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Gravity solitary waves with polynomial decay to exponentially small ripples at infinity

. In this paper we improve this former result by showing the existence of generalized solitary waves with exponentially small ripples at infinity (of order O(e -c ε )). We conjecture the non existence of true solitary waves in this case. The proof is based on a spatial dynamical formulation of the problem combined with a study of the analytic continuation of the solutions in the complex field which enables one to obtain exponentially small upper bounds of the oscillatory integrals giving the size of the oscillations at infinity.

Introduction

Let us consider two layers of perfect fluids (densities ρ 1 (bottom layer), ρ 2 (upper layer)), assuming that there is no surface tension, neither at the free surface nor at the interface, and assuming that the flow is potential. The thickness at rest of the upper layer is h while the bottom one has infinite thickness (see figure 1). We are interested in travelling waves of horizontal velocity c. The dimensionless parameters are ρ = ρ 2 /ρ 1 < 1, and λ = gh c 2 (inverse of (Froude number) 2 ).

Figure 1: Two layers, the bottom one being of infinite depth

The existence of a family of periodic travelling waves, for generic values of these parameters is known [START_REF] Iooss | Gravity and Capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth[END_REF]. This paper is devoted to the problem of existence of solitary waves for λ(1 -ρ) near 1 -. This problem can be formulated as a spatial reversible dynamical system

dU dx = F (ρ, λ; U ), U (x) ∈ D, (1) 
where D is an appropriate infinite dimensional Banach space, and where U = 0 corresponds to a uniform state (velocity c in a moving reference frame). Solitary waves corresponds to homoclinic connections to 0 of (1) and generalized solitary waves corresponds to homoclinic connections to periodic orbits. A survey of the different results obtained for the water waves problems using a reversible dynamical system approach can be found in [START_REF] Dias | Water-waves as a spatial dynamical system[END_REF]. Considering the linearized operator around 0

L ε = D U F (ρ, λ; 0)
with ε = 1 -λ(1 -ρ), it was shown in [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] that its spectrum contains the entire real line (essential spectrum), with in addition a double eigenvalue in 0, a pair of simple imaginary eigenvalues ±iλ at a distance O(1) from 0 when ε is near 0, and for ε less than 0, another pair of simple imaginary eigenvalues tending towards 0 as ε → 0 -. When ε ≥ 0, this pair completely disappears into the essential spectrum! (see figure 2). The rest of the spectrum consists of a discrete set of eigenvalues situated at a distance at least O(1) from the imaginary axis.

For λ(1 -ρ) near 1 -, the existence of periodic travelling waves of arbitrary small amplitude induced by the pair of simple purely imaginary eigenvalues ±iλ like in the Lyapunov Devaney Theorem was proved [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] (despite the resonance due to the 0 eigenvalue in the spectrum).

For the solitary waves the situation is more intricate. First we cannot expect the existence of a solitary wave with an exponential decay at infinity because of the lack of spectral gap induced by the existence of the continuous spectrum on the whole real line. We can only expect solitary waves with polynomial decay at infinity. Such solitary waves have been found for two superposed layers, the bottom one being infinitely deep, and the upper one being bounded by a rigid horizontal top, with no interfacial tension (see figure 3). Figure 3: (left) R00 2 resonance, and (right) shape of the internal solitary wave in the two-layer system for µ > µ c (bottom layer infinitely deep).

A model equation was derived from the Euler equations thanks to a longwave approximation of the problem above, by Benjamin [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF], Davis and Acrivos [START_REF] Davis | Solitary internal waves in deep water[END_REF], and Ono [START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF]. The now called Benjamin-Ono equation is non local and reads

H(u ) + u -u 2 = 0, ( 2 
)
where H is the Hilbert transform, and u is a scalar function. This equation admits an homoclinic connection to 0, given explicitly by

u h (τ ) = 2 1 + τ 2 .
(

) 3 
All the other solutions of equation ( 2) have been described by Amick and Toland [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation -a nonlinear Neumann problem in the plane[END_REF]. For the full Euler equations, the existence of the solitary waves, with polynomial decay at infinity, has been obtained in this case, independently by Amick [START_REF] Amick | On the theory of internal waves of permanent form in fluids of great depth[END_REF] and Sun [START_REF] Sun | Existence of solitary internal waves in a two-layer fluid of infinite depth[END_REF]. More precisely, they both proved that, for µ > µ c and close to µ c (we can just play on the velocity c of the wave), the form of the interface for the solitary wave satisfies

Z(x) = µu h (µx) + µ 2 u 1 (µx)
where sup τ ∈R

(1 + |τ |) d j u 1 dτ j (τ ) ≤ K j , j = 0, 1, 2, ..

Therefore, the solitary wave solution (3) of the Benjamin-Ono equation [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation -a nonlinear Neumann problem in the plane[END_REF] gives the first order approximation of a solitary wave solution of the full Euler equations. Neither the approach of Amick, nor the one of Sun was based on a dynamical system approach. However, we observe that the problem may be formulated as a reversible dynamical system, for which the differential at the origin (which corresponds to the rest state) admits the entire real line as essential spectrum, a zero eigenvalue, and a pair of simple imaginary eigenvalues for µ < µ c tending towards 0 as µ → µ - c . When µ ≥ µ c this pair completely disappears in the essential spectrum (see figure 3).

Observe that for the problem studied in this paper (two layers, the bottom one infinitely deep, no surface tension, no interfacial tension), the behavior of the spectrum of the linearized operator L ε is the same as the one of the previous example, with in addition an extra pair of simple eigenvalues lying on the imaginary axis, not close to 0 (compare figures 2 and 3). These additional eigenvalues ±iλ lead to a competition between the oscillatory dynamics they induce, and the Benjamin-Ono type of dynamics induced by the essential spectrum with the 0 eigenvalue. This competition causes the appearance of oscillations at infinity for the solutions. Such a coexistence of an oscillatory dynamics and a hyperbolic dynamics also occurs for one parameter families of reversible vector fields admitting a 0 2 iω resonance at the origin, i.e. vector fields admitting the origin as a fixed point and such that the differential at the origin admits the bifurcation of spectrum described on figure 4. For such vector fields it is proved in [START_REF] Lombardi | Oscillatory integrals and phenomena beyond all algebraic orders, with applications to homoclinic orbits in reversible systems[END_REF] that there are generically no homoclinic connections to 0, whereas there are always homoclinic connections to periodic orbits, until they are exponentially small. Such a vector field occurs after a center manifold reduction for one layer of finite depth in presence of gravity and surface tension for a Froude number f close to 1, and a Bond number b less than 1/3. In this case, for f > 1 and b < 1/3 periodic travelling waves and generalized solitary waves asymptotic at infinity to each of these periodic waves, have been obtained provided that the amplitude of the ripples is larger than an exponentially small quantity (as function of f -1) ( [START_REF] Sun | Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave[END_REF] , [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF]), (see figure 4). The non existence of true solitary waves has also been proved by S.M.Sun [START_REF] Sun | Non existence of truly solitary waves in water with small surface tension[END_REF] for a Froude number f close to 1 + , and a Bond number b near 1/3 -.

We expect a result of the same type here, i.e. non existence of true solitary waves and existence of generalized solitary waves with exponentially small ripples at infinity. In [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] a weaker result was obtained, i.e. the existence of homoclinic connections to periodic solutions provided that the size of the limiting periodic orbit is not too small (at least of order ε 5/2 ). In this paper we show the existence of generalized solitary waves with exponentially small ripples at infinity. The question of the (non)-existence of true solitary waves is still open in this case. We should finally notice that the present problem is numerically studied by Pȃrȃu and Dias in [START_REF] Pȃrȃu | Interfacial periodic waves of permanent form with freesurface boundary conditions[END_REF], with lot of information on the shapes of the free surface and interface.

Theorem 1 There exists δ such that for any ∈]0, 1[ there exist c , ε > 0, such that for 0 < ε < ε , and c εe -λ ε < A 0 < δ, (1) has two homoclinic connections U A0,ε,ϕj (j = 1, 2) of the form

U A0,ϕj ,ε (x) = p A0,ε x + ϕ j arctan(εx/ρ) -εu h (εx/ρ)ξ 0 + O ε 3 2 ρ 2 + ε|x|
where ξ 0 is a fixed vector of D, u h is the soliton of Benjamin-Ono given by ( 3) and where p A0,ε is a periodic function of (1) which reads p A0,ε (x) = p A0,ε (s) with In section 2 we explain how the problem can be formulated as a spatial dynamical system of the form (1). We also recall the "normal form result" obtained in [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] which states that the full Euler equations (1) are equivalent to a Benjamin-Ono equation, coupled with a nonlinear oscillator equation, with higher order terms.

p A0,ε (s) = εA 0 e is ζ ε + e -is ζ ε + 2≤p+q≤r+1 ε r+1 A p+q 0 e i(p-q)s
As already explained the persistence of a pair of simple eigenvalues on the imaginary axis after bifurcation for ε > 0 causes the appearance of oscillations at infinity for the solutions. The size of the oscillations is given by an oscillatory integrals of the form

I(ε) = +∞ -∞ g(U (s), ε) e iλs ε ds
where g is explicitly known whereas U is a solution of (1). In section 3 we introduce appropriate algebras of holomorphic functions which enables to obtain exponentially small upper bounds of such oscillatory integrals.

Finally, in section 4 studying the holomorphic continuation of the solutions of (1) we prove theorem 1.

2 Formulation as a dynamical system and Normal form theory

Dynamical system Formulation and scaling

Travelling waves correspond to stationary solutions in a frame moving with a constant speed c. In such a frame the two dimensional travelling waves of Euler equations corresponding to an incompressible potential flow of velocity (u j (ξ, η), v j (ξ, η)), in layer j = 1, 2 satisfy

∂u j ∂ξ + ∂v j ∂η = 0 ∂u j ∂η - ∂v j ∂ξ = 0          (inside each domain : j = 1, 2) u 2 Z (ξ) -v 2 = 0 at η = 1 + Z(ξ) (free surface), u 2 Z I (ξ) -v 2 = u 1 Z I (ξ) -v 1 = 0 at η = Z I (ξ) (interface). 1 2 (u 2 2 + v 2 2 ) + λ Z = c 1 at η = 1 + Z(ξ) (free surface), 1 2 (u 2 1 + v 2 1 ) -ρ 2 (u 2 2 + v 2 2 ) + λ(1 -ρ) Z I = c 2 at η = Z I (ξ) (interface),
where the parameters are ρ = ρ 2 /ρ 1 < 1, and λ = gh c 2 , and c 1 and c 2 are arbitrary constants.

In what follows we assume that ρ is fixed and that λ(1 -ρ) is close to 1 -. So we work with a unique bifurcation parameter ε > 0 defined by λ(1

-ρ) = 1 -ε. We Define λ ε = 1 -ε 1 -ρ and λ 0 = 1 1 -ρ .
For formulating our problem into a dynamical system, we first transform the unknown domain into a strip. There are different ways for such a change of coordinates. We choose the one used by Levi-Civita [START_REF] Levi-Civita | Détermination rigoureuse des ondes permanentes d'ampleur finie[END_REF]. For that purpose we introduce the complex potential in layer j denoted by w j (ξ+iη) and the complex velocity (in dimensionless form) w j (ξ + iη) = u j -iv j . The Euler equations are expressed here by the fact that w j is analytic in ζ = ξ + iη. The new unknown are α j + iβ j , j = 1, 2, which are analytic functions of w j = x j + iy, where x j is the velocity potential in the layer j, and y the stream function, and where w j (ξ + iη) = e βj -iαj , the free surface is given by y = 1 , and the interface by y = 0. The region of the flow is -∞ < y < 0 for fluid 1, and 0 < y < 1 for fluid 2. Observe that the x coordinate given by the Levi-Civita change of coordinate is not the same in each strip. In fact we have dx2 dx1 = e β20-β10 where β 20 -β 10 is the value of β 2 -β 1 taken at the interface y = 0. So, we choose as the basic x coordinate the one given by the bottom layer (x 1 ) which then introduces a factor in the Cauchy-Riemann equations of the upper layer. In such a formulation, the unknown is defined by [U (x)] (y) = (β 10 (x), β 21 (x), α 1 (x, y), β 1 (x, y), α 2 (x, y), β 2 (x, y)) t and the system has the form

dU dx = F (ε; U ) (4) 
with

F (ε; U ) =                    -(1 -ε)e -3β10 sin α 20 -ρe 3(β20-β10) ∂α2 ∂y | y=0 -λ ε e -3β21+β20-β10 sin α 21 ∂β1 ∂y -∂α1 ∂y y ∈ (-∞, 0)
∂β2 ∂y e β20-β10 -∂α2 ∂y e β20-β10 y ∈ (0, 1)

where we denote by α 20 , β 10 and β 20 the traces of (resp.) α 2 , β 1 , β 2 at y = 0, and α 21 , β 21 the traces of α 2 and β 2 at y = 1. Here we choose the basic space

H = R 2 × C 0 1 (R -) × C 0 lim,1 (R -)
× {C 0 (0, 1)} 2 and the domain of the operator F is:

D = R 2 × C 1 1 (R -) × C 1 lim,1 (R -) × {C 1 (0, 1)} 2 ∩{α 10 = α 20 , β 10 = β 1 | y=0 , β 21 = β 2 | y=1 },
where we define the Banach spaces

C 0 ν (R -) = {f ∈ C 0 (R -); |f (y)|(1 + |y|) ν < ∞}, ν > 0, C 1 ν (R -) = {f ∈ C 0 ν (R -), f ∈ C 0 ν (R -)}, C 0 lim,ν (R -) = {f ∈ C 0 (R -); ∃l ∈ R, |f (y) -l|(1 + |y|) ν < ∞}, C 1 lim,ν (R -) = {f ∈ C 0 lim,ν (R -); f ∈ C 0 ν (R -)},
and we take for (a, b, f 1 , g 1 , f 2 , g 2 ) t = V ∈ H, the norm

|V | H = |a| + |b| + ||f 1 || 1,∞ + ||g 1 || lim 1,∞ + ||f 2 || ∞ + ||g 2 || ∞ , with ||f || ν,∞ def = sup y∈R - (|f (y)|(1 + |y|) ν ) , ||f || ∞ def = sup y |f (y)|, ||g|| lim ν,∞ def = sup y∈R - |g(y)| + sup y∈R - (|g(y) -l|(1 + |y|) ν ) .
The definition of the norm in D is similar, in adding the norms of f j and g j . The system (4) is reversible, i.e. F anticommutes with the symmetry S which reads

SU = (β 10 , β 21 , -α 1 , β 1 , -α 2 , β 2 ). ( 6 
)
Notice that the interface and free surface, expressed in the new coordinates satisfy dZ I dx = e -β10 sin α 10 , dZ dx = e β20-β10-β21 sin α 21 .

For looking for homoclinic connections, we work with the rescaled system

dU dx = F (ε; U ) (7) 
where εU = U , εx = x, εy = y for y ∈]0, -∞[.

The differential at the origin L ε = DF (ε, 0) admits for eigenvalues 0, ± iλε ε with the corresponding eigenvectors given by ξ 0 =(0, 1, 0, 0, 0, 1), ξ 1 =(1, 0, 0, 1, 0, 0), L ε ξ 0 =L ε ξ 1 =0, Sξ 0 =ξ 0 , Sξ 1 =ξ 1 ζ ε = (1, e λε , -ie λεy/ε , e λεy/ε , -ie λεy , e λεy ),

L ε ζ ε = iλ ε ζ ε , ζ ε = Sζ ε ,
Let us define some associated linear forms and projections : for

V = (a, b, f 1 , g 1 , f 2 , g 2 ) ∈ H we set p * 0 (V ) = g 21 = g 2 (1), p * 1 (V ) = a, p ε (V ) = ζ * ε (V )ζ ε + ζ * ε (V )ζ ε , π ε (V ) = Id -p ε (V ) π ε = π ε -ξ 0 p * 0 π ε with ζ * ε (V ) = d a -ρg 20 + ρe λε b + ρλ ε 1 0 [if 2 (y) -g 2 (y)]e λεy dy+ +λ 0 -∞ [if 1 (ετ ) -g 1 (ετ )]e λτ dτ .
These projections satisfies

p * 0 (ξ 0 ) = 1, p * 0 (ξ 1 ) = 0, p * 0 (ζ ε ) = p * 0 (ζ ε ) = e λε , p * 1 (ξ 0 ) = 0, p * 1 (ξ 1 ) = 1, p * 1 (ζ ε ) = p * 1 (ζ ε ) = 1 p ε (ξ 0 ) = p ε (ξ 1 ) = 0, p ε (ζ ε ) = ζ ε , p ε (ζ ε ) = ζ ε .

Nonlocal Normal Form Formulation

As already explained our aim is to look for generalized solitary waves with polynomial decay at infinity. This waves appear as homoclinic connections of the infinite dimensional dynamical system (4) or equivalently as homoclinic connections of its rescaled form [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF]. For describing this expected decay rate in x of the solutions we introduce the following Banach Spaces : Definition 2 Let E be a Banach Space and α be in ]0, 1[. Let us define

B α p (E) = {f ∈ C α (E); f B α p (E) < ∞}, B 1,α p (E) = f ∈ B α p (E); df dx ∈ B α p (E) , with f B α p (E) = sup x∈R (1 + |x| p ) |f (x)| E + sup x∈R, δ∈]-1,1[ (1 + |x| p ) |f (x + δ) -f (x)| E |δ| α ,
We also introduce the spaces B α H,w , B 1,α H,w and B α D,w defined by

B α H,w = V = (a, b, f 1 , g 1 , f 2 , g 2 ); V (x) ∈ H, (a, b) ∈ B α 2 (R 2 ), (f 1 , g 1 ) ∈ (B - w ) 2 , (f 2 , g 2 ) ∈ (B + w ) 2 , B α D,w = U = (β 10 , β 21 , α 1 , β 1 , α 2 , β 2 ); U (x) ∈ D, (α 1 , β 1 ) ∈ (B - w ) 2 , (α 2 , β 2 ) ∈ (B 1,+ w ) 2 , B 1,α H,w = V ∈ B α H,w ; dV dx ∈ B α H,w ,
where

B - w = {f (x, y); (x, y) ∈ R × R -, f is C α in x, C 0 in y, ||f || B - w < ∞}, B + w = B α 2 [C 0 (0, 1)], B 1,+ w = B α 2 [C 1 (0, 1)], f B - w = sup x∈R,y<0 (1 + |x| 2 + |y| 2 ) 1 + |y| |f (x, y)|+ + sup x∈R,y<0, |δ|≤1 (1 + |x| 2 + |y| 2 ) 1 + |y| |f (x + δ, y) -f (x, y)| |δ| α ,
For looking for homoclinic connections we first use the following "Nonlocal Normal Form Lemma" proved in [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] (see Lemma 18) which ensures that the full Euler equations ( 7) can be reduced via an appropriate change of coordinates to a Benjamin Ono equation coupled with the equation of a linear, high frequency oscillator.

Lemma 3 (Nonlocal Normal Form Lemma) There exist δ 1 and an analytic change of coordinates close to identity

U =Υ(A, A, u, Y ) with (A(x), A(x), u(x), Y (x)) ∈ C 2 × R × π ε D for x ∈ R such that for any δ 0 , ε ∈]0, ε 0 (δ 0 )],
and any function x

→ (A(x), A(x), u(x), Y (x)) lying in E α := (C α (R, C)) 2 × B 1,α 2 (R) × B α π ε D,w and satisfying |A| < δ 1 , |u| + ε |Y | π ε D < δ 0 , (7) is equivalent to dA dx -iA λ ε ε + γ 1 (u, εp * 1 (Y ), |A| 2 , ε) = R ε,A (A, A, u, Y ), ρH du dx + u + 3 2 u 2 = R ε,u [A, A, u, Y ] + R ε,u (|A| 2 ) + c 0 , Y -T 0 [u] = R ε,Y [A, A, u, Y ], (9) 
with

R ε,Y [A, A, u, Y ] = T 1 T u (A, A, u, Y ) + T 2 T Y (A, A, u, Y ) R ε,u [A, A, u, Y ]= ε λ H du dx +C (1) ε [T u ]+C (2) ε [T Y ]+B u (A, A, u, Y ).
where c 0 is an arbitrary constant; R ε,u is a real analytic function;

R ε,A , T u , T Y , B u are nonlinear analytic function of (A, A, u, Y ) and T 0 , T 1 , T 2 , C (1) 
ε , C

ε , are linear nonlocal operators, H being the Hilbert transform. Moreover γ 1 is explicitly given by

γ 1 (u, v, |A| 2 , ε) = 1≤n+m+2p≤r γ nmpr u n v m |A| 2p ε r-1 ∈ R. and T 0 maps B 1,α 2 (R) to B α π ε D,w and satisfies T 0 [u] B α D,w ≤ M u B 1,α 2 (R) For any function x → (A(x), A(x), u(x), Y (x)) lying in (C α (R, C)) 2 × B 1,α 2 (R) × B α π ε D,w and satisfying |A| < δ 1 , |u| + ε |Y | π ε D < δ 0 , for any ε ∈]0, ε 0 ], the two nonlocal, nonlinear perturbations terms R ε,u [A, A, u, Y ] and R ε,Y [A, A, u, Y ] lie respectively in B α 2 (R) and B α π ε D,w and satisfy R ε,u [A, A, u, Y ] B α 2 (R) ≤ M ε Y B α π ε D,w u B 1,α 2 (R) + ε Y B α π ε D,w + A C α +M ε u B 1,α 2 (R) 1 + A C α A C 0 , R ε,Y [A, A, u, Y ] B α π ε D,w ≤ M ε Y B α π ε D,w u B 1,α 2 (R) + ε Y B α π ε D,w + A C α , DR ε,u [A, A, u, Y ] L(E α ,B α 2 (R)) ≤ M ε 1 + u B 1,α 2 (R) + Y B α π ε D,w + A C α DR ε,Y [A, A, u, Y ] L(E α ,B α π ε D,w ) ≤ M ε 1 + u B 1,α 2 (R) + Y B α π ε D,w + A C α Finally the local nonlinear perturbation term R ε,A satisfies |R ε,A (A, A, u, Y )| ≤ M ε |Y | D (|u| + |Y | D ) for |A| < δ 1 , |u| + ε |Y | π ε D < δ 0 , and ε ∈]0, ε 0 ].
This system is still reversible, which now reads

R ε,A (A, A, u, SY ) = -R ε,A (A, A, u, Y )
for the local perturbation term and

s • R ε,u [A, A, u, Y ] = R ε,u [ s • A, s • A, s • u, S • Y ] S • R ε,Y [A, A, u, Y ] = R ε,Y [ s • A, s • A, s • u, S • Y ]
for the nonlocal perturbations terms where

( s•f )(x) = f (-x) for real or complex valued functions f and ( S • Y )(x) = SY (-x) for function Y mapping R in H or D.
Observe that the full system (9) admits a family of reversible periodic orbits of arbitrary small size explicitly given by

p A0,ε (x) = (A 0 e is(x) , A 0 e -is(x) , 0, 0) with s(x) = λ ε + γ 1 (0, 0, A 2 0 , ε) x and A 0 ∈ R, whereas the truncated system corresponding to R ε,A = R ε,u = R ε,Y ≡ 0 is partially decoupled and admits for c 0 = -R ε,u (|A 0 | 2 )
a family of homoclinic connections to the previously found periodic orbits p A0,ε given by

h A0,ϕ,ε = (A h ϕ , A h ϕ , u h 0 , Y h 0 ), h A0,ϕ,ε (x) -→ x→±∞ p A0,ε (x ± ψ ∞ + ϕ) with u h 0 (x) = -4ρ 2 3(ρ 2 + x 2 ) ∈ B 1,α 2 (R) is even in x, Y h 0 = T 0 [u h 0 ] ∈ B α π ε D,w is reversible, ψ ∞ = +∞ 0 γ 1 (u h 0 (τ ), εp * 1 (Y h 0 (τ )), A 2 0 , ε) -γ 1 (0, 0, A 2 0 , ε) dτ A h ϕ (x) = A 0 e iΨ(x)+iϕ and Ψ(x) = λ ε ε + γ 1 (0, 0, A 2 0 , ε) x + x 0 γ 1 (u h 0 (τ ), εp * 1 (Y h 0 (τ )), A 2 0 , ε) dτ
where φ is arbitrary and u h 0 satisfies the Benjamin Ono equation (9-b) with R ε,u ≡ 0.

Among this two parameters family there are two one parameter families of reversible homoclinic connections corresponding to appropriate choices of the phase shift ϕ, h A0,0,ε and h A0,π,ε , and a unique homoclinic connection to 0, h 0,ε given by

h 0,ε = (0, 0, u h 0 , Y h 0 ). ( 10 
)
The question is then the persistence of this family of homoclinic connections for the full system (9) seen as a perturbation of the truncated system by the perturbation terms

R ε,A , R ε,u , R ε,Y .
The system [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF] clearly shows the competition between the oscillatory dynamics induced by equation (9-a) which generates periodic solutions, and the Benjamin -Ono like dynamics induced by equations (9-b), (9-c) which generate homoclinic connections to 0 with polynomial decay. For the truncated system these two dynamics are decoupled, and there is no competition, so there exist homoclinic connections to periodic orbits of arbitrary small size. Such a coexistence of an oscillatory dynamics and a hyperbolic dynamics also occurs for one parameter families of reversible vector fields admitting a 0 2 iω resonance at the origin, i.e. vector fields admitting the origin as a fixed point and such that the differential at the origin admits the bifurcation of spectrum described in figure 4. For such vector fields it is proved in [START_REF] Lombardi | Oscillatory integrals and phenomena beyond all algebraic orders, with applications to homoclinic orbits in reversible systems[END_REF] that there is generically no homoclinic connection to 0, whereas there are always homoclinic connections to exponentially small periodic orbits.

In [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF], the persistence of the homoclinic connections h A0,0,ε is proved provided that the size of the limiting periodic orbits A 0 satisfies A 0 ≥ δε 3 2 . In this paper we improve this result by showing the persistence for A 0 ≥ c( )e -λ0 ε for 0 < < ρ. As for the 0 2 iω resonance we expect a generic non existence of homoclinic connections to 0, however the proof remains to be done in this case.

The competition between the oscillatory dynamics and the Benjamin-Ono like dynamics causes the appearance of oscillations at infinity for the solutions. The size of the oscillations is given by an oscillatory integral of the form

I(ε) = +∞ -∞ g(U(s), ε) e iλ0s ε ds ( 11 
)
where g is explicitly known whereas U = (A, A, u, Y ) is a solution of (9). In the next section we introduce appropriate algebras of holomorphic functions which allow to obtain exponentially small upper bounds of such oscillatory integrals.

Exponentially small estimates of oscillatory integrals and complexification

Lemma 4 (Exponential Lemma) Let , ω be two positive real numbers and let p > 1. We denote by B the strip in the complex field:

B = {z ∈ C/|Im (z) | < } and by H ,p the set of functions f : B ×]0, 1] -→ C satis- fying (a) ξ → f (ξ, ε) is holomorphic in B , (b) f H ,p := sup ε∈]0,1],z∈B (|f (z, ε)|(1 + |z| p )) < +∞.
Then for every f ∈ H ,p and ε ∈]0, 1],

I ± (f, ε) = +∞ -∞ f (t, ε) e ±iωt/ε dt satisfies |I ± (f, ε)| ≤ c p f H ,p e -ω /ε with c p = 2 +∞ 0 1 1 + t p .
Proof. We only do the proof for I + . For I -, perform the change of time t = -t in the integral. So, let f ∈ H ,p , ε, < be fixed. Since f is holomorphic in B , the integral of f e iωt/ε along the path Γ 1 given in figure 6, is equal to zero. Pushing R to +∞, we get

I + (f, ε) = +∞ -∞ f (i + t, ε) e iω(i +t)/ε dt.
The estimate then follows, where the exponential comes from the oscillating term computed on the line Im (z) = .

Lemma 4 gives a very efficient way to obtain exponential upper bounds because the membership to H ,p is stable by addition, multiplication, and "composition", which can be summed up as follows Lemma 5 H ,p is an algebra and if f ∈ H ,p and g is holomorphic in a domain containing the range of f and satisfies g(0) = 0, then g • f ∈ H ,p .

For using the exponential lemma 4 to compute an exponentially small upper bound of oscillatory integral of the form [START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF] we need to complexify the problem and to look for solutions of (9) in spaces of type H ,p . For that purpose we introduce the complexified spaces corresponding to the real ones given in definition 2.

Definition 6 Let E be a real Banach space and α be in ]0, 1[. Denote by Ê the complexified of E, i.e. Ê = E + iE.

For any > 0, any function f : B → Ê and any η ∈] -, [, we denote by

f | η : R → Ê, f | η = f (• + iη).
Then, let us define the Banach spaces

H α ,p ( Ê) = f : B → Ê, holomorphic; f (R) ⊂ E; ∀η ∈] -, [, f | η ∈ B α p ( Ê); f H α ,p ( Ê) = sup η∈]-, [ f | η B α p ( Ê) < ∞ , H 1,α ,p ( Ê) = f ∈ H α ,p ( Ê); df dz ∈ H α ,p ( Ê) , C α (B , Ê)= f : B → Ê; f (R) ⊂ E; ∀η ∈] -, [, f | η ∈ C α (R, Ê); f C α (B , Ê) = sup η∈]-, [ f | η C α (R, Ê) < ∞ ,
To shorten notations, we denote

H α ,p := H α ,p (C), and 
H 1,α ,p := H 1,α ,p (C)
We also introduce the Banach spaces H α H,w , H 1,α H,w and H α D,w defined by The different local and nonlocal operators involved in equation ( 9) can be extended to "complex functions" U = (A, A, u, Y ) lying in

H α H,w = V : B → Ĥ, holomorphic, V (R) ⊂ H, ∀η ∈] -, [, V | η ∈ B α H,w := B α H,w + iB α H,w ; V H α H,w := sup η∈]-, [ V | η B α H,w < ∞ H α D,w = V : B → D, holomorphic, V (R) ⊂ D, ∀η ∈] -, [, V | η ∈ B α D,w := B α D,w + iB α D,w ; V H α D,w := sup η∈]-, [ V | η B α D,w < ∞ H 1,α H,w = V ∈ H α H,w ; dV dz ∈ H α H,w . Observe that H α ,p ( Ê) is continuously embedded in C 0 b (B , Ê) and that H α H,w , H α D,
BE α (δ 0 , δ 1 ) := U ∈ E α /∀z ∈ B , | A(z)| < δ 1 , |A(z)| < δ 1 , |u(z)| + ε |Y (z)| π ε D < δ 0 .
where

E α := C α (B , C) 2 × H 1,α ,2 × H α π ε D,w ∩ U/ A(x) = A(x), for x ∈ R is normed with U E α = A C α + A C α + u H 1,α ,2 + Y H α π ε D,w
Indeed they appear as finite sum of analytic functions of (A,

A, u, Y ) ∈ C 2 × R × π ε D which naturally extend to analytic functions of (A, A, u, Y ) ∈ C 2 × C × π ε D composed with nonlocal linear operators T 0 , T 1 , T 2 , C (1) ε , C (2) 
ε , (see ( 9)) of the form

K : f → K[f ] with K[f ](x) := p.v. +∞ -∞ K(s).f (x -s) ds
where f is any function from R to E and K(t) is a linear bounded operator in E. For instance, the Hilbert transform reads

H[u](x) := p.v. +∞ -∞ 1 s .u(x -s)ds.
Such operators can readily be extended to a function f : B → Ê with the same integral formula where x lies in B instead of R. Moreover we have Lemma 7 Let E be a real Banach space and L(E) be the space of bounded linear operators in E. Assume that K :

R\{0} → L(E) is C 1 such that i) K(s) L(E) ≤ C 0 /|s|, K (s) L(E) ≤ C 0 /|s| 2 for |s| ≤ 1, ii) K(s) L(E)
≤ C 1 /|s| 2 for |s| ≥ 1, and p.v.

1 -1 K(s)ds ∈ L(E). Then, the linear map K defined by

f → K[f ] = p.v. R K(s).f (• -s)ds. is bounded from H α ,2 (E) into itself.
Proof. First observe that

K[f ](z) = +∞ -∞ K(s).(f (z -s) -f (z))ds + p.v. +∞ -∞ K(s)ds .f (z)
where the first integral is a classical convergent integral without "principal value". This formula combined with Lebegues's theorem ensures that K[f ] is holomorphic in B . Moreover it is proved in [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] (see Lemma 30) that K is a bounded linear operator from B α 2 ( Ê) to itself. Hence, since

K[f | η ] = (K[f ])| η , K is a bounded linear operator from H α ,2 ( Ê) to itself.
So, to look for solutions of (9) which admit an holomorphic continuation in E α , we study the "complexified equation"

dA dz -iA λ ε ε + γ 1 (u, εp * 1 (Y ), A A, ε) = R ε,A (A, A, u, Y ), d A dz + i A λ ε ε + γ 1 (u, εp * 1 (Y ), A A, ε) = R ε, Ã(A, A, u, Y ), ρH du dz + u + 3 2 u 2 = R ε,u [A, A, u, Y ] + R ε,u (A A) + c 0 , Y -T 0 [u] = R ε,Y [A, A, u, Y ], (12) 
where R ε, Ã is an analytic function of (A, A, u, Y ) given by

R ε, Ã(A, A, u, Y ) = R ε,A ( A, A, u, Y ).
Remark 8 Observe that for any solution U of ( 12) lying in E α , the restriction of U to R is a solution of (9) lying in

(C α (R, C)) 2 × B 1,α 2 (R) × B α π ε D,w .
The bounds for the linear operators

T 0 , T 1 , T 2 , C (1) 
ε , C

ε , which lead to the estimates for R ε,u , R ε,Y stated for [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF], are based on the structure of these non local operators where nonlocal kernels occur. In [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] the estimates of these operators were based on Lemma 30, here extended at lemma 7 for obtaining the holomorphy in the strip B . It then results that T 0 is a bounded linear operator from H 1,α ,2 to H α π ε D,w and for any function U = (A, A, u, Y ) lying in BE α (δ 0 , δ 1 ) and any ε ∈]0, ε 0 ], the two nonlocal, nonlinear perturbations terms R ε,u [A, A, u, Y ] and R ε,Y [A, A, u, Y ] lie respectively in H α ,2 and H α π ε D,w and satisfy

R ε,u [A, A, u, Y ] H α ,2 ≤ M ε Y H α π ε D,w u H 1,α ,2 +ε Y H α π ε D,w + A C α + A C α +M ε u H 1,α ,2 1+( A C α + A C α )( A C 0 + A C 0 ) , R ε,Y [A, A, u, Y ] H α π ε D,w ≤ M ε Y H α π ε D,w u H 1,α ,2 +ε Y H α π ε D,w + A C α + A C α . (13) DR ε,u [A, A, u, Y ] L(E α ,H α ,2 ) + DR ε,Y [A, A, u, Y ] L(E α ,H α π ε D,w ) ≤ M ε 1+ u H 1,α ,2 + Y H α π ε D,w + A C α + A C α (14) 
Finally the local nonlinear perturbation terms R ε,A , R ε, Ã satisfy

|R ε,A (A, A, u, Y )| + |R ε, Ã(A, A, u, Y )| ≤ M ε |Y | π ε D (|u| + |Y | π ε D ) ( 15 
)
for

|A| < δ 1 , | A| < δ 1 , |u| + ε |Y | π ε D < δ 0 , and ε ∈]0, ε 0 ].
This system is still reversible, which now reads

R ε,A ( A, A, u, SY ) = -R ε, Ã(A, A, u, Y )
for the local perturbation term and

s • R ε,u [A, A, u, Y ] = R ε,u [ s • A, s • A, s • u, S • Y ] S • R ε,Y [A, A, u, Y ] = R ε,Y [ s • A, s • A, s • u, S • Y ]
for the nonlocal perturbations terms.

4 Homoclinic connections to exponentially small periodic orbits

The purpose of the paper is to prove the existence of generalized solitary waves with exponentially small ripples at infinity. As already explained in section 2.2, after change of coordinates, the full Euler equations reduces to system [START_REF] Pȃrȃu | Interfacial periodic waves of permanent form with freesurface boundary conditions[END_REF] and generalized solitary waves appear as homoclinic connections to the periodic orbits p A0,ε (x). In this section we prove Theorem 9 For any α ∈]0, 1 2 ], ∈]0, ρ[ there exist c , ε such that for every ε ∈]0, ε ] and every A 0 ∈ [c ε e -λ0 ε , ε 1-α e -λ0 ε ], system (9) has two reversible homoclinic connections H A0,ϕj ,ε , j = 1, 2 of the form

H A0,ϕj ,ε (x) = p A0,ε x + εϕ j ρ arctan x ρ + h 0,ε (x) + h 1,ε (x) ( 16 
)
where h 0,ε is given by [START_REF] Lombardi | Oscillatory integrals and phenomena beyond all algebraic orders, with applications to homoclinic orbits in reversible systems[END_REF] and

h 1,ε (x) = O( ε 1-α ρ + |x| ).
Corollary 10 There exists δ > 0 such that for any ∈]0, ρ[ there exist c , ε such that for every ε ∈]0, ε ] and every A 0 ∈ [c ε e -λ0 ε , δ], system (9) has two reversible homoclinic connections H A0,ϕj ,ε , j = 1, 2 of the form (16) where

h 1,ε (x) = O( √ ε ρ + |x| ).
Remark 11 Theorem 1 is a direct consequence of the above corollary performing back the change of coordinates given by the Normal Form Lemma 3 and the scaling [START_REF] Levi-Civita | Détermination rigoureuse des ondes permanentes d'ampleur finie[END_REF].

Proof of corollary 10. We first deduce corollary 10 from theorem 9. Looking carefully at the proof of theorem 9 given in the next subsections, we check that we can obtain a similar theorem which is valid uniformly for any ∈]0, ], i.e.

a theorem for which the constants c , ε are the same for every ∈]0, ]. So grouping together the existence results obtained for α = 1 2 and each ∈]0, ] and observing that

0< ≤ [c ε e -λ0 ε , √ ε e -λ0 ε ] = [c ε e -λ0 ε , √ ε[.
we obtain that for any ∈]0, ρ[ there exist c , ε such that for every ε ∈]0, ε ] and [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF] has two reversible homoclinic connections

every A 0 ∈ [c ε e -λ0 ε , √ ε[, system ( 
H A0,ϕj ,ε , j = 1, 2 of the form (16) where h 1,ε (x) = O( √ ε ρ + |x| ).
Finally theorem 22 of [START_REF] Iooss | Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation[END_REF] gives the existence of two reversible homoclinic connections H A0,ϕj ,ε , j = 1, 2 of the form (16) where

h 1,ε (x) = O( √ ε ρ + |x| ) for A 0 ∈ [c 0 ε 3 2
, δ] which completes the proof of corollary 10.

The rest of this section is devoted to the proof of theorem 9.

Complexified shifted system and choice of the parameters

In the rest of this paper let ∈]0, ρ[ and α ∈]0, 1[ be fixed.

We look for homoclinic connections to the periodic orbit p A0,ε under the form

H A0,ϕ,ε = p A0,ε x + εϕρ arctan x ρ + h ε (x) (17) 
The unknown are ϕ ∈ R, which is proportional to the phase shift at infinity, and h ε which is required to be a reversible homoclinic connection to 0. As already explained, to obtain exponentially small estimates of A 0 , we need to show that H A0,ϕ,ε admits a holomorphic continuation in B still denoted by H A0,ϕ,ε which lies in BE α (δ 0 , δ 1 ) where δ 0 can be chosen arbitrarily. For that purpose we look for H A0,ϕ,ε as a solution of [START_REF] Pȃrȃu | Interfacial periodic waves of permanent form with freesurface boundary conditions[END_REF]. Moreover, we look for h ε (z) with z ∈ B under the form

h ε (z) = (iq 1 (z) + q 2 (z))e iψϕ(z) , (-iq 1 (z) + q 2 (z))e -iψϕ(z) , u, Y (18) 
with

ψ ϕ (z)= λ ε ε +γ 1 (0, 0, A 2 0 , ε) [z+ερϕ arctan(z/ρ)] , with arctan z = [0,z] ds 1 + s 2 observing that T : (q 1 , q 2 ) → (A, A) = (iq 1 (z) + q 2 (z))e iψϕ(z) , (-iq 1 (z) + q 2 (z))e -iψϕ(z) is an isomorphism from C 2 onto C 2 .
We need a priori estimates on ϕ and h to ensure that H A0,ϕ,ε lies in BE α (δ 0 , δ 1 ). Moreover, we want to prove the existence of homoclinic connection to p A0,ε provided that its size A 0 lies in an interval of the form [c ε e -λ0 ε , ε 

|u h 0 (z)| + ε Y h 0 (z) π ε D
and ε 0 := ε 0 (δ 0 ),

ϕ 0 := sup ε∈]0,ε0],A0∈[0,δ1[ 4 ρ[λ ε + εγ 1 (0, 0, A 2 0 , ε)]
.

where ε 0 (δ 0 ) is given by the Nonlocal Normal Form Lemma 3 and let us set

A 0 = A 0 e -λ0 ε with A 0 ∈] -1 2 δ 1 , 1 2 δ 1 [.
We also define

Definition 13 Let H α = H α ,1 ×H α ,2 ×H 1,α ,2 ×H α π ε D,w equipped with the following norm h H α = (q 1 , q 2 ) Q α + u H 1,α ,2 + Y H α π ε D,w
where h = (q 1 , q 2 , u, Y ) and

(q 1 , q 2 ) Q α = e -λ0 ε q 1 H α ,1 + q 2 H α ,2 + (iq 1 + q 2 )e i λ0z ε H α ,1 + (-iq 1 + q 2 )e -i λ0z ε H α ,1
Then, we define

BH α (d 0 , d 1 )= h ∈ H α / u H 1,α ,2 + Y H α π ε D,w < d 0 , (q 1 , q 2 ) Q α < d 1 Observe that there is no ε in front of Y H α π ε D,w
in the definition of BH α (d 0 , d 1 ).

With this choice of parameters we check

Lemma 14

(a) There exists c such that for every

z ∈ B , ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ] and every A 0 ∈] -1 2 δ 1 , 1 2 δ 1 [, |Im (ψ ϕ (z)) | ≤ λ0 ε + c holds. (b) There exists δ 2 ∈]0, 1 2 δ 1 [ such that for every z ∈ B , ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈ ]0, ε 0 ] and every A 0 ∈ [-δ 2 , δ 2 ],
|A 0 e iψϕ(z) | < 1 2 δ 1 .

(c) There exists δ 3 ∈]0, δ 1 [ such that for every z ∈ B , ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ] and every h ∈ BH α (δ 0 , δ 3 )

|(q 2 + iq 1 )e iψϕ(z) | ≤ 1 2 δ 1 , |(q 2 -iq 1 )e -iψϕ(z) | ≤ 1 2 δ 1 . (d) For every z ∈ B , ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ]
and every h ∈ BH α (δ 0 , δ 3 ), the corresponding H A0,ϕ,ε given by ( 17) and (18) lies in BE α (δ 0 , δ 1 ).

So, we are looking for ϕ ∈ [-ϕ 0 , ϕ 0 ] and for an homoclinic connection to 0 h = (q 1 , q 2 , u, Y ) in BH α (δ 0 , δ 3 ) which is reversible, i.e.

Sh(z) = h(-z)

where S(q 1 , q 2 , u, Y ) = (-q 1 , q 2 , u, SY ).

The new system satisfied by h = (q 1 , q 2 , u, Y ) and ϕ reads

dq 1 dz = (A 0 + q 2 ) [γ 1 (u, 0, 0, ε) -ϕρ 0 ] + R q1 , dq 2 dz = -q 1 [γ 1 (u, 0, 0, ε) -ϕρ 0 ] + R q2 , ρH du dz + u + 3 2 u 2 = R ε,u + R ε,u + c 0 , Y -T 0 [u] = R ε,Y , (19) 
where

ρ 0 (z) = λ ε + εγ 1 (0, 0, A 2 0 , ε) ρ 2 z 2 + ρ 2 , R q1 = 1 2i R ε,A e -iψϕ -R ε, Ãe iψϕ + (A 0 + q 2 )∆ γ R q2 = 1 2 R ε,A e -iψϕ + R ε, Ãe iψϕ -q 1 ∆ γ with ∆ γ = γ 1 (u, εp * 1 (Y ), A A, ε) -γ 1 (u, 0, 0, ε) -γ 1 (0, 0, A 2 0 , ε)
where we put a prime when we need to replace A by (A 0 + q 2 + iq 1 )e iψϕ , A by (A 0 + q 2 -iq 1 )e -iψϕ , and where we choose the constant c 0 such that (q

1 , q 2 , Y, u) = 0 cancels R ε,u + R ε,u + c 0 , i.e c 0 = -R ε,u (A 2 0 ). .

Strategy of proof

We look for a reversible homoclinic connection h = (q 1 , q 2 , u, Y ) to 0 of the full equation ( 19) under the form

h = h 0,ε + h 1 with h 0,ε = (0, 0, u h 0 , Y h 0 ) ∈ BH α ( 1 2 δ 0 , 0), h 1 = (q 1 , q 2 , w, Z),
More precisely, we look for ϕ ∈ [-ϕ 0 , ϕ 0 ] and h 1 ∈ BH α ( 1 2 δ 0 , δ 3 ), which satisfies

L ϕ (z)h 1 = G(h 1 , A 0 , ϕ, ε) (20) 
where

L ϕ (z)h 1 = dq 1 dz -γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 q 2 dq 2 dz + γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 q 1 ρH dw dz + w + 3u h 0 w Z -T 0 w and G = (G q1 , G q2 , G w , G Z )
with

G q1 = A 0 (γ 1 (u h 0 + w, 0, 0, ε) -ϕρ 0 )+ + q 2 (γ 1 (u h 0 + w, 0, 0, ε) -γ 1 (u h 0 , 0, 0, ε)) + R q1 , G q2 = -q 1 (γ 1 (u h 0 + w, 0, 0, ε) -γ 1 (u h 0 , 0, 0, ε)) + R q2 , G w = R ε,u + R ε,u -R ε,u (A 2 0 ) - 3 2 w 2 , G Z = R ε,Y .
Here the reversibility comes from the invariance of the system under the symmetry (z, q 1 , q 2 , w, Z) → (-z, -q 1 , q 2 , w, SZ).

Moreover the map

(ϕ, q 1 , q 2 , w, Z) → (G q1 , G q2 , G w , G Z ) is analytic from ] -ϕ 0 , ϕ 0 [×BH α ( 1 2 δ 0 , δ 3 ) to H α ,2 × H α ,3 × H α ,2 × H α π ε D,w .
For finding homoclinic connection to 0 of (20) we proceed in several steps:

Step 1. In subsection 4.3 we consider the affine equation 

L ϕ (z)h = F.

More precisely we prove that for any antireversible

F ∈ H α ,2 × H α ,3 × H α ,2 × H α π ε D,
∞ 0 < r -(x), F(x) > dx = 0 (21)
where r -is given by r -= (cos Γ, -sin Γ, 0, 0),

with Γ(z) = [0,z] γ 1 (u h 0 (τ ), 0, 0, ε) -ϕρ 0 (τ ) dτ.
So, a necessary condition for the existence of a solution h 1 of (20

) in BH α ( 1 2 δ 0 , δ 3 ) is that J(h 1 , ϕ, A 0 , ε) = 0,
where

J = ∞ 0 < r -, G(h 1 , A 0 , ϕ, ε) > dx.
Step 2. For studying J and (20), we need precise estimates of G q1 , G q2 , G w , G Z . They are given in subsection 4.4

Step 3. In subsection 4.5, we study the solvability function J and we compute its principal part. J happens to be an oscillatory integral and its study is based on the Exponential Lemma 4. This is why, we had to complexify the problem.

Step 4. In subsection 4.6.1, we introduce the modified equation

L ϕ (z)h 1 = G ⊥ (h 1 , A 0 , ϕ, ε) (22) 
where

G ⊥ = G - 2 √ π Je -z 2 r -(z).
The term G ⊥ has been designed so that, for every ε, A 0 , ϕ,

h 1 ∞ 0 < r -, G ⊥ (h 1 , A 0 , ϕ, ε) > dx = 0.
Then, using the implicit function theorem, we prove that for any ϕ and any sufficiently small |A 0 |, ε the system (20) admits a solution

h 1,ε,A 0 ,ϕ in BH α ( 1 2 δ 0 , δ 3 ) satisfying h 1,ϕ,A 0 ,ε H α ≤ c(ε 1-α + |A 0 |).
Step 5. Finally, in subsection 4.6.2, using the study of J made in 4.5, we prove that for 0 < α ≤ 1 2 , there exist c , ε such that for every 0

< ε < ε , A 0 ∈ [c ε, ε 1-α ] there exists ϕ(ε, A 0 ) such that J[h 1,A 0 ,ϕ(ε,A 0 ),ε , ϕ(ε, A 0 ), A 0 , ε] = 0.
Hence, h 1,A 0 ,ϕ(ε,A 0 ),ε is a reversible solution of (20) in BH α ( 1 2 δ 0 , δ 3 ) which gives the existence of an homoclinic connection to 0 for (19) under the form

h = h 0,ε + h 1,A 0 ,ϕ(ε,A 0 ),ε .
At this last step we have only considered positive values of A 0 since the solution obtained for A 0 < 0 are the same as the one found for A 0 > 0 thanks to the undetermination on the form of the parametrization of the bifurcating solution given by (16).

Linearized system around the homoclinic connection of the truncated system

This subsection is devoted to the study of the affine equation

L ϕ (z)h = F, (23) 
for any given ,w which is antireversible, i.e. such that F q1 and F w are even, F q2 is odd, while F Z is reversible (i.e. SF Z (-z) = F Z (z)). Equation (20) reads

F = (F q1 , F q2 , F Z , F w ) ∈ H α ,2 × H α ,3 × H α ,2 × H α π ε D
dq 1 dz -γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 q 2 = F q1 dq 2 dz + γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 q 1 = F q2 ρH dw dz + w + 3u h 0 w = F w Z -T 0 [w] = F Z (24) 
Let us first show the inversion for the two first coordinates. Let us consider a basis of solutions of the homogeneous system in (q 1 , q 2 ) r + (z) = (sin Γ(z), cos Γ(z), 0, 0) ,

r -(z) = (cos Γ(z), -sin Γ(z), 0, 0), ( 26)

Γ(z) = [0,z] γ 1 (u h 0 (τ ), 0, 0, ε) -ϕρ 0 (τ ) dτ (27) 
then r + is reversible, while r -is antireversible, and Γ is odd and may be also written as

Γ(z) = [0,z] γ 1 (u h 0 (τ ), 0, 0, ε)dτ -ϕρ[λ ε + εγ 1 (0, 0, A 2 0 , ε)] arctan(z/ρ).
Let us denote •, • the canonical scalar product in C 2 : for q = (q 1 , q 2 ) and q = (q 1 , q 2 ), q, q = q 1 q 1 + q 2 q 2 . We identify (C 2 ) * with C 2 by q → q, • * := q, • . We then show Lemma 15 Let consider the affine system

dq 1 dz = q 2 γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 + F q1 , dq 2 dz = -q 1 γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 + F q2 , (28) 
with

F q = (F q1 , F q2 ) ∈ H α ,2 × H α ,3
, antireversible (F q1 even, F q2 odd). This system has a unique reversible, holomorphic solution (q 1 , q 2 ) = F q (F q ), (q 1 odd, q 2 even) tending towards 0 at infinity, if and only if (we identify r -with its two first components)

∞ 0 r -(x), F q (x) * dx = 0. ( 29 
)
We have

F q (F q )(z) = -r + (z) z+R + r + (τ ), F q (τ ) * dτ -r -(z) z+R + r -(τ ), F q (τ ) * dτ.
Moreover, there exists c such that for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ] and every

F q = (F q1 , F q2 ) ∈ H α ,2 × H α ,3 satisfying (29), F q (F q ) lies in H α ,1 × H α ,2
and satisfy

(i) F q1 (F q ) H α ,1 + F q2 (F q ) H α ,2 ≤ c F q1 H α ,2 + F q2 H α ,3 , (ii) (iF q1 (F q ) + F q2 (F q ))e i λ0z ε H α ,1 ≤ c F A H α ,2 + F Ã H α ,2 (iii) (-iF q1 (F q ) + F q2 (F q ))e -i λ0z ε H α ,1 ≤ c F A H α ,2 + F Ã H α ,2
.

where F A = (iF q1 + F q2 )e i λ0z ε and F Ã = (-iF q1 + F q2 )e -i λ0z ε .

Proof.

Step 1. Explicit formula. Variation of constants method leads to

F q (F q )(z) = c + + [0,z] r + (τ ), F q (τ ) * dτ r + (z) + c -+ [0,z] r -(τ ), F q (τ ) * dτ r -(z). (30) 
We check that F q (F q ) is reversible if and only if c -= 0 and that if

F q (F q )(x) -→ x→+∞ 0, then necessarily c + = - ∞ 0 r + (τ ), F q (τ ) * dτ, c -= - ∞ 0 r -(τ ), F q (τ ) * dτ. (31) 
Hence, we deduce the compatibility condition (29), and the explicit form of F q (F q ) using the holomorphy of the solutions and the integral path Γ r drawn on figure 7. So, we assume now that F q is an antireversible function lying in

H α ,2 × H α ,3
and satisfying the compatibility condition (29).

Step 2. Estimates in H α ,1 . The two explicit formulas (30), (31) ensure that F q (F q ) is holomorphic in B . Moreover, using (28), and the reversibility of F q (F q ) we get that there exists c such that for every ϕ ∈ [-ϕ 0 , ϕ 0 ] and every

ε ∈]0, ε 0 ] F q1 (F q ) H α ,1 + F q2 (F q ) H α ,1 ≤ c F q1 H α ,2 + F q2 H α ,3 . Step 3. Estimates of F q2 (F q ) in H α ,2 . Since F q2 (F q )(z) -→ Re(z)→+∞ 0, we have F q2 (F q )(z) = - +∞ 0 d dz (F q2 (F q )) (z + τ ) dτ. (32) 
Moreover, F q2 (F q ) is even, lies in H α ,1 and satisfies (28). Hence,

dF q2 (F q ) dz lies in H α ,3 ; F q2 (F q ) lies in H α ,2
and there exists c such that for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ],

F q2 (F q ) H α ,2 ≤ c F q1 H α ,2 + F q2 H α ,3 . Step 4. Estimates of F A (F q ) = (iF q1 (F q ) + F q2 (F q ))e i λ0z ε and F Ã(F q ) = (-iF q1 (F q ) + F q2 (F q ))e -i λ0z ε . We check that F A (F q ) satisfies dF A (F q ) dz = iF A (F q ) λ 0 ε + γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 + F A . Since F A (F q )(z) -→ Re(z)→+∞ 0, we get F A (F q )(z) = - +∞ 0 e i λ0 ε τ +iΓ(z+τ )-iΓ(z) F A (z + τ )dτ.
and

F A (F q )(z) = 0 -∞ e -(i λ0 ε τ +iΓ(-z+τ )-iΓ(-z)) F Ã(-z + τ )dτ.
because of reversibility. Hence, there exists c such that for every ϕ ∈

[-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ] , F A (F q ) H α ,1 ≤ c ( F A H α ,2 + F Ã H α ,2
).

Similarly we prove that there exists c such that for every ϕ ∈

[-ϕ 0 , ϕ 0 ], ε ∈ ]0, ε 0 ], F Ã(F q ) H α ,1 ≤ c ( F A H α ,2 + F Ã H α ,2
).

It remains to invert the second part of system (20) with respect to (w, Z). This is given by the following

Lemma 16 Let consider the affine system in H α ,2 × H α π ε D,w ρH dw dz + w + 3u h 0 w = F w Z -T 0 [w] = F Z (33) 
where F Z is reversible, and F w is even. Then, there is a unique reversible solution (w, Z) such that (F w , F Z ) → (w, Z) is a bounded linear map:

H α ,2 × H α π ε D,w → H 1,α ,2 × H α π ε D,w
with an estimate

w H 1,α ,2 + Z H α π ε D,w ≤ c( F w H α ,2 + F Z H α π ε D,w ) Proof. Since T 0 is a bounded linear operator from H 1,α ,2 to H α π ε D,w
, it is sufficient to solve the equation for w, which is the linearized Benjamin-Ono equation. It is shown in [START_REF] Amick | On the theory of internal waves of permanent form in fluids of great depth[END_REF] 

that if F w ∈ B α 2 (R), then the solution w of the linearized B-O equation lies in B 1,α 2 (R), with w B 1,α 2 (R) ≤ c F w B α 2 (R)
Let us show that this estimate holds when we replace (

B 1,α 2 (R), B α 2 (R)) by (H 1,α ,2 , H α ,2 ).
Step 1. Let us define the linear operator A defined on H 1,α ,2 by

A[w] = ρH dw dz + w.
To show that it is an isomorphism of Banach spaces from H 1,α ,2 onto H α ,2 we first check that is is a bounded linear operator from H 1,α ,2 to H α ,2 . For that purpose we introduce φ ∈ C ∞ (R) such that φ(s) = 1 for |s| ≤ 1, and φ(s) = 0 for |s| ≥ 2, then we have

A[w](z) = ρH dw dz (z) + w(z) = w(z) + p.v. ρ π R φ(s)K(s) dw dz (z -s)ds+ + ρ π R ([1 -φ(s)]K(s)) s w(z -s)ds.
where K(s) = 1/s.We now observe that both φK and ([1 -φ(s)]K(s)) s satisfy the hypothesis on the kernel K in lemma 7, hence A is a bounded linear operator from H 1,α ,2 to H α ,2 . Moreover we can compute explicitly the inverse of A which is given by

A -1 [f ](z) = R K 1 (s)f (z -s)ds
where

K 1 (s) = 1 ρπ +∞ 0 τ e -τ /ρ s 2 + τ 2 dτ. Then observing that d(A -1 [w]) dz (z) = R K 1 (s)f (z -s)ds
and that K 1 and K 1 satisfy the assumptions of Lemma 7 with E = R, we finally obtain that A is an isomorphism of Banach space from H 1,α ,2 onto H α ,2 . Step2. Let us now define the linear operator K ∈ L(H α ,2 ) by Kw = 3u h 0 w. Then, the operator

A + K : H 1,α ,2 → H α ,2
is injective since it reduces to an injective operator when reduced on the real line (see [START_REF] Amick | On the theory of internal waves of permanent form in fluids of great depth[END_REF]). So, to show that

A + K is an isomorphism of Banach spaces from H 1,α ,2 onto H α ,2 , it is sufficient to show that A -1 K is a compact operator in H α ,2 .
To obtain this compactness it is sufficient to replace in the proof of Amick in [START_REF] Amick | On the theory of internal waves of permanent form in fluids of great depth[END_REF] the interval of the real line by products of intervals with ] -, [, observing that our norm is a sup norm in the strip. The essential argument here is that u h 0 converges uniformly to 0 when |Re (z) | → ∞ in the strip B , so the proof of Amick works on every horizontal line.

Estimates of the nonlinear terms

In this subsection we give estimates of the different terms involved in the four components of the nonlinear operator G.

Lemma 17 There exists c such that for ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ], ϕ ∈ [-ϕ 0 , ϕ 0 ] and for every h

1 = (q 1 , q 2 , w, Z) in BH α ( 1 2 δ 0 , δ 3 ), G(h 1 , A 0 , ϕ, ε) lies in H α ,2 × H α ,3 × H α ,2 × H α π ε D,w and satisfies (i) G q1 H α ,2 + G q2 H α ,3 e -λ0 ε ≤ c(ε 1-α + h 1 2 H α + |A 0 |) (ii) (G q2 +iG q1 )e i λ0z ε H α ,2 + (G q2 -iG q1 )e -i λ0z ε H α ,2 ≤ c(ε 1-α + h 1 2 H α +A 0 ) (iii) G w H α ,2 ≤ c(ε 1-α (ε α + |A 0 |) + h 1 2 H α + |A 0 | h 1 H α ) (iv) G Z H α π ε D,w ≤ cε 1-α (ε α + |A 0 |)
Proof. This Lemma readily follows from the following one observing that for

h 1 ∈ BH α ( 1 2 δ 0 , δ 3 ), h = h 0,ε + h 1 lies in BH α (δ 0 , δ 3 ) since u h 0 H 1,α ,2 + Y h 0 H α π ε D,w
≤ 1 2 δ 0 because of our choice of δ 0 made in definition 12.

Lemma 18 There exists c such that for ε ∈]0,

ε 0 ], A 0 ∈ [-δ 2 , δ 2 ], ϕ ∈ [-ϕ 0 , ϕ 0 ]
and for every h = (q 1 , q 2 , u, Y ) in BH α (δ 0 , δ 3 )

(i) ∆ γ H α ,2 ≤ cε (ii) R q1 H α ,2 + R q2 H α ,3 e -λ0 ε ≤ cε 1-α (iii) (iR q1 + R q2 )e i λ0z ε H α ,2 + (-iR q1 + R q2 )e -i λ0z ε H α ,2 ≤ cε 1-α (iv) R ε,u -R ε,u (A 2 0 ) H α ,2 ≤ c ( (q 1 , q 2 ) 2 Q α + 2|A 0 | (q 1 , q 2 ) Q α ) (v) R ε,u H α ,2 + R ε,Y H α π ε D,w ≤ cε 1-α (ε α + |A 0 |) Proof. (i) : First observe that for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ],
z ∈ B and every (q 1 , q 2 , u, Y ) in BH α (δ 0 , δ 3 ), 

|u(z)| + ε |Y (z)| π ε D ≤ u H 1,α ,2 + Y H α π ε D,w < δ 0 , |A(z)| = |(A 0 + q 2 (z) + iq 1 (z))e iψϕ(z) | < δ 1 , | A(z)| = |(A 0 + q 2 (z) -iq 1 (z))e -iψϕ(z) | < δ 1 (34) 
C α (B ,C) ≤ c, A C α (B ,C) ≤ c |A 0 | ε α + (q 1 , q 2 ) Q α , A C α (B ,C) ≤ c |A 0 | ε α + (q 1 , q 2 ) Q α , A A C α (B ,C) ≤ A 2 0 + (q 1 , q 2 ) 2 Q α + 2|A 0 | (q 1 , q 2 ) Q α (35) 
and also

u H α ,2 < δ 0 , p * 1 (Y ) H α ,2 ≤ Y H α π ε D,w < δ 0 , A A -A 2 0 H α ,2 ≤ (q 1 , q 2 ) 2 Q α + 2|A 0 | (q 1 , q 2 ) Q α , (36) since 
A A -A 2 0 = (q 2 + iq 1 )e i λ0z ε (q 2 -iq 1 )e -i λ0z ε + 2A 0 q 2 e -λ0 ε .

Estimate (i) follows from the above estimates combined with

|γ 1 (u * , εv * , A * A * , ε)-γ 1 (0, 0, A 2 0 , ε)-γ 1 (u * , 0, 0, ε)| ≤ cε(|v * | +ε|u * |A 2 0 +|A * A * -A 2 0 |) which holds for every A * , A * , u * , v * ∈ C 4 satisfying |A * | < δ 1 , | A * | < δ 1 , |u * | < δ 0 , |v * | < δ 0 .
(ii) : Estimates (34), (35-c,d), (36-a) combined with [START_REF] Sun | Non existence of truly solitary waves in water with small surface tension[END_REF] ensures that

R ε,A C 0 (B ,C) ≤ cε Y H α π ε D,w ( u H 1,α ,2 + Y H α π ε D,w ) ≤ c ε, R ε,A H α ,4 ≤ cε Y H α π ε D,w ( u H 1,α ,2 + Y H α π ε D,w )(1 + A 0 ε -α ) ≤ c ε 1-α . ( 37 
)
This two last estimates coupled with (i), (35-a) finally gives (ii).

(iii): The estimate (iii) can be deduced from the following explicit formulas (iv): Estimate (iv) directly follows from (34), (35-e), (36-b) and from the analyticity of R ε,u .

(R q2 + iR q1 )e i λ0z ε = R ε,A e i( λ0z ε -ψϕ) + (q 2 + iq 1 )e i λ0z ε ∆ γ + A 0 e i λ0z ε ∆ γ , (R q2 -iR q1 )e -i λ0z ε = R ε, Ãe i(ψϕ-λ0z ε ) +(q 2 -iq 1 )e -i λ0z ε ∆ γ + A 0 e -i λ0z ε ∆ γ combined with (i), ( 37 
(v): We deduce (v) from [START_REF] Sun | Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave[END_REF] and from (34), (35-c,d), (36-a) .

We will also need estimates of the derivatives of G with respect to h 1 .

Lemma 19 There exists c such that for ε ∈]0, ε 0 ] and every ϕ ∈ [-ϕ 0 , ϕ 0 ] (i) D h1 G q1 (0, 0, ϕ, ε)

L(H α ,H α ,2 ) + D h1 G q2 (0, 0, ϕ, ε) L(H α ,H α ,3 ) e -λ0 ε ≤ cε 1-α (ii) D h1 (G q2 +iG q1 )(0, 0, ϕ, ε)e i λ0z ε L(H α ,H α ,2 ) ≤ cε D h1 (G q2 -iG q1 )(0, 0, ϕ, ε)e -i λ0z ε L(H α ,H α ,2 ) ≤ cε (iii) D h1 G w (0, 0, ϕ, ε) L(H α ,H α ,2 ) ≤ cε (iv) D h1 G Z (0, 0, ϕ, ε) L(H α ,H α π ε D,w ) ≤ cε 29 
Proof. For h = (q 1 , q 2 , w , Z ) ∈ H α let us denote U = (q 2 + iq 1 )e iψϕ , (q 2 + iq 1 )e -iψϕ , w , Z and observe that

D h1 G q1 (0, 0, ϕ, ε).h = 1 2i e -iψϕ D U R ε,A (0, 0, u h 0 , Y h 0 ).U - 1 2i e iψϕ D U R ε, Ã(0, 0, u h 0 , Y h 0 ).U +q 2 γ 1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) (38) 
D h1 G q2 (0, 0, ϕ, ε).h = 1 2 e -iψϕ D U R ε,A (0, 0, u h 0 , Y h 0 ).U + 1 2 e iψϕ D U R ε, Ã(0, 0, u h 0 , Y h 0 ).U -q 1 γ 1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) (39) 
D h1 G w (0, 0, ϕ, ε).h = D U R ε,u (0, 0, u h 0 , Y h 0 ).U D h1 G Z (0, 0, ϕ, ε).h = D U R ε,Y (0, 0, u h 0 , Y h 0 ).U (40) 
Then observing that (35-b) and our choice of δ 0 ensure respectively that

U E α ≤ c h H α , |u h 0 | + ε|Y h 0 | ≤ u h 0 H 1,α ,2 + Y h 0 H α π ε D,w < δ 0 , (41) 
estimates (iii) and (iv) directly follows from (40) and [START_REF] Sun | Existence of solitary internal waves in a two-layer fluid of infinite depth[END_REF].

To get (i), we first check that : a) the analyticity of R ε,A , R ε, Ã combined with [START_REF] Sun | Non existence of truly solitary waves in water with small surface tension[END_REF] ensures that

D U R ε,A (0, 0, u h 0 , Y h 0 ) L(E α ,H α ,4 ) + D U R ε, Ã(0, 0, u h 0 , Y h 0 ) L(E α ,H α ,4 ) ≤ cε; (42) 
b) the explicit formula giving γ 1 at lemma 3 combined with (36-a) ensure that γ

1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) H α ,2 ≤ cε (43) 
We deduce estimate (i) from (35-a) and the two above estimates.

Finally, (ii) follows from the above estimates, (35-b) and from the explicit formulas

e i λ0z ε D h1 (G q2 +iG q1 )(0, 0, ϕ, ε).U = e i( λ0z ε -ψϕ) D U R ε,A (0, 0, u h 0 , Y h 0 ).U +i(q 2 + iq 1 )e i λ0z ε γ 1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) , e -i λ0z ε D h1 (G q2 -iG q1 )(0, 0, ϕ, ε).U = e i(ψϕ-λ0z ε ) D U R ε, Ã(0, 0, u h 0 , Y h 0 ).U +i(q 2 -iq 1 )e -i λ0z ε γ 1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) .

Splitting of the solvability condition

This subsection is devoted to the computation of an equivalent of the solvability condition J. On one hand, the leading part of J is given by an explicit computation involving only h 0,ε . On the other hand, the perturbation term of J which involves the perturbation part of the homoclinic happens to be an oscillatory integral which admits an exponentially small upper bound given by the Exponential Lemma 4. We have complexified the problem to be able to obtain this exponentially small upper bound.

Lemma 20 There exists c such that for every ϕ ∈

[-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ] and every reversible h 1 = (q 1 , q 2 , w, Z) ∈ BH α ( 1 2 δ 0 , δ 3 ), J(h 1 , ϕ, A 0 , ε) = e -λ0 ε A 0 sin(Γ(∞)) + J 1 (h 1 , ϕ, A 0 , ε) with Γ(∞) = +∞ 0 γ 1 (u h 0 (x), 0, 0, ε)dx -ϕ ρπ 2 (λ ε + εγ 1 (0, 0, A 2 0 , ε)) and (i) |J 1 (h 1 , ϕ, A 0 , ε)| ≤ ce -λ0 ε ε + |A 0 | h 1 H α + h 1 2 H α , (ii) D h1 J 1 (0, ϕ, 0, ε) L(H α ,R) ≤ cεe -λ0 ε .
Proof. (i): Using the reversibility of h 1 and the antireversiblity of G we get

J = ∞ 0 r -, G(h 1 , A 0 , ϕ, ε) * dx = 1 2i +∞ -∞ e -iΓ (iG q1 + G q2 )(h 1 , A 0 , ϕ, ε)dx.
Moreover,

iG q1 + G q2 = iR q1 + R q2 + i(iq 1 + q 2 )∆ h γ + iA 0 (γ 1 (u h 0 + w, 0, 0, ε) -ϕρ 0 ) = iA 0 (γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 ) + iA 0 (∆ h γ + ∆ γ ) + e -i λ0z ε ∆ ε,A where ∆ ε,A = R ε,A e i( λ0z ε -ψϕ) + i(∆ h γ + ∆ γ )(iq 1 + q 2 )e i λ0z ε , ∆ h γ = γ 1 (u h 0 + w, 0, 0, ε) -γ 1 (u h 0 , 0 
, 0, ε) . So we split J in three parts. The first one gives the leading part of J :

J 0 = 1 2i +∞ -∞ e -iΓ iA 0 γ 1 (u h 0 , 0, 0, ε) -ϕρ 0 dx = A 0 +∞ 0 cos(Γ) dΓ dx dx = A 0 sin(Γ(∞)). (44) 
The second one can be bounded using lemma 18-(i). We get that

|J 10 | = 1 2i +∞ -∞ e -iΓ iA 0 (∆ h γ + ∆ γ )dx ≤ c|A 0 |( w H 1,α ,2 + ε) ≤ c|A 0 |( h 1 H α + ε). (45) 
The third part of J happens to be an oscillatory integral given by

J 11 = 1 2i +∞ -∞ e -i λ0x ε e -iΓ ∆ ε,A dx Observe that sup z∈B A 0 ∈[-δ2,δ2],ε∈[0,ε0] |Im (Γ(z)) | + |Im λ0z ε -ψ ϕ | < ∞. (46) 
and that for every ϕ ∈

[-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ], z ∈ B and every h 1 ∈ BH α ( 1 2 δ 0 , δ 3 ), |u h 0 (z) + w(z)| + ε Y h 0 (z) + Z(z) π ε D < δ 0 , |A(z)| = |(A 0 + q 2 (z) + iq 1 (z))e iψϕ(z) | < δ 1 , | A(z)| = |(A 0 + q 2 (z) -iq 1 (z))e -iψϕ(z) | < δ 1 .
Hence, using (46), ( 15) and lemma 18-(i), we get that there exists c such that

sup z∈B (1+|z| 2 ) |e -iΓ(z) ∆ ε,A (z)| ≤ cε Y h 0 +Z H α π ε D,w ( u h 0 +w H 1,α ,2 + Y h 0 +Z H α π ε D,w ) +c( w H 1,α ,2 + ε) (q 1 , q 2 ) Q α ≤ ε (2cδ 2 0 + cδ 3 ) + c h 1 2 H α for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 
] and every h 1 ∈ BH α ( 1 2 δ 0 , δ 3 ). This last estimate combined with the Exponential Lemma 4 ensures that there exists c such that

|J 11 | ≤ ce -λ0 ε (ε + h 1 2 H α ) (47) 
holds for for every ϕ ∈ 45), (47), we finally get the desired equivalent of J at lemma 20-(i).

[-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ] and every h 1 ∈ BH α ( 1 2 δ 0 , δ 3 ). Gathering (44), (
(ii): For h = (q 1 , q 2 , w , Z ) ∈ H α let us denote U = (q 2 + iq 1 )e iψϕ , (q 2 + iq 1 )e -iψϕ , w , Z and observe that

D h1 J 1 (0, ϕ, 0, ε).h = D h1 J 11 (0, ϕ, 0, ε).h = 1 2ı +∞ -∞ e -i λ0x ε e -iΓ D h1 ∆ ε,A (0, ϕ, 0, ε).h dx with D h1 ∆ ε,A (0, ϕ, 0, ε).h = e i( λ0z ε -ψϕ) D U R ε,A (0, 0, u h 0 , Y h 0 ).U +i(q 2 + iq 1 )e i λ0z ε γ 1 (u h 0 , εp * 1 (Y h 0 ), 0, ε) -γ 1 (u h 0 , 0, 0, ε) .
Hence, using (46), ( 41), ( 42), (43) we get

sup z∈B (1 + |z| 2 )|e -iΓ(z) D h1 ∆ ε,A (0, ϕ, 0, ε).h (z)| ≤ cε h H α
This last estimate combined with the Exponential Lemma 4 ensures that there exists c such that

|D h1 J 1 (0, ϕ, 0, ε).h | ≤ cεe -λ0 ε h H α .
holds for for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ] and every h ∈ H α .

4.6 Proof of Theorem 9

Homoclinic connections of the modified equations

As already explained in subsection 4.2, for finding homoclinic connections of (20) we first study the modified equation ( 22)

L ϕ (z)h 1 = G ⊥ (h 1 , A 0 , ϕ, ε)
where

G ⊥ = G - 2 √ π Je -z 2 r -.

We first prove

Proposition 21 For every ∈]0, ρ[, 0 < α < 1, there exist δ 4 , ε 1 and c > 0 such that for every ϕ ∈] -ϕ 0 , ϕ 0 [, ε ∈]0, ε 1 ], and every A 0 ∈] -δ 4 , δ 4 [, equation ( 22) admits a reversible homoclinic connection h 1,A 0 ,ϕ,ε to 0, lying in H α , analytic with respect to (ϕ, A 0 ) and satisfying

h 1 H α ≤ c(ε 1-α + |A 0 |)
Proof. Our aim is to solve (22) by using analytic implicit function theorem.

For that purpose, we rewrite (22) under a more appropriate form.

On one hand, Lemmas 15 and 16 ensure that for every ϕ ∈ [-ϕ 0 , ϕ 0 ] and every ε ∈]0, ε 0 ], the operator L ϕ is an isomorphism of Banach spaces from H α | R := H α ∩ {h/h is reversible, i.e. Sh(z) = h(-z) for any z ∈ B } onto where F = (F q1 , F q2 , F w , F Z ).

H α | ⊥ AR := (H α ,2 × H α ,3 × H α ,2 × H α π ε D,w ) ∩ F/ ∞ 0 < r -(x), F(x) > dx = 0 ∩ F/F
On the other hand, lemma 17 and 20 ensure that G ⊥ (h 1 , A 0 , ϕ, ε) lies in H α | ⊥ AR for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ] and every h 1 ∈ BH α ( 1 2 δ 0 , δ 3 )| R where BH α (d 0 , d 1 )| R = BH α (d 0 , d 1 ) ∩ {h/h is reversible}. Hence, for every ϕ ∈ [-ϕ 0 , ϕ 0 ], ε ∈]0, ε 0 ], A 0 ∈ [-δ 2 , δ 2 ] and every h 1 ∈ BH α ( 1 2 δ 0 , δ 3 )| R equation ( 22) is equivalent to

h 1 = N ⊥ ε (h 1 , A 0 , ϕ) := L -1 ϕ G ⊥ (h 1 , A 0 , ϕ, ε) (48) 
where N ⊥ ε is an analytic function from BH α ( 1 2 δ 0 , δ 3 )| R ×] -δ 2 , δ 2 [×] -ϕ 0 , ϕ 0 [ to H α | R which satisfies

N ⊥ ε (h 1 , A 0 , ϕ) H α ≤ c(ε 1-α + h 1 2 H α + |A 0 |), D h1 N ⊥ ε (0, 0, ϕ) L(H α ,H α ) ≤ cε 1-α .
thanks to lemmas 15, 16, 17, 19, 20 and thanks to the estimate e -z 2 r -

H α ≤ cε -α e λ0 ε .
Finally, we need a slight adaptation of the Implicit Function Theorem to solve (48), since we fix ε small enough, but non zero here. We replace N ⊥ ε (h 1 , A 0 , ϕ) by N ⊥ ε (h 1 , A 0 , ϕ) -(1 -µε α-1 )N ⊥ ε (0, 0, ϕ) and use the Analytic Implicit Function Theorem for (h 1 , A 0 , µ) near 0, observing that ε α-1 N ⊥ ε (0, 0, ϕ) is uniformly bounded in H α | R for (ε, ϕ) ∈]0, ε]×]ϕ 0 , ϕ 0 [. For any ϕ ∈]ϕ 0 , ϕ 0 [ and for µ = 0 we have the trivial solution (h 1 , A 0 ) = 0 whereas (48) corresponds to µ = ε 1-α which lies in the domain of existence of the solution for ε and |A 0 | small enough.

Hence, there exist ε 1 , δ 4 such that for every ε ∈]0, ε 1 ], (22) admits a solution h 1,ϕ,A 0 ,ε lying in H α | R which is analytic with respect to (ϕ, A 0 ) ∈ ] -ϕ 0 , ϕ 0 [ × ] -δ 4 , δ 4 [ and which satisfies h 1,ϕ,A 0 ,ε H α ≤ c(ε 1-α + |A 0 |).

Resolution of the solvability condition

To achieve the proof of theorem 9, we look for appropriate values of the phase shift ϕ := ϕ(A 0 , ε) ∈] -ϕ 0 , ϕ 0 [ such that J[h 1,A 0 ,ϕ(ε,A 0 ),ε , ϕ(ε, A 0 ), A 0 , ε] = 0.

For such values of the phase shift, h 1,A 0 ,ϕ(ε,A 0 ),ε is a reversible homoclinic connection to 0 of the equation (20) lying in BH α ( 1 2 δ 0 , δ 3 ) which gives the existence of an homoclinic connection to 0 for (19) under the form h = h 0,ε + h 1,A 0 ,ϕ(ε,A 0 ),ε .

Denote ε 2 := min(ε 1 , δ 2 4 ). Then proposition 21 and lemma 20 ensure that there exists c 2 > 0 such that for any α ∈]0, 1 2 ], every ε ∈]0, ε 2 [, ϕ ∈] -ϕ 0 , ϕ 0 [ and every A 0 ∈ [0, ε 1-α ], we have ε 1-α < δ 4 and J(h 1,A 0 ,ϕ,ε , ϕ, A 0 , ε) = e -λ0 ε A 0 sin(Γ ϕ (∞)) + J 1 (h 1,A 0 ,ϕ,ε , ϕ, A 0 , ε) 

Γ ϕ 1 (∞) = π 2 + n π, Γ ϕ 2 (∞) = π 2 + (n -1)π, Γ ϕ 3 (∞) = π 2 + (n -2)π.
Then, denote c = 2c 2 and ε := min(δ 2 , 1 (2C2) 2 ) and observe that for every α ∈]0, 1 2 ], ε ∈]0, ε ] and every A 0 ∈ [c ε, ε 1-α ], we have c ε ≤ ε 1-α and J(h 1,A 0 ,ϕ 1 ,ε , ϕ 1 , A 0 , ε)J(h 1,A 0 ,ϕ 2 ,ε , ϕ 2 , A 0 , ε) ≤ -c e -λ0 ε 2 < 0, J(h 1,A 0 ,ϕ 2 ,ε , ϕ 2 , A 0 , ε)J(h 1,A 0 ,ϕ 3 ,ε , ϕ 3 , A 0 , ε) ≤ -c e -λ0 ε 2 < 0.

Hence, the intermediate value theorem ensures that for every α ∈]0, 1 2 ], ε ∈]0, ε ] and every A 0 ∈ [c ε, ε 1-α ] there are two distinct values of ϕ in ]-ϕ 0 , ϕ 0 [ denoted by ϕ j (ε, A 0 ), j = 1, 2 such that ϕ 1 (ε, A 0 ) ∈]ϕ 1 , ϕ 2 [, ϕ 2 (ε, A 0 ) ∈]ϕ 2 , ϕ 3 [, J(h 1,A 0 ,ϕj (ε,A 0 ),ε , ϕ j (ε, A 0 ), A 0 , ε) = 0, 0 < ε ϕ 2 (ε, A 0 ) -ϕ 1 (ε, A 0 ) ρπ 2 ( λε ε + γ 1 (0, 0, A 2 0 , ε)) < 2π.

This ensures that (9) admits two distinct reversible homoclinic connections H A0,ϕj ,ε satisfying

H A0,ϕj ,ε (x) -→ x→±∞ p A0,ε x ± εϕ j ρπ 2 
where p A0,ε is T -periodic with T := 2π λε ε + γ 1 (0, 0, A 2 0 , ε)

. The other phase shifts ϕ for which J vanishes lead to the same homoclinic connections.
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 2 Figure 2: Spectrum of L ε

Figure 4 :

 4 Figure 4: (left) 0 2 iω resonance, and (right) shape of the generalized solitary waves for b < 1/3, f > 1.

  Y pqr and s = (λ + γ) x with γ = 1≤n+m+2p≤r γ pr ε r A 2p 0 ∈ R, where coefficients ζ ε , ζ ε , Y pqr lie in D and γ pr lie in R.The physical shape of the corresponding generalized solitary waves is given on figure5.
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 5 Figure 5: shape of generalized solitary waves in the two layer system

Figure 6 :

 6 Figure 6: Path Γ 1 .

  w are respectively continuously embedded in C 0 b (B , Ĥ) and C 0 b (B , D) where C 0 b (Ω, E) is the set of the functions which are continuous and bounded from Ω to E.

Figure 7 :

 7 Figure 7: Path Γ r .

  -b) and (35-a,b).

and |J 1 γ 1

 11 (h 1,A 0 ,ϕ,ε , ϕ, A 0 , ε)| ≤ c 2 εe -λ0 ε . Then observe that ϕ → Γ ϕ (∞) is affine since Γ ϕ (∞) = a(ε, A 0 )ϕ + b(ε) where a(ε, A 0 ) := -ρπ 2 (λ ε + εγ 1 (0, 0, A 2 0 , ε)) < 0, b(ε) := +∞ 0 (u h 0 (x), 0, 0, ε)dxand that our choice of ϕ 0 ensures that ϕ → Γ ϕ (∞) is a monotonic bijection from ] -ϕ 0 , ϕ 0 [ onto ]b(ε) -2π, b(ε) + 2π[. So there exist three consecutive values ϕ 1 < ϕ 2 < ϕ 3 of ϕ in ] -ϕ 0 , ϕ 0 [ and n ∈ Z such that

  w there exists a reversible solution h in H α if and only if F satisfies the solvability condition

  is antireversible, i.e. SF(z) = -F(-z) for any z ∈ B }
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