially small quantity (as function of f−1) ([13] ,[9]), (see figure
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4). The non existence of true solitary waves has also been proved by S.M.Sun
[15] for a Froude number f close to 1+, and a Bond number b near 1/3−.

We expect a result of the same type here, i.e. non existence of true soli-
tary waves and existence of generalized solitary waves with exponentially small
ripples at infinity. In [7] a weaker result was obtained, i.e. the existence of ho-
moclinic connections to periodic solutions provided that the size of the limiting
periodic orbit is not too small (at least of order ε5/2). In this paper we show
the existence of generalized solitary waves with exponentially small ripples at
infinity. The question of the (non)-existence of true solitary waves is still open
in this case. We should finally notice that the present problem is numerically
studied by Părău and Dias in [12], with lot of information on the shapes of the
free surface and interface.

Theorem 1 There exists δ such that for any ` ∈]0, 1[ there exist c`, ε` > 0, such

that for 0 < ε < ε`, and c`εe
−
`λ
ε < A0 < δ, (1) has two homoclinic connections

UA0,ε,ϕj
(j = 1, 2) of the form

UA0,ϕj ,ε(x) = pA0,ε

(
x+ ϕj arctan(εx/ρ)

)
− εuh(εx/ρ)ξ0 +O

(
ε

3
2

ρ2 + ε|x|

)

where ξ0 is a fixed vector of D, uh is the soliton of Benjamin-Ono given by (3)
and where pA0,ε is a periodic function of (1) which reads pA0,ε(x) = p̂A0,ε(s)
with

p̂A0,ε(s) = εA0

(
eisζε + e−isζε

)
+
∑

2≤p+q≤r+1

εr+1Ap+q0 ei(p−q)sYpqr

and s = (λ+ γ)x with γ =
∑

1≤n+m+2p≤r

γpr ε
r A2p

0 ∈ R, where coefficients ζε, ζε, Ypqr

lie in D and γpr lie in R.

The physical shape of the corresponding generalized solitary waves is given
on figure 5.

Figure 5: shape of generalized solitary waves in the two layer system

In section 2 we explain how the problem can be formulated as a spatial
dynamical system of the form (1). We also recall the ”normal form result”
obtained in [7] which states that the full Euler equations (1) are equivalent to
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a Benjamin-Ono equation, coupled with a nonlinear oscillator equation, with
higher order terms.

As already explained the persistence of a pair of simple eigenvalues on the
imaginary axis after bifurcation for ε > 0 causes the appearance of oscillations
at infinity for the solutions. The size of the oscillations is given by an oscillatory
integrals of the form

I(ε) =

∫ +∞

−∞

g(U(s), ε) e
iλs
ε ds

where g is explicitly known whereas U is a solution of (1). In section 3 we
introduce appropriate algebras of holomorphic functions which enables to obtain
exponentially small upper bounds of such oscillatory integrals.

Finally, in section 4 studying the holomorphic continuation of the solutions
of (1) we prove theorem 1.

2 Formulation as a dynamical system and Nor-

mal form theory

2.1 Dynamical system Formulation and scaling

Travelling waves correspond to stationary solutions in a frame moving with
a constant speed c. In such a frame the two dimensional travelling waves of
Euler equations corresponding to an incompressible potential flow of velocity
(uj(ξ, η), vj(ξ, η)), in layer j = 1, 2 satisfy

∂uj
∂ξ

+
∂vj
∂η

= 0

∂uj
∂η

− ∂vj
∂ξ

= 0





(inside each domain : j = 1, 2)

u2Z̃
′(ξ)− v2 = 0 at η = 1 + Z̃(ξ) (free surface),

u2Z̃
′
I(ξ)− v2 = u1Z̃

′
I(ξ)− v1 = 0 at η = Z̃I(ξ) (interface).

1
2 (u2

2 + v2
2) + λZ̃ = c̃1 at η = 1 + Z̃(ξ) (free surface),

1
2 (u2

1 + v2
1)− ρ

2 (u2
2 + v2

2) + λ(1− ρ)Z̃I = c̃2 at η = Z̃I(ξ) (interface),

where the parameters are ρ = ρ2/ρ1 < 1, and λ = gh
c2 , and c̃1 and c̃2 are

arbitrary constants.

In what follows we assume that ρ is fixed and that λ(1−ρ) is close to 1−. So
we work with a unique bifurcation parameter ε > 0 defined by λ(1− ρ) = 1− ε.
We Define

λε =
1− ε

1− ρ
and λ0 =

1

1− ρ
.
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For formulating our problem into a dynamical system, we first transform
the unknown domain into a strip. There are different ways for such a change of
coordinates. We choose the one used by Levi-Civita [8]. For that purpose we
introduce the complex potential in layer j denoted by wj(ξ+iη) and the complex
velocity (in dimensionless form) w′j(ξ+ iη) = uj − ivj . The Euler equations are
expressed here by the fact that wj is analytic in ζ = ξ + iη. The new unknown
are αj + iβj , j = 1, 2, which are analytic functions of wj = xj + iy, where xj
is the velocity potential in the layer j, and y the stream function, and where

w′j(ξ + iη) = eβj−iαj ,

the free surface is given by y = 1 , and the interface by y = 0. The region of the
flow is −∞ < y < 0 for fluid 1, and 0 < y < 1 for fluid 2. Observe that the x
coordinate given by the Levi-Civita change of coordinate is not the same in each
strip. In fact we have dx2

dx1
= eβ20−β10 where β20−β10 is the value of β2−β1 taken

at the interface y = 0. So, we choose as the basic x coordinate the one given by
the bottom layer (x1) which then introduces a factor in the Cauchy-Riemann
equations of the upper layer. In such a formulation, the unknown is defined by

[U(x)] (y) = (β10(x), β21(x), α1(x, y), β1(x, y), α2(x, y), β2(x, y))
t

and the system has the form

dU

dx
= F (ε;U) (4)

with

F (ε;U) =





−(1− ε)e−3β10 sinα20 − ρe3(β20−β10) ∂α2

∂y |y=0

−λεe−3β21+β20−β10 sinα21
∂β1

∂y

−∂α1

∂y

}
y ∈ (−∞, 0)

∂β2

∂y e
β20−β10

−∂α2

∂y e
β20−β10

}
y ∈ (0, 1)

(5)

where we denote by α20, β10 and β20 the traces of (resp.) α2, β1, β2 at y = 0,
and α21, β21 the traces of α2 and β2 at y = 1. Here we choose the basic space

H = R2 × C0
1 (R−)× C0

lim,1(R
−)× {C0(0, 1)}2

and the domain of the operator F is:

D = R2 × C1
1 (R−)× C1

lim,1(R
−)× {C1(0, 1)}2

∩{α10 = α20, β10 = β1|y=0, β21 = β2|y=1},
where we define the Banach spaces

C0
ν (R

−) = {f ∈ C0(R−); |f(y)|(1 + |y|)ν <∞}, ν > 0,

C1
ν (R

−) = {f ∈ C0
ν (R

−), f ′ ∈ C0
ν (R

−)},
C0

lim,ν(R
−) = {f ∈ C0(R−); ∃l ∈ R, |f(y)− l|(1 + |y|)ν <∞},

C1
lim,ν(R

−) = {f ∈ C0
lim,ν(R

−); f ′ ∈ C0
ν (R

−)},
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and we take for (a, b, f1, g1, f2, g2)
t = V ∈ H, the norm

|V |
H

= |a|+ |b|+ ||f1||1,∞ + ||g1||lim1,∞ + ||f2||∞ + ||g2||∞,

with

||f ||ν,∞
def
= sup

y∈R−
(|f(y)|(1 + |y|)ν) , ||f ||∞

def
= sup

y
|f(y)|,

||g||limν,∞
def
= sup

y∈R−
|g(y)|+ sup

y∈R−
(|g(y)− l|(1 + |y|)ν) .

The definition of the norm in D is similar, in adding the norms of f ′j and g′j .
The system (4) is reversible, i.e. F anticommutes with the symmetry S which
reads

SU = (β10, β21,−α1, β1,−α2, β2). (6)

Notice that the interface and free surface, expressed in the new coordinates
satisfy

dZI
dx

= e−β10 sinα10,

dZ

dx
= eβ20−β10−β21 sinα21.

For looking for homoclinic connections, we work with the rescaled system

dU

dx
= F (ε;U) (7)

where
εU = U, εx = x, εy = y for y ∈]0,−∞[. (8)

The differential at the origin Lε = DF (ε, 0) admits for eigenvalues 0, ± iλε

ε with
the corresponding eigenvectors given by

ξ0=(0, 1, 0, 0, 0, 1), ξ1=(1, 0, 0, 1, 0, 0), Lεξ0=Lεξ1=0, Sξ0=ξ0, Sξ1=ξ1

ζ
ε

= (1, eλε ,−ieλεy/ε, eλεy/ε,−ieλεy, eλεy), Lεζε = iλ
ε ζε, ζ

ε
= Sζ

ε
,

Let us define some associated linear forms and projections : for V =
(a, b, f1, g1, f2, g2) ∈ H we set

p∗0(V ) = g21 = g2(1), p∗1(V ) = a,

p
ε
(V ) = ζ∗ε (V )ζ

ε
+ ζ

∗

ε(V )ζ
ε
, πε(V ) = Id− p

ε
(V )

πε = πε − ξ0 p
∗
0πε

with

ζ∗ε (V ) = d

{
a− ρg20 + ρeλεb+ ρλε

∫ 1

0

[if2(y)− g2(y)]e
λεydy+

+λ

∫ 0

−∞

[if1(ετ) − g1(ετ)]e
λτdτ

}
.
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These projections satisfies

p∗0(ξ0) = 1, p∗0(ξ1) = 0, p∗0(ζε) = p∗0(ζε) = eλε ,

p∗1(ξ0) = 0, p∗1(ξ1) = 1, p∗1(ζε) = p∗1(ζε) = 1

p
ε
(ξ0) = p

ε
(ξ1) = 0, p

ε
(ζ
ε
) = ζ

ε
, p

ε
(ζ
ε
) = ζ

ε
.

2.2 Nonlocal Normal Form Formulation

As already explained our aim is to look for generalized solitary waves with
polynomial decay at infinity. This waves appear as homoclinic connections of
the infinite dimensional dynamical system (4) or equivalently as homoclinic
connections of its rescaled form (7). For describing this expected decay rate in
x of the solutions we introduce the following Banach Spaces :

Definition 2 Let E be a Banach Space and α be in ]0, 1[. Let us define

Bαp (E) = {f ∈ Cα(E); ‖f‖
Bα

p (E)
<∞},

B1,α
p (E) =

{
f ∈ Bαp (E);

df

dx
∈ Bαp (E)

}
,

with

‖f‖
Bα

p (E)
= sup

x∈R

(1 + |x|p) |f(x)|
E

+ sup
x∈R, δ∈]−1,1[

(1 + |x|p)
|f(x+ δ)− f(x)|

E

|δ|α ,

We also introduce the spaces BαH,w, B1,α
H,w and BαD,w defined by

BαH,w =
{
V = (a, b, f1, g1, f2, g2);V (x) ∈ H,

(a, b) ∈ Bα2 (R2), (f1, g1) ∈ (B−w )2, (f2, g2) ∈ (B+
w )2
}
,

BαD,w =
{
U = (β10, β21, α1, β1, α2, β2);U(x) ∈ D,

(α1, β1) ∈ (B−w )2, (α2, β2) ∈ (B1,+
w )2

}
,

B1,α
H,w =

{
V ∈ BαH,w ;

dV

dx
∈ BαH,w

}
,

where

B−w = {f(x, y); (x, y) ∈ R× R−, f is Cα in x, C0 in y, ||f ||B−

w
<∞},

B+
w = Bα2 [C0(0, 1)], B1,+

w = Bα2 [C1(0, 1)],

‖f‖
B−

w

= sup
x∈R,y<0

(1 + |x|2 + |y|2)
1 + |y| |f(x, y)|+

+ sup
x∈R,y<0, |δ|≤1

(1 + |x|2 + |y|2)
1 + |y|

|f(x+ δ, y)− f(x, y)|
|δ|α ,
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For looking for homoclinic connections we first use the following ”Nonlocal
Normal Form Lemma” proved in [7] (see Lemma 18) which ensures that the full
Euler equations (7) can be reduced via an appropriate change of coordinates to
a Benjamin Ono equation coupled with the equation of a linear, high frequency
oscillator.

Lemma 3 (Nonlocal Normal Form Lemma) There exist δ1 and an ana-
lytic change of coordinates close to identity

U=Υ(A,A, u, Y ) with (A(x), A(x), u(x), Y (x)) ∈ C2 × R× πεD for x ∈ R

such that for any δ0, ε ∈]0, ε0(δ0)], and any function x 7→
(A(x), A(x), u(x), Y (x)) lying in

Eα := (Cα(R,C))2 ×B1,α
2 (R)×BαπεD,w

and satisfying |A| < δ1, |u|+ ε |Y |
πεD

< δ0, (7) is equivalent to

dA

dx
− iA

(
λε
ε

+ γ1(u, εp
∗
1(Y ), |A|2, ε)

)
= Rε,A(A,A, u, Y ),

ρH
[
du

dx

]
+ u+ 3

2u
2 = Rε,u[A,A, u, Y ] +Rε,u(|A|2) + c0,

Y − T0[u] = Rε,Y [A,A, u, Y ],

(9)

with

Rε,Y [A,A, u, Y ] = T1

[
Tu(A,A, u, Y )

]
+ T2

[
TY (A,A, u, Y )

]

Rε,u[A,A, u, Y ]=
ε

λ
H
[
du

dx

]
+C(1)

ε [Tu]+C(2)
ε [TY ]+Bu(A,A, u, Y ).

where c0 is an arbitrary constant; Rε,u is a real analytic function;
Rε,A, Tu, TY , Bu are nonlinear analytic function of (A,A, u, Y ) and T0, T1, T2,

C(1)
ε , C(2)

ε , are linear nonlocal operators, H being the Hilbert transform. More-
over γ1 is explicitly given by

γ1(u, v, |A|2, ε) =
∑

1≤n+m+2p≤r

γnmpru
nvm|A|2pεr−1 ∈ R.

and T0 maps B1,α
2 (R) to BαπεD,w and satisfies

‖T0[u]‖
Bα

D,w

≤M ‖u‖
B1,α

2
(R)

For any function x 7→ (A(x), A(x), u(x), Y (x)) lying in (Cα(R,C))2 ×
B1,α

2 (R) × BαπεD,w and satisfying |A| < δ1, |u| + ε |Y |
πεD

< δ0, for any

ε ∈]0, ε0], the two nonlocal, nonlinear perturbations terms Rε,u[A,A, u, Y ] and
Rε,Y [A,A, u, Y ] lie respectively in Bα2 (R) and BαπεD,w and satisfy

10



∥∥Rε,u[A,A, u, Y ]
∥∥
Bα

2 (R)
≤Mε ‖Y ‖

Bα
πεD,w

(
‖u‖

B1,α
2

(R)
+ ε ‖Y ‖

Bα
πεD,w

+ ‖A‖
Cα

)

+Mε ‖u‖
B1,α

2
(R)

(
1 + ‖A‖

Cα‖A‖C0

)
,

∥∥Rε,Y [A,A, u, Y ]
∥∥
Bα

πεD,w

≤Mε ‖Y ‖
Bα

πεD,w

(
‖u‖

B1,α
2

(R)
+ ε ‖Y ‖

Bα
πεD,w

+ ‖A‖
Cα

)
,

∥∥DRε,u[A,A, u, Y ]
∥∥
L(Eα,Bα

2 (R))
≤Mε

(
1 + ‖u‖

B1,α
2

(R)
+ ‖Y ‖

Bα
πεD,w

+ ‖A‖
Cα

)

∥∥DRε,Y [A,A, u, Y ]
∥∥
L(Eα,Bα

πεD,w)
≤Mε

(
1 + ‖u‖

B1,α
2

(R)
+ ‖Y ‖

Bα
πεD,w

+ ‖A‖
Cα

)

Finally the local nonlinear perturbation term Rε,A satisfies

|Rε,A(A,A, u, Y )| ≤Mε |Y |
D

(|u|+ |Y |
D
)

for |A| < δ1, |u|+ ε |Y |
πεD

< δ0, and ε ∈]0, ε0].

This system is still reversible, which now reads

Rε,A(A,A, u, SY ) = −Rε,A(A,A, u, Y )

for the local perturbation term and

ŝ ◦ Rε,u[A,A, u, Y ] = Rε,u[ŝ ◦A, ŝ ◦A, ŝ ◦ u, Ŝ ◦ Y ]

Ŝ ◦ Rε,Y [A,A, u, Y ] = Rε,Y [ŝ ◦A, ŝ ◦A, ŝ ◦ u, Ŝ ◦ Y ]

for the nonlocal perturbations terms where (ŝ◦f)(x) = f(−x) for real or complex

valued functions f and (Ŝ ◦ Y )(x) = SY (−x) for function Y mapping R in H

or D.

Observe that the full system (9) admits a family of reversible periodic orbits
of arbitrary small size explicitly given by

pA0,ε(x) = (A0e
is(x), A0e

−is(x), 0, 0) with s(x) =

[
λ

ε
+ γ1(0, 0, A

2
0, ε)

]
x and A0 ∈ R,

whereas the truncated system corresponding to Rε,A = Rε,u = Rε,Y ≡ 0 is
partially decoupled and admits for c0 = −Rε,u(|A0|2) a family of homoclinic
connections to the previously found periodic orbits pA0,ε given by

hA0,ϕ,ε = (Ahϕ, A
h
ϕ, u

h
0 , Y

h
0 ), hA0,ϕ,ε(x) −→

x→±∞
pA0,ε(x± ψ∞ + ϕ)

with

uh0(x) =
−4ρ2

3(ρ2 + x2)
∈ B1,α

2 (R) is even in x,

Y h0 = T0[u
h
0 ] ∈ BαπεD,wis reversible,

ψ∞ =
∫ +∞

0

(
γ1(u

h
0(τ), εp∗1(Y

h
0 (τ)), A2

0, ε)− γ1(0, 0, A
2
0, ε)

)
dτ

Ahϕ(x) = A0e
iΨ(x)+iϕ

11



and

Ψ(x) =
(λε
ε

+ γ1(0, 0, A
2
0, ε)

)
x+

∫ x

0

γ1(u
h
0 (τ), εp∗1(Y

h
0 (τ)), A2

0, ε) dτ

where φ is arbitrary and uh0 satisfies the Benjamin Ono equation (9-b) with
Rε,u ≡ 0.

Among this two parameters family there are two one parameter families of
reversible homoclinic connections corresponding to appropriate choices of the
phase shift ϕ,

hA0,0,ε and hA0,π,ε,

and a unique homoclinic connection to 0, h0,ε given by

h0,ε = (0, 0, uh0 , Y
h
0 ). (10)

The question is then the persistence of this family of homoclinic connections
for the full system (9) seen as a perturbation of the truncated system by the
perturbation terms Rε,A, Rε,u, Rε,Y .

The system (9) clearly shows the competition between the oscillatory dy-
namics induced by equation (9-a) which generates periodic solutions, and the
Benjamin -Ono like dynamics induced by equations (9-b), (9-c) which generate
homoclinic connections to 0 with polynomial decay. For the truncated system
these two dynamics are decoupled, and there is no competition, so there exist
homoclinic connections to periodic orbits of arbitrary small size. Such a coex-
istence of an oscillatory dynamics and a hyperbolic dynamics also occurs for
one parameter families of reversible vector fields admitting a 02iω resonance at
the origin, i.e. vector fields admitting the origin as a fixed point and such that
the differential at the origin admits the bifurcation of spectrum described in
figure 4. For such vector fields it is proved in [10] that there is generically no
homoclinic connection to 0, whereas there are always homoclinic connections to
exponentially small periodic orbits.

In [7], the persistence of the homoclinic connections hA0,0,ε is proved pro-

vided that the size of the limiting periodic orbits A0 satisfies A0 ≥ δε
3
2 . In this

paper we improve this result by showing the persistence for A0 ≥ c(`)e−
λ0`
ε

for 0 < ` < ρ. As for the 02iω resonance we expect a generic non existence of
homoclinic connections to 0, however the proof remains to be done in this case.

The competition between the oscillatory dynamics and the Benjamin-Ono
like dynamics causes the appearance of oscillations at infinity for the solutions.
The size of the oscillations is given by an oscillatory integral of the form

I(ε) =

∫ +∞

−∞

g(U(s), ε) e
iλ0s
ε ds (11)

where g is explicitly known whereas U = (A,A, u, Y ) is a solution of (9). In the
next section we introduce appropriate algebras of holomorphic functions which
allow to obtain exponentially small upper bounds of such oscillatory integrals.

12



3 Exponentially small estimates of oscillatory

integrals and complexification

Lemma 4 (Exponential Lemma) Let `, ω be two positive real numbers and
let p > 1. We denote by B` the strip in the complex field: B` = {z ∈
C/|Im (z) | < `} and by H`,p the set of functions f : B`×]0, 1] −→ C satis-
fying

(a) ξ 7→ f(ξ, ε) is holomorphic in B`,

(b) ‖f‖
H`,p

:= sup
ε∈]0,1],z∈B`

(|f(z, ε)|(1 + |z|p)) < +∞.

Then for every f ∈ H`,p and ε ∈]0, 1], I±(f, ε) =

∫ +∞

−∞

f(t, ε) e±iωt/ε dt satisfies

|I±(f, ε)| ≤ cp ‖f‖
H`,p

e−ω`/ε with cp = 2

∫ +∞

0

1

1 + tp
.

Proof. We only do the proof for I+. For I−, perform the change of time t′ = −t
in the integral. So, let f ∈ H`,p, ε, `

′ < ` be fixed. Since f is holomorphic in
B`, the integral of feiωt/ε along the path Γ1 given in figure 6, is equal to zero.

-

6

−R R

i`′

-

�

?
6

Figure 6: Path Γ1.

Pushing R to +∞, we get

I+(f, ε) =

∫ +∞

−∞

f(i`′ + t, ε) eiω(i`′+t)/ε dt.

The estimate then follows, where the exponential comes from the oscillating
term computed on the line Im (z) = `′. �

Lemma 4 gives a very efficient way to obtain exponential upper bounds be-
cause the membership to H`,p is stable by addition, multiplication, and “com-
position”, which can be summed up as follows

Lemma 5 H`,p is an algebra and if f ∈ H`,p and g is holomorphic in a domain
containing the range of f and satisfies g(0) = 0, then g ◦ f ∈ H`,p.

For using the exponential lemma 4 to compute an exponentially small upper
bound of oscillatory integral of the form (11) we need to complexify the prob-
lem and to look for solutions of (9) in spaces of type H`,p. For that purpose
we introduce the complexified spaces corresponding to the real ones given in
definition 2.
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Definition 6 Let E be a real Banach space and α be in ]0, 1[. Denote by Ê the

complexified of E, i.e. Ê = E + iE.

For any ` > 0, any function f : B` → Ê and any η ∈] − `, `[, we denote by

f |η : R → Ê, f |η = f(·+ iη).

Then, let us define the Banach spaces

Hα
`,p(Ê) =

{
f : B` → Ê, holomorphic; f(R) ⊂ E;

∀η ∈]− `, `[, f |η ∈ Bαp (Ê); ‖f‖
Hα

`,p(Ê)
=sup
η∈]−`,`[

‖f |η‖
Bα

p (Ê)
<∞

}
,

H1,α
`,p (Ê) =

{
f ∈ Hα

`,p(Ê);
df

dz
∈ Hα

`,p(Ê)
}
,

Cα(B`, Ê)=
{
f : B` → Ê; f(R) ⊂ E; ∀η ∈]− `, `[, f |η ∈ Cα(R, Ê);

‖f‖
Cα(B`,Ê)

=sup
η∈]−`,`[

‖f |η‖
Cα(R,Ê)

<∞
}
,

To shorten notations, we denote

Hα
`,p := Hα

`,p(C), and H1,α
`,p := H1,α

`,p (C)

We also introduce the Banach spaces Hα
H,w, H1,α

H,w and Hα
D,w defined by

Hα
H,w =

{
V : B` → Ĥ, holomorphic, V (R) ⊂ H,

∀η ∈]− `, `[, V |η ∈ B̂αH,w := BαH,w + iBαH,w;

‖V ‖
Hα

H,w

:= sup
η∈]−`,`[

‖V |η‖
B̂α

H,w

<∞
}

Hα
D,w =

{
V : B` → D̂, holomorphic, V (R) ⊂ D,

∀η ∈]− `, `[, V |η ∈ B̂αD,w := BαD,w + iBαD,w;

‖V ‖
Hα

D,w

:= sup
η∈]−`,`[

‖V |η‖
Bα

D,w

<∞
}

H1,α
H,w =

{
V ∈ Hα

H,w ;
dV

dz
∈ Hα

H,w

}
.

Observe that Hα
`,p(Ê) is continuously embedded in C0

b (B`, Ê) and that Hα
H,w,

Hα
D,w are respectively continuously embedded in C0

b (B`, Ĥ) and C0
b (B`, D̂) where

C0
b (Ω, E) is the set of the functions which are continuous and bounded from Ω

to E.

The different local and nonlocal operators involved in equation (9) can be

extended to ”complex functions” U = (A, Ã, u, Y ) lying in

BE
α
` (δ0, δ1) :=

{
U ∈ Eα` /∀z ∈ B`, |Ã(z)| < δ1, |A(z)| < δ1,

|u(z)|+ ε |Y (z)|
π̂εD

< δ0.
}
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where

Eα` :=
(
Cα(B`,C)

)2 ×H1,α
`,2 ×Hα

πεD,w ∩
{
U/Ã(x) = A(x), for x ∈ R

}

is normed with

‖U‖
E

α
`

= ‖A‖
Cα + ‖Ã‖

Cα + ‖u‖
H1,α

`,2

+ ‖Y ‖
Hα

πεD,w

Indeed they appear as finite sum of analytic functions of (A,A, u, Y ) ∈ C2×
R×πεD which naturally extend to analytic functions of (A,A, u, Y ) ∈ C2×C×
πεD composed with nonlocal linear operators T0, T1, T2, C(1)

ε , C(2)
ε , (see (9)) of

the form

K : f 7→ K[f ] with K[f ](x) := p.v.

∫ +∞

−∞

K(s).f(x− s) ds

where f is any function from R to E and K(t) is a linear bounded operator in
E. For instance, the Hilbert transform reads

H[u](x) := p.v.

∫ +∞

−∞

1

s
.u(x− s)ds.

Such operators can readily be extended to a function f : B` → Ê with the same
integral formula where x lies in B` instead of R. Moreover we have

Lemma 7 Let E be a real Banach space and L(E) be the space of bounded linear
operators in E. Assume that K : R\{0} → L(E) is C1 such that

i) ‖K(s)‖
L(E)

≤ C0/|s|, ‖K ′(s)‖
L(E)

≤ C0/|s|2 for |s| ≤ 1,

ii) ‖K(s)‖
L(E)

≤ C1/|s|2 for |s| ≥ 1, and p.v.
∫ 1

−1K(s)ds ∈ L(E).

Then, the linear map K defined by

f 7→ K[f ] = p.v.

∫

R

K(s).f(· − s)ds.

is bounded from Hα
`,2(E) into itself.

Proof. First observe that

K[f ](z) =

∫ +∞

−∞

K(s).(f(z − s)− f(z))ds +

(
p.v.

∫ +∞

−∞

K(s)ds

)
.f(z)

where the first integral is a classical convergent integral without ”principal
value”. This formula combined with Lebegues’s theorem ensures that K[f ] is
holomorphic in B`. Moreover it is proved in [7] (see Lemma 30) that K is a

bounded linear operator from Bα2 (Ê) to itself. Hence, since K[f |η ] = (K[f ])|η ,
K is a bounded linear operator from Hα

`,2(Ê) to itself. �
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So, to look for solutions of (9) which admit an holomorphic continuation in
Eα` , we study the “complexified equation”

dA

dz
− iA

(
λε
ε

+ γ1(u, εp
∗
1(Y ), AÃ, ε)

)
= Rε,A(A, Ã, u, Y ),

dÃ

dz
+ iÃ

(
λε
ε

+ γ1(u, εp
∗
1(Y ), AÃ, ε)

)
= Rε,Ã(A, Ã, u, Y ),

ρH
[
du

dz

]
+ u+ 3

2u
2 = Rε,u[A, Ã, u, Y ] +Rε,u(AÃ) + c0,

Y − T0[u] = Rε,Y [A, Ã, u, Y ],

(12)

where Rε,Ã is an analytic function of (A, Ã, u, Y ) given by

Rε,Ã(A, Ã, u, Y ) = Rε,A(Ã, A, u, Y ).

Remark 8 Observe that for any solution U of (12) lying in Eα` , the restriction

of U to R is a solution of (9) lying in (Cα(R,C))2 ×B1,α
2 (R)×BαπεD,w.

The bounds for the linear operators T0, T1, T2, C(1)
ε , C(2)

ε , which lead to
the estimates for Rε,u,Rε,Y stated for (9), are based on the structure of these
non local operators where nonlocal kernels occur. In [7] the estimates of these
operators were based on Lemma 30, here extended at lemma 7 for obtaining
the holomorphy in the strip B`. It then results that T0 is a bounded linear
operator from H1,α

`,2 to Hα
πεD,w and for any function U = (A, Ã, u, Y ) lying in

BE
α
` (δ0, δ1) and any ε ∈]0, ε0], the two nonlocal, nonlinear perturbations terms

Rε,u[A, Ã, u, Y ] and Rε,Y [A, Ã, u, Y ] lie respectively in Hα
`,2 and Hα

πεD,w and
satisfy

∥∥∥Rε,u[A, Ã, u, Y ]
∥∥∥
Hα

`,2

≤Mε ‖Y ‖
Hα

πεD,w

(
‖u‖

H1,α
`,2

+ε ‖Y ‖
Hα

πεD,w

+‖A‖
Cα+‖Ã‖

Cα

)

+Mε ‖u‖
H1,α

`,2

(
1+(‖A‖

Cα+‖Ã‖
Cα)(‖A‖

C0+‖Ã‖C0)
)
,

∥∥∥Rε,Y [A, Ã, u, Y ]
∥∥∥
Hα

πεD,w

≤Mε ‖Y ‖
Hα

πεD,w

(
‖u‖

H1,α
`,2

+ε ‖Y ‖
Hα

πεD,w

+‖A‖
Cα+‖Ã‖

Cα

)
.

(13)

∥∥∥DRε,u[A, Ã, u, Y ]
∥∥∥
L(Eα

` ,H
α
`,2)

+
∥∥∥DRε,Y [A, Ã, u, Y ]

∥∥∥
L(Eα

` ,H
α
πεD,w)

≤Mε
(
1+‖u‖

H1,α
`,2

+‖Y ‖
Hα

πεD,w

+‖A‖
Cα+‖Ã‖

Cα

) (14)

Finally the local nonlinear perturbation terms Rε,A, Rε,Ã satisfy

|Rε,A(A, Ã, u, Y )|+ |Rε,Ã(A, Ã, u, Y )| ≤Mε |Y |
π̂εD

(|u|+ |Y |
π̂εD

) (15)
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for |A| < δ1, |Ã| < δ1, |u|+ ε |Y |
π̂εD

< δ0, and ε ∈]0, ε0].

This system is still reversible, which now reads

Rε,A(Ã, A, u, SY ) = −Rε,Ã(A, Ã, u, Y )

for the local perturbation term and

ŝ ◦ Rε,u[A, Ã, u, Y ] = Rε,u[ŝ ◦ Ã, ŝ ◦A, ŝ ◦ u, Ŝ ◦ Y ]

Ŝ ◦ Rε,Y [A, Ã, u, Y ] = Rε,Y [ŝ ◦ Ã, ŝ ◦A, ŝ ◦ u, Ŝ ◦ Y ]

for the nonlocal perturbations terms.

4 Homoclinic connections to exponentially small

periodic orbits

The purpose of the paper is to prove the existence of generalized solitary waves
with exponentially small ripples at infinity. As already explained in section
2.2, after change of coordinates, the full Euler equations reduces to system (12)
and generalized solitary waves appear as homoclinic connections to the periodic
orbits pA0,ε(x). In this section we prove

Theorem 9 For any α ∈]0, 1
2 ], ` ∈]0, ρ[ there exist c?, ε? such that for every

ε ∈]0, ε?] and every A0 ∈ [c?ε e
−
`λ0

ε , ε1−α e−
`λ0

ε ], system (9) has two reversible
homoclinic connections HA0,ϕj ,ε, j = 1, 2 of the form

HA0,ϕj ,ε(x) = pA0,ε

(
x+ εϕjρ arctan

x

ρ

)
+ h0,ε(x) + h1,ε(x) (16)

where h0,ε is given by (10) and h1,ε(x) = O(
ε1−α

ρ+ |x| ).

Corollary 10 There exists δ > 0 such that for any ` ∈]0, ρ[ there exist c`, ε`

such that for every ε ∈]0, ε`] and every A0 ∈ [c`ε e
−
`λ0

ε , δ], system (9) has
two reversible homoclinic connections HA0,ϕj ,ε, j = 1, 2 of the form (16) where

h1,ε(x) = O(

√
ε

ρ+ |x| ).

Remark 11 Theorem 1 is a direct consequence of the above corollary perform-
ing back the change of coordinates given by the Normal Form Lemma 3 and the
scaling (8).

Proof of corollary 10. We first deduce corollary 10 from theorem 9. Looking
carefully at the proof of theorem 9 given in the next subsections, we check that
we can obtain a similar theorem which is valid uniformly for any `′ ∈]0, `], i.e.
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a theorem for which the constants c?, ε? are the same for every `′ ∈]0, `]. So
grouping together the existence results obtained for α = 1

2 and each `′ ∈]0, `]
and observing that

⋃

0<`′≤`

[c?ε e
−
`′λ0

ε ,
√
ε e−

`′λ0

ε ] = [c?ε e
−
`λ0

ε ,
√
ε[.

we obtain that for any ` ∈]0, ρ[ there exist c`, ε` such that for every ε ∈]0, ε`] and

every A0 ∈ [c`ε e
−
`λ0

ε ,
√
ε[, system (9) has two reversible homoclinic connections

HA0,ϕj ,ε, j = 1, 2 of the form (16) where h1,ε(x) = O(

√
ε

ρ+ |x| ).
Finally theorem 22 of [7] gives the existence of two reversible homoclinic con-

nections HA0,ϕj ,ε, j = 1, 2 of the form (16) where h1,ε(x) = O(

√
ε

ρ+ |x| ) for

A0 ∈ [c0ε
3
2 , δ] which completes the proof of corollary 10. �

The rest of this section is devoted to the proof of theorem 9.

4.1 Complexified shifted system and choice of the param-

eters

In the rest of this paper let ` ∈]0, ρ[ and α ∈]0, 1[ be fixed.

We look for homoclinic connections to the periodic orbit pA0,ε under the
form

HA0,ϕ,ε = pA0,ε

(
x+ εϕρ arctan

x

ρ

)
+ hε(x) (17)

The unknown are ϕ ∈ R, which is proportional to the phase shift at infinity, and
hε which is required to be a reversible homoclinic connection to 0. As already
explained, to obtain exponentially small estimates of A0, we need to show that
HA0,ϕ,ε admits a holomorphic continuation in B` still denoted by HA0,ϕ,ε which
lies in BE

α
` (δ0, δ1) where δ0 can be chosen arbitrarily. For that purpose we look

for HA0,ϕ,ε as a solution of (12). Moreover, we look for hε(z) with z ∈ B` under
the form

hε(z) =
(
(iq1(z) + q2(z))e

iψϕ(z), (−iq1(z) + q2(z))e
−iψϕ(z), u, Y

)
(18)

with

ψϕ(z)=

[
λε
ε

+γ1(0, 0, A
2
0, ε)

]
[z+ερϕ arctan(z/ρ)] , with arctan z=

∫

[0,z]

ds

1 + s2

observing that

T : (q1, q2) 7→ (A, Ã) =
(
(iq1(z) + q2(z))e

iψϕ(z), (−iq1(z) + q2(z))e
−iψϕ(z)

)
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is an isomorphism from C2 onto C2.

We need a priori estimates on ϕ and h to ensure that HA0,ϕ,ε lies in BE
α
` (δ0, δ1).

Moreover, we want to prove the existence of homoclinic connection to pA0,ε pro-

vided that its size A0 lies in an interval of the form [c?ε e
−
`λ0

ε , ε1−α e−
`λ0

ε ]. So,
in what follows we set

Definition 12 Let us define

δ0 := sup
z∈B`,ε∈]0,1]

(
|uh0 (z)|+ ε

∣∣Y h0 (z)
∣∣
π̂εD

)
and ε0 := ε0(δ0),

ϕ
0
:= sup
ε∈]0,ε0],A0∈[0,δ1[

(
4

ρ[λε + εγ1(0, 0, A2
0, ε)]

.

)

where ε0(δ0) is given by the Nonlocal Normal Form Lemma 3 and let us set

A0 = A?0e
−
λ0`
ε with A?0 ∈]− 1

2δ1,
1
2δ1[.

We also define

Definition 13 Let Hα` = Hα
`,1×Hα

`,2×H
1,α
`,2 ×Hα

πεD,w equipped with the following
norm

‖h‖
Hα

`

= ‖(q1, q2)‖
Qα

`

+ ‖u‖
H1,α

`,2

+ ‖Y ‖
Hα

πεD,w

where h = (q1, q2, u, Y ) and

‖(q1, q2)‖
Qα

`

= e−
λ0`
ε

(
‖q1‖

Hα
`,1

+ ‖q2‖
Hα

`,2

)
+

∥∥∥∥(iq1 + q2)e
i
λ0z
ε

∥∥∥∥
Hα

`,1

+

∥∥∥∥(−iq1 + q2)e
−i
λ0z
ε

∥∥∥∥
Hα

`,1

Then, we define

BHα` (d0, d1)=
{

h ∈ Hα` / ‖u‖
H1,α

`,2

+ ‖Y ‖
Hα

πεD,w

< d0, ‖(q1, q2)‖
Qα

`

< d1

}

Observe that there is no ε in front of ‖Y ‖
Hα

πεD,w

in the definition of BHα` (d0, d1).

With this choice of parameters we check

Lemma 14

(a) There exists c such that for every z ∈ B`, ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0] and

every A?0 ∈]− 1
2δ1,

1
2δ1[, |Im (ψϕ(z)) | ≤ λ0`

ε + c holds.

(b) There exists δ2 ∈]0, 1
2δ1[ such that for every z ∈ B`, ϕ ∈ [−ϕ

0
, ϕ

0
], ε ∈

]0, ε0] and every A?0 ∈ [−δ2, δ2], |A0e
iψϕ(z)| < 1

2δ1.
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(c) There exists δ3 ∈]0, δ1[ such that for every z ∈ B`, ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0]

and every h ∈ BHα` (δ0, δ3)

|(q2 + iq1)e
iψϕ(z)| ≤ 1

2
δ1, |(q2 − iq1)e

−iψϕ(z)| ≤ 1

2
δ1.

(d) For every z ∈ B`, ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2] and every

h ∈ BHα` (δ0, δ3), the corresponding HA0,ϕ,ε given by (17) and (18) lies in
BE

α
` (δ0, δ1).

So, we are looking for ϕ ∈ [−ϕ
0
, ϕ

0
] and for an homoclinic connection to 0

h = (q1, q2, u, Y ) in BHα` (δ0, δ3) which is reversible, i.e.

Sh(z) = h(−z) where S(q1, q2, u, Y ) = (−q1, q2, u, SY ).

The new system satisfied by h = (q1, q2, u, Y ) and ϕ reads

dq1
dz

= (A0 + q2) [γ1(u, 0, 0, ε)− ϕρ0] +R′q1 ,

dq2
dz

= −q1 [γ1(u, 0, 0, ε)− ϕρ0] +R′q2 ,

ρH
[
du

dz

]
+ u+ 3

2u
2 = R′ε,u + R′ε,u + c0,

Y − T0[u] = R′ε,Y ,

(19)

where

ρ0(z) =
(
λε + εγ1(0, 0, A

2
0, ε)

) ρ2

z2 + ρ2
,

R′q1 = 1
2i

(
R′ε,Ae

−iψϕ −R′
ε,Ã
eiψϕ

)
+ (A0 + q2)∆

′
γ

R′q2 = 1
2

(
R′ε,Ae

−iψϕ +R′
ε,Ã
eiψϕ

)
− q1∆

′
γ

with
∆′
γ =

{
γ1(u, εp

∗
1(Y ), AÃ, ε)− γ1(u, 0, 0, ε)− γ1(0, 0, A

2
0, ε)

}

where we put a prime when we need to replace A by (A0 + q2 + iq1)e
iψϕ ,

Ã by (A0 + q2 − iq1)e
−iψϕ , and where we choose the constant c0 such that

(q1, q2, Y, u) = 0 cancels R′ε,u +R′ε,u + c0, i.e

c0 = −Rε,u(A2
0).

.
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4.2 Strategy of proof

We look for a reversible homoclinic connection h = (q1, q2, u, Y ) to 0 of the full
equation (19) under the form

h = h0,ε + h1

with
h0,ε = (0, 0, uh0 , Y

h
0 ) ∈ BHα` ( 1

2δ0, 0), h1 = (q1, q2, w, Z),

More precisely, we look for ϕ ∈ [−ϕ
0
, ϕ

0
] and h1 ∈ BHα` ( 1

2δ0, δ3), which satisfies

Lϕ(z)h1 = G(h1, A
?
0, ϕ, ε) (20)

where

Lϕ(z)h1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dq1
dz

−
[
γ1(u

h
0 , 0, 0, ε)− ϕρ0

]
q2

dq2
dz

+
[
γ1(u

h
0 , 0, 0, ε)− ϕρ0

]
q1

ρH
[
dw

dz

]
+ w + 3uh0w

Z − T0w

and
G = (Gq1 , Gq2 ,Gw,GZ)

with

Gq1 = A0(γ1(u
h
0 + w, 0, 0, ε)− ϕρ0)+

+ q2(γ1(u
h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)) +R′q1 ,

Gq2 = −q1(γ1(u
h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)) +R′q2 ,

Gw = R′ε,u +R′ε,u −R′ε,u(A
2
0)−

3

2
w2,

GZ = R′ε,Y .

Here the reversibility comes from the invariance of the system under the sym-
metry

(z, q1, q2, w, Z) 7→ (−z,−q1, q2, w, SZ).

Moreover the map

(ϕ, q1, q2, w, Z) 7→ (Gq1 , Gq2 ,Gw,GZ)

is analytic from ] − ϕ
0
, ϕ

0
[×BHα` ( 1

2δ0, δ3) to Hα
`,2 ×Hα

`,3 ×Hα
`,2 ×Hα

πεD,w. For

finding homoclinic connection to 0 of (20) we proceed in several steps:

Step 1. In subsection 4.3 we consider the affine equation

Lϕ(z)h = F.
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More precisely we prove that for any antireversible F ∈ Hα
`,2 × Hα

`,3 × Hα
`,2 ×

Hα
πεD,w there exists a reversible solution h in Hα` if and only if F satisfies the

solvability condition ∫ ∞

0

< r−(x),F(x) > dx = 0 (21)

where r− is given by
r− = (cosΓ,− sinΓ, 0, 0),

with

Γ(z) =

∫

[0,z]

(
γ1(u

h
0 (τ), 0, 0, ε)− ϕρ0(τ)

)
dτ.

So, a necessary condition for the existence of a solution h1 of (20) in BHα` ( 1
2δ0, δ3)

is that
J(h1, ϕ, A

?
0, ε) = 0,

where

J =

∫ ∞

0

< r−,G(h1, A
?
0, ϕ, ε) > dx.

Step 2. For studying J and (20), we need precise estimates of Gq1 , Gq2 ,Gw,GZ .
They are given in subsection 4.4

Step 3. In subsection 4.5, we study the solvability function J and we compute
its principal part. J happens to be an oscillatory integral and its study is based
on the Exponential Lemma 4. This is why, we had to complexify the problem.

Step 4. In subsection 4.6.1, we introduce the modified equation

Lϕ(z)h1 = G⊥(h1, A
?
0, ϕ, ε) (22)

where

G⊥ = G− 2√
π
Je−z

2

r−(z).

The term G⊥ has been designed so that, for every ε, A?0, ϕ, h1

∫ ∞

0

< r−,G
⊥(h1, A

?
0, ϕ, ε) > dx = 0.

Then, using the implicit function theorem, we prove that for any ϕ and any suf-
ficiently small |A?0|, ε the system (20) admits a solution h1,ε,A?

0
,ϕ in BHα` ( 1

2δ0, δ3)
satisfying ∥∥h1,ϕ,A?

0
,ε

∥∥
Hα

`

≤ c(ε1−α + |A?0|).

Step 5. Finally, in subsection 4.6.2, using the study of J made in 4.5, we
prove that for 0 < α ≤ 1

2 , there exist c?, ε? such that for every 0 < ε < ε?,
A?0 ∈ [c?ε, ε

1−α] there exists ϕ(ε, A?0) such that

J [h1,A?
0
,ϕ(ε,A?

0
),ε, ϕ(ε, A?0), A

?
0, ε] = 0.
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Hence, h1,A?
0
,ϕ(ε,A?

0
),ε is a reversible solution of (20) in BHα` ( 1

2δ0, δ3) which gives
the existence of an homoclinic connection to 0 for (19) under the form

h = h0,ε + h1,A?
0
,ϕ(ε,A?

0
),ε.

At this last step we have only considered positive values of A?0 since the
solution obtained for A?0 < 0 are the same as the one found for A?0 > 0 thanks
to the undetermination on the form of the parametrization of the bifurcating
solution given by (16).

4.3 Linearized system around the homoclinic connection

of the truncated system

This subsection is devoted to the study of the affine equation

Lϕ(z)h = F, (23)

for any given F = (Fq1 , Fq2 , FZ , Fw) ∈ Hα
`,2 × Hα

`,3 × Hα
`,2 × Hα

πεD,w which is
antireversible, i.e. such that Fq1 and Fw are even, Fq2 is odd, while FZ is
reversible (i.e. SFZ(−z) = FZ(z)). Equation (20) reads

dq1
dz

−
(
γ1(u

h
0 , 0, 0, ε)− ϕρ0

)
q2 = Fq1

dq2
dz

+
(
γ1(u

h
0 , 0, 0, ε)− ϕρ0

)
q1 = Fq2

ρH
[
dw

dz

]
+ w + 3uh0w = Fw

Z − T0[w] = FZ

(24)

Let us first show the inversion for the two first coordinates. Let us consider
a basis of solutions of the homogeneous system in (q1, q2)

r+(z) = (sin Γ(z), cosΓ(z), 0, 0) , (25)

r−(z) = (cosΓ(z),− sinΓ(z), 0, 0), (26)

Γ(z) =

∫

[0,z]

(
γ1(u

h
0 (τ), 0, 0, ε)− ϕρ0(τ)

)
dτ (27)

then r+ is reversible, while r− is antireversible, and Γ is odd and may be also
written as

Γ(z) =

∫

[0,z]

γ1(u
h
0 (τ), 0, 0, ε)dτ − ϕρ[λε + εγ1(0, 0, A

2
0, ε)] arctan(z/ρ).

Let us denote 〈·, ·〉 the canonical scalar product in C2: for q = (q1, q2) and q′ =
(q′1, q

′
2), 〈q, q′〉 = q1q

′
1 + q2q

′
2. We identify (C2)∗ with C2 by q 7→

〈
q, ·
〉
∗

:= 〈q, ·〉.
We then show
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Lemma 15 Let consider the affine system

dq1
dz

= q2
(
γ1(u

h
0 , 0, 0, ε)− ϕρ0

)
+ Fq1 ,

dq2
dz

= −q1
(
γ1(u

h
0 , 0, 0, ε)− ϕρ0

)
+ Fq2 ,

(28)

with Fq = (Fq1 , Fq2) ∈ Hα
`,2 × Hα

`,3, antireversible (Fq1 even, Fq2 odd). This
system has a unique reversible, holomorphic solution (q1, q2) = Fq(Fq), (q1 odd,
q2 even) tending towards 0 at infinity, if and only if (we identify r− with its two
first components) ∫ ∞

0

〈
r−(x), Fq(x)

〉
∗
dx = 0. (29)

We have

Fq(Fq)(z) = −r+(z)

∫

z+R
+

〈
r+(τ), Fq(τ)

〉
∗
dτ − r−(z)

∫

z+R
+

〈
r−(τ), Fq(τ)

〉
∗
dτ.

Moreover, there exists c such that for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0] and every

Fq = (Fq1 , Fq2) ∈ Hα
`,2 × Hα

`,3 satisfying (29), Fq(Fq) lies in Hα
`,1 × Hα

`,2 and
satisfy

(i) ‖Fq1(Fq)‖Hα
`,1

+ ‖Fq2(Fq)‖Hα
`,2

≤ c

(
‖Fq1‖Hα

`,2

+ ‖Fq2‖Hα
`,3

)
,

(ii)

∥∥∥∥(iFq1(Fq) + Fq2(Fq))ei
λ0z
ε

∥∥∥∥
Hα

`,1

≤ c

(
‖FA‖

Hα
`,2

+ ‖FÃ‖Hα
`,2

)

(iii)

∥∥∥∥(−iFq1(Fq) + Fq2(Fq))e−i
λ0z
ε

∥∥∥∥
Hα

`,1

≤ c

(
‖FA‖

Hα
`,2

+ ‖FÃ‖Hα
`,2

)
.

where FA = (iFq1 + Fq2)e
i
λ0z
ε and FÃ = (−iFq1 + Fq2 )e

−i
λ0z
ε .

Proof.
Step 1. Explicit formula. Variation of constants method leads to

Fq(Fq)(z) =

(
c+ +

∫

[0,z]

〈
r+(τ), Fq(τ)

〉
∗
dτ

)
r+(z)

+

(
c− +

∫

[0,z]

〈
r−(τ), Fq(τ)

〉
∗
dτ

)
r−(z).

(30)

We check that Fq(Fq) is reversible if and only if c− = 0 and that if
Fq(Fq)(x) −→

x→+∞
0, then necessarily

c+ = −
∫ ∞

0

〈
r+(τ), Fq(τ)

〉
∗
dτ,

c− = −
∫ ∞

0

〈
r−(τ), Fq(τ)

〉
∗
dτ.

(31)
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Hence, we deduce the compatibility condition (29), and the explicit form of
Fq(Fq) using the holomorphy of the solutions and the integral path Γr drawn
on figure 7.

-

6

�
�

�

Re (z) + r

z + rz

6-

�

Figure 7: Path Γr.

So, we assume now that Fq is an antireversible function lying in Hα
`,2×Hα

`,3

and satisfying the compatibility condition (29).

Step 2. Estimates in Hα
`,1. The two explicit formulas (30), (31) ensure

that Fq(Fq) is holomorphic in B`. Moreover, using (28), and the reversibility
of Fq(Fq) we get that there exists c such that for every ϕ ∈ [−ϕ

0
, ϕ

0
] and every

ε ∈]0, ε0]

‖Fq1(Fq)‖Hα
`,1

+ ‖Fq2(Fq)‖Hα
`,1

≤ c

(
‖Fq1‖Hα

`,2

+ ‖Fq2‖Hα
`,3

)
.

Step 3. Estimates of Fq2
(Fq) in Hα

`,2. Since Fq2(Fq)(z) −→
Re(z)→+∞

0, we

have

Fq2(Fq)(z) = −
∫ +∞

0

d

dz
(Fq2(Fq)) (z + τ) dτ. (32)

Moreover, Fq2(Fq) is even, lies in Hα
`,1 and satisfies (28). Hence,

dFq2(Fq)
dz

lies

in Hα
`,3; Fq2(Fq) lies in Hα

`,2 and there exists c such that for every ϕ ∈ [−ϕ
0
, ϕ

0
],

ε ∈]0, ε0],

‖Fq2(Fq)‖Hα
`,2

≤ c

(
‖Fq1‖Hα

`,2

+ ‖Fq2‖Hα
`,3

)
.

Step 4. Estimates of FA(Fq) = (iFq1
(Fq) + Fq2

(Fq))ei
λ0z
ε and FÃ(Fq) =

(−iFq1
(Fq) + Fq2

(Fq))e−i
λ0z
ε . We check that FA(Fq) satisfies

dFA(Fq)

dz
= iFA(Fq)

[
λ0

ε
+ γ1(u

h
0 , 0, 0, ε)− ϕρ0

]
+ FA.

Since FA(Fq)(z) −→
Re(z)→+∞

0, we get

FA(Fq)(z) = −
∫ +∞

0

ei
λ0

ε τ+iΓ(z+τ)−iΓ(z) FA(z + τ)dτ.

and

FA(Fq)(z) =

∫ 0

−∞

e−(i
λ0

ε τ+iΓ(−z+τ)−iΓ(−z)) FÃ(−z + τ)dτ.
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because of reversibility. Hence, there exists c such that for every ϕ ∈ [−ϕ
0
, ϕ

0
],

ε ∈]0, ε0] ,
‖FA(Fq)‖

Hα
`,1

≤ c (‖FA‖
Hα

`,2

+ ‖FÃ‖Hα
`,2

).

Similarly we prove that there exists c such that for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈

]0, ε0],
‖FÃ(Fq)‖

Hα
`,1

≤ c (‖FA‖
Hα

`,2

+ ‖FÃ‖Hα
`,2

). �

It remains to invert the second part of system (20) with respect to (w,Z).
This is given by the following

Lemma 16 Let consider the affine system in Hα
`,2 ×Hα

πεD,w

ρH
[
dw

dz

]
+ w + 3uh0w = Fw

Z − T0[w] = FZ

(33)

where FZ is reversible, and Fw is even. Then, there is a unique reversible
solution (w,Z) such that (Fw, FZ) 7→ (w,Z) is a bounded linear map:

Hα
`,2 ×Hα

πεD,w → H1,α
`,2 ×Hα

πεD,w

with an estimate

‖w‖
H1,α

`,2

+ ‖Z‖
Hα

πεD,w

≤ c(‖Fw‖
Hα

`,2

+ ‖FZ‖
Hα

πεD,w

)

Proof. Since T0 is a bounded linear operator fromH1,α
`,2 toHα

πεD,w, it is sufficient
to solve the equation for w, which is the linearized Benjamin-Ono equation. It
is shown in [1] that if Fw ∈ Bα2 (R), then the solution w of the linearized B-O
equation lies in B1,α

2 (R), with

‖w‖
B1,α

2
(R)

≤ c ‖Fw‖
Bα

2 (R)

Let us show that this estimate holds when we replace (B1,α
2 (R), Bα2 (R)) by

(H1,α
`,2 , H

α
`,2).

Step 1. Let us define the linear operator A defined on H1,α
`,2 by

A[w] = ρH
[
dw

dz

]
+ w.

To show that it is an isomorphism of Banach spaces from H1,α
`,2 onto Hα

`,2 we

first check that is is a bounded linear operator from H1,α
`,2 to Hα

`,2. For that
purpose we introduce φ ∈ C∞(R) such that φ(s) = 1 for |s| ≤ 1, and φ(s) = 0
for |s| ≥ 2, then we have

A[w](z) = ρH
[
dw

dz

]
(z) + w(z) = w(z) + p.v.

ρ

π

∫

R

φ(s)K(s)
dw

dz
(z − s)ds+

+
ρ

π

∫

R

([1− φ(s)]K(s))
′
s w(z − s)ds.
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where K(s) = 1/s.We now observe that both φK and ([1− φ(s)]K(s))
′
s satisfy

the hypothesis on the kernelK in lemma 7, hence A is a bounded linear operator
from H1,α

`,2 to Hα
`,2.

Moreover we can compute explicitly the inverse of A which is given by

A−1[f ](z) =

∫

R

K1(s)f(z − s)ds

where

K1(s) =
1

ρπ

∫ +∞

0

τe−τ/ρ

s2 + τ2
dτ.

Then observing that

d(A−1[w])

dz
(z) =

∫

R

K ′
1(s)f(z − s)ds

and that K1 and K ′
1 satisfy the assumptions of Lemma 7 with E = R, we finally

obtain that A is an isomorphism of Banach space from H1,α
`,2 onto Hα

`,2.

Step2. Let us now define the linear operator K ∈ L(Hα
`,2) by

Kw = 3uh0w.

Then, the operator A + K : H1,α
`,2 → Hα

`,2 is injective since it reduces to an
injective operator when reduced on the real line (see [1]). So, to show that
A+K is an isomorphism of Banach spaces from H1,α

`,2 onto Hα
`,2, it is sufficient

to show that A−1K is a compact operator in Hα
`,2. To obtain this compactness

it is sufficient to replace in the proof of Amick in [1] the interval of the real line
by products of intervals with ]− `, `[, observing that our norm is a sup norm in
the strip. The essential argument here is that uh0 converges uniformly to 0 when
|Re (z) | → ∞ in the strip B`, so the proof of Amick works on every horizontal
line. �

4.4 Estimates of the nonlinear terms

In this subsection we give estimates of the different terms involved in the four
components of the nonlinear operator G.

Lemma 17 There exists c such that for ε ∈]0, ε0], A
?
0 ∈ [−δ2, δ2], ϕ ∈ [−ϕ

0
, ϕ

0
]

and for every h1 = (q1, q2, w, Z) in BHα` ( 1
2δ0, δ3), G(h1, A

?
0, ϕ, ε) lies in Hα

`,2 ×
Hα
`,3 ×Hα

`,2 ×Hα
πεD,w and satisfies

(i)

(
‖Gq1‖Hα

`,2

+ ‖Gq2‖Hα
`,3

)
e−

λ0`
ε ≤ c(ε1−α + ‖h1‖2

Hα
`

+ |A?0|)

(ii)

∥∥∥∥(Gq2+iGq1)e
i
λ0z
ε

∥∥∥∥
Hα

`,2

+

∥∥∥∥(Gq2−iGq1)e
−i
λ0z
ε

∥∥∥∥
Hα

`,2

≤ c(ε1−α+‖h1‖2

Hα
`

+A?0)

(iii) ‖Gw‖
Hα

`,2

≤ c(ε1−α(εα + |A?0|) + ‖h1‖2

Hα
`

+ |A?0| ‖h1‖
Hα

`

)

(iv) ‖GZ‖
Hα

πεD,w

≤ cε1−α(εα + |A?0|)
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Proof. This Lemma readily follows from the following one observing that
for h1 ∈ BHα` ( 1

2δ0, δ3), h = h0,ε + h1 lies in BHα` (δ0, δ3) since
∥∥uh0

∥∥
H1,α

`,2

+
∥∥Y h0

∥∥
Hα

πεD,w

≤ 1
2δ0 because of our choice of δ0 made in definition 12. �

Lemma 18 There exists c such that for ε ∈]0, ε0], A
?
0 ∈ [−δ2, δ2], ϕ ∈ [−ϕ

0
, ϕ

0
]

and for every h = (q1, q2, u, Y ) in BHα` (δ0, δ3)

(i)
∥∥∆′

γ

∥∥
Hα

`,2

≤ cε

(ii)

(∥∥R′q1
∥∥
Hα

`,2

+
∥∥R′q2

∥∥
Hα

`,3

)
e−

λ0`
ε ≤ cε1−α

(iii)

∥∥∥∥(iR′q1 +R′q2)e
i
λ0z
ε

∥∥∥∥
Hα

`,2

+

∥∥∥∥(−iR′q1 +R′q2)e
−i
λ0z
ε

∥∥∥∥
Hα

`,2

≤ cε1−α

(iv)
∥∥R′ε,u −Rε,u(A

2
0)
∥∥
Hα

`,2

≤ c (‖(q1, q2)‖2
Qα

`

+ 2|A?0| ‖(q1, q2)‖Qα
`

)

(v)
∥∥R′ε,u

∥∥
Hα

`,2

+
∥∥R′ε,Y

∥∥
Hα

πεD,w

≤ cε1−α(εα + |A?0|)

Proof. (i) : First observe that for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2],

z ∈ B` and every (q1, q2, u, Y ) in BHα` (δ0, δ3),

|u(z)|+ ε |Y (z)|
π̂εD

≤ ‖u‖
H1,α

`,2

+ ‖Y ‖
Hα

πεD,w

< δ0,

|A(z)| = |(A0 + q2(z) + iq1(z))e
iψϕ(z)| < δ1,

|Ã(z)| = |(A0 + q2(z)− iq1(z))e
−iψϕ(z)| < δ1

(34)

and

∥∥e±iψϕ
∥∥
C0(B`,C)

≤ c e
λ0`
ε ,

∥∥e±iψϕ
∥∥
Cα(B`,C)

≤ c
e
λ0`
ε

εα
,

∥∥∥∥e
±i(ψϕ−

λ0z
ε )

∥∥∥∥
Cα(B`,C)

≤ c,

‖A‖
Cα(B`,C)

≤ c

( |A?0|
εα

+‖(q1, q2)‖
Qα

`

)
,

‖Ã‖
Cα(B`,C)

≤ c

( |A?0|
εα

+‖(q1, q2)‖
Qα

`

)
,

‖AÃ‖
Cα(B`,C)

≤ A2
0 + ‖(q1, q2)‖2

Qα
`

+ 2|A?0| ‖(q1, q2)‖Qα
`

(35)

and also

‖u‖
Hα

`,2

< δ0, ‖p∗1(Y )‖
Hα

`,2

≤ ‖Y ‖
Hα

πεD,w

< δ0,

∥∥∥AÃ−A2
0

∥∥∥
Hα

`,2

≤ ‖(q1, q2)‖2

Qα
`

+ 2|A?0| ‖(q1, q2)‖Qα
`

,
(36)
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since

AÃ−A2
0 =

(
(q2 + iq1)e

i
λ0z
ε

)(
(q2 − iq1)e

−i
λ0z
ε

)
+ 2A?0q2e

−
λ0`
ε .

Estimate (i) follows from the above estimates combined with

|γ1(u∗, εv∗, A∗Ã∗, ε)−γ1(0, 0, A
2
0, ε)−γ1(u∗, 0, 0, ε)| ≤ cε(|v∗|+ε|u∗|A2

0+|A∗Ã∗−A2
0|)

which holds for every A∗, Ã∗, u∗, v∗ ∈ C4 satisfying |A∗| < δ1, |Ã∗| < δ1, |u∗| <
δ0, |v∗| < δ0.

(ii) : Estimates (34), (35-c,d), (36-a) combined with (15) ensures that

∥∥R′ε,A
∥∥
C0(B`,C)

≤ cε ‖Y ‖
Hα

πεD,w

(‖u‖
H1,α

`,2

+‖Y ‖
Hα

πεD,w

) ≤ c′ε,

∥∥R′ε,A
∥∥
Hα

`,4

≤ cε ‖Y ‖
Hα

πεD,w

(‖u‖
H1,α

`,2

+‖Y ‖
Hα

πεD,w

)(1 +A?0ε
−α) ≤ c′ε1−α.

(37)

This two last estimates coupled with (i), (35-a) finally gives (ii).

(iii): The estimate (iii) can be deduced from the following explicit formulas

(R′q2 + iR′q1)e
i
λ0z
ε = R′ε,Ae

i(
λ0z
ε −ψϕ) + (q2 + iq1)e

i
λ0z
ε ∆′

γ +A0e
i
λ0z
ε ∆′

γ ,

(R′q2 − iR′q1)e
−i
λ0z
ε = R′

ε,Ã
ei(ψϕ−

λ0z
ε )+(q2 − iq1)e

−i
λ0z
ε ∆′

γ +A0e
−i
λ0z
ε ∆′

γ

combined with (i), (37-b) and (35-a,b).

(iv): Estimate (iv) directly follows from (34), (35-e), (36-b) and from the ana-
lyticity of Rε,u.

(v): We deduce (v) from (13) and from (34), (35-c,d), (36-a) �.

We will also need estimates of the derivatives of G with respect to h1.

Lemma 19 There exists c such that for ε ∈]0, ε0] and every ϕ ∈ [−ϕ
0
, ϕ

0
]

(i)

(
‖Dh1

Gq1(0, 0, ϕ, ε)‖L(Hα
` ,H

α
`,2)
+‖Dh1

Gq2(0, 0, ϕ, ε)‖L(Hα
` ,H

α
`,3)

)
e−

λ0`
ε ≤ cε1−α

(ii)

∥∥∥∥Dh1
(Gq2+iGq1)(0, 0, ϕ, ε)e

i
λ0z
ε

∥∥∥∥
L(Hα

` ,H
α
`,2)

≤ cε

∥∥∥∥Dh1
(Gq2−iGq1)(0, 0, ϕ, ε)e−i

λ0z
ε

∥∥∥∥
L(Hα

` ,H
α
`,2)

≤ cε

(iii) ‖Dh1
Gw(0, 0, ϕ, ε)‖

L(Hα
` ,H

α
`,2)

≤ cε

(iv) ‖Dh1
GZ(0, 0, ϕ, ε)‖

L(Hα
` ,H

α
πεD,w)

≤ cε
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Proof. For h′ = (q′1, q
′
2, w

′, Z ′) ∈ Hα` let us denote

U′ =
(
(q′2 + iq′1)e

iψϕ , (q′2 + iq′1)e
−iψϕ , w′, Z ′

)

and observe that

Dh1
Gq1(0, 0, ϕ, ε).h

′ =
1

2i
e−iψϕDURε,A(0, 0, uh0 , Y

h
0 ).U′

− 1

2i
eiψϕDURε,Ã(0, 0, uh0 , Y

h
0 ).U′

+q′2
(
γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
(38)

Dh1
Gq2(0, 0, ϕ, ε).h

′ =
1

2
e−iψϕDURε,A(0, 0, uh0 , Y

h
0 ).U′

+
1

2
eiψϕDURε,Ã(0, 0, uh0 , Y

h
0 ).U′

−q′1
(
γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
(39)

Dh1
Gw(0, 0, ϕ, ε).h′ = DURε,u(0, 0, u

h
0 , Y

h
0 ).U′

Dh1
GZ(0, 0, ϕ, ε).h′ = DURε,Y (0, 0, uh0 , Y

h
0 ).U′

(40)

Then observing that (35-b) and our choice of δ0 ensure respectively that

‖U′‖
E

α
`

≤ c ‖h′‖
Hα

`

, |uh0 |+ ε|Y h0 | ≤
∥∥uh0

∥∥
H1,α

`,2

+
∥∥Y h0

∥∥
Hα

πεD,w

< δ0, (41)

estimates (iii) and (iv) directly follows from (40) and (14).

To get (i), we first check that :

a) the analyticity of Rε,A, Rε,Ã combined with (15) ensures that

∣∣DURε,A(0, 0, uh0 , Y
h
0 )
∣∣
L(Eα

` ,H
α
`,4)

+
∣∣∣DURε,Ã(0, 0, uh0 , Y

h
0 )
∣∣∣
L(Eα

` ,H
α
`,4)

≤ cε; (42)

b) the explicit formula giving γ1 at lemma 3 combined with (36-a) ensure
that ∥∥γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

∥∥
Hα

`,2

≤ cε (43)

We deduce estimate (i) from (35-a) and the two above estimates.

Finally, (ii) follows from the above estimates, (35-b) and from the explicit for-
mulas

ei
λ0z
ε Dh1

(Gq2+iGq1)(0, 0, ϕ, ε).U
′ = ei(

λ0z
ε −ψϕ)DURε,A(0, 0, uh0 , Y

h
0 ).U′

+i(q′2 + iq′1)e
i
λ0z
ε
(
γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
,

e−i
λ0z
ε Dh1

(Gq2−iGq1)(0, 0, ϕ, ε).U′ = ei(ψϕ−
λ0z
ε )DURε,Ã(0, 0, uh0 , Y

h
0 ).U′

+i(q′2 − iq′1)e
−i
λ0z
ε
(
γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
.

�
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4.5 Splitting of the solvability condition

This subsection is devoted to the computation of an equivalent of the solvability
condition J . On one hand, the leading part of J is given by an explicit com-
putation involving only h0,ε. On the other hand, the perturbation term of J
which involves the perturbation part of the homoclinic happens to be an oscil-
latory integral which admits an exponentially small upper bound given by the
Exponential Lemma 4. We have complexified the problem to be able to obtain
this exponentially small upper bound.

Lemma 20 There exists c such that for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈

[−δ2, δ2] and every reversible h1 = (q1, q2, w, Z) ∈ BHα` ( 1
2δ0, δ3),

J(h1, ϕ, A
?
0, ε) = e

−`λ0

ε A?0 sin(Γ(∞)) + J1(h1, ϕ, A
?
0, ε)

with

Γ(∞) =

∫ +∞

0

γ1(u
h
0 (x), 0, 0, ε)dx− ϕ

ρπ

2
(λε + εγ1(0, 0, A

2
0, ε))

and

(i) |J1(h1, ϕ, A
?
0, ε)| ≤ ce

−`λ0

ε

(
ε+ |A?0| ‖h1‖

Hα
`

+ ‖h1‖2
Hα

`

)
,

(ii) ‖Dh1
J1(0, ϕ, 0, ε)‖

L(Hα
` ,R)

≤ cεe
−`λ0

ε .

Proof. (i): Using the reversibility of h1 and the antireversiblity of G we get

J =

∫ ∞

0

〈
r−,G(h1, A

?
0, ϕ, ε)

〉
∗
dx =

1

2i

∫ +∞

−∞

e−iΓ(iGq1 +Gq2)(h1, A
?
0, ϕ, ε)dx.

Moreover,

iGq1 +Gq2 = iR′q1 +R′q2 + i(iq1 + q2)∆
h
γ + iA0(γ1(u

h
0 + w, 0, 0, ε)− ϕρ0)

= iA0(γ1(u
h
0 , 0, 0, ε)− ϕρ0) + iA0(∆

h
γ + ∆′

γ) + e−i
λ0z
ε ∆ε,A

where

∆ε,A = R′ε,Ae
i(
λ0z
ε −ψϕ) + i(∆h

γ + ∆′
γ)(iq1 + q2)e

i
λ0z
ε ,

∆h
γ =

(
γ1(u

h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
.

So we split J in three parts. The first one gives the leading part of J :

J0 = 1
2i

∫ +∞

−∞

e−iΓiA0

(
γ1(u

h
0 , 0, 0, ε)− ϕρ0

)
dx

= A0

∫ +∞

0

cos(Γ)
dΓ

dx
dx

= A0 sin(Γ(∞)).

(44)
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The second one can be bounded using lemma 18-(i). We get that

|J10| =
∣∣∣∣ 1
2i

∫ +∞

−∞

e−iΓiA0(∆
h
γ + ∆′

γ)dx

∣∣∣∣ ≤ c|A0|(‖w‖
H1,α

`,2

+ ε)

≤ c|A0|(‖h1‖
Hα

`

+ ε).

(45)

The third part of J happens to be an oscillatory integral given by

J11 =
1

2i

∫ +∞

−∞

e−i
λ0x
ε e−iΓ∆ε,A dx

Observe that

sup
z∈B`

A?
0∈[−δ2,δ2],ε∈[0,ε0]

|Im (Γ(z)) |+ |Im
(
λ0z
ε − ψϕ

)
| <∞. (46)

and that for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2], z ∈ B` and every

h1 ∈ BHα` ( 1
2δ0, δ3),

|uh0(z) + w(z)|+ ε
∣∣Y h0 (z) + Z(z)

∣∣
π̂εD

< δ0,

|A(z)| = |(A0 + q2(z) + iq1(z))e
iψϕ(z)| < δ1,

|Ã(z)| = |(A0 + q2(z)− iq1(z))e
−iψϕ(z)| < δ1.

Hence, using (46), (15) and lemma 18-(i), we get that there exists c such that

sup
z∈B`

(1+|z|2) |e−iΓ(z)∆ε,A(z)| ≤ cε
∥∥Y h0 +Z

∥∥
Hα

πεD,w

(
∥∥uh0+w

∥∥
H1,α

`,2

+
∥∥Y h0 +Z

∥∥
Hα

πεD,w

)

+c(‖w‖
H1,α

`,2

+ ε) ‖(q1, q2)‖
Qα

`

≤ ε (2cδ20 + cδ3) + c ‖h1‖2
Hα

`

for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2] and every h1 ∈ BHα` ( 1

2δ0, δ3).

This last estimate combined with the Exponential Lemma 4 ensures that
there exists c such that

|J11| ≤ ce−
λ0`
ε (ε+ ‖h1‖2

Hα
`

) (47)

holds for for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2] and every h1 ∈

BHα` ( 1
2δ0, δ3).

Gathering (44), (45), (47), we finally get the desired equivalent of J at lemma
20-(i).

(ii): For h′ = (q′1, q
′
2, w

′, Z ′) ∈ Hα` let us denote

U′ =
(
(q′2 + iq′1)e

iψϕ , (q′2 + iq′1)e
−iψϕ , w′, Z ′

)
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and observe that

Dh1
J1(0, ϕ, 0, ε).h

′ = Dh1
J11(0, ϕ, 0, ε).h

′

=
1

2ı

∫ +∞

−∞

e−i
λ0x
ε e−iΓDh1

∆ε,A(0, ϕ, 0, ε).h′ dx

with

Dh1
∆ε,A(0, ϕ, 0, ε).h′ = ei(

λ0z
ε −ψϕ)DURε,A(0, 0, uh0 , Y

h
0 ).U′

+i(q′2 + iq′1)e
i
λ0z
ε
(
γ1(u

h
0 , εp

∗
1(Y

h
0 ), 0, ε)− γ1(u

h
0 , 0, 0, ε)

)
.

Hence, using (46), (41), (42), (43) we get

sup
z∈B`

(1 + |z|2)|e−iΓ(z)Dh1
∆ε,A(0, ϕ, 0, ε).h′(z)| ≤ cε ‖h′‖

Hα
`

This last estimate combined with the Exponential Lemma 4 ensures that there
exists c such that

|Dh1
J1(0, ϕ, 0, ε).h

′| ≤ cεe
−`λ0

ε ‖h′‖
Hα

`

.

holds for for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0] and every h′ ∈ Hα` . �

4.6 Proof of Theorem 9

4.6.1 Homoclinic connections of the modified equations

As already explained in subsection 4.2, for finding homoclinic connections of
(20) we first study the modified equation (22)

Lϕ(z)h1 = G⊥(h1, A
?
0, ϕ, ε)

where

G⊥ = G− 2√
π
Je−z

2

r−.

We first prove

Proposition 21 For every ` ∈]0, ρ[, 0 < α < 1, there exist δ4, ε1 and c > 0 such
that for every ϕ ∈]− ϕ0, ϕ0[, ε ∈]0, ε1], and every A?0 ∈]− δ4, δ4[, equation (22)
admits a reversible homoclinic connection h1,A?

0
,ϕ,ε to 0, lying in Hα` , analytic

with respect to (ϕ,A?0) and satisfying

‖h1‖
Hα

`

≤ c(ε1−α + |A?0|)

Proof. Our aim is to solve (22) by using analytic implicit function theorem.
For that purpose, we rewrite (22) under a more appropriate form.
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On one hand, Lemmas 15 and 16 ensure that for every ϕ ∈ [−ϕ0, ϕ0] and
every ε ∈]0, ε0], the operator Lϕ is an isomorphism of Banach spaces from

Hα` |R := Hα` ∩ {h/h is reversible, i.e. Sh(z) = h(−z) for any z ∈ B`}

onto

Hα
` |⊥AR

:= (Hα
`,2 ×Hα

`,3 ×Hα
`,2 ×Hα

πεD,w) ∩
{
F/

∫ ∞

0

< r−(x),F(x) > dx = 0
}

∩
{
F/F is antireversible, i.e. SF(z) = −F(−z) for any z ∈ B`}

normed with

‖F‖
Hα

`

:= ‖Fw‖
Hα

`,2

+ ‖FZ‖
Hα

πεD,w

+ e−
λ0`
ε

(
‖Fq1‖Hα

`,2

+ ‖Fq2‖Hα
`,3

)

+

∥∥∥∥(iFq1 + Fq2 )e
i
λ0z
ε

∥∥∥∥
Hα

`,2

+

∥∥∥∥(−iFq1 + Fq2)e
−i
λ0z
ε

∥∥∥∥
Hα

`,2

where F = (Fq1 , Fq2 , Fw, FZ).

On the other hand, lemma 17 and 20 ensure that G⊥(h1, A
?
0, ϕ, ε) lies in

Hα
` |⊥AR

for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2] and every h1 ∈

BHα` ( 1
2δ0, δ3)|R where BHα` (d0, d1)|R = BHα` (d0, d1) ∩ {h/h is reversible}.

Hence, for every ϕ ∈ [−ϕ
0
, ϕ

0
], ε ∈]0, ε0], A

?
0 ∈ [−δ2, δ2] and every h1 ∈

BHα` ( 1
2δ0, δ3)|R equation (22) is equivalent to

h1 = N⊥
ε (h1, A

?
0, ϕ) := L−1

ϕ G⊥(h1, A
?
0, ϕ, ε) (48)

where N⊥
ε is an analytic function from BHα` ( 1

2δ0, δ3)|R×] − δ2, δ2[×] − ϕ0, ϕ0[
to Hα` |R which satisfies

∥∥N⊥
ε (h1, A

?
0, ϕ)

∥∥
Hα

`

≤ c(ε1−α + ‖h1‖2

Hα
`

+ |A?0|),
∥∥Dh1

N⊥
ε (0, 0, ϕ)

∥∥
L(Hα

` ,H
α
` )
≤ cε1−α.

thanks to lemmas 15, 16, 17, 19, 20 and thanks to the estimate

∥∥∥e−z2r−
∥∥∥
Hα

`

≤ cε−αe
λ0`
ε .

Finally, we need a slight adaptation of the Implicit Function Theorem to solve
(48), since we fix ε small enough, but non zero here. We replace N⊥

ε (h1, A
?
0, ϕ)

by
N⊥
ε (h1, A

?
0, ϕ)− (1− µεα−1)N⊥

ε (0, 0, ϕ)

and use the Analytic Implicit Function Theorem for (h1, A
?
0, µ) near 0, observing

that εα−1N⊥
ε (0, 0, ϕ) is uniformly bounded in Hα` |R for (ε, ϕ) ∈]0, ε]×]ϕ0, ϕ0[.
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For any ϕ ∈]ϕ0, ϕ0[ and for µ = 0 we have the trivial solution (h1, A
?
0) = 0

whereas (48) corresponds to µ = ε1−α which lies in the domain of existence of
the solution for ε and |A?0| small enough.

Hence, there exist ε1, δ4 such that for every ε ∈]0, ε1], (22) admits a solution
h1,ϕ,A?

0
,ε lying in Hα` |R which is analytic with respect to (ϕ,A?0) ∈ ]− ϕ0, ϕ0[×

]− δ4, δ4[ and which satisfies
∥∥h1,ϕ,A?

0
,ε

∥∥
Hα

`

≤ c(ε1−α + |A?0|). �

4.6.2 Resolution of the solvability condition

To achieve the proof of theorem 9, we look for appropriate values of the phase
shift ϕ := ϕ(A?0, ε) ∈]− ϕ0, ϕ0[ such that

J [h1,A?
0
,ϕ(ε,A?

0
),ε, ϕ(ε, A?0), A

?
0, ε] = 0.

For such values of the phase shift, h1,A?
0
,ϕ(ε,A?

0
),ε is a reversible homoclinic con-

nection to 0 of the equation (20) lying in BHα
` ( 1

2δ0, δ3) which gives the existence
of an homoclinic connection to 0 for (19) under the form

h = h0,ε + h1,A?
0
,ϕ(ε,A?

0
),ε.

Denote ε2 := min(ε1, δ
2
4). Then proposition 21 and lemma 20 ensure that

there exists c2 > 0 such that for any α ∈]0, 1
2 ], every ε ∈]0, ε2[, ϕ ∈] − ϕ0, ϕ0[

and every A?0 ∈ [0, ε1−α], we have ε1−α < δ4 and

J(h1,A?
0
,ϕ,ε, ϕ, A

?
0, ε) = e

−`λ0

ε A?0 sin(Γϕ(∞)) + J1(h1,A?
0
,ϕ,ε, ϕ, A

?
0, ε)

and

|J1(h1,A?
0
,ϕ,ε, ϕ, A

?
0, ε)| ≤ c2εe

−`λ0

ε .

Then observe that ϕ 7→ Γϕ(∞) is affine since Γϕ(∞) = a(ε, A?0)ϕ+ b(ε) where

a(ε, A?0) := −ρπ
2

(λε + εγ1(0, 0, A
2
0, ε)) < 0, b(ε) :=

∫ +∞

0

γ1(u
h
0 (x), 0, 0, ε)dx

and that our choice of ϕ0 ensures that ϕ 7→ Γϕ(∞) is a monotonic bijection from
] − ϕ0, ϕ0[ onto ]b(ε) − 2π, b(ε) + 2π[. So there exist three consecutive values
ϕ?1 < ϕ?2 < ϕ?3 of ϕ in ]− ϕ0, ϕ0[ and n? ∈ Z such that

Γϕ?
1
(∞) =

π

2
+n?π, Γϕ?

2
(∞) =

π

2
+(n?−1)π, Γϕ?

3
(∞) =

π

2
+(n?−2)π.

Then, denote c? = 2c2 and ε? := min(δ2,
1

(2C2)2
) and observe that for every

α ∈]0, 1
2 ], ε ∈]0, ε?] and every A?0 ∈ [c?ε, ε

1−α], we have c?ε ≤ ε1−α and

J(h1,A?
0
,ϕ?

1
,ε, ϕ

?
1, A

?
0, ε)J(h1,A?

0
,ϕ?

2
,ε, ϕ

?
2, A

?
0, ε) ≤ −

(
c?e

−`λ0

ε

)2

< 0,

J(h1,A?
0
,ϕ?

2
,ε, ϕ

?
2, A

?
0, ε)J(h1,A?

0
,ϕ?

3
,ε, ϕ

?
3, A

?
0, ε) ≤ −

(
c?e

−`λ0

ε

)2

< 0.
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Hence, the intermediate value theorem ensures that for every α ∈]0, 1
2 ], ε ∈]0, ε?]

and every A?0 ∈ [c?ε, ε
1−α] there are two distinct values of ϕ in ]−ϕ0, ϕ0[ denoted

by ϕj(ε, A
?
0), j = 1, 2 such that

ϕ1(ε, A
?
0) ∈]ϕ?1, ϕ

?
2[, ϕ2(ε, A

?
0) ∈]ϕ?2, ϕ

?
3[,

J(h1,A?
0
,ϕj(ε,A?

0
),ε, ϕj(ε, A

?
0), A

?
0, ε) = 0,

0 < ε
(
ϕ2(ε, A

?
0)− ϕ1(ε, A

?
0)
)
ρπ
2 (λε

ε + γ1(0, 0, A
2
0, ε)) < 2π.

This ensures that (9) admits two distinct reversible homoclinic connections
HA0,ϕj ,ε satisfying

HA0,ϕj ,ε(x) −→
x→±∞

pA0,ε

(
x± εϕj

ρπ

2

)

where pA0,ε is T -periodic with T :=
2π

λε

ε + γ1(0, 0, A2
0, ε)

. The other phase shifts

ϕ for which J vanishes lead to the same homoclinic connections. �
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