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Gravity travelling waves for two
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Valbonne, France
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In this paper, we study the travelling gravity waves in a system of two layers of
perfect fluids, the bottom one being infinitely deep, the upper one having a finite
thickness h. We assume that the flow is potential, and the dimensionless parameters
are the ratio between densities ρ = ρ2/ρ1 and λ = gh/c2. We study special values
of the parameters such that λ(1− ρ) is near 1−, where a bifurcation of a new type
occurs. We formulate the problem as a spatial reversible dynamical system, where
U = 0 corresponds to a uniform state (velocity c in a moving reference frame), and
we consider the linearized operator around 0. We show that its spectrum contains
the entire real axis (essential spectrum), with in addition a double eigenvalue in
0, a pair of simple imaginary eigenvalues ±iλ at a distance O(1) from 0, and for
λ(1−ρ) above 1, another pair of simple imaginary eigenvalues tending towards 0 as
λ(1− ρ) → 1+. When λ(1− ρ) ≤ 1 this pair disappears into the essential spectrum.
The rest of the spectrum lies at a distance at least O(1) from the imaginary axis.
We show in this paper that for λ(1 − ρ) close to 1−, there is a family of periodic
solutions like in the Lyapunov-Devaney theorem (despite the resonance due to the
point 0 in the spectrum). Moreover, showing that the full system can be seen as a
perturbation of the Benjamin-Ono equation, coupled with a nonlinear oscillation,
we also prove the existence of a family of homoclinic connections to these periodic
orbits, provided that these ones are not too small.

Keywords: nonlinear water waves, travelling waves, bifurcation theory, infinite

dimensional reversible dynamical systems, normal forms with essential

spectrum, homoclinic orbits, solitary waves with polynomial decay
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Gravity travelling waves for two superposed fluid layers 3

1. Position of the problem

Let us consider two layers of perfect fluids (densities ρ1 (bottom layer), ρ2 (upper
layer)), assuming that there is no surface tension, neither at the free surface nor at
the interface, and assuming that the flow is potential. The thickness at rest of the
upper layer is h while the bottom one has infinite thickness (see figure 1). We are
interested in travelling waves of horizontal velocity c. The dimensionless parameters
are ρ = ρ2/ρ1 < 1, and λ = gh

c2 (inverse of (Froude number)2).

Figure 1. Two layers, the bottom one being of infinite depth

The existence of a family of periodic travelling waves, for generic values of these
parameters is known (Iooss 1999). Below, we study special values of the parameters
such that λ(1 − ρ) is near 1, where a singularity of a new type occurs. Indeed, we
formulate the problem as a spatial reversible dynamical system

dU

dx
= F (ρ, λ;U), U(x) ∈ D, (1.1)

where D is an appropriate infinite dimensional Banach space including the boundary
conditions and suitable decay in the η coordinate (see section 2), and where U = 0
corresponds to a uniform state (velocity c in a moving reference frame). The galilean
invariance of the physical problem induces a mirror symmetry of the system in the
moving frame. This symmetry leads to the reversibility of system (1.1), i.e. to the
existence of a linear symmetry S which anticommutes with the vector field F (ρ, λ; ·).

Figure 2. Spectrum of Lε

Considering the linearized operator around 0

Lε = DUF (ρ, λ; 0)

with ε = 1 − λ(1 − ρ), we show that its spectrum contains the entire real line
(essential spectrum), with in addition a double eigenvalue in 0, a pair of simple
imaginary eigenvalues ±iλ (where λ is defined above) at a distance O(1) from 0
when ε is near 0, and for ε below 0, another pair of simple imaginary eigenvalues
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4 G.Iooss, E.Lombardi, S.M.Sun

tending towards 0 as ε→ 0−. When ε ≥ 0, this pair completely disappears into the
essential spectrum! (see figure 2). The rest of the spectrum consists of a discrete
set of eigenvalues situated at a distance at least O(1) from the imaginary axis.

For one or several layers of finite depth, the study of travelling waves may as well
be formulated as an infinite dimensional reversible dynamical system ( Kirchgässner
1988; Dias & Iooss 2001). In these cases, the existence of travelling waves can be
obtained via a center manifold reduction (see for example (Mielke 1988)) which
leads to a finite dimensional reversible O.D.E. studied near a resonant fixed point,
i.e. a fixed point at which all the eigenvalues of the differential lie on the imaginary
axis, for a critical value of the set of parameters. For instance, for one layer of finite
depth in presence of gravity and surface tension, the existence of true solitary waves
have been obtained

i) for a Froude number close to 1, and a Bond number larger than 1/3 (Amick &
Kirchgässner 1989). In this case the reduced O.D.E. is two-dimensional and admits
a 02 resonant fixed point (see figure 3).

Figure 3. (left) 02 resonance for a Bond number b >1/3, and a Froude number f close to
1, and (right) shape of the solitary waves for f < 1.

Remark: In all the diagrams of the paper, concerning the spectrum of a linear
operator, a point means a simple eigenvalue, and a cross means a double eigenvalue.

ii) True solitary waves have also been obtained for a Bond number b less than
1/3 and a Froude number f close to a critical value f = C(b) (see for instance (Iooss
& Kirchgässner 1990; Iooss & Pérouème 1993)), near which the reduced O.D.E. is
4-dimensional and admits a (iω)2 resonance (also called 1:1 resonance) (see figure
4).

Figure 4. (left) (iω)2 resonance for f near C(b), and (right) shape of one of the two types
of solitary waves for b < 1/3, f < C(b).

iii) For a Froude number close to 1, and a Bond number less than 1/3, the
reduced O.D.E. is 4-dimensional and admits a 02iω resonant fixed point. In this
case, for f > 1 and b < 1/3 periodic travelling waves and generalized solitary waves
asymptotic at infinity to each of these periodic waves, have been obtained provided
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Gravity travelling waves for two superposed fluid layers 5

that the amplitude of the ripples is larger than an exponentially small quantity (as
function of f − 1) ((Sun & Shen 1993; Lombardi 1997)), (see figure 5). The non
existence of true solitary waves has also been proved by Sun (1999) for a Froude
number f close to 1+, and a Bond number b near 1/3−.

Figure 5. (left) 02iω resonance, and (right) shape of the generalized solitary waves for
b < 1/3, f > 1.

In these three cases the solitary (resp. the generalized solitary waves) are ob-
tained as homoclinic connection to 0 (resp. to a periodic orbit) for the dynamical
system. In all cases, the homoclinic connections have an exponential decay rate at
infinity, given by the spectral gap of the linearized operator near the imaginary
axis.

For the cases with an infinitely deep layer, the situation is more intricate, and
in particular no center manifold reduction can be performed because the linearized
operators have no spectral gap near the imaginary axis: the entire real line lies in
the essential spectrum of the linearized operator.

A first example is the problem of the existence of solitary waves for one layer of
infinite depth, in presence of gravity and surface tension. In this case, the problem
may be formulated as a spatial reversible dynamical system in infinite dimensions,
such that the linearized operator at the origin (which corresponds to the rest state),
has an essential spectrum composed with the entire real line, with in addition 4
eigenvalues in the spectrum making a (iω)2 resonance for a critical value of the
parameter µ (∼ b/f2 for a very large depth h) (see figure 6).

Figure 6. (left) R(iω)2 resonance, and (right) shape of one type of solitary waves for
µ > µc.

For µ > µc, the existence of true solitary waves has been obtained by Iooss &
Kirrmann (1996). These homoclinics have their principal part at finite distance,
given by the 4-dimensional critical part of the vector field corresponding to the
(iω)2 resonance, while at infinity they have a polynomial decay induced by the
essential spectrum. This is a major difference with the finite depth case, for which
the decay is exponential (given by the spectral gap).
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6 G.Iooss, E.Lombardi, S.M.Sun

A second example is a system of two superposed layers, the bottom one being
infinitely deep, and the upper one being bounded by a rigid horizontal top, with no
interfacial tension (see figure 7).

Figure 7. (left) R002 resonance, and (right) shape of the internal solitary wave in the
two-layer system for µ > µc (bottom layer infinitely deep).

This problem was first studied on a model equation derived from the Euler
equations with a long-wave approximation, by Benjamin (1967), Davis & Acrivos
(1967), and Ono (1975). The now called Benjamin-Ono equation is non local and
reads

H(u′) + u− u2 = 0, (1.2)

where H is the Hilbert transform, and u is a scalar function. This equation admits
an homoclinic connection to 0, given explicitly by

uh(τ) =
2

1 + τ2
. (1.3)

All the other solutions of equation (1.2) have been described by Amick & Toland
(1991). For the full Euler equations, the existence of the solitary waves with poly-
nomial decay at infinity, has been obtained in this case independently by Amick
(1994) and Sun (1997). More precisely, they both proved that, for µ > µc and close
to µc (we can just play on the velocity c of the wave), the form of the interface for
the solitary wave satisfies

Z(x) = µuh(µx) + µ2u1(µx)

where

sup
τ∈R

(1 + |τ |)
∣∣∣∣
dju1

dτ j
(τ)

∣∣∣∣ ≤ Kj , j = 0, 1, 2, ..

Therefore, the solitary wave solution (1.3) of the Benjamin-Ono equation (1.2) gives
the first order approximation of a solitary wave solution of the full Euler equations.
Neither the approach of Amick, nor the one of Sun was based on a dynamical system
approach. However, we observe that the problem may be formulated as a reversible
dynamical system, for which the differential at the origin (which corresponds to the
rest state) admits the entire real line as essential spectrum, a zero eigenvalue, and
a pair of simple imaginary eigenvalues for µ < µc tending towards 0 as µ → µ−c .
When µ ≥ µc this pair completely disappears in the essential spectrum (see figure
7).

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 7

A third example of problem involving an infinitely deep layer, is the one we
consider in this paper, which was described at the beginning of the introduction:
two layers, the bottom one infinitely deep, no surface tension, no interfacial tension.
As already mentioned, this problem takes the form (1.1)

dU

dx
= F (ρ, λ;U), U(x) ∈ D,

and the spectrum of the linearized vector field

Lε = DUF (ρ, λ; 0) with ε = 1− λ(1− ρ)

has the behavior described at figure 2 (R002(iλ) resonance here).

From now on, we consider ρ as fixed and we use ε as our bifurcation parameter
(instead of λ). So in all what follows, λ := λε is seen as a function of ε.

Moreover we denote by ξ0 and ξ1 the two eigenvectors belonging to the 0 eigen-
value

Lεξ0 = 0, Lεξ1 = 0,

which come from the existence of a two parameters family of trivial solutions cor-
responding to a flow where each layer moves freely horizontally with different ve-
locities. We also denote by ζε and ζε the two eigenvectors belonging to the simple
eigenvalues ±λε, i.e.

Lεζε = iλεζε, Lεζε = −iλεζε.

We observe on figure 2 that the behavior of the spectrum of Lε is the same as
the one of the previous example, with in addition an extra pair of simple eigenvalues
lying on the imaginary axis (not close to 0). These additional eigenvalues ±iλ lead
to a competition between the oscillatory dynamics they induce, and the Benjamin-
Ono type of dynamics induced by the essential spectrum with the 0 eigenvalue.

In this paper, we first show that this extra pair of eigenvalues ±iλ induces
the existence of a family of periodic solutions (of arbitrary small size), like in the
Lyapunov-Devaney theorem (despite the resonance due to the point 0 in the spec-
trum) : for each ε > 0, the linearized problem possesses a four parameter family of
periodic solutions

u0ξ0 + v0ξ1 +A0e
isζε +A0e

−isζε, (u0, v0) ∈ R2, A0 ∈ C

which are circles of radii |A0| centered at u0ξ0+v0ξ1. For all these circles, the spatial
frequency of the corresponding periodic solution is λε. We prove in this paper that
periodic solution of the nonlinear problem are obtained by an analytic perturbation
of the graph p̂(1) and of the frequency γ(1) of the periodic solution of the linearized
problem. This can be summed up in the following

Theorem A. For any M > 0, there exists ε0 > 0 such that for any (u0, v0, A0, ε) ∈
R2 × C× R satisfying

|u0|+ |v0|+ |A0| ≤M, 0 < ε < ε0,
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8 G.Iooss, E.Lombardi, S.M.Sun

equ. (1.1) admits a family of periodic solutions U = pA0,u0,v0,ε bifurcating from 0,
with

pA0,u0,v0,ε(x) = p̂A0,u0,v0,ε(s)

and

p̂A0,u0,v0,ε(s) = ε
(
u0ξ0 + v0ξ1 +A0e

isζε +A0e
−isζε

)
+ p̂

(1)
A0,u0,v0,ε

(s)

s =
(
λ+ γ(1)

)
x,

where ξ0, ξ1, ζε, ζε are the eigenvectors defined above and where the two pertur-

bation terms p̂
(1)
A0,u0,v0,ε

and γ(1) possess the following converging power series in

ε, u0, v0, A,A

p̂
(1)
A0,u0,v0,ε

=
∑

p+q≥1

2≤n+m+p+q≤r+1

εr+1un0 v
m
0 A

p
0A

q

0e
i(p−q)sYnmpqr

γ(1) =
∑

1≤n+m+2p≤r

γnmpru
n
0v
m
0 |A0|2pεr ∈ R,

where the coefficients Ynmpqr lie in D and γnmpr lie in R.

A precise definition of the space D is given at page 12 in section 2 and a more
precise version of this theorem is given at section 6 (see theorem 6.3).
Remark i) Observe that the perturbation of the graph p̂(1) is quadratic in the
amplitudes (u0, v0, A0).

Remark ii) Contrary to Lyapunov-Devaney Theorem, there is here a factor ε
scaling the amplitudes. This is due to the resonance induced by the two small
eigenvalues (for ε < 0) diving in the essential spectrum for ε > 0.

Remark iii) When A0 is real the periodic solution pA0,u0,v0,ε is reversible, i.e.

SpA0,u0,v0,ε(x) = pA0,u0,v0,ε(−x) for all x ∈ R.

On the other hand, A0 complex corresponds to a phase shift in x.
In addition, one might expect the existence of a Benjamin-Ono like soliton, in-

duced by the essential spectrum with eigenvalue 0, as for the problem with two
layers, one being deep, and with a rigid top. However, the coexistence of this
Benjamin-Ono type of dynamics with an oscillatory mode induced by the pair of
simple imaginary eigenvalues causes the appearance of oscillations at infinity for the
solutions. Such a coexistence of an oscillatory dynamics and a hyperbolic dynamics
also occurs in the 02iω resonance (see figure 5) for which it is proved in (Lombardi
2000) that there are generically no homoclinic connections to 0, whereas there are
always homoclinic connections to periodic orbits, until they are exponentially small.
We expect a result of the same type here, i.e. non existence of true solitary waves
and existence of generalized solitary waves with exponentially small ripples at infin-
ity. In this paper we prove a weaker result, i.e. the existence of reversible homoclinic
connections to the periodic solutions found at theorem A, provided that the size of
the limiting periodic orbit is not too small (at least of order ε5/2). The proof of the
existence of homoclinic connections to exponentially small periodic orbits is done in

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 9

a forthcoming paper (Lombardi & Iooss 2001). In the theorem below, we consider
A0 real positive, which corresponds to a specific choice of the origin of x on the
periodic solution. Moreover, for simplicity of the analysis we restrict our attention
to the homoclinic connections to periodic solutions of family with u0 = v0 = 0. The
same theorem is expected to be true for u0 and v0 near 0.

Theorem B. For any 0 < α ≤ 1/2, there exist δ, δ0, ε0 > 0, such that for 0 <
ε < ε0, and δ0ε

2−α < A0 < δ, equ. (1.1) has two reversible homoclinic connections

U
(j)
A0,ε

(j = 1, 2) to each periodic solution pA0,0,0,ε found at theorem A, which satisfy

U
(j)
A0,ε

(x) = pA0,0,0,ε

(
x+ φjρ arctan(εx/ρ)

)
− 2ε

3
uh(εx/ρ)ξ0 +O

(
ε2−α +A0ε

1 + ε|x|

)
.

where uh is the Benjamin-Ono homoclinic connection given by (1.3).

Remark i) The two distinct phase shift φj depend on (ε, A0), and (φ1 − φ2)ρ
π
2

tends towards half of the period of the limiting periodic orbits as its radius goes to
0. The proof of theorem B is the object of section 10.

Remark ii) Observe once more that, since there is no spectral gap (the entire
real line is the essential spectrum), the decay rate at infinity is polynomial, and
not exponential as it is the case for the finite dimensional reversible bifurcations
(resonances 02, (iω)2, 02iω) obtained for finitely deep layers.

Figure 8. shape of generalized solitary waves in the two layer system

Remark iii) At leading order, the shape of the free surface Z(x) and interface
ZI(x) are given by (see figure 8)

Z(x) = 1 +
2

3
ε2(1− ρ)uh(εx/ρ),

ZI(x) = −2

3
ε2ρuh(εx/ρ).

The heart of the proof of theorem B is the following proposition, which ensures
that, up to an appropriate change of variables, the full Euler equations (1.1) are
equivalent to a Benjamin-Ono equation, coupled with a nonlinear oscillator equa-
tion, with higher order terms.

Proposition C. Provided that suitable decay conditions in x on the solution U are
satisfied, there exists an appropriate non local change of variables and a scaling

U = Υε(A, u, Y ), x = εx,

Article submitted to Royal Society



10 G.Iooss, E.Lombardi, S.M.Sun

with (A, u, Y )(x) ∈ C×R×D such that, close to the origin, equ. (1.1) is equivalent
to the reversible system

dA

dx
= i

A

ε

[
λε + γ(u, Y, |A|2, ε)

]
+RA(A,A, u, Y ),

ρH
(
du

dx

)
+ u+

3

2
u2 = Bε(A,A, u, Y ),

Y = T (A, u, Y ),

where the reversibility means the commutation of the system with the symmetry
Ŝ : (A(x), u(x), Y (x)) 7→ (A(−x), u(−x), SY (−x)); where γ ∈ R, and where the
local rest RA and the nonlocal rest Bε are small in suitable norms, and T is a known
smooth nonlocal, nonlinear operator, such that Id − T is invertible with respect to
Y .

A more precise version of this proposition is given in section 8 (lemma 8.5).
Remark i) Roughly speaking, A corresponds to the amplitude of the oscillatory
mode, u corresponds to the amplitude along the 0-eigenvector ξ0, and Y corresponds
to the rest of the spectrum.

Remark ii) The required decay conditions are such that u and Y tends towards
0 in 1/x2 while A tends to A0 in 1/x as |x| → ∞.

Remark iii) The norms we use are Hölder norms in x, with the above decay rates.

Remark iv) This proposition may be seen as a ”rigorous derivation of the
Benjamin-Ono equation” in this context. It also clearly shows the competition
between the oscillatory dynamics and the Benjamin-Ono type of dynamics. We
should finally notice that the present problem is numerically studied by Părău &
Dias (2001), with lot of information on the shapes of the free surface and interface.

In what follows, after showing at section 2 how this problem may be formulated
as a reversible dynamical system in a suitable space, and making a precise study
of the resolvent of the linearized operator on the imaginary axis (sections 3, 5), we
prove the existence of a three parameter family of periodic solutions (theorem 6.3,
section 6), and we find an infinite dimensional normal form, where the whole family
of periodic solutions appears trivially, and where a special treatment is needed of
a priori reasoning terms coming from the point 0 in the essential spectrum of the
linearized operator (section 7 and Appendix Normal Form). The homoclinic of
Benjamin-Ono type also appears on this normal form, as an approximate solution
(section 9), and we are able to prove, close to the Benjamin-Ono (false) homoclinic
solution, the existence of a pair of reversible (i.e. symmetric) solutions homoclinic
to every periodic solution, provided their size is not too small (theorem 10.1). These
homoclinics differ mainly by a phase shift at infinity, and take physically the form
indicated at figure 8.

2. Formulation as a dynamical system

The domain of the flow can be transformed into two superposed horizontal strips
in using the (conformal) transformation defined below. The complex potential in
layer j is denoted by wj(ξ + iη) and the complex velocity (in dimensionless form)

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 11

w′j(ξ + iη) = uj − ivj . The Euler equations are expressed here by the fact that wj
is analytic in ζ = ξ+ iη. The kinematic conditions at the free surface and interface
between the two fluids are

u2Z̃
′(ξ)− v2 = 0 at η = 1 + Z̃(ξ) (free surface),

u2Z̃
′
I(ξ)− v2 = u1Z̃

′
I(ξ)− v1 = 0 at η = Z̃I(ξ) (interface).

The Bernoulli first integrals at the free surface, and at the interface, express the
continuity of the pressure:

1

2
(u2

2 + v2
2) + λZ̃ = c̃1 at η = 1 + Z̃(ξ) (free surface),

1

2
(u2

1 + v2
1)− ρ

2
(u2

2 + v2
2) + λ(1− ρ)Z̃I = c̃2 at η = Z̃I(ξ) (interface),

where the parameters are ρ = ρ2/ρ1 < 1, and λ = gh
c2 , and c̃1 and c̃2 are arbitrary

constants. For formulating our problem as a dynamical system, we first transform
the unknown domain into a strip. There are different ways for such a change of
coordinates. We choose the one used by Levi-Civita (1925). Its advantage is that
it leads to a weakly nonlinear problem. The new unknown are αj + iβj , j = 1, 2,
which are analytic functions of wj = xj + iy, where xj is the velocity potential in
the layer j, and y is the stream function, and where

w′j(ξ + iη) = eβj−iαj ,

the free surface is given by y = 1 , and the interface by y = 0. The region of the
flow is −∞ < y < 0 for fluid 1, and 0 < y < 1 for fluid 2. One difficulty is that the
x coordinate is not the same in each strip! In fact we have

dx2

dx1
= eβ20−β10

where β20 − β10 is the value of β2 − β1 taken at the interface y = 0.
We have to choose as the basic x coordinate the one given by the bottom layer

(x1) which then introduces a factor in the Cauchy-Riemann equations of the upper
layer. In such a formulation, the unknown is defined by

[U(x)] (y) = (β10(x), β21(x), α1(x, y), β1(x, y), α2(x, y), β2(x, y))
t

and the system has the form

dU

dx
= F (ρ, λ;U) (2.1)

with

F (ρ, λ;U) =





−λ(1− ρ)e−3β10 sinα20 − ρe3(β20−β10) ∂α2

∂y |y=0

−λe−3β21+β20−β10 sinα21
∂β1

∂y

−∂α1

∂y

}
y ∈ (−∞, 0)

∂β2

∂y e
β20−β10

−∂α2

∂y e
β20−β10

}
y ∈ (0, 1)

(2.2)
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12 G.Iooss, E.Lombardi, S.M.Sun

where we denote by α20, β10 and β20 the traces of (resp.) α2, β1, β2 at y = 0, and
α21, β21 the traces of α2 and β2 at y = 1. Here we choose the basic space

H = R2 × C0
1 (R−)× C0

lim,1(R
−)× {C0(0, 1)}2

and the domain of the operator F is:

D = R2 × C1
1 (R−)× C1

lim,1(R
−)× {C1(0, 1)}2

∩{α10 = α20, β10 = β1|y=0, β21 = β2|y=1},
(2.3)

where we define the Banach spaces

C0
ν (R

−) = {f ∈ C0(R−); |f(y)|(1 + |y|)ν <∞}, ν > 0,

C1
ν (R

−) = {f ∈ C0
ν (R

−), f ′ ∈ C0
ν (R

−)},
C0

lim,ν(R
−) = {f ∈ C0(R−); ∃l ∈ R, |f(y)− l|(1 + |y|)ν <∞},

C1
lim,ν(R

−) = {f ∈ C0
lim,ν(R

−); f ′ ∈ C0
ν (R

−)},

and we take for (a, b, f1, g1, f2, g2)
t = V ∈ H, the norm

||V ||H = |a|+ |b|+ ||f1||1,∞ + ||g1||lim1,∞ + ||f2||∞ + ||g2||∞,

with

||f ||ν,∞ def
= sup

y∈R−

(|f(y)|(1 + |y|)ν) , ||f ||∞ def
= sup

y
|f(y)|,

||g||limν,∞
def
= sup

y∈R−

|g(y)|+ sup
y∈R−

(|g(y)− l|(1 + |y|)ν) .

The definition of the norm in D is similar, in adding the norms of f ′j and g′j .
The reversibility symmetry reads:

SU = (β10, β21,−α1, β1,−α2, β2)
t. (2.4)

We notice that the system (2.1-2.2) has the two-parameter set of ”trivial” solutions

β1 = β10, β2 = β21, α1 = α2 = 0,

which correspond to the sliding of one layer over the other, with different veloci-
ties. The system (2.1-2.2) should be completed by the following two Bernoulli first
integrals (interface and free surface), when the integrals are convergent:

∫ 0

−∞

(e−β1 cosα1 − e− limβ1)dy +

∫ 1

0

(e−β2 cosα2 − 1)dy +
1

2λ
(e2β21 − 1) = c1,

λ(1− ρ)

∫ 0

−∞

(e−β1 cosα1 − e− limβ1)dy +
1

2
(e2β10 − 1)− ρ

2
(e2β20 − 1) = c2,

which give the two first components of (2.1-2.2) after differentiation. However, since
we do not impose a priori that α1 and (β1−limβ1) tend towards 0 fast enough at in-
finity, we cannot consider both these first integrals, but only a suitable combination
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of them

c =
1

2
(e2β10 − 1)− 1− ρ

2
(e2β21 − 1)− ρ

2
(e2β20 − 1)+ (2.5)

− λ(1− ρ)

∫ 1

0

(e−β2 cosα2 − 1)dy.

Notice that the interface and free surface, expressed in the new coordinates satisfy
the following expressions:

ZI(x) =

∫ 0

−∞

(e−β1 cosα1 − e− limβ1)dy,

1 + Z(x) = 1 +

∫ 0

−∞

(e−β1 cosα1 − e− limβ1)dy +

∫ 1

0

(e−β2 cosα2 − 1)dy,

provided the integrals are convergent, and (preferably)

dZI
dx

= e−β10 sinα10,

dZ

dx
= eβ20−β10−β21 sinα21.

In principle we might choose to treat this problem on a codimension-2 manifold,
instead of expressing the two first components of (2.2) above. It appears that it
is easier to work as we do at present, just keeping in mind that there are two
arbitrary constants which may be fixed. We notice that the system is still linear in
the unbounded strip y < 0 (Cauchy-Riemann equations). It is no longer linear in
the bounded strip y ∈ (0, 1), but the dependency in y is still occurring in similar
”linear terms”, the multiplicator being only function of x.

3. The linearized Problem

Let us fix ρ and define ε by
λ(1− ρ) = 1− ε (3.1)

and rewrite F (ρ, λ;U) = LεU + N(ε;U), where all linear terms are in LεU. The
linearized system then reads

dU

dx
= LεU (3.2)

in H. The following lemma describes the spectral properties of Lε :

Lemma 3.1. (a) The spectrum of Lε acting in H is symmetric with respect to
both axis of the complex plane. It is composed

(i) with the entire real line, which constitutes the essential spectrum, every real
σ 6= 0 being such that (σI − Lε) is injective, but has a non closed range and 0 is a
double eigenvalue;

(ii) with isolated eigenvalues σ = ik of finite multiplicities, given by the roots of
the dispersion relation ∆[(sgnRe k)k, ε] = 0 where, for Re k > 0

∆(k, ε) ≡ [λ(ε) − k]∆1(k, ε),

∆1(k, ε) = [ρk − (1− ε)] sinh k + k cosh k
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14 G.Iooss, E.Lombardi, S.M.Sun

holds.
(b) For any ε, 0 is a double eigenvalue, associated with the two eigenvectors

ξ0 = (0, 1, 0, 0, 0, 1)t,

ξ1 = (1, 0, 0, 1, 0, 0)t,

satisfying
Sξ0 = ξ0, Sξ1 = ξ1.

(c) For any ε, there is a pair of simple eigenvalues ik = ±iλ, associated with
the eigenvectors ζε and ζε such that

ζε = (1, eλ,−ieλy, eλy,−ieλy, eλy)t, Sζε = ζε. (3.3)

(d) For ε ≥ 0 the only eigenvalues with 0 real part are ik = ±iλ, and 0, whereas
for ε < 0, in addition to the above imaginary eigenvalues, there is another pair of
simple eigenvalues, tending towards 0 as ε→ 0− (see figure 2).

(e) For k real and |k| large enough, we have the following estimate (uniform
estimate for ε near 0)

||(ikI− Lε)
−1||L(H) ≤ C/|k|. (3.4)

Proof. The spectrum of Lε is symmetric with respect to both axis of the complex
plane, because of reversibility. Let us look for eigenvalues denoted by ik where k is
complex. The linearized problem for system (2.1-2.2) is given by the linear operator
Lε acting in H, with domain D, and defined by

LεU =




−(1− ε)α20 − ρ∂α2

∂y |y=0

− 1−ε
1−ρα21
∂β1

∂y

−∂α1

∂y
∂β2

∂y

−∂α2

∂y




. (3.5)

Looking at the eigenvalues ik such that Re k > 0 leads to eigenvectors of the form

ζ = (1,
λ

k
ek,−ieky, eky,−iλ

k
eky ,

λ

k
eky)t+

k − λ

2ρk

[
(1 + ρ)(0, ek, 0, 0,−ieky, eky)t + (1− ρ)(0, e−k, 0, 0, ie−ky, e−ky)t

]
,

and the dispersion relation

∆[(sgnRe k)k, ε] = 0

has the form (for Re k > 0):

∆(k, ε) ≡ [λ(ε) − k]∆1(k, ε), (3.6)

∆1(k, ε) = [ρk − (1− ε)] sinh k + k cosh k, (3.7)

An interesting property is that there is an explicit pair of simple eigenvalues ±iλ
associated with eigenvectors ζε and ζε defined by (3.3).
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The study of (3.6) shows that there is another pair of simple eigenvalues on
the imaginary axis ±ik1 if and only if ε < 0, moreover, we have k1(ε) = −ε/ρ −
ε2/3ρ3 +O(ε3). This pair of eigenvalues tends towards 0 as ε→ 0−, and disappears
for ε > 0 (see figure 2).

Notice that 0 is always an eigenvalue, associated with the eigenvectors ξ0 and
ξ1 given in the lemma. These eigenvectors correspond to the existence of the two-
parameter family of solutions β21ξ0 + β10ξ1 of the nonlinear system (2.1,2.2).

Contrary to the paper (Iooss 1999), where we assumed essentially that ε was
not close to 0, the object of the present paper is to study what are the solutions of
(2.1) for ε close to 0 and positive.

The study made in (Iooss 1999) on the resolvent operator (ikI−Lε)−1 is made
with another choice for space H. We show below at section 5 (on a rescaled formu-
lation) that the estimate (3.4), for k ∈ R and |k| large enough, stays valid with our
new choice of spaces.

As it is shown in (Iooss 1999), in addition to the above eigenvalues in the
spectrum of Lε, the spectrum contains the entire real axis which constitutes the
”essential spectrum”. With our choice of basic space H, any real σ 6= 0 is not an
eigenvalue, and it is such that the range of (σI − Lε) is not closed. The double
eigenvalue σ = 0 is embedded into the essential spectrum. Moreover it is easy to
check that, even for ε = 0, there is no generalized eigenvector despite of the fact that
when ε = 0− two simple eigenvalues dive into the real line through 0! (perturbation
theory is no longer valid in this situation, with an essential spectrum containing 0).
We may also observe, that the operator Lε has a non closed range, whose closure
has codimension two (see lemma 5.5 at section 5.(e)).

The divergence of the resolvent operator when k → 0 is worse for ε = 0, than for
ε 6= 0, as can be seen on formula (40) of (Iooss 1999), and in subsequent expressions
for the operators occurring in this formula. For understanding better this singular-
ity, we need now to make an adapted computation, tracking the dependency in ε,
for ε near 0. In what follows, we only consider the case ε > 0. The case ε < 0
would give two new small frequencies, and the conjecture is that the solutions of
the problem would be analogous to the ones of the corresponding four dimensional
reversible vector field with two pairs of simple eigenvalues on the imaginary axis,
leading to tori of periodic solutions.

4. Rescaling for ε & 0

(a) Dynamical system formulation

Let us consider the case when 1− λ(1 − ρ) = ε > 0 is close to 0. The study of
the resolvent operator for k near 0, leads to rescaling of x and to a specific scaling
for y depending on whether −∞ < y < 0, or 0 < y < 1. Moreover, the form of the
underlying homoclinic in our problem (analogous to the Benjamin-Ono homoclinic)
also leads to a rescaling of U . So, we rescale our system as follows:

εx = x, εy = y, for y ∈ (−∞, 0),

U = εU.
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16 G.Iooss, E.Lombardi, S.M.Sun

Then system (2.1)
dU

dx
= LεU +N(ε;U)

now reads
dU

dx
= LεU +N (ε;U), (4.1)

where

LεU =




ε−1
{
−(1− ε)α20 − ρ∂α2

∂y |y=0

}

− ε−1(1−ε)
1−ρ α21

∂β1

∂y

−∂α1

∂y

ε−1 ∂β2

∂y

−ε−1 ∂α2

∂y




and we have in H

N (ε;U) = ε−2N(ε; εU) = N (2)
ε (U,U) +O(ε||U ||3

D
),

where we denote again U = (β10, β21, α1, β1, α2, β2)
t and

N (2)
ε (U,U) = N

(2)
0 (U,U) + εN

(2)
1 (U,U) (4.2)

N
(2)
0 (U,U) = (a(2), b(2), 0, 0, f

(2)
2 , g

(2)
2 )t,

N
(2)
1 (U,U) = (−3α20β10,−b(2), 0, 0, 0, 0)t,

a(2) = 3α20β10 + 3ρg
(2)
20 ,

b(2) = (ρ− 1)−1α21(−3β21 + β20 − β10),

f
(2)
2 =

∂β2

∂y
(β20 − β10),

g
(2)
2 = −∂α2

∂y
(β20 − β10).

The domain of the operator Lε acting in H, is still D. However, we observe that
the nonlinear operator N (ε; ·) is analytic from D̃ into H, where D̃ is larger than D.

Such a space D̃ is used in Appendix Normal Form, where α1 and β1 are allowed
to grow as y → −∞, while their derivatives lie in C0

1 . Moreover, it is used in all
section 8 (see the choice we make for the space Bα

D,w), that the nonlinear terms do
not contain derivatives of α1 and β1, but just their traces at y = 0. This explains
why we don’t need to estimate y−derivatives of α1 and β1 in Appendices Resolvent
∞, and Resolvent 0.

We have a pair of simple eigenvalues ±iλ/ε for Lε, with eigenvectors ζ
ε

and ζ
ε
,

and
ζ
ε

= (1, eλ,−ieλy/ε, eλy/ε,−ieλy, eλy)t, (4.3)

and ξ0 and ξ1 are still the eigenvectors belonging to the eigenvalue 0 of Lε.
For later use, let us define the symmetry Ŝ by

(
ŜU
)

(x) = SU(−x).
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(b) Nonlocal formulation

We shall exploit at sections 6 and 9 the form of the third and fourth components
of system (2.1,2.2), which are just the Cauchy-Riemann equations for α1, β1 in
the half plane y < 0. The other components of the right hand side are expressed
completely in terms of (β10, α2, β2). Provided that α1 and β1 tends towards 0 as
y → −∞, we write the relationship between β10 and α20 = α10, with the help
of Hilbert transform (hence non local in x). This simplifies a lot in some sense
the analysis, but we pay this by loosing (for a moment) the ”dynamical system”
formulation. Indeed, consider the system

∂α1

∂x
=
∂β1

∂y
,

∂β1

∂x
= −∂α1

∂y
,

in the half plane y < 0, with a decaying (to 0) condition as y → −∞. In the case
of a suitable decaying condition as x→ ±∞, we can write for example

β1(x, y) = − 1

π

∫

R

(x− ξ)

y2 + (x− ξ)2
α10(ξ)dξ,

which leads to β10 +H(α10) = 0, if we define the Hilbert transform of a function g
by

(Hg)(x) = p.v.
1

π

∫

R

g(ξ)

x− ξ
dξ,

which is OK for instance for g ∈ L2(R). Now, we notice that this formula is still
valid for functions which are periodic in x, i.e for g ∈ L2

](R) (a.e. periodic, locally
square integrable), with the convention that Ha = 0 for any constant a.

In the following, we restrict our attention to solutions of (2.1,2.2) which are
either periodic, or asymptotic to a x− periodic solution, or tending to 0 at infinity.
So, we choose function spaces such that the Hilbert transform H of α10 exists.
When they exist, the Fourier transforms satisfy

(̂Hg)(k) = −i(sgnk)ĝ(k).

Notice that if we define ŝx = −x the reflection in R, and for any λ ∈ R, then

(Hg ◦ ŝ)(x) = −(Hg) ◦ ŝ(x),
(Heiλ(·))(x) = −i(sgnλ)eiλx, for λ 6= 0

hold.
Let us denote by P the projection: (a, b, f1, g1, f2, g2)

t 7→ (a, b, f2, g2)
t, then we

define
W = PU,

Then system (2.1,2.2) now reads

dW

dx
= L(P)

ε W +N (P)(ε;W ), (4.4)

D(W ) = 0, (4.5)
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18 G.Iooss, E.Lombardi, S.M.Sun

provided that D(W ) is well defined, where

L(P)
ε = ε−1A0 +A1,

D(W )
def
= β10 − [β10] +Hα20,

where [β10] is the average of β10 and where

A0W =




−α20 − ρ∂α2

∂y |y=0

− 1
1−ρα21
∂β2

∂y

−∂α2

∂y


 ,

A1W =




α20
1

1−ρα21

0

0


 ,

and N (P)(ε;W ) = PN (ε;U).
Let us define the new spaces

HP = R2 × {C0(0, 1)}2,
DP = R2 × {C1(0, 1)}2 ∩ {β21 = β2|y=1},

then, the domain of the operator L(P)
ε acting in HP , is still DP .

We have now eigenvectors ζ
(P)
ε , ζ

(P)

ε , ξ
(P)
0 , ξ

(P)
1 with

ζ(P)
ε = (1, eλ,−ieλy, eλy)t ∈ DP , (4.6)

ξ
(P)
0 = (0, 1, 0, 1)t ∈ DP , (4.7)

ξ
(P)
1 = (1, 0, 0, 0)t ∈ DP , (4.8)

and

L(P)
ε ζ(P)

ε = i (λ/ε) ζ(P)
ε ,

L(P)
ε ζ

(P)

ε = −i (λ/ε) ζ(P)

ε ,

L(P)
ε ξ

(P)
0 = 0, L(P)

ε ξ
(P)
1 = 0.

Finally, we observe that the Bernoulli first integral (2.5) gives a first integral for
our remaining rescaled variables (independent of α1 and β1):

h(ε;W )
def
=

ε−1

2
(e2εβ10 − 1)− ρε−1

2
(e2εβ20 − 1)− (1− ρ)ε−1

2
(e2εβ21 − 1)+

− (1− ε)ε−1

∫ 1

0

(e−εβ2 cos εα2 − 1)dy. (4.9)

Denoting

DWh(ε; 0)W
def
= ξ∗ε (W ),

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 19

we then have

h(ε;W ) = ξ∗ε [W (x)] +O(ε||W (x, ·)||2
HP

) = c3 (indep of x) (4.10)

where for any V = (a, b, f1, g1, f2, g2)
t ∈ Hν , the linear form ξ∗ε ∈ HP∗ ∩ H∗ is

defined by

ξ∗ε (V ) = a− ρg20 − (1− ρ)b+ (1− ε)

∫ 1

0

g2(y)dy. (4.11)

Moreover, we observe that the following identities hold

ξ∗ε (ξ0) = −ε, ξ∗ε (ξ1) = 1, ξ∗ε (ζε) = ξ∗ε (ζε) = 0,

ξ∗ε (SV ) = ξ∗ε (V ), for all V ∈ H,

ξ∗ε (L(P)
ε W ) = ξ∗ε (LεU) = 0, for all W ∈ DP , U ∈ D. (4.12)

5. Resolvent operator of Lε

This section is devoted to the study of the resolvent operator (ik−Lε)−1 for ε > 0
and small enough. In subsection 5.(a) we give explicit formulas and we use them in
further subsections for obtaining estimates of the resolvent for |k| large (subsection
5.(b)), near the poles ik = ±iλ/ε (subsection 5.(c)), and near 0 (subsection 5.(d)).

(a) Explicit formulas for the resolvent

Here we solve the resolvent equation

(ik −Lε)U = V,

(a, b, f1, g1, f2, g2)
t = V ∈ H is given

where we look for U ∈ D. We then need to solve the following system

ikβ10 + ε−1(1− ε)α10 + ε−1ρα′2(0) = a

ikβ21 + ε−1(1− ε)(1− ρ)−1α21 = b

ikα1 − β′1 = f1
ikβ1 + α′1 = g1

}
y ∈ (−∞, 0)

ikα2 − ε−1β′2 = f2
ikβ2 + ε−1α′2 = g2

}
y ∈ (0, 1).

Solving this linear ordinary differential equation for k > 0 and ∆(εk, ε) 6= 0 we get

α1(y) = Aeky +H1[f1, g1](k, y),

β1(y) = iAeky +K1[f1, g1](k, y),

α2(y) = A cosh εky +B sinh εky +H2[f2, g2](k, y),

β2(y) = iA sinh εky + iB cosh εky + iK2[f2, g2](k, y),
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where (for k ∈ R\{0})

H1[f, g](k, y) =
i

2

∫ 0

−∞

[(sgnk)f(τ) + ig(τ)]e|k|(τ+y)dτ+

− i

2

∫ 0

−∞

[(sgnk)f(τ) + ig(τ)sgn(y − τ)]e−|k||y−τ |dτ,

K1[f, g](k, y) = −1

2

∫ 0

−∞

[f(τ) + i(sgnk)g(τ)]e|k|(τ+y)dτ+

− 1

2

∫ 0

−∞

[f(τ)sgn(y − τ) + i(sgnk)g(τ)]e−|k||y−τ |dτ,

H2[f, g](k, y) = ε

∫ 1

0

[if(τ)H21(y, τ)− g(τ)H22(y, τ)]dτ,

K2[f, g](k, y) = ε

∫ 1

0

[if(τ)K21(y, τ)− g(τ)K22(y, τ)]dτ,

with (for k > 0)

H21(y, τ) = H21(τ, y) = (sinh εk)−1 sinh εk(y − 1) sinh(εkτ), for 0 < τ < y < 1,

H22(y, τ) = K21(τ, y) = (sinh εk)−1

{
sinh εk(y − 1) cosh(εkτ), for 0 < τ < y < 1,

sinh(εky) cosh εk(τ − 1), for 0 < y < τ < 1,

K22(y, τ) = K22(τ, y) = (sinh εk)−1 cosh εk(y − 1) cosh(εkτ), for 0 < τ < y < 1.

∆(εk, ε)A = (εk cosh εk − (1− ε)(1− ρ)−1 sinh εk)a1 + ρεkb1,

∆(εk, ε)B = ((1− ε)(1− ρ)−1 cosh εk − εk sinh εk)a1 + [εk − (1− ε)]b1,

a1 = εa+ iεk

∫ 0

−∞

[f1(τ) + ig1(τ)]e
kτdτ − ερg20+

− ρε2k(sinh εk)−1

∫ 1

0

[if2(τ) sinh εk(τ − 1)− g2(τ) cosh εk(τ − 1)]dτ,

b1 = εb+ ε2k(sinh εk)−1

∫ 1

0

[if2(τ) sinh(εkτ)− g2(τ) cosh(εkτ)]dτ.

Lemma 5.1. For ∆(ε|k|, ε) 6= 0, α1 and β1 ∈ C1
1 (R−), and α2 and β2 ∈ C1(0, 1).

Proof. For ∆(ε|k|, ε) 6= 0 the above formulas insure that α2 and β2 are bounded
in C1(0, 1). We also check that α1 and β1 ∈ C1(R−), and more precisely, we show
that indeed α1 and β1 ∈ C1

1 (R−) (hence β1 ∈ C1
lim,1(R

−)) thanks to the estimate

||
∫ 0

−∞

f(τ)e−k|y−τ |dτ ||1,∞ ≤ c

k
||f ||1,∞, as k →∞, (5.1)

which results from the two elementary estimates

eky(1 + |y|)
{
≤ 1 for k ≥ 1,

≤ c(1 + k−1) for k < 1,
, y < 0, (5.2)
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∫ x

0

e−k(x−τ)
(

1 + x

1 + τ

)
dτ =

1

k

[
1− e−kx(1 + x)

]
+O(1/k2).

(b) Estimate of the resolvent for |k| large

The following lemma gives estimates of the resolvent for k real and |k| large
enough:

Lemma 5.2. For ε|k| > M (M large enough) and k real, there exists c > 0 such
that we have the estimates

||(ikI− Lε)−1||L(H) ≤
c

|k| ,

||(ikI−Lε)−1||L(H,D) ≤ c. (5.3)

Moreover, if we only consider the components in DP , then

||P(ikI−Lε)−1||L(H,DP ) ≤ cε.

Proof. For |k| large, let us follow the proof made in (Iooss 1999). It is easy to show
that, for |k| large enough

∆(ε|k|, ε) = −ρ+ 1

2
(εk)2eε|k| + λε|k|eε|k| +O(ε2k2e−ε|k|),

|a1|+ |b1| ≤ cε(|a|+ |b|+ ||f1||∞ + ||g1||∞ + ||f2||∞ + ||g2||∞),

|A|+ |B| ≤ c

|k| (|a|+ |b|+ ||f1||∞ + ||g1||∞ + ||f2||∞ + ||g2||∞),

holds. From the estimates (5.1,5.2), we deduce that for ε|k| > M, α1 and β1 satisfy

||α1||1,∞ + ||β1||lim1,∞ ≤ c

|k| .

So, in using the same proof as in (Iooss 1999), we obtain the following identities
(here k > 0)

α2(y) =
a1

∆(εk, ε)
[εk cosh εk(1− y)− λ sinh εk(1− y)]+

+
b1

∆(εk, ε)
{[εk − (1− ε)] sinh εky + ρ cosh εky}+H2[f2, g2](k, y),

β2(y) =
ia1

∆(εk, ε)
[λ cosh εk(1− y)− εk sinh εk(1− y)]+

+
ib1

∆(εk, ε)
{[εk − (1− ε)] cosh εky + ρεk sinh εky}+ iK2[f2, g2](k, y),

which finally allow to get (5.3).
The last part of the lemma comes from an examination of the consequence of

differentiating with respect to y [this introduces a factor ε|k| only in the components
(α2, β2)].
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(c) Study of the resolvent near the poles ik = ±iλ/ε
Near k = λ/ε, we have (uniformly in ε)

1

∆(εk, ε)
=

deλ

λ(λ − εk)
+O(1),

with
d = (1− ρ+ ρe2λ)−1.

It then results immediately the following

Lemma 5.3. For k in the neighborhood of ±λ/ε we have in L(H,D)

(ikI−Lε)−1 =
ζ
ε

i(k − λ
ε )
ζ∗ε +O(1),

(ikI−Lε)−1 =
ζ
ε

i(k + λ
ε )
ζ
∗

ε +O(1),

where O(1) is uniform in k and ε and, for any V = (a, b, f1, g1, f2, g2)
t ∈ H

ζ∗ε (V ) = d

{
a− ρg20 + ρeλb+ ρλ

∫ 1

0

[if2(y)− g2(y)]e
λydy+

+λ

∫ 0

−∞

[if1(ετ) − g1(ετ)]e
λτdτ

}
. (5.4)

The linear form ζ∗ε satisfies for any U ∈ D,

ζ∗ε (ζε) = 0, ζ∗ε (LεU) =
iλ

ε
ζ∗ε (U), ζ∗ε (ξ0) = 0, ζ∗ε (ξ1) = 0,

ζ∗ε (SV ) = ζ
∗

ε(V ), for all V ∈ H.

Moreover, we have the following better estimates in L(H,DP)

P(ikI−Lε)−1 =
ζ
(P)
ε

i(k − λ
ε )
ζ∗ε +O(ε),

P(ikI−Lε)−1 =
ζ
(P)

ε

i(k + λ
ε )
ζ
∗

ε +O(ε),

where O(ε) is uniform in k.
Defining the projection πε commuting with Lε

πε = I− ζ
ε
ζ∗ε − ζ

ε
ζ
∗

ε ,

and restricting the resolvent to the subspace ker ζ∗ε ∩ ker ζ
∗

ε = range(πε), we have
for any δ > 0, the existence of c independent of k and ε such that, for ε|k| > δ

||(ikI−Lε)−1πε||L(H) ≤ c/|k|,
||(ikI−Lε)−1πε||L(H,D) ≤ c,

||P(ikI−Lε)−1πε||L(H,DP ) ≤ cε.
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We notice that ζ∗ε ∈ H∗ (i.e. is a linear bounded form on H), C0 function of ε
[because f1 and g1 ∈ C0(R−)], while ζ∗ε is analytic in ε, if restricted to HP (recall
that λ = (1− ε)(1− ρ)−1). For obtaining the estimate of the remaining term of the

resolvent, of order O(1) in L(H,D), we use the fact that e
λy
ε has a norm in C1

1 (R−)
of order 1/ε.

(d) Study of the resolvent near 0

Let us define ρ̃ and ∆̃(|k|, ε) by

ρ̃ =
ρ− ε

1− ε
= 1− 1

λ
= ρ− ε

λ
,

∆ = ∆(ε|k|, ε) = ε2|k|λ∆̃(|k|, ε),

∆̃(|k|, ε) = 1 + ρ̃|k|+ (
1

3
− ρ

λ
)εk2 +O[ε2k2(1 + |k|)].

The following lemma describes the resolvent near 0:

Lemma 5.4. For any V = (a, b, f1, g1, f2, g2)
t ∈ H, and any k ∈ R\{0}, we have

the following asymptotic expansion for ε → 0+, which is uniformly valid in H for
ε(1 + |k|) < δ:

(ik −Lε)−1V =
{
−(iεk∆̃(|k|, ε))−1[ξ∗ε,k(V )] + [Ξ∗(V )] (k)

}
ξ0+

+
1

1 + ρ̃|k|ξ
∗
ε (V ) (yξ2 − ρ̃χk) +

ε

1 + ρ̃|k|

[
b

λ
−
∫ 1

0

g2(τ)dτ

]
χk+

+ εΦ̃(f2, g2) + [Φ(f1, g1)] (k) +O

(
ε|k|

1 + |k| ||V ||H
)
, (5.5)

where a uniformly valid estimate in D is obtained in replacing the O(·) term, by

O
(
ε|k|2

1+|k| ||V ||H
)

for components α1 and β1, and by O
(
ε2|k|2

1+|k| ||V ||H
)

in α2 and β2,

(no change for the two first components). In the above expression, we use the no-
tations

[ξ∗ε,k(V )] = ξ∗ε (V ) + ik

∫ 0

−∞

[f1(τ) + i(sgnk)g1(τ)]e
|k|τdτ, (5.6)

[Ξ∗(V )] (k) = (1 + ρ̃|k|)−1

{
i(sgnk)

[
b

λ
−
∫ 1

0

g2(τ)dτ

]
+

∫ 1

0

[τ(1− ε)− ρ]f2(τ)dτ

}
,

χk =
(
i(sgnk), 0, e|k|y, i(sgnk)e|k|y, 1, 0

)t
∈ D,

yξ2 = (0, 0, 0, 0, y, 0)t ∈ D,

Φ̃(f2, g2) =

(
0, 0, 0, 0,

∫ y

0

g2(τ)dτ,

∫ 1

y

f2(τ)dτ

)t
∈ D,

[Φ(f1, g1)] (k) =

(
− 1

1 + ρ̃|k|

∫ 0

−∞

[f1(τ) + i(sgnk)g1(τ)]e
|k|τdτ, 0, H̃1[f1, g1](k, y),

K̃1[f1, g1](k, y),
ik(y − ρ̃)

1 + ρ̃|k|

∫ 0

−∞

[f1(τ) + i(sgnk)g1(τ)]e
|k|τdτ, 0

)t
,
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H̃1[f1, g1](k, y) = H1[f1, g1](k, y)−
iρ̃|k|

1 + ρ̃|k|

∫ 0

−∞

[(sgnk)f1(τ) + ig1(τ)]e
|k|(τ+y)dτ,

K̃1[f1, g1](k, y) = K1[f1, g1](k, y) +
ρ̃|k|

1 + ρ̃|k|

∫ 0

−∞

[f1(τ) + i(sgnk)g1(τ)]e
|k|(τ+y)dτ.

Notice that in this expansion we do not expand with respect to k, to keep
track of the exponentials [the choice of the scaling is crucial here, and notice that
||χk||D = O(1 + |k|)].

Notice also that the principal part for k → 0 is given by

(ik −Lε)−1V ∼ −(iεk)−1[ξ∗ε (V )]ξ0,

which corresponds to the pole at the double 0 eigenvalue, but only in the direction
of ξ0. Moreover the projection −ε−1ξ0ξ

∗
ε on the eigenvector ξ0 becomes singular as

ε → 0, since its norm diverges. We also notice that if ξ∗ε (V ) = 0, there is still a
jump in the resolvent as k crosses 0. Let us define the following linear form, only
bounded if g1 decays sufficiently fast as y→ −∞

η∗ε (V ) =

∫ 1

0

g2(τ)dτ + ε−1

∫ 0

−∞

g1(τ)dτ −
b

λ
. (5.7)

The jump in the resolvent then disappears if η∗ε (V ) = 0 (see the β1 and β2 com-
ponents). Indeed, if we impose a decay towards 0 as y→ −∞, the two conditions
ξ∗ε (V ) = 0 and η∗ε (V ) = 0 are necessary conditions for V being in the range of Lε.

In fact, in the following we do not use the projection −ε−1ξ0ξ
∗
ε because of its

diverging norm as ε→ 0. Let us define the uniformly bounded linear forms p∗0 and
p∗1 defined for any V = (a, b, f1, g1, f2, g2)

t ∈ H, by

p∗0(V ) = g21 = g2|y=1, (5.8)

p∗1(V ) = a. (5.9)

We check that

p∗0(ξ0) = 1, p∗0(ξ1) = 0, p∗0(ζε) = p∗0(ζε) = eλ,

p∗1(ξ0) = 0, p∗1(ξ1) = 1, p∗1(ζε) = p∗1(ζε) = 1.

Now, the linear operators ξ0p
∗
0 and ξ1p

∗
1 are projections on the subspaces, respec-

tively spanned by ξ0, and ξ1, which are bounded uniformly in ε, as well in H as in
D.

Proof of lemma 5.4. For ε→ 0+ we have (uniform estimates for ε|k| < δ)

∆̃(|k|, ε)−1 = (1 + ρ̃|k|)−1 +O
{
ε|k|2(1 + |k|)−2

}

and (below the formulas are for k > 0)

∆(εk, ε)A = ε2k[−ρ̃λa10 + ρb10] +O
(
ε3k2||V ||H

)
,

∆(εk, ε)B = ε[λa10 − (1− ε)b10]+

+ ε2k[λa11 + b10 − (1− ε)b11] +O
(
ε3k2||V ||H

)
,
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a10 = a− ρg20 + ρ

∫ 1

0

g2(τ)dτ + ik

∫ 0

−∞

[f1(τ) + ig1(τ)]e
kτdτ,

a11 = −iρ
∫ 1

0

(τ − 1)f2(τ)dτ,

b10 = b−
∫ 1

0

g2(τ)dτ,

b11 = i

∫ 1

0

τf2(τ)dτ,

H2[f2, g2](k, y) = −εy
∫ 1

0

g2(τ)dτ + ε

∫ y

0

g2(τ)dτ +O
[
ε2k(||f2||∞ + ||g2||∞)

]
,

iK2[f2, g2](k, y) = − i

k

∫ 1

0

g2(τ)dτ − ε

∫ 1

0

τf2(τ)dτ + ε

∫ 1

y

f2(τ)dτ+

+O
[
ε2k(||f2||∞ + ||g2||∞)

]
.

Then, for k ∈ R\{0}, and ε(1 + |k|) < δ, we arrive to

α1(y) = − ρ̃

1 + ρ̃|k| [ξ
∗
ε (V )]e|k|y − ε

1 + ρ̃|k|

[∫ 1

0

g2(τ)dτ −
b

λ

]
e|k|y+

+ H̃1[f1, g1](k, y) +O

(
ε|k|e|k|y
1 + |k| ||V ||H

)
,

β1(y) = − i(sgnk)ρ̃
1 + ρ̃|k| [ξ∗ε (V )]e|k|y − i(sgnk)ε

1 + ρ̃|k|

[∫ 1

0

g2(τ)dτ −
b

λ

]
e|k|y+

+ K̃1[f1, g1](k, y) +O

(
ε|k|e|k|y
1 + |k| ||V ||H

)
,

α2(y) =
[y − ρ̃]

1 + ρ̃|k| [ξ
∗
ε,k(V )] + ε

∫ y

0

g2(τ)dτ −
ε

1 + ρ̃|k|

[∫ 1

0

g2(τ)dτ −
b

λ

]
+

+O
{
ε|k|(1 + |k|)−1||V ||H

}
,

β2(y) =
−1

iεk∆̃
[ξ∗ε,k(V )]− i(sgnk)

1 + ρ̃|k|

[∫ 1

0

g2(τ)dτ −
b

λ

]
+

+

{
1

1 + ρ̃|k|

∫ 1

0

[τ(1− ε)− ρ]f2(τ)dτ + ε

∫ 1

y

f2(τ)dτ

}
+O

(
ε|k|

1 + |k| ||V ||H
)
,

The linear form ξ∗ε,k is a bounded linear form in H, uniformly bounded in k. If
V has its components f1 and g1 sufficiently decaying as y→ −∞ then ξ∗ε,k(V ) ∼
ξ∗ε (V ) [see (4.11)] for k = 0. In fact, in a further section, we need to apply the
resolvent to V ∈ H such that the components f1 and g1 decay exponentially fast (in

eλy/ε) as y→ −∞; in such cases we have a precise behavior of H̃1[f1, g1], K̃1[f1, g1],
[ξ∗ε,k(V )− ξ∗ε (V )] as k → 0.

The estimates in the rests for α1, β1 and α2, β2 are uniform for ε(1 + |k|) < δ,
when ε → 0. We then obtain the asymptotic expression for (ik − Lε)−1, with
estimates in H and in D, and the lemma is proved.
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(e) Study of the range of Lε
Let us give more details on the range of the operator Lε. We use extensively

two projections πε and π̃ε defined for any V ∈ H by

πεV = πεV − p∗0(πεV )ξ0,

π̃εV = πεV − p∗0(πεV )ξ0 − p∗1(πεV )ξ1,

where we defined already πε at lemma 5.3. We also need in the following, the range
of the reduced linear operator acting on the subspace π̃εH. Finally we need the
range of Lε on a subspace where the components f1 and g1 are rapidly decaying.
For this result we need to introduce new spaces, which will be also useful at next
section. So we define

Ck,exp
ε = {f : R− → C; e−λy/2εf ∈ Ck(R−)}

equipped with the norms

||f ||exp
0,ε = sup

y∈R−

|e−λy/2εf(y)|, for k = 0,

||f ||exp
1,ε = ε||f ′||exp

0,ε + ||f ||exp
0,ε , for k = 1,

where we notice the factor ε in the second norm. We also notice that for ε small
enough

||f ||1,∞ ≤ ||f ||exp
0,ε .

We also define the Banach spaces

Kε = {U ∈ H;α∗1(U) ∈ C0,exp
ε , β∗1 (U) ∈ C0,exp

ε },
Eε = {U ∈ D;α∗1(U) ∈ C1,exp

ε , β∗1(U) ∈ C1,exp
ε }, (5.10)

Fε = {U ∈ H;α∗1(U) ∈ C1,exp
ε , β∗1 (U) ∈ C1,exp

ε },

with the appropriate norms

||U ||Kε
= ||PU ||H + ||α∗1(U)||exp

0,ε + ||β∗1(U)||exp
0,ε ,

||U ||Eε
= ||PU ||D + ||α∗1(U)||exp

1,ε + ||β∗1 (U)||exp
1,ε ,

||U ||Fε
= ||PU ||H + ||α∗1(U)||exp

1,ε + ||β∗1(U)||exp
1,ε ,

and where we denote for example by α∗1(U) the α1 component of U. We notice that
ξ0 and ζε ∈ Eε with a uniformly bounded norm, as ε → 0, while ξ1 /∈ Eε. We also
notice that we have the following continuous embeddings

Eε ↪→ Fε ↪→ Kε.

These spaces are useful in the sequel when we treat the rests originated from the
nonlinear terms of the system. We observe that the 3rd and 4th components of
vectors have an exponential decay in y, which is a strong restriction with respect
to the decay or boundedness required in H and D.

A consequence is that the projections πε and πε are bounded uniformly in ε in
L(Kε), L(Fε), and in L(Eε), whereas this is not the case for the projection π̃ε.
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Let us denote U and V as

U = (β10, β21, α1, β1, α2, β2)
t ∈ D,

V = (a, b, f1, g1, f2, g2)
t ∈ H,

then we state

Lemma 5.5. (i) The range of Lε in H is the set of V such that ξ∗ε (V ) = 0, and

∫ 0

y

f1(τ)dτ ∈ C0
lim,1, and g1 ∈ C0

1 ,

∫ 0

y

g1(τ)dτ ∈ C0
lim,1,

η∗ε (V ) = 0,

where ξ∗ε and η∗ε are defined in (4.11),(5.7).
(ii) The range of π̃εLε in π̃εH is the set of Z ∈ π̃εH, such that

∫ 0

y

f1(τ)dτ ∈ C0
lim,1,

∫ 0

y

[g1(τ) − lim g1]dτ ∈ C0
lim,1,

and

χ∗ε(Z) = 0,

where the linear form χ∗ε is defined by

χ∗ε(Z)
def
=

∫ 0

−∞

[g1(τ) − lim g1]dτ + ε

[∫ 1

0

g2(τ)dτ − b/λ

]
+

+ ρ̃[ξ∗ε (Z)− lim g1].

(iii) The range of πεLε in πεKε is the set of Z ∈ πεKε, such that

χ∗ε(Z) = 0,

where the linear form χ∗ε reduces to

χ∗ε(Z)
def
=

∫ 0

−∞

g1(τ)dτ + ε

[∫ 1

0

g2(τ)dτ − b/λ

]
+ ρ̃ξ∗ε (Z).

Proof of (i). This is straightforward, and it is the same as the proof in (Iooss
1999).
Proof of (ii). Looking at the range of π̃εLε means that we solve

π̃εLεW = Z ∈ π̃εH,

where

ζ∗ε (Z) = ζ
∗

ε(Z) = p∗0(Z) = p∗1(Z) = 0,

and where we look for W ∈ π̃εD such that

ζ∗ε (W ) = ζ
∗

ε(W ) = p∗0(W ) = p∗1(W ) = 0.

Article submitted to Royal Society



28 G.Iooss, E.Lombardi, S.M.Sun

Since ζεζ
∗
ε is a projection commuting with Lε, this implies the existence of c0 and

c1 such that
LεW = Z + c0ξ0 + c1ξ1.

Hence we obtain

α1(y) = −
∫ y

0

g1(τ)dτ + ε

[∫ 1

0

g2(τ)dτ − b/λ

]
+ ερ̃c0 − c1y,

β1(y) =

∫ y

0

f1(τ)dτ,

α2(y) = ε

[∫ 1

y

g2(τ)dτ − b/λ

]
+ εc0(ρ̃− y),

β2(y) = −ε
∫ 1

y

f2(τ)dτ,

with
εc0 − c1 = ξ∗ε (Z).

It is then clear that the condition
∫ y
0 [g1(τ) + c1]dτ bounded, defines c1 = − lim g1

(exists since g1 ∈ C0
lim,1), hence c0 is also uniquely defined, and the part (ii) of the

lemma is straightforward.
Proof of (iii). We modify the proof made for (ii), in relaxing the conditions with
p∗1 on Z and W. Instead we impose an exponential decay for α1 and β1. We look
for W in πεEε and

πεLεW = Z ∈ πεKε,

which leads to

α1(y) = −
∫ y

0

g1(τ)dτ + ε

[∫ 1

0

g2(τ)dτ − b/λ

]
+ ρ̃ξ∗ε (Z),

β1(y) = −
∫ y

−∞

f1(τ)dτ,

α2(y) = ε

[∫ 1

y

g2(τ)dτ − b/λ

]
+ ξ∗ε (Z)(ρ̃− y),

β2(y) = −ε
∫ 1

y

f2(τ)dτ,

and the condition for having α1 decaying to 0 (same exponential as f1 and g1) at
infinity, is then χ∗ε(Z) = 0, where χ∗ε is defined in the lemma, and we notice that

χ∗ε = εη∗ε + ρ̃ξ∗ε

[see (5.7)]. Hence, part (iii) of the lemma is proved. We observe in addition that the
integrals

∫ y
−∞

f1(τ)dτ and
∫ y
−∞

g1(τ)dτ are bounded in C0,exp
ε , with O(ε), hence

ξ∗ε (Z) = −ρ̃−1

[∫ 0

−∞

g1(τ)dτ + ε

∫ 1

0

g2(τ)dτ − εb/λ

]

verifies
|ξ∗ε (Z)| ≤ cε||Z||Kε

,
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hence
||W ||Eε

≤ cε||Z||Kε
.

6. Periodic solutions

In this section, we study periodic solutions of (4.1). First, we give at theorem 6.1,
periodic solutions of (4.4,4.5) provided we define correctly the condition (4.5), i.e.
without mentioning 3rd and 4th components of U [we denote these vectors by
W or with an upper index (P)]. The analyticity in ε disappears in incorporating
the two missing components because of the non analyticity of ζ

ε
(see (4.3)) for ε

near 0 contrary to ζ(P)

ε
(see (4.6)). The result given at theorem 6.3 comes from

the structure of the eigenvectors belonging to the eigenvalues ±iλ/ε, and from
the structure of the third and fourth equations in (4.1). Theorems 6.1 and 6.3 are
analogous to the classical Lyapunov-Devaney theorem which ensures the existence
of a one-parameter family of periodic solutions, bifurcating from a pair of simple
imaginary eigenvalues for reversible vector fields in finite dimensions. In the present
case, there are two extra difficulties: i) 0 lies in the spectrum of Lε and is resonant
with the pair of eigenvalues ±iλ/ε, ii) 0 also lies in the essential spectrum of Lε,
since the entire real line constitutes the essential spectrum.

In this section we use the spaces

HT
],AS = {V ∈ H1

],T (H); ŜV = −V },
DT],S =

{
U ∈ H2

],T (H) ∩H1
],T (D); ŜU = U

}
,

where, for any Banach space E, Hm
],T (E) = {u ∈ Hm

loc(E);u(s + T ) − u(s) = 0 in
E for almost all s}. The superscript T may be omitted if there is no ambiguity
about the spatial period. We put in the above spaces an index S or an index AS
when we restrict respectively to vector functions such that ŜV = V, or ŜV = −V.
If U ∈ D],S , then LεU ∈ H],AS, N (ε;U) ∈ H],AS. Notice that if W ∈ DP

],S , then

L(P)
ε W ∈ HP

],AS, N (P)(ε;W ) ∈ HP
],AS, and D(W ) ∈ H2

],S(R). Let us state the
following

Theorem 6.1. For any constant M > 0, there exists ε0 > 0 such that for any
(u0, v0, A0, ε) ∈ R2×C× R satisfying

|u0|+ |v0|+ |A0| ≤M, 0 < ε < ε0,

there is a family of periodic solutions p
(P)
A0,u0,v0,ε

of (4.4,4.5) in D
P,T
] , bifurcating

from 0, where T denotes the period, and

p
(P)
A0,u0,v0,ε

(x) = p̂
(P)
A0,u0,v0,ε

(s)

possesses the following power series in ε, u0,v0, A0, A0 converging in D
P,2π
] :

p̂
(P)
A0,u0,v0,ε

(s) = u0ξ
(P)
0 + v0ξ

(P)
1 +A0e

isζ(P)
ε +A0e

−isζ
(P)

ε +

+
∑

p+q≥1

2≤n+m+p+q≤r+1

εrun0 v
m
0 A

p
0A

q

0e
i(p−q)sY (P)

nmpqr
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where

s = ε−1 [λ+ γ]x, T =
2πε

λ+ γ
,

γ =
∑

1≤n+m+2p≤r

γnmpru
n
0 v

m
0 |A0|2pεr ∈ R,

ζ(P)
ε = (1, eλ,−ieλy, eλy)t,

ζ∗ε (Y
(P)
nmpqr) = 0 for p = q + 1, p∗0(Y

(P)
nmppr) = 0, p∗1(Y

(P)
nmppr) = 0.

These solutions are reversible for A0 real, and we have SY
(P)
nmpqr = Y

(P)
nmqpr =

Y
(P)

nmpqr.

Proof. Let us set s = ε−1(λ+γ)x, where λ = (1−ε)/(1−ρ) , where γ is close to 0,
and (λ+ γ)ε−1 is the wave number in coordinate x of the periodic solution we are
looking for. We then look for (2π−periodic) functions of s. Let us precise the norm
we choose in the Banach space Hp

] (E), the space of (2π−periodic) functions such

that their derivatives up to order p are in L2(R/2πZ), taking values in the Banach
space E:

||u||2Hp
]

=
∑

n∈Z

(1 + n2p)||un||2E

where

un =
1

2π

∫ 2π

0

u(s)e−nisds.

Let us define the linear operator Tε = λ d
ds − (A0 + εA1) which maps DP

] into HP
] .

The basic tool is the following

Lemma 6.2. For any given V in HP
] , such that

∫ 2π

0

ζ∗ε [V (s)]e−isds =

∫ 2π

0

ζ
∗

ε [V (s)]eisds =

∫ 2π

0

ξ∗ε [V (s)]ds = 0,

there exists a unique W in DP
] such that

TεW = V, D(W ) = 0, (6.1)

∫ 2π

0

ζ∗ε [W (s)]e−isds =

∫ 2π

0

ζ
∗

ε [W (s)]eisds = 0,

∫ 2π

0

p∗0[W (s)]ds =

∫ 2π

0

p∗1[W (s)]ds = 0,

where ζ∗ε and ζ
∗

ε are given by (5.4). Moreover, the linear mapping V 7→W = T̃−1
ε V

is bounded:
||T̃−1

ε V ||
D
P
]
≤ c||V ||

H
P
]
.

Important remark. In the above lemma the condition D(W ) = 0 only applies on

Fourier coefficients of non-zero index. Indeed, for the average [W ]0 = 1
2π

∫ 2π

0
W (s)ds

we have no condition on β10.
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Proof of lemma 6.2. Expanding in Fourier series V and W, equation (6.1) gives
for n 6= 0, 1,−1

Wne
ins = [inλI− (A0 + εA1)]

−1Vne
ins,

Wn ∈ DP ∩ {β10 = isgn(n)α20}.

Now using the resolvent estimate for |k| large (see (5.3) at lemma 5.2 of section
5.(b)), this insures that, if we define

W ′ =
∑

n∈Z\{0,1,−1}

Wne
nis ∈ DP

] , then ||W ′||
D
P
]
≤ C1||V ||HP

]
holds. (6.2)

It then remains to study the equations [inλI−(A0+εA1)]Wn = Vn for n = 0, 1,−1.
For n = 0, we have

−(A0 + εA1)W0 = V0 ∈ HP .

If we note V0 = (a, b, f2, g2)
t, the following compatibility condition has to be satis-

fied (see lemma 5.5)
ξ∗ε (V0) = 0, (6.3)

where ξ∗ε is defined in (4.11). All solutions such that W0 ∈ DP are given by

W0 = W̃0 + k0ξ
P
0 + k1ξ

P
1 , (6.4)

W̃0 =

(
0, 0,−

∫ 1

y

g2(τ)dτ +
b

λ
,

∫ 1

y

f2(τ)dτ

)t
,

where k0 and k1 are arbitrary. Then, provided that ξ∗ε (V0) = 0 holds, there is a

unique solution W0 = W̃0 = −( ˜A0 + εA1)
−1

V0 which satisfies

−(A0 + εA1)W̃0 = V0,

p∗0(W̃0) = 0,

p∗1(W̃0) = 0,

and we have the estimate
||W̃0||DP ≤ c||V0||HP .

This means that we have a pseudo-inverse of −εLε acting from HP ∩ker ξ∗ε towards
DP ∩ ker p∗0 ∩ ker p∗1 with a uniformly bounded norm with respect to ε.

For n = 1, we need to use the linear forms ζ∗ε and ζ
∗

ε : for any V =(a, b, 0, 0, f2, g2)
t

lying in H], we define

Z∗ε (V ) =
1

2π

∫ 2π

0

e−isζ∗ε [PV (s)]ds.

It is easy to check that for any W ∈ DP
]

Z∗ε [(A0 + εA1)W ] = iλZ∗ε (W ),

ξ∗0 [(A0 + εA1)W ] ≡ 0 (as a function of s),
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and
Z∗ε (e

isζ(P)
ε ) = 1 , Z∗ε (ŜV ) = Z

∗

ε(V ).

The necessary and sufficient conditions for finding the components W1 and W−1 of
the solution W in (6.1) may be written as

Z∗ε (V ) = ζ∗ε (V1) = 0,

Z
∗

ε(V ) = ζ
∗

ε(V−1) = 0,

and W1 and W−1 are respectively defined up to arbitrary multiples of the eigenvec-

tors ζ
(P)
ε and ζ

(P)

ε ∈ DP .

We define now two projections Pε and P̃ε, as well on HP
] as on DP

] , as follows, for

any V and W ∈ HP
] (identified with V and W ∈ H] with 3rd and 4th components

identically 0):

W = u0ξ
(P)
0 + v0ξ

(P)
1 +Aeisζ(P)

ε +Be−isζ
(P)

ε + Y, (6.5)

A = Z∗ε (W ), B = Z
∗

ε(W ),

u0 = p∗0(W0), v0 = p∗1(W0),

Z∗ε (W )
def
=

1

2π

∫ 2π

0

ζ∗ε [W (s)]e−isds,

Z∗ε (Y ) = Z
∗

ε(Y ) = p∗0(Y0) = p∗1(Y0) = 0,

Y
def
= PεW,

V = Cχ0 +A′eisζ(P)
ε +B′e−isζ

(P)

ε + Ṽ , (6.6)

A′ = Z∗ε (V ), B′ = Z
∗

ε(V ),

Z∗ε (V )
def
=

1

2π

∫ 2π

0

ζ∗ε [V (s)]e−isds,

C = ξ∗ε (V0) =
1

2π

∫ 2π

0

ξ∗ε [V (s)]ds,

χ0 = (1, 0, 0, 0)t, ξ∗ε (χ0) = 1,

Z∗ε (Ṽ ) = Z
∗

ε(Ṽ ) = ξ∗ε (Ṽ0) = 0,

Ṽ
def
= P̃εV,

where, for instance, Y0 denotes the 0-Fourier component of Y . We check that

D(eisζPε ) = 0, D(e−isζ
P

ε ) = 0,

hence D(W ) = 0 implies D(PεW ) = 0. Finally, we just built above, a (uniformly

bounded in ε) pseudo-inverse T̃−1
ε of Tε, from P̃εH

P
] onto PεD

P
] ∩ kerD, and the

lemma is proved.

Proof of theorem 6.1. Let us now consider the system (4.4, 4.5) where we look
for solutions in DP

] . We can rewrite this system under the form of the following

equation in HP
] :

TεW = G(ε, γ,W ), D(W ) = 0, (6.7)

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 33

where

G(ε, γ,W ) = −γ dW
ds

+ εN (P)(ε;W ). (6.8)

We observe that, due to the form of the scaling, (6.7) may be written as

TεW
′ = G′(ε, γ,W ′), B(W ′) = 0, (6.9)

G′(ε, γ,W ′) = −γ dW
′

ds
+NP(ε;W ′),

where W ′ = εW, and G′(·, ·, ·) is analytic: R2 × DP
] → HP

] in the neighborhood
of 0, and is such that

G′(ε, γ, 0) = 0, D(γ,W ′)G
′(ε, 0, 0) = 0.

It is also easy to check that the following properties hold:

ŜTε = −TεŜ, ŜG′(ε, γ,W ′) = −G′(ε, γ, ŜW ′), D(ŜW ′) = D(W ′) ◦ ŝ

where ŝx = −x.
We want to apply the decompositions (6.5,6.6) to the system (6.9), with

W ′ = u′0ξ
(P)
0 + v′0ξ

(P)
1 +A′0e

isζ(P)
ε +A

′

0e
−isζ

(P)

ε + Y ′,

Y ′ = PεW
′,

since W ′ is real. This leads to the system

TεY
′ = −γ dY

′

ds
+ P̃ε[N

(P)(ε;u′0ξ
(P)
0 + v′0ξ

(P)
1 +A′0e

isζ(P)
ε +A

′

0e
−isζ

(P)

ε + Y ′)],

(6.10)

0 = −iγA′0 + Z∗ε

[
N (P)(ε;u′0ξ

(P)
0 + v′0ξ

(P)
1 +A′0e

isζ(P)
ε +A

′

0e
−isζ

(P)

ε + Y ′)
]
,

(6.11)

0 = ξ∗ε

[
N (P)(ε;u′0ξ

(P)
0 + v′0ξ

(P)
1 +A′0e

isζ(P)
ε +A

′

0e
−isζ

(P)

ε + Y ′)
]
0
. (6.12)

Remark. In the proof of the classical Lyapunov-Devaney theorem, there are two
equations similar to (6.10,6.11), the other compatibility condition comes from the
fact that in the present case, the operator Lε has 0 for eigenvalue, which is resonant
with ±iλ/ε. We show below that, roughly speaking, (6.10) gives Y ′, (6.11) gives γ,
and fortunately (6.12) is automatically satisfied because of all equivariances of our
system.

Using the pseudo-inverse, we defined above, we have first from (6.10) in using
the analytic implicit function theorem

Y ′ = Y(ε, γ, u′0, v
′
0, A

′
0, A

′

0)

where Y is analytic in its arguments and, because of the fact that the identity

N (P)(ε;u0ξ
(P)
0 + v0ξ

(P)
1 ) ≡ 0
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holds, we have the estimate

Y(ε, γ, u′0, v
′
0, A

′
0, A

′

0) = O[|A′0|(|u′0|+ |v′0, |+ |A′0|)]

with the following principal part

Y(ε, γ, u′0, v
′
0, A

′
0, A

′

0) ∼ T̃−1
ε P̃εN

(2)
0

[
(u′0ξ0 + v′0ξ1 +A′0e

isζ
ε
+A

′

0e
−isζ

ε
)(2)
]
,

where we notice that

N
(2)
0 (ξ0, ξ0) = 0,

N
(2)
0 (ξ1, ξ1) = 0,

N
(2)
0 (ξ0, ξ1) = 0,

N
(2)
0 (ζ

ε
, ζ
ε
) = 0.

Moreover, we have in addition the equivariance of (6.10,6.11,6.12) with respect to

the symmetry Ŝ and to the representation of the group SO(2) given by (τφW
′)(s) =

W ′(s + φ). We know that Sξ0 = ξ0, Sζε = ζ
ε

holds, then we have, due to the
uniqueness of the solution

τφY(ε, γ, u′0, v
′
0, A

′
0, A

′

0) = Y(ε, γ, u′0, v
′
0, A

′
0e
iφ, A

′

0e
−iφ),

ŜY(ε, γ, u′0, v
′
0, A

′
0, A

′

0) = Y(ε, γ, u′0, v
′
0, A

′

0, A
′
0).

Replacing Y ′ by Y(ε, γ, u′0, v
′
0, A

′
0, A

′

0) in (6.11,6.12), these equations take the
form

f1(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = 0 in C,

f0(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = 0 in R,

satisfying, because of all equivariances (anticommutation of G′ with Ŝ),

eiφf1(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = f1(ε, γ, u
′
0, v

′
0, A

′
0e
iφ, A

′

0e
−iφ),

−f1(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = f1(ε, γ, u
′
0, v

′
0, A

′

0, A
′
0),

f0(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = f0(ε, γ, u
′
0, v

′
0, A

′
0e
iφ, A

′

0e
−iφ),

f0(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = −f0(ε, γ, u′0, v′0, A
′

0, A
′
0),

for any φ ∈ R. This leads to

f1(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) = iA′0g(ε, γ, u
′
0, v

′
0, |A′0|2),

f0(ε, γ, u
′
0, v

′
0, A

′
0, A

′

0) ≡ 0,

where g(ε, γ, u′0, v
′
0, |A′0|2) is real valued and analytic.

Remark. We observe here that the compatibility condition (6.12) is automatically
satisfied, thanks to the equivariances of the system.
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More precisely, it can be checked that

g(ε, γ, u′0, v
′
0, |A′0|2) = −γ +O[(|u′0|+ |v′0|+ |A′0|2)].

and by implicit function theorem, we have:

γ = Γ(ε, u′0, v
′
0, |A′0|2).

We now perform the scaling

A′0 = εA0, u′0 = εu0, v′0,= εv0, W ′ = εW,

and the theorem follows directly, after noticing that monomials εr
′

u′n0 v
′m
0 A′p0 A

′q

0

become εr
′+n+m+p+qun0 v

m
0 A

p
0A

q

0, which shows that the exponent of ε is r = r′ +
n +m + p + q − 1, hence n +m + p + q ≤ r + 1. This ends the proof of theorem
6.1. We can now treat the two missing components of U , which is stated in the
following

Theorem 6.3. For any constant M > 0, there exists ε0 > 0 such that for any
(u0, v0, A0, ε) ∈ R2×C× R satisfying

|u0|+ |v0|+ |A0| ≤M, 0 < ε < ε0,

there is a family of periodic solutions U= pA0,u0,v0,ε of (4.1) in D
T
] , bifurcating

from 0, where
pA0,u0,v0,ε(x) = p̂A0,u0,v0,ε(s)

possesses the following power series in u0, v0, A,A, ε converging in D2π
] :

p̂A0,u0,v0,ε(s) = u0ξ0 + v0ξ1 +A0e
isζ

ε
+A0e

−isζ
ε
+

+
∑

p+q≥1

2≤n+m+p+q≤r+1

εrun0 v
m
0 A

p
0A

q

0e
i(p−q)sYnmpqr

where

s = ε−1 [λ+ γ]x, T =
2πε

λ+ γ
,

γ(u0, v0, |A0|2, ε) =
∑

1≤n+m+2p≤r

γnmpru
n
0 v

m
0 |A0|2pεr ∈ R,

ζ
ε

= (1, eλ,−ieλy/ε, eλy/ε,−ieλy, eλy)t,
ζ∗ε (Ynmpqr) = 0 for p = q + 1,

p∗0(Ynmppr) = p∗1(Ynmppr) = 0.

These solutions are reversible for A0 real, and we have SYnmpqr = Ynmqpr =
Y nmpqr . Moreover, there exist c > 0, and K > 0 such that we have the estimates

ε||Ynmpqr||D + ||PYnmpqr||D + ||Ynmpqr ||H ≤ cε−r0 Kn+m+p+q.

We have in fact better estimates, due to the exponential decay of 3rd and 4th
components as y→ −∞. This is stated as follows:
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Corollary 6.4. There exist c′ > 0 and K ′ > 0 such that

||Ynmpqr ||Eε
≤ c′ε−r0 K ′n+m+p+q.

Remarks. With respect to theorem 6.1, we notice that we need to manage the
relative loss of analyticity with respect to ε. This comes in particular, from the
3rd and 4th components of ζε where eλy/ε introduces this loss, even in C0

1 , when
ε→ 0. Another remark is that the family of periodic solutions does depend on two
constants, which is natural, because of the freedom we had from the beginning in
our system. This is a consequence of the fact that we did not impose β1 → 0 as
y→ −∞.

Proof of theorem 6.3. Because of the analyticity of the expansion at theorem
6.1, we already know that there exists K > 0 such that

||PYnmpqr||DP ≤ cε−r0 Kn+m+p+q.

We just need now to compute the 3rd and 4th components of the solutions where
the 4 other components are known, thanks to theorem 6.1. So, we consider the 3rd
and 4th components of system (4.1), which are just the Cauchy-Riemann equations.
It results immediately, that the mth Fourier coefficients are given for l 6= 0, by

α
(l)
1 = −i[sgn(l)]β

(l)
10 e

|l|(λ+γ)y/ε,

β
(l)
1 = β

(l)
10 e

|l|(λ+γ)y/ε,

where β
(l)
10 is the first component of the l−th Fourier coefficient of the (already

found) solution p̂
(P)
A,u0,ε

(s). For l = 0, we notice that, by construction β
(0)
10 = v0,

hence we have β
(0)
1 (y) = v0 and, α

(0)
1 is given by

α
(0)
1 (y) = α

(0)
20 =

∑

p+q≥1

2≤n+m+p+q≤r+1

εrun0 v
m
0 |A0|2pα∗20(Ynmppr).

For l 6= 0, we have for instance

α
(1)
1 (y) = −iA


1 +

∑

1≤n+m+2q≤r−2

εrun0 v
m
0 |A|2qβ∗10(Yn,m,q+1,q,r)


 e(λ+γ)y/ε.

Now, we observe that e|l|(λ+γ)y/ε = e|l|λy/ε[
∑
j≥0

1
j!

[
(|l|γ/ε)y

]j
,

with γ/ε = O(|A|2 + |u0|+ |v0|) and

1

j!
||
[
(|l|γ/ε)y

]j
e|l|λy/ε||1,∞ ≤ (γ/λ)j

[
1 +

(
ε

|l|λ

)
(j + 1)j+1e−(j+1)

j!

]
,

≤ c(γ/λ)j(1 + ε j1/2) for large j.

Replacing γ by its expression, we deduce that e|l|(λ+γ)y/ε may be expanded in
powers of (|A0|2, u0, v0) the series converging in C1(R−) and we have

||e|l|λy/ε[
∑

j≥0

1

j!

[
(|l|γ/ε)y

]j ||C1 ≤ c|l|/ε, for ε small enough.

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 37

Moreover, the factor of e|l|λy/ε is analytic in (ε, |A0|2, u0, v0). This above estimate
explains the factor 1/ε for the estimate of ||Ynmpqr ||D. The estimates of the Corollary
with the 3rd and 4th components in C1,exp

ε follow easily, with K ′ larger than K,
since we use a part of the exponential decay in the norm.

Now the orthogonality condition ζ∗ε (Y
(P)
npqr) = 0 for p = q+1, leads to ζ∗ε (Ynpqr) =

0 (since i[sgn(p− q)]f1 − g1 = 0). The result of theorem 6.3 then follows.

The Bernoulli first integral and periodic solutions

We already defined the Bernoulli first integral (4.9) of our nonlinear rescaled
system. Any solution U(x) of system (4.1), satisfies h[ε;U(x)] = const. Moreover
we already observed that

DUh(ε; 0)U = ξ∗ε (U), for U ∈ H.

Let us consider the family of periodic solutions pA0,u0,v0,ε(x) and compute the value
of the Bernoulli first integral. We first observe that

h[ε;U ]− ξ∗ε (U) =

ε

[
β2

10 − ρβ2
20 − (1− ρ)β2

21 −
1− ε

2

∫ 1

0

(β2
2 − α2

2)dy

]
+O(ε2||PU ||3

HP
),

and

p̂A0,u0,v0,ε(s) = u0ξ0 + v0ξ1 +A0e
isζ

ε
+A0e

−isζ
ε
+

+ Φε(A0e
is, A0e

−is, u0),

Φε(A0e
is, A0e

−is, u0) = O [ε|A0|(|A0|+ |u0|+ |v0|)] .
Since h is a constant, we have the following invariance property

h[ε; p̂A0,u0,v0,ε(s+ φ)] = h[ε; p̂A0,u0,v0,ε(s)],

hence, a straightforward consequence is that

h[ε; p̂A0,u0,v0,ε(s)] = h̃(|A0|2, u0, v0, ε)

where h̃ is analytic in its arguments. Now we use

ξ∗ε (u0ξ0 + v0ξ1 +A0e
isζ

ε
+A0e

−isζ
ε
) = v0 − εu0,

and we obtain, after a simple computation

Lemma 6.5. The Bernoulli first integral h(ε;U), evaluated on the family of periodic
solutions found at theorem 6.3, satisfies

h[ε; p̂A0,u0,v0,ε(s)] = v0 − ε[u0 + hε(|A0|2, u0, v0)], (6.13)

hε(|A0|2, u0, v0) = 2(1− ρ)(e2λ − 1)|A0|2 +
1

2
(3− ε)u2

0 − v2
0+

+O[ε(|u0|+ |v0|)|A0|2 + ε2|A0|4 + ε(|u0|+ |v0|)3],
where hε is analytic in its arguments.

Remark. The coefficient 3/2 in the expression of hε is the one which will occur in
the Benjamin-Ono equation later on.
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7. Normal form

In this section, we introduce new variables such that the system they satisfy has a
nicer form than the original system. Indeed, on the new system the set of periodic
solutions of theorem 6.3 appears trivially on a flat 4 dimensional manifold, and many
terms of the system are transformed in such a way that for the study of solutions
homoclinics to anyone of the periodic solutions above mentioned, the decay rate
of the rests will be sufficiently good. As we shall see, this needs some (instructive)
technical work.

In section 5.(e), we defined the projection π̃ε on a subspace supplementary to
the space spanned by ζε, ζε, ξ0 and ξ1 :

π̃εU = πεU − p∗0(πεU)ξ0 − p∗1(πεU)ξ1,

where we observe that

ζ∗ε (π̃εU) = ζ
∗

ε(π̃εU) = p∗0(π̃εU) = p∗1(π̃εU) = 0,

||π̃ε||L(H) ≤ c, ||π̃ε||L(D) ≤ c/ε.

In this section we prove the following (the notation W is not the one used at section
6).

Lemma 7.1. For |A| + |u| + |v| + ||W ||H < M, 0 < ε < ε0 there is an ana-
lytic mapping Φε : C2×R2→ Eε, smoothly depending on ε, such that the change of
variables

U = Aζ
ε
+Aζ

ε
+ uξ0 + vξ1 +W + Φε(A,A, u, v),

ζ∗ε (W ) = ζ
∗

ε(W ) = p∗0(W ) = p∗1(W ) = 0,

with (see theorem 6.3)

Φε(A,A, u, v) =
∑

p+q≥1

2≤n+m+p+q≤r+1

εrunvmApA
q
Ynmpqr

transforms the system (4.1) into the following new reversible system in C×R2×π̃εH
dA

dx
= iA

[
λ

ε
+ γ1(u, v, |A|2, ε)

]
+RA(A,A, u, v,W ), (7.1)

dv

dx
= p∗1LεW +Rv(A,A, u, v,W ), (7.2)

du

dx
= p∗0LεW +Ru(A,A, u, v,W ), (7.3)

dW

dx
= π̃εLεW +RW (A,A, u, v,W ), (7.4)

where γ1 = γ/ε (see theorem 6.3), RA, Ru, Rv , RW are analytic in their arguments,
and

|RA|+ |Rv |+ |Ru|+ ||RW ||π̃εH = O {||PW ||D(|A|+ |u|+ |v|+ ||PW ||D)} ,
||Rvξ1 +RW ||πεFε

= O {||PW ||D(|A|+ |u|+ |v|+ ||PW ||D)} ,
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where Fε is defined in (5.10). The system (7.1,7.2,7.3,7.4) is reversible under the
symmetry S, acting in C2×R2×π̃εH

(A,A, u, v,W ) → (A,A, u, v, SW ).

Remark 1. The family of periodic solutions appears explicitly in the above normal
form, in taking W = 0, u = u0 = const, v = v0 = const and A = A0e

is, |A0| =
const. This is a very remarkable property of the above system, which simplifies a lot
many of forthcoming calculations. Indeed, we flatten the four-dimensional manifold
of periodic solutions.

Remark 2. In the equation for W , the 3rd and 4th components of the nonlinear
part are y-dependent. Indeed, the very good fact is that the nonlinear terms (all
terms except π̃εLεW ), have a fast exponential decay as y→ −∞, at least as eλy/ε.
Moreover these components are continuously differentiable in y such that Rvξ1 +
RW ∈ Fε.

Remark 3. If we collect the equations for v and W, in making

W = vξ1 +W ∈ πεD,

then we obtain
dW

dx
= πεLεW +RW (A,A, u, v,W ), (7.5)

where we observe that Lε operates only on the component W of W, and the fol-
lowing estimate

||RW (A,A, u, v,W )||πεFε
= O {||PW ||D(|A|+ |u|+ |v|+ ||PW ||D)}

holds. The important fact is that RW , as well as RA and Ru, cancels if PW cancels.
This will allow us to improve this system (see next lemma).

Proof of lemma 7.1 From the form of the periodic solutions p̂A0,u0,v0,ε(s), and
the identities

(
λ

ε
+ γ1)

d

ds
p̂ = Lεp̂+N (ε; p̂),

p̂A0,u,v,ε(s) = uξ0 + vξ1 +Aζ
ε
+Aζ

ε
+ Φε(A,A, u, v), A = A0e

is,

and defining
NA = iAγ1(u, v, |A|2, ε),

we obtain the new identity in Kε

NAζε +NAζε +

(
iλA

ε
+NA

)
∂AΦε +

(
− iλA

ε
+NA

)
∂AΦε

= LεΦε +N (ε;Aζ
ε
+Aζ

ε
+ uξ0 + vξ1 + Φε), (7.6)

which is valid for any u, v, A, ε such that |A|+ |u|+ |v| < M, 0 < ε < ε0. It results
that

RA(ζ
ε
+ ∂AΦε) +RA(ζ

ε
+ ∂AΦε) +RW +Ru(ξ0 + ∂uΦε) +Rv(ξ1 + ∂vΦε) =
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= N (ε;Aζ
ε
+Aζ

ε
+ uξ0 + vξ1 +W + Φε)+ (7.7)

−N (ε;Aζ
ε
+Aζ

ε
+ uξ0 + vξ1 + Φε)+

− p∗0(LεW )∂uΦε − p∗1(LεW )∂vΦε

holds, and then Rvξ1 + RW lies in fact in Fε, because ξ0, ζε, Φε, ∂AΦε, ∂uΦε,
∂vΦε ∈ Fε, and N has no 3rd and 4th components. We now use the estimates

||∂AΦε||Fε
+ ||∂uΦε||Fε

+ ||∂vΦε||Fε
≤ cε(|A|+ |u|+ |v|),

for being able to solve equation (7.7) with respect to (RA, Ru, Rv , RW ) ∈ C ×
R2×π̃εH, in projecting this equation on ζ

ε
, ξ0, ξ1, π̃εH. We observe that

||p∗0(LεW )∂uΦε||Fε
≤ c|A|||PW ||π̃εD,

||p∗1(LεW )∂vΦε||Fε
≤ c|A|||PW ||π̃εD,

holds, and N (ε;W ) only depends on PW, hence the lemma is proved, after straight-
forward estimates.

Now, we can improve lemma 7.1 in treating, by a normal form technique, all
terms which are linear in W, with coefficients depending on A. This is useful for
eliminating oscillating terms having a not as good decay rate when |x| → ∞ as
higher order nonlinear terms in W. Below we will be only interested in solutions
such that u v, and W tend towards 0 as |x| → ∞. We might do the same analysis
for solutions such that the limiting u and v are not 0. We have the following

Lemma 7.2. There exists δ > 0, such that for |A| < δ, |u| + |v| + ||W ||H < M,
0 < ε < ε0, there is a change of variables of the form

A = A′ + µ∗ε(A
′, A

′
)[W ′],

u = u′ + ν∗ε (A
′, A

′
)[W ′], (7.8)

W = W ′ + Γε(A
′, A

′
)[W ′],

where µ∗ε(A,A), ν∗ε (A,A), Γε(A,A) have respectively their values in

L(π̃εH,C),L(π̃εH,R),L(π̃εH, πεEε),

they are analytic in their arguments and

µ∗ε = O(|A|), ν∗ε = O(|A|),Γε = O(ε|A|),

and they are such that the system satisfied by (A′, u′,W ′ = v′ξ1 + W ′) takes the
form (dropping the primes)

dA

dx
= iA

[
λ

ε
+ γ1(u, v, |A|2, ε)

]
+RA(A,A, u,W ),

du

dx
= p∗0(LεW ) +Ru(A,A, u,W ),

dW

dx
= πεLεW + ∆ε(A,A)[W ] +RW (A,A, u,W ),
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where ∆ε(A,A) takes its values in L(π̃εD, πεFε) , and is analytic in its arguments
and satisfies

∆ε(SW ) = −S∆ε(W ), ||∆ε||L(π̃εD,πεFε) = O(|A|),

η∗ε{∆ε(A,A)[W ]} = 0,

where η∗ε is defined in (5.7), and the following estimate

|RA|+ |Ru|+ ||RW ||Fε
= O [||W ||D(|u|+ ||W ||D)]

holds.

We observe in the above formulation, that the linear terms in W are simplified
in the two first equations. In addition, in the equation for W, the term ∆ε(A,A)[W ]
satisfies a compatibility condition, which will be very helpful later.

Remark. We notice, in the above lemma, that if we suppress the equation for A,
and make A = 0 in the two other equations, we recover a system similar to the
original one, but in the subspace πεH. This is helpful for recognizing the homoclinic
given at main order by Benjamin-Ono equation (see next section).

Proof of lemma 7.2. This proof is given in Appendix Normal form. The fact that
this reduction is possible is not a surprise, except for the a priori resonant terms of
the form A|A|2nl∗(W )| and |A|2nn∗(W ) respectively in the equation for A and the
equation for u. The elimination of these terms results from a particular property
of our system, where we can extend the basic space to functions having a growth
in ln |y| as y→ −∞, and observe that in such space the linear operator π̃εLε has a
bounded inverse, while this is not the case in π̃εH. Another new fact is the ability
to impose the compatibility condition

η∗ε{∆ε(A,A)[W ]} = 0,

which will be essential for being able to invert a certain linear operator, this operator
being basic in our proof of existence of homoclinics to periodic solutions. This
condition allows to treat the term ∆ε(A,A)[W ] which has an insufficient decay
rate in x (see Appendix Resolvent 0).

8. New working system

(a) Rescaling and Bernoulli first integral

For the rest of the paper, the good scaling is W= εY, i.e.

U =
{
A+ εµ∗ε(A,A)[π̃εY ]

}
ζ
ε
+
{
A+ εµ∗ε(A,A)[π̃εY ]

}
ζ
ε
+ V+

+ Φε
{
A+ εµ∗ε(A,A)[π̃εY ], A+ εµ∗ε(A,A)[π̃εY ], (8.1)

u+ εν∗ε (A,A)[π̃εY ], εp∗1
(
Y + Γε(A,A)[π̃εY ]

)}
,

V =
{
u+ εν∗ε (A,A)[π̃εY ]

}
ξ0 + εY + εΓε(A,A)[π̃εY ],

p∗0(Y ) = ζ∗ε (Y ) = ζ
∗

ε(Y ) = 0, Y ∈ πεD
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then the system satisfied by (A,A, u, Y ) reads (new RA, Ru and RY here)

dA

dx
= iA

[
λ

ε
+ γ1(u, εp

∗
1(Y ), |A|2, ε)

]
+RA(A,A, u, Y ),

du

dx
= p∗0(εLεY ) + 2εup∗0

[
πεN

(2)
ε (ξ0, Y )

]
+Ru(A,A, u, Y ), (8.2)

dY

dx
= πεLεY + 2uπεN

(2)
ε (ξ0, Y ) + ∆ε(A,A)[π̃εY ] +RY (A,A, u, Y ),

with
η∗ε{∆ε(A,A)[π̃εY ]} = 0,

and

|RA| = O {ε||Y ||D[|u|+ ε||Y ||D]} ,
|Ru| = O

{
ε2||Y ||D[(|A|+ |u|)|u|+ ||Y ||D]

}
, (8.3)

||RY ||Fε
= O {ε||Y ||D[(|A|+ |u|)|u|+ ||Y ||D]} .

Remark. We observe that

ξ∗ε (πεLεY ) ≡ p∗0(εLεY ).

The aim of this section is to replace the system (8.2), by another equivalent one
where the oscillating part in A is kept, and where the (u, Y ) part is transformed
into one equation expressing directly Y in terms of u and of the nonlinear terms,
and another equation which is a perturbation of the Benjamin-Ono equation for u.
This new system has the following form [see (8.20)]

dA

dx
= iA

[
λ

ε
+ γ1(u, |A|2, ε)

]
+RA(A,A, u, Y ),

Y = πεT0u+RY (A,A, u, Y ),

ρH
(
du

dx

)
+ u+

3

2
u2 = Bε(A,A, u, Y ),

where the operators T0, RY , Bε are non local in x, and RY , Bε are small in a
suitable norm. In the above system T0 is linear and H is the Hilbert transform,
occurring in the Benjamin-Ono equation (Benjamin 1967; Davis & Acrivos 1967;
Ono 1975). This equation plays a deep role here, and will be derived with the help
of the Bernoulli first integral h(ε;U) as defined in (4.9).

Indeed, we now consider the Bernoulli first integral

h[ε;U(x)] = const,

where we know that for U∈ H, one has

h[ε;U ]− ξ∗ε (U) =

ε
[
β2

10 − ρβ2
20 − (1− ρ)β2

21 − 1−ε
2

∫ 1

0 (β2
2 − α2

2)dy
]

+O(ε2||PU ||3
H
).
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We already computed the Bernoulli integral for the family of periodic solutions (see
lemma 6.5), which leads to the identity

h[ε;Aζ
ε
+Aζ

ε
+ uξ0 + vξ1 + Φε(A,A, u)] = v − ε[u+ hε(|A|2, u, v)].

Finally, we have

Lemma 8.1. The Bernoulli first integral of the system (4.1), written with the new
variables defined in (8.1), takes the form

u = ξ∗ε (Y )− 3

2
u2 + h̃ε[|A|2, u, εp∗1(Y )] + R̃u(A,A, u, Y ) + c0, (8.4)

|R̃u| = O[ε(|A| + |u|)||Y ||H + ε2||Y ||2
H
),

|h̃ε| = O(|A|2 + εu2 + ε|A|2(|u|+ ε|p∗1(Y )|) + ε2|p∗1(Y )|2).

where h̃ε and R̃u are analytic in their arguments, and c0 a constant.

From now on, we really need to specify the required behavior in x near infinity,
specially for (u, Y ). So we introduce new basic spaces.

(b) Basic spaces for the x - dependence

Let us introduce the following (Hölder) spaces for the x dependence, where E

is a Banach space:

Bαp (E) = {f ∈ Cα(E); ||f ||α
E,p <∞}, 0 < α < 1,

||f ||α
E,p = sup

x∈R

(1 + |x|p)||f(x)||E + sup
x∈R, |δ|≤1

(1 + |x|p) ||f(x+ δ)− f(x)||E
|δ|α ,

hence, we use for example in the following Bα2 (R), Bα3 (π̃εFε)... and also B1,α
2 (R)

defined by

B1,α
2 (R) =

{
f ∈ Bα2 (R);

df

dx
∈ Bα2 (R)

}
,

and we denote for instance ||f ||1,α
R,2 the corresponding norm. We also introduce the

spaces Bα
H,w and Bα

D,w defined by

Bα
H,w = {V = (a, b, f1, g1, f2, g2)

t;V (x) ∈ H,

(a, b) ∈ Bα2 (R2), (f1, g1) ∈ (B−
w )2, (f2, g2) ∈ (B+

w )2},

where

B−
w = {f(x, y); (x, y) ∈ R× R−, f is Cα in x, C0 in y, ||f ||B−w <∞},

B+
w = Bα2 [C0(0, 1)], B1,+

w = Bα2 [C1(0, 1)],

||f ||B−w = sup
x∈R,y<0

(1 + |x|2 + |y|2)
1 + |y| |f(x, y)|+

+ sup
x∈R,y<0, |δ|≤1

(1 + |x|2 + |y|2)
1 + |y|

|f(x+ δ, y)− f(x, y)|
|δ|α ,
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Bα
D,w = {U = (β10, β21, α1, β1, α2, β2)

t;β10 = β1|y=0, α20 = α10, β21 = β2|y=1

(α1, β1) ∈ (B−
w )2, (α2, β2) ∈ (B1,+

w )2},

B1,α
H,w =

{
V ∈ Bα

H,w;
dV

dx
∈ Bα

H,w

}
,

and we denote by ||U ||α
D,w, and ||V ||1,α

H,w the corresponding norms.

(c) A new linear lemma

In this section, we consider the following linear system appearing as a part of
system (8.2):

du

dx
= p∗0εLεY + εTu, (8.5)

dY

dx
= πεLεY + TY , (8.6)

where (Tu, TY ) satisfies

Tu ∈ Bα3 (R), odd

TY ∈ [Bα2 (πεFε)η∗ +Bα3 (πεFε)], antireversible,

where we denote by [Bα2 (πεFε)η∗ +Bα3 (πεFε)] the set of TY = T
(1)
Y +T

(2)
Y , such that

T
(1)
Y ∈ Bα2 (πεFε) ∩ ker η∗ε ,

T
(2)
Y ∈ Bα3 (πεFε).

Taking the Fourier transform of the system (8.5,8.6), we are lead to use the results
of lemma 5.4 for the resolvent near k = 0. We now introduce a splitting of unity,
with smooth even functions ϕ0 and ϕ1 such that

ϕ0(εk) =

{
1, ε|k| < δ/2

0, ε|k| > δ
,

ϕ1(εk) =

{
0, ε|k| < δ/2

1, ε|k| > δ
.

ϕ0(εk) + ϕ1(εk) = 1.

Then we have first the following results

Lemma 8.2. For any u ∈ Bα2 (R), we define the function

u0 = ψ0 ∗ u,
ψ0 = F−1[ϕ0(εk)].

Then u0 and all derivatives u
(n)
0 ∈ Bα2 (R),and

||u0||αR,2 ≤ c||u||α
R,2,

||u(n)
0 ||α

R,2 ≤
cn
εn
||u||α

R,2

holds.
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Lemma 8.3. For u ∈ B1,α
2 (R), and u even, let define the operator T0 : B1,α

2 (R) →
Bα

D,w by

T0u = (β10, 0, α1, β1, α2, 0)t,

β10 = −ρ̃H
(
du0

dx

)
, α2 = (ρ̃− y)

(
du0

dx

)
,

α1 =
ρ̃

π
u0 ∗

[
2xy

(x2 + y2)2

]
, β1 =

ρ̃

π
u0 ∗

[
x2 − y2

(x2 + y2)2

]
,

where
u0 = ψ0 ∗ u.

Then, we have

ξ∗ε (T0u) = β10 = −ρ̃H
(
du0

dx

)
,

||T0u||αD,w ≤ c||u||1,α
R,2.

The main result of this section is then the following

Lemma 8.4. The solution (u, Y ) ∈ B1,α
2 (R)×BαπεD,w of system (8.5,8.6) satisfies

Y = T0u+ T1(Tu) + T2(TY ), (8.7)

ξ∗ε [Y ] + ρ̃H
(
du

dx

)
= C(1)

ε (Tu) + C(2)
ε (T

(1)
Y ) + C(3)

ε (T
(2)
Y ), (8.8)

where T0u is defined at previous lemma, and the following estimates

||T1(Tu)||αD,w ≤ cε||Tu||αR,3,
||T2(TY )||α

D,w ≤ cε(||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3),

||C(1)
ε (Tu)||αR,2 ≤ cε||Tu||αR,3,

||C(2)
ε (T

(1)
Y )||α

R,2 ≤ cε||T (1)
Y ||απεFε,2,

||C(3)
ε (T

(2)
Y )||α

R,2 ≤ cε||T (2)
Y ||απεFε,3

hold.

Proof of lemma 8.2. We have ψ0 even, indefinitely differentiable, and decaying
fast at infinity. Moreover, for any fixed n

|ψ0(x)| ≤ cmin{ε−1, ε/x2, ...ε2n−1/x2n)

holds, as can be deduced from the identity

ψ0(x) =
(−1)nε2n

πx2n

∫ ∞

0

cos(kx)ϕ
(2n)
0 (εk)dk
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which is valid for any n ≥ 0. This implies

||(1 + x2)ψ0||L∞ ≤ c,

hence, the identity

u0 = ψ0 ∗ u
leads to the result of the lemma 8.2, using the property (see for instance (Iooss &
Kirrmann 1996)) ∫

R

1 + x2

(1 + t2)[1 + (x− t)2]
dt < 2π.

Proof of lemma 8.3. The fact that β10 ∈ Bα2 (R) results from the property that
u0 and u′0 ∈ Bα2 (R) and a result of Corollary 12.2 of Appendix A, where we show
that H(u′0) ∈ Bα2 (R) (see also (Amick & Toland 1991)). Moreover, the result for α2

is straightforward. For α1 and β1 we prove in Appendix A that

α1(x, y) = − ∂

∂x

[
ρ̃

π
u0 ∗

(
y

x2 + y2

)]
,

β1(x, y) =
∂

∂y

[
ρ̃

π
u0 ∗

(
y

x2 + y2

)]
,

satisfy

||α1||B−w + ||β1||B−w ≤ c||u0||1,αR,2.

In addition, we notice that

T̂0u(k) = ikû0(k)(ρ̃χk − yξ2)

holds, which shows how we extract this operator T0 from our previous computation
of the resolvent near 0 (see section 5.(d)).

Proof of lemma 8.4. We have by Fourier transform

(ikI−Lε)(ûξ0 + εŶ ) = ε
(
T̂uξ0 + T̂Y

)
,

then, using the splitting of unity, we now solve the system

(ikI−Lε)(û0ξ0 + εŶ0) = εϕ0

(
T̂uξ0 + T̂Y

)
, (8.9)

(ikI−Lε)(û1ξ0 + εŶ1) = εϕ1

(
T̂uξ0 + T̂Y

)
(8.10)

where

û0 = ϕ0(εk)û, û1 = ϕ1(εk)û,

Ŷ0 = ϕ0(εk)Ŷ , Ŷ1 = ϕ1(εk)Ŷ ,

u = u0 + u1, Y = Y0 + Y1.
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Step 1. For solving the first equation (8.9), we use lemma 5.4 (since the right
hand side cancels for |k| > δ/ε), and then find, in fact for any k ∈ R (below is the

definition of operators S
(0)
u and S

(0)
Y , detailed in Appendix Resolvent 0)

û0(k) = − 1

ik(1 + ρ̃|k|)ϕ0ξ
∗
ε

(
T̂Y

)
+ ϕ0S

(0)
u

(
T̂Y

)
+

ε

ik
ϕ0T̂u,

Ŷ0(k) =
1

1 + ρ̃|k|ϕ0ξ
∗
ε

(
T̂Y

)
(yξ2 − ρ̃χk) + ϕ0S

(0)
Y

(
T̂Y

)
,

with

ϕ0S
(0)
u

(
T̂Y

)
(k) = O

(
ε

1 + |k| ||ϕ0T̂Y ||Fε

)
,

ϕ0S
(0)
Y

(
T̂Y

)
(k) = [Φ(f1, g1)] (k) +O

(
ε||ϕ0T̂Y ||H

)
,

where f1 and g1 are the 3rd and 4th components of ϕ0T̂Y , and where the estimate
of Ŷ0(k) is in D. We show at Appendix Resolvent 0, that

F−1
[
ϕ0S

(0)
u

(
T̂Y

)]
∈ B1,α

2 (R), (8.11)

with

||F−1
[
ϕ0S

(0)
u

(
T̂Y

)]
||1,α

R,2 ≤ cε(||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3).

We observe now that the fast exponential decay in y of the 3rd and 4th compo-
nents of TY implies

|| [Φ(f1, g1)] (k)||D = O
(
ε||ϕ0(T̂Y )||Fε

)
.

Finally we have, for any k ∈ R

ϕ0S
(0)
Y

(
T̂Y

)
(k) = O

(
ε||ϕ0

(
T̂Y

)
||Fε

)
.

Now we can compute

Ŷ0(k) = T̂0u(k) + ϕ0(εk)S
(0)
Y

(
T̂Y

)
(k)+ (8.12)

+ (yξ2 − ρ̃χk)ϕ0(εk)
[
ikS(0)

u

(
T̂Y

)
(k) + εT̂u(k)

]
,

which allows to define

T10(Tu) = F−1
{
εϕ0(εk)T̂u(k)(yξ2 − ρ̃χk)

}
,

T20(TY ) = F−1
{
ϕ0(εk)

[
S

(0)
Y

(
T̂Y

)
(k) + ik(yξ2 − ρ̃χk)S

(0)
u

(
T̂Y

)
(k)
]}

,

and we obtain in addition

ξ∗ε [Y0] + ρ̃H(
du0

dx
) = ξ∗ε [T10(Tu) + T20(TY )]. (8.13)
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We observe that T10(Tu) is easily estimated, since it is the same estimate as at
lemma 8.3, once we notice that

∫ x
−∞ Tu(τ)dτ ∈ Bα2 (R) is an even primitive of Tu.

Hence we have directly
||T10(Tu)||αD,w ≤ cε||Tu||αR,3. (8.14)

We prove at the Appendix Resolvent 0, that we have the estimate

||T20(TY )||α
D,w ≤ cε(||T (1)

Y ||απεFε,2 + ||T (2)
Y ||απεFε,3), (8.15)

where the above estimate (8.11) on F−1
[
ϕ0S

(0)
u

(
T̂Y

)]
solves half of this estimate,

because of lemma 8.3. Hence we finally obtain

||ξ∗ε [Y0] + ρ̃H(
du0

dx
)||α

R,2 ≤ cε(||Tu||αR,3 + ||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3). (8.16)

Step 2. For solving the equation (8.10), we use lemma 5.3. Indeed we have

||(ikI−Lε)−1πε||L(H) ≤ c/|k|,
||P(ikI−Lε)−1πε||L(H,DP ) ≤ cε,

and noticing that û1(k) is the β21 component of εϕ1(ikI − Lε)−1
(
T̂uξ0 + T̂Y

)
,

this leads to (below is the definition of the operators S
(1)
u , S

(1)
Y )

û1(k) =
ε

ik
ϕ1T̂u + ϕ1S

(1)
u

(
T̂Y

)
= O

(
ε

|k| ||ϕ1

(
T̂uξ0 + T̂Y

)
||H
)
,

Ŷ1(k) = ϕ1S
(1)
Y

(
T̂Y

)
= O(ε||ϕ1

(
T̂Y

)
||H),

hence we can define

T11(Tu) = 0,

T21(TY ) = F−1
[
ϕ1(εk)S

(1)
Y

(
T̂Y

)
(k)
]
,

with the following estimate proved at Appendix Resolvent ∞

||T21(TY )||α
D,w ≤ cε(||T (1)

Y ||απεFε,2 + ||T (2)
Y ||απεFε,3), (8.17)

hence the lemma for (8.7) is proved. Moreover it is also proved in Appendix Resol-
vent ∞ that

F−1
[
ϕ1S

(1)
u

(
T̂Y

)]
∈ B1,α

2 (R) (8.18)

holds, with

||F−1
[
ϕ1S

(1)
u

(
T̂Y

)]
||1,α

R,2 ≤ cε(||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3),

so, we obtain in addition

ξ∗ε [Y1] = −ρ̃H(
du1

dx
) + F−1

[
ρ̃|k|ϕ1(εk)S

(1)
u

(
T̂Y

)]
+ ξ∗ε [T21(TY )]+ (8.19)

−F−1
[
isgn(k)ρ̃εϕ1(εk)T̂u(k)

]
,
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with an estimate (see corollary 12.2 in Appendix A, and use the fact that
∫ x
−∞

Tudτ

and ψ0 ∗
∫ x
−∞

Tudτ ∈ B1,α
2 (R))

||ξ∗ε [Y1] + ρ̃H(
du1

dx
)||α

R,2 ≤ cε(||Tu||αR,3 + ||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3).

Step 3. We now collect the results (8.13,8.19), and finally obtain (8.8)

ξ∗ε [Y ] + ρ̃H
(
du

dx

)
= C(1)

ε (Tu) + C(2)
ε (T

(1)
Y ) + C(3)

ε (T
(2)
Y ),

with

C(1)
ε (Tu) = ξ∗ε [T10(Tu)]−F−1

[
isgn(k)ρ̃εϕ1(εk)T̂u(k)

]
,

C(2)
ε (T

(1)
Y ) + C(3)

ε (T
(2)
Y ) = F−1

[
ρ̃|k|ϕ1(εk)S

(1)
u

(
T̂Y

)]
+

+ ξ∗ε [T21(TY ) + T20(TY )],

and with estimates announced at the lemma.

(d) New system

We now replace the two last equations in (8.2) by two equivalent new equations.
The first equation will be (8.7) where Tu and TY are expressed in terms of the
nonlinear terms on the right hand side of (8.2). The second one is a combination
of the Bernoulli first integral (which results from the full system, see lemma 8.1)
and the identity (8.8) which comes from the two last equations, and where Tu and
TY are expressed in terms of the nonlinear terms as above. Let us express our new
system in the following lemma

Lemma 8.5. There exists δ > 0, such that for any M > 0, |A| < δ, |u|+ε||Y ||πεD <
M, 0 < ε < ε0 the system satisfied by A, u, Y as defined by (8.1) takes the following
equivalent form

dA

dx
= iA

[
λ

ε
+ γ1(u, εp

∗
1(Y ), |A|2, ε)

]
+RA(A,A, u, Y ),

Y = πε[T0u+ T1(Tu) + T2(TY )], (8.20)

ρH
(
du

dx

)
+ u+

3

2
u2 = Bε(A,A, u, Y ),

provided the nonlocal operators are defined, and where

Tu = 2up∗0πεN
(2)
ε (ξ0, Y ) + ε−1Ru(A,A, u, Y ),

TY = T
(1)
Y + T

(2)
Y ,

T
(1)
Y = ∆ε(A,A)[Y ],

T
(2)
Y = 2uπεN

(2)
ε (ξ0, Y ) +RY (A,A, u, Y ),
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Bε(A,A, u, Y ) =
ε

λ
H
(
du

dx

)
+ h̃ε[|A|2, u, εp∗1(Y )] + C(1)

ε (Tu)+

+ C(2)
ε (T

(1)
Y ) + C(3)

ε (T
(2)
Y ) + R̃u(A,A, u, Y ) + c0.

The right hand side of this system is well defined for A ∈ Cα(R,C), u ∈ B1,α
2 (R),

Y ∈ BαπεD,w and the operators T1, T2, C(1)
ε , C(2)

ε , C(3)
ε satisfy the estimates of lemma

8.4.

Remark. The operators H, Bε, Ti, C(i) are nonlocal with respect to the x coordi-
nate.

Proof. We put the projection πε in equation (8.20)2 since this does not change the
result, Y (x) lying in πεD. Equation (8.20)3 is obtained in replacing ξ∗ε (Y ) in (8.4)
by its expression from (8.8) in lemma 8.4. The remarkable fact here is that the left
hand side of (8.20)3 is the Benjamin-Ono equation! (see (Benjamin 1967; Davis &
Acrivos 1967; Ono 1975)), and that its right hand side will play the role of a nice
perturbation.

The equivalence between system (8.2) and (8.20) can be seen in realizing that
(8.2) is equivalent to a system with the same equation for A, and where we deduce
(u, Y ) from the inverse Fourier transform of the resolvent, as done in the proof
of lemma 8.4. The combination Y − T0u gives one of the final equations, and the
result for u is precisely identified with the Benjamin-Ono equation differentiated
with respect to x, as might be seen in the expression found at step 1 of the proof
of lemma 8.4:

ik(1 + ρ̃|k|)û0(k) = −ϕ0ξ
∗
ε

(
T̂Y

)
+ ik(1 + ρ̃|k|)ϕ0S

(0)
u

(
T̂Y

)
+ ε(1 + ρ̃|k|)ϕ0T̂u.

It can be seen that the term −3û′u which corresponds to the main next term in
Benjamin-Ono equation comes from the term

2uπεN
(2)
0 (ξ0, Y )

belonging to TY , inserted in −ξ∗ε
(
T̂Y

)
, where Y is replaced by T0u (or πεT0u, which

gives the same result). We did not use this way for deriving the Benjamin-Ono
equation, because it is simpler to use the Bernoulli first integral. So the equivalence
of (8.2) and (8.20) results from the resolution of the linear part of equations for
(u, Y ), thanks to a double combination made on their Fourier transforms.

Remark. It should be clear that our new system (8.20) is non local, which implies
the necessity to define a priori an acceptable behavior in x, for the solution. Before
doing this, we give in the next section an approximate solution of the full system,
under the form of an homoclinic, whose principal part is solution of the Benjamin-
Ono equation.

9. Asymptotic expansion of a solitary wave

In this section we give an asymptotic result without proof, since it is not used in
our further proofs, but which seems interesting by itself. It gives the asymptotic
expansion of a solitary wave, corresponding to a formal solution of our system (4.1),
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this expansion is expected to diverge. In the later proofs, we only use its principal
part. We have the following

Theorem 9.1. The system (4.1) has a formal reversible solution in the form of a
power series in ε :

U = uh0ξ0 +
∑

n≥1

εn[unξ0 + Zn−1],

where coefficients un ∈ Bα2 (R), Zn satisfies p∗0(Zn) = 0 and Zn ∈ BαD,w with a decay

of 3rd and 4th components at least in 1/y2 as y→ −∞. Coefficient uh0 is given by

uh0(x) =
−4ρ2

3(ρ2 + x2)
, (9.1)

and Z0 is given by

Z0(x, y) =

(
4ρ2(ρ2 − x2)

3(ρ2 + x2)2
, 0,

8ρ2x(ρ− y)

3[(ρ− y)2 + x2]2
,
4ρ2[(ρ− y)2 − x2]

3[(ρ− y)2 + x2]2
,

8ρ2x(ρ− y)

3(ρ2 + x2)2
, 0

)t
.

Moreover, we have the following

Lemma 9.2. Let us define for a fixed integer p ≥ 0

Hp = (uh0 +
∑

1≤k≤p+1

εkuk)ξ0 +
∑

1≤k≤p+2

εkZk−1,

then, by construction

dHp

dx
−LεHp −N (ε;Hp) = εp+2Kp

holds, with Kp = (ap, bp, 0, 0, f2,p, g2,p)
t ∈ PBα

D,w , and as |x| → ∞, we have

ap = O(1/x3), bp = O(1/x3), f2,p = O(1/x4), g2,p = O(1/x3).

The proof of the theorem and lemma above is based on an identification of
powers of ε in system (4.4,4.5), where we recover at main order the Benjamin-Ono
equation

uh0 + ρH
(
duh0
dx

)
+ 3

2 (uh0 )2 = 0,

whose unique even solution, tending towards 0 at infinity, is given by (9.1) (as it is
proved in (Amick & Toland 1991)). We observe that this equation also appears on
the new system (8.20) in lemma 8.5, hence we can state the following

Lemma 9.3. There is a reversible homoclinic, approximate solution of the system
(8.20) of the form

A = 0,

u = uh0 ,

Y = Y h0 = πεT0u
h
0 ,
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where uh0 ∈ B1,α
2 (R) is even in x, and Y h0 ∈ BαπεD,w and is reversible, and uh0

satisfies

uh0 + ρH
(
duh0
dx

)
+ 3

2 (uh0 )2 = 0.

Remark (Physical shape of the approximate homoclinic). From the expres-
sions of the interface and free surface, we have

dZI
dx

(x) ∼ α10(x) = α20(x),

dZ

dx
(x) ∼ α21(x).

Hence, after reestablishing the unscaled variables, and from the expressions of com-
ponents of Z0(x, y), we obtain for the approximate homoclinic

ZI(x) ∼ −
4ε2ρ3

3(ρ2 + ε2x2)
,

Z(x) ∼ 4ε2ρ2(1− ρ)

3(ρ2 + ε2x2)
,

which gives at finite distance, the physical shape indicated at figure 8, once we
notice that x ∼ ξ. For the shape of the solutions near infinity, this corresponds to
the periodic waves whose principal part is based on the eigenvectors belonging to
eigenvalues ±iλ/ε of Lε. For the computation of ZI(x) and Z(x), it is better to use
the formulas

ZI(x) ∼ −
∫ 0

−∞

β1(x, y)dy,

Z(x) ∼ −
∫ 0

−∞

β1(x, y)dy −
∫ 1

0

β2(x, y)dy,

and it is shown in (Iooss 1999) that the periodic waves at the free surface and at
the interface are in phase, hence this will be the case for our generalized solitary
waves here, as |x| → ∞ (this is proved at next section).

10. Homoclinics to periodic solutions

The purpose of the paper is to find solutions homoclinic to each of the periodic
solutions pA0,0,0,ε found at section 6, such that u0 = v0 = 0 (we might generalize
our results for u0.v0 6= 0). In this section we prove

Theorem 10.1. For any 0 < α ≤ 1/2, there exist δ, δ0, ε0 > 0, such that for
0 < ε < ε0, and δ0ε

2−α < A0 < δ, the following statement holds: there exist

two distinct reversible solutions U
(j)
A0,ε

(j = 1, 2) of the scaled system (4.1), Hölder
continuous in D, homoclinic to each periodic solution pA0,0,0,ε found at theorem 6.3
which satisfy

U
(j)
A0,ε

(x) = pA0,0,0,ε

(
x+ φjρ arctan(x/ρ)

)
+ uh0 (x)ξ0 +O

(
ε1−α +A0

1 + |x|

)
.

where uh0 is the Benjamin-Ono homoclinic, of order 1, decaying at infinity as 1/|x|2.
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As shown in the last remark of section 9, provided that the integrals invoked
in the remark are convergent, these solutions give generalized solitary waves with
a shape indicated at figure 8, where they all look the same at finite distance, and
where they fit with one of the periodic travelling waves at infinity, with opposite
phase shifts at ±∞. Moreover, the form of periodic solutions found at theorem 6.3
shows that these ones have principal parts given by A0(ζεe

is + ζ
ε
e−is), and then

the form of ζε shows that the free surface and the interface are in phase.

Remark 1. A natural question is how can we improve the above result in allowing
a smaller size for A0? A first improvement may be made in improving the normal
form in lemma 7.2. This can be done in treating terms of order |u|m||W || in the A
equation. Indeed they can be suppressed up to an arbitrary order, by a technique
analogous to the one showed at Appendix Normal Form. A second improvement
may be made if we use a better approximation of the approximate homoclinic (see
lemma 9.2). These two actions may arrive to a lower bound for |A0| in εm with
m > 2. Now, the major improvement would be to obtain an exponentially small
lower bound for |A0|. This needs to work on analytic functions in a strip of the
complex plane containing the real axis, using methods developed for example in
(Lombardi 2000). However, in the context here, where an essential spectrum passes
through 0, this needs additional work which is provided in the forthcoming paper
(Lombardi & Iooss 2001).

Remark 2. In the above theorem the limiting periodic solutions pA0,0,0,ε are those
with parameters u0 = v0 = 0. We might produce the same result for |u0|+ |v0| < δ,
in adapting the normal form of lemma 7.2, as indicated in the previous remark
(modulo additional complications). These new homoclinics would correspond to
non zero mean horizontal flows in both layers.

The rest of this section is devoted to the proof of this theorem.

(a) Shifted system

For proving theorem 10.1, we use a fixed point technique, in starting from an
approximate homoclinic connection computed in section 9, and coming from the
Benjamin-Ono equation.

After the changes of coordinates made in sections 7 and 8, the system (4.1) is
equivalent to (8.20), and the family of periodic orbits pA0,0,0,ε found at section 6
reads now

pA0,ε(s) = (AA0,ε,YA0,ε, uA0,ε)

= (A0e
is, 0, 0)

with A0 ∈ R (reversible solutions), and

s =

[
λ

ε
+ γ1(0, 0, A

2
0, ε)

]
x.

We look for homoclinic connections to the periodic orbits pA0,ε under the form

HA0,ε = pA0,ε ◦ ψφ(x) + hε(x) (10.1)

where

ψφ(x)
def
=

[
λ

ε
+ γ1(0, 0, A

2
0, ε)

]
[x+ ερφθ(x/ρ)] ,
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θ(x) = arctan(x).

The unknown are φ ∈ R, which is proportional to the phase shift at infinity, and hε
which is required to be a reversible homoclinic connection to 0. We look for hε(x)
under the form

hε(x) =
(
(iq1 + q2)e

iψφ(x), Y, u
)
.

So, we are looking for φ ∈ R and (q1, q2, Y, u) tending towards 0 as x→ ±∞ with q1
odd, (q2, u) even, and Y satisfying SY (x) = Y (−x). Notice that we have a freedom
in the choice of the odd function θ; the important request is that θ′ is positive and
decays at least as 1/x2.

The new system satisfied by (q1, q2, Y, u, φ) reads

dq1
dx

= (A0 + q2) [γ1(u, 0, 0, ε)− φρ0] +Rq1 ,

dq2
dx

= −q1 [γ1(u, 0, 0, ε)− φρ0] +Rq2 , (10.2)

Y = πε[T0u] +R′
Y ,

ρH
(
du

dx

)
+ u+

3

2
u2 = B′ε,

where

ρ0(x) =
[
λ+ γ(0, 0, A2

0, ε)
] ρ2

x2 + ρ2
,

Rq2 + iRq1 = RAe
−iψφ(x) + i(A0 + q2 + iq1)

{
γ1(u, εp

∗
1(Y ), |A|2, ε)+

−γ1(u, 0, 0, ε)− γ1(0, 0, A
2
0, ε)

}
,

R′
Y = πε[T1(T

′
u) + T2(T

′
Y )],

where we put a prime when we need to replace A by (A0 + q2 + iq1)e
iψφ , and where

we choose the constant c0 in Bε such that (q1, q2, Y, u) = 0 cancels it.

(b) Decay rates

Let us consider the expected decay rates as x → ∞ for (q1, q2, Y, u). We have
an approximate homoclinic computed at section 9, which decays as 1/x2 for the
components (Y h0 , u

h
0). Moreover, if we make Rq1 = Rq2 = 0, and replace u by uh0

in the two first equations of (10.2), we can compute explicitly a solution tending
towards 0 at infinity, with non zero q1 and q2 functions:

q1 = A0 sin

∫ x

−∞

[
γ1(u

h
0 (τ), 0, 0, ε)− φρ0(τ)

]
dτ (10.3)

q2 = A0

{
cos

∫ x

−∞

[
γ1(u

h
0(τ), 0, 0, ε)− φρ0(τ)

]
dτ − 1

}
, (10.4)

where φ is determined by

∫ +∞

−∞

[
γ1(u

h
0 (τ), 0, 0, ε)− φρ0(τ)

]
dτ = 0. (10.5)
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The decay rate of γ1(u
h
0 (τ), 0, 0, ε) and ρ0(τ) is in 1/τ2, hence q1 decays as 1/x

while q2 decays as 1/x2. It results that we choose to work in spaces such that q1
decays as 1/x, while q2, u and Y decay as 1/x2.

We now observe, because of reversibility of (8.2) under the symmetry

(A,A, Y, u) 7→ (A,A, SY, u),

that the equations (10.2) are invariant under the symmetry Ŝ :

[q1(x), q2(x), Y (x), u(x)] 7→ [−q1(−x), q2(−x), SY (−x), u(−x)]

and that if we assume (q1, q2, Y, u) ∈ Bα1 (R)×Bα2 (R)×BαπεD,w ×B1,α
2 (R) then the

right hand side of the system (10.2) lies in Bα2 (R)×Bα3 (R)×BαπεD,w ×Bα2 (R).
These decay rates are shown below to be sufficient for our proof. We just observe

that this constitutes the big benefits of the normal form reduction made at section
7, allowing to kill all not sufficiently decaying terms, linear in Y. In addition we
observe that, since the right hand side of equation for q1 is even, we have to write
a compatibility condition for insuring the limit to 0 at both infinities [notice this
on (10.3,10.4)]. Precisely, this compatibility condition will allow to determine φ, as
in (10.5).

(c) Strategy for the resolution of the full equation

We look for a reversible homoclinic connection h = (q1, q2, Y, u) to 0 of the full
equation (10.2) under the form

h = h0,ε + h1

with

h0,ε = (0, 0, Y h0 , u
h
0 ),

h1 = (q1, q2, Z, w),

where (uh0 , Y
h
0 ) are the components of the approximate homoclinic defined in lemma

9.3 and where

h1 = (q1, q2, Z, w) = O

(
1

x
,

1

x2
,

1

x2
,

1

x2

)
as x→ ±∞.

More precisely, we look for φ ∈ R and

h1 ∈ Bα1 (R)×Bα2 (R)×BαπεD,w ×B1,α
2 (R),

which satisfies
Lφ(x)h1 = G(h1, ε, A0, φ) (10.6)

where

Lφ(x)h1 =

∣∣∣∣∣∣∣∣∣∣

dq1
dx −

[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
q2

dq2
dx +

[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
q1

Z − πε[T0w]

ρH
(
dw
dx

)
+ w + 3uh0w
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and

G = (Gq1 , Gq2 ,GZ ,Gw)

with

Gq1 = A0[γ1(u
h
0 + w, 0, 0, ε)− φρ0]+

+ q2[γ1(u
h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)] +Rq1 ,

Gq2 = −q1[γ1(u
h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)] +Rq2 ,

GZ = R′
Y ,

Gw = B′ε −
3

2
w2.

Here the reversibility comes from the invariance of the system under the symmetry

(x, q1, q2, Z, w) 7→ (−x,−q1, q2, SZ,w).

Moreover the map
(φ, q1, q2, Z, w) 7→ (Gq1 , Gq2 ,GZ ,Gw)

is analytic from a fixed ball

|φ| < M, ||q1||αR,1 + ||q2||αR,2 + ||w||1,α
R,2 + ||Z||α

D,w < δ,

of

R×Bα1 (R)×Bα2 (R)×BαπεD,w ×B1,α
2 (R)

to
Bα2 (R)×Bα3 (R)×BαπεD,w ×Bα2 (R).

For finding homoclinic connection to 0 of (10.6) we proceed in several steps:

Step 1. In subsection 10.(d) we consider the affine equation

Lφ(x)h = F.

More precisely we prove that for any antireversible F ∈ Bα
2 (R)×Bα3 (R)×BαπεD,w×

Bα2 (R) there exists a reversible solution h in Bα1 (R)×Bα2 (R)×BαπεD,w ×B1,α
2 (R) if

and only if F satisfies the solvability condition

∫ ∞

0

< r−(x),F(x) > dx = 0 (10.7)

where r− is given by
r− = (cosΓ(x),− sin Γ(x), 0, 0),

with

Γ(x) =

∫ x

0

[
γ1(u

h
0 (τ), 0, 0, ε)− φρ0(τ)

]
dτ.

In other words the range R(Lφ) of Lφ is the subset of Bα2 (R)×Bα3 (R)×BαπεD,w ×
Bα2 (R) spanned by the functions which satisfy (10.7). So, a necessary condition for
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the existence of a solution h1 of (10.6) in Bα1 (R) × Bα2 (R) × BαπεD,w × B1,α
2 (R) is

that
J(h1, φ, A0, ε) = 0,

where

J =

∫ ∞

0

< r−,G(h1, ε, A0, φ) > dx.

Step 2. For studying J and (10.7), we need precise estimates of Rq1 , Rq2 ,R′
Y ,B′ε.

They are given in subsection 10.(e).

Step 3. In subsection 10.(f), we study the solvability function J and we compute
its principal part.

Figure 9. Diagram of the modified equation where R(Lφ) is the range of Lφ; where
B0 = Bα

2 (R)×Bα
3 (R)×Bα

πεD,w×Bα
2 (R) and B1 = Bα

1 (R)×Bα
2 (R)×Bα

πεD,w×B1,α
2

(R); and

where Id− Πr− is a projection onto the range of Lφ with Πr−(G) = 2
√

π
J(G)e−x2

r−(x)

and J(G) =
∫∞
0

< r−(τ ),G(τ ) > dx

Step 4. In subsection 10.(g), we introduce the modified equation

Lφ(x)h1 = G′(h1, ε, A0, φ) (10.8)

where

G′ = G− 2√
π
Je−x

2

r−(x).

The term G′ has been designed so that it lies in the range R(Lφ) of Lφ, for every
ε, A0, φ, h1, i.e. ∫ ∞

0

< r−,G
′(h1, ε, A0, φ) > dx = 0.

Then, using the implicit function theorem, we prove that for any φ and any suffi-
ciently small |A0|, ε the system (10.8) admits a solution h1,ε,A0,φ in Bα1 (R)×Bα2 (R)×
BαπεD,w ×B1,α

2 (R).

Step 5. Finally, in subsection 10.(g), using the study of J made in 10.(f), we
prove that for 0 < α ≤ 1/2, there exist δ, δ0, ε0 such that for every 0 < ε < ε0,
δ0ε

2−α < A0 < δ, there exists φ(ε, A0) such that

J [h1,ε,A0,φ(ε,A0), φ(ε, A0), A0, ε] = 0.
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Hence, h1,ε,A0,φ(ε,A0) is a reversible solution of (10.6) in Bα1 (R)×Bα2 (R)×BαπεD,w×
B1,α

2 (R) which gives the existence of an homoclinic connection to 0 for (10.2) under
the form

h = h0,ε + h1,ε,A0,φ(ε,A0).

(d) Linearized system around the approximate homoclinic

This subsection is devoted to the study of the affine equation

Lφ(x)h = F, (10.9)

for any given F = (Fq1 , Fq2 , FZ , Fw) ∈ Bα2 (R)×Bα3 (R)×BαπεD,w ×Bα2 (R) which is
antireversible, i.e. such that Fq1 and Fw are even, Fq2 is odd, while FZ is reversible

(i.e. ŜFZ = FZ). Equation (10.9) reads

dq1
dx

= q2
[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
+ Fq1 ,

dq2
dx

= −q1
[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
+ Fq2 , (10.10)

Z = πε[T0w] + FZ ,

ρH
(
dw

dx

)
+ w + 3uh0w = Fw.

Let us first show the inversion for the two first coordinates. Let us consider a
basis of solutions of the homogeneous system in (q1, q2)

r+ = (sin Γ(x), cosΓ(x), 0, 0) ,

r− = (cosΓ(x),− sinΓ(x), 0, 0),

Γ(x) =

∫ x

0

[
γ1(u

h
0 (τ), 0, 0, ε)− φρ0(τ)

]
dτ (10.11)

then r+ is reversible, while r− is antireversible, and Γ is odd and may be also
written as

Γ(x) =

∫ x

0

γ1(u
h
0 (τ), 0, 0, ε)dτ − φρ[λ+ γ(0, 0, A2

0, ε)] arctan(x/ρ).

We show the following

Lemma 10.2. Let consider the affine system

dq1
dx

= q2
[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
+ Fq1 ,

dq2
dx

= −q1
[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
+ Fq2 ,

with Fq = (Fq1 , Fq2 ) ∈ Bα2 (R)×Bα3 (R), antireversible (Fq1 even, Fq2 odd). This sys-
tem has a unique reversible, continuously differentiable solution (q1, q2) = Fq(Fq),
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(q1 odd, q2 even) tending towards 0 at infinity, if and only if (we identify r− with
its two first components)

∫ ∞

0

< r−(x), Fq(x) > dx = 0. (10.12)

We have

Fq(Fq)(x) = −r+(x)

∫ ∞

x

< r+(τ), Fq(τ) > dτ − r−(x)

∫ ∞

x

< r−(τ), Fq(τ) > dτ,

and Fq1(Fq) ∈ Bα1 (R)×Bα2 (R), with

||Fq1(Fq)||αR,1 + ||Fq2(Fq)||αR,2 ≤ c||Fq1 ||αR,2 + ||Fq2 ||αR,3.

Proof. Variation of constants method leads to

Fq(Fq)(x) =

(
c+ +

∫ x

0

< r+(τ), Fq(τ) > dτ

)
r+(x)+

+

(
c− +

∫ x

0

< r−(τ), Fq(τ) > dτ

)
r−(x).

Reversibility of Fq(Fq) leads to c− = 0. The imposed decay towards 0 at infinity
implies the conditions

c+ = −
∫ ∞

0

< r+(τ), Fq(τ) > dτ,

c− = −
∫ ∞

0

< r−(τ), Fq(τ) > dτ.

We deduce the compatibility condition (10.12), and the explicit form of Fq(Fq).
The sufficiency of the compatibility condition follows easily. About the decay rate
at infinity, we first observe that the decay of order 1/x2 of Fq and the reversibility
of the solution, give immediately a decay rate in 1/x for Fq(Fq). It remains to
prove the decay rate in 1/x2 of the component Fq2(Fq), which is easy in using the
differential equation, since dq2/dx decays as 1/x3. Hence the lemma is proved.

It remains to invert the second part of system (10.10) with respect to (w,Z).
This is given by the following

Lemma 10.3. Let consider the affine system in BαπεD,w ×Bα2 (R)

Z = πε[T0w] + FZ ,

ρH
(
dw

dx

)
+ w + 3uh0w = Fw,

where FZ is reversible, and Fw is even. Then, there is a unique reversible solution
(Z,w) such that (FZ , Fw) 7→ (Z,w) is a bounded linear map:

BαπεD,w ×Bα2 (R) → BαπεD,w ×B1,α
2 (R)

with an estimate

||w||1,α
R,2 + ||Z||απεD,w ≤ c(||Fw ||αR,2 + ||FZ ||απεD,w).
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Proof. From the result of lemma 8.3, it is sufficient to solve the equation for w,
which is the linearized Benjamin-Ono equation. It is shown in (Amick 1994) that
if Fw ∈ Bα2 (R), then the solution w of the linearized B-O equation lies in B1,α

2 (R),
with the above estimate.

(e) Estimates of the rests

In this subsection we give estimates on Rq1 , Rq2 , R′
Y , B′ε which occur in system

(10.2). We observe that

γ1(u, εv, |A|2, ε)− γ1(0, 0, A
2
0, ε) = γ1(u, 0, 0, ε) + εO [|A0||q2|+

+|v|+ q21 + q22 + ε|u|A2
0

]
,

and that we have a ”bad” Hölder norm of eiψφ

||eiψφ ||Cα ≤ cε−α.

Now, for

|A0|+ ||q1||αR,1 + ||q2||αR,2 < δ,

||u||α
R,2 + ε||Y ||απεD,w < M,

we have from lemma 8.5

||Tu||αR,3 ≤ c||Y ||απεD,w(||u||α
R,2 + ε||Y ||απεD,w),

||T (1)
Y ||απεFε,2 ≤ cε−α(|A0|+ ||q1||αR,1 + ||q2||αR,2)||Y ||απεD,w,

||T (2)
Y ||απεFε,3 ≤ c||Y ||απεD,w(||u||α

R,2 + ε||Y ||απεD,w).

Hence it results the following estimates

||Rq1 ||αR,2 ≤ cε(|A0|+||q2||αR,2)
[
εA2

0||u||αR,2+(||q1||αR,1)2
]

+ cε1−α||Y ||απεD,w(||u||α
R,2+ε

α(|A0|+||q2||αR,2)+ε||Y ||απεD,w)

+cε||q2||αR,2(|A0|+||q2||αR,2)2,
||Rq2 ||αR,3 ≤ cε||q1||αR,1

[
|A0|||q2||αR,2+εA2

0||u||αR,2+(||q1||αR,1)2+(||q2||αR,2)2
]

+cε1−α||Y ||απεD,w(||u||α
R,2+ε

α||q1||αR,1+ε||Y ||απεD,w), (10.13)

||R′
Y ||απεD,w ≤ c

[
ε1−α(|A0|+||q1||αR,1+||q2||αR,2)+ε(||u||αR,2+ε||Y ||απεD,w)

]
||Y ||απεD,w,

||B′ε||αR,2 ≤ c
[
ε1−α(|A0|+||q1||αR,1+||q2||αR,2)+ε(||u||αR,2+ε||Y ||απεD,w)

]
||Y ||απεD,w

+c
[
(||q1||αR,1)2+||q2||αR,2(|A0|+||q2||αR,2)

]

+cε[||u||1,α
R,2+(||u||α

R,2)
2],

which comes from the estimates given at section 8 on system (8.2), and where we
observe that Rq1 , Rq2 ,R′

Y , B′ε are analytic in (q1, q2, u, Y, A0). Notice that s = ψφ(x)
implies a loss of ε−α in the Holder constant, each time q1, q2, A0 occur, except when
A appears as |A|2.
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(f ) Principal part of J

This subsection is devoted to the computation of the principal part of J . More
precisely we prove

Lemma 10.4. For every sufficiently small δ, ε, |A0|, every φ ∈ R, and every

h = (q1, q2, Z, w) ∈ Bα1 (R)×Bα2 (R)×BαπεD,w × B1,α
2 (R)

with
||q1||αR,1+||q2||αR,2+||w||1,αR,2+||Z||απεD,w ≤ δ,

J(h, φ, A0, ε) reads

J(h, φ, A0, ε) = A0 sin Γ(∞) + J ′(h, φ, A0, ε)

where

J ′ = O
{
εm + ε(||w||α

R,2 + ||Z||απεD,w)+ (10.14)

+ (||q1||αR,1 + ||q2||αR,2)[ε2 + ||w||α
R,2 + ε(||q1||αR,1)2 + ε(||q2||αR,2)2]

+|A0|[ε2 + ||w||α
R,2 + ε|A0|||q2||αR,2 + ε(||q1||αR,1)2 + ε(||q2||αR,2)2]

}
,

and (Γ(x) is given by (10.11)

Γ(∞) =

∫ ∞

0

γ1[u
h
0 (τ), 0, 0, ε]dτ − φ

ρπ

2
[λ+ γ(0, 0, A2

0, ε)].

Proof. Assume that

||q1||αR,1 + ||q2||αR,2 + ||w||1,α
R,2 + ||Z||απεD,w ≤ δ,

holds, where δ is small enough, J may be written more precisely

J =

∫ ∞

0

< r−(x), Rq(x) > dx+

∫ ∞

0

A0

[
γ1(u

h
0 , 0, 0, ε)− φρ0

]
cosΓdx+ (10.15)

+

∫ ∞

0

[(A0 + q2) cos Γ + q1 sin Γ][γ1(u
h
0 + w, 0, 0, ε)− γ1(u

h
0 , 0, 0, ε)]dx,

where we notice already that the last integral is bounded by

O[(|A0|+ ||q1||αR,1 + ||q2||αR,2)||w||αR,2].

We notice also that the second integral reads

∫ ∞

0

A0
dΓ

dx
cosΓdx = A0 sin Γ(∞).

Now, from the expression of Rq [see (10.2)], we have

∫ ∞

0

< r−(x), Rq(x) > dx = Im

(∫ ∞

0

RAe
−i(Γ+ψφ)dx

)
+

+O[ε(|A0|+ ||q1||αR,1 + ||q2||αR,2)
[
ε+ |A0|||q2||αR,2 + (||q1||αR,1)2 + (||q2||αR,2)2

]
].
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Since we look for reversible solutions, we have in the reversible system (8.2)

−RA[A(x), A(x), u(x), Y (x)] = RA[A(x), A(x), u(x), SY (x)]

= RA[A(−x), A(−x), u(−x), Y (−x)],

hence

Im

(∫ ∞

0

RAe
−i(Γ+ψφ)dx

)
=

1

2i

∫ ∞

−∞

RAe
−i(Γ+ψφ)dx.

Now we can write from (8.2)

RA = R
(0)
A +R

(1)
A ,

R
(0)
A = RA(0, 0, uh0 , Y

h
0 ),

||R(1)
A ||L1 = O[ε(||w||α

R,2 + ||Z||απεD,w)],

hence

J = A0 sin Γ(∞) + J1 + J2

with

J1 =
1

2i

∫ ∞

−∞

R
(0)
A e−i(Γ+ψφ)dx, (10.16)

J2 = O[ε(||w||α
R,2 + ||Z||απεD,w) + ||w||α

R,2(|A0|+ ||q1||αR,1 + ||q2||αR,2)]+
+O[ε(|A0|+ ||q1||αR,1 + ||q2||αR,2)

[
ε+ |A0|||q2||αR,2 + (||q1||αR,1)2 + (||q2||αR,2)2

]
].

We observe that J1 is an oscillating integral, since R
(0)
A decays at least in 1/x2,

is indefinitely differentiable with good decays of its derivatives, and Γ + ψφ =
(λε + γ10)x+ smooth function tending towards a constant at infinity. It results that

|J1| = O(εm), for any fixed m > 0

holds (this can be improved in using analyticity of R
(0)
A in a strip near real axis).

We only need m = 2 in the proof. The estimate of the lemma follows.

(g) Proof of theorem 10.1

(i) Homoclinics of the modified equation (10.8)

As already explained in subsection 10.(c), for finding homoclinic connections of
(10.6) we first study the modified equation (10.8)

Lφ(x)h1 = G′(h1, ε, A0, φ)

where

G′ = G− 2√
π
Je−x

2

r−(x) = (G′
q1 , G

′
q2 ,GZ ,Gw).

We first prove
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Proposition 10.5. For every 0 < α < 1, and every T > 0, there exist δ, ε0, c > 0
such that for every φ ∈ [−T, T ], ε ∈ (0, ε0), |A0| ≤ δ, equation (10.8) admits an
homoclinic connection h1,ε,A0,φ to 0, satisfying

h1,ε,A0,φ = (q1, q2, Z, w) ∈ Bα1 (R)×Bα2 (R)×BαπεD,w × B1,α
2 (R)

and

||q1||αR,1 + ||q2||αR,2 ≤ c(|A0|+ ε1−α),

||w||α
R,2 + ||Z||απεD,w ≤ c

[
ε+ (|A0|+ ε1−α)2

]
.

Proof. Our aim is to solve (10.8) by using the analytic implicit function theorem.
For this purpose we need estimates on (G′

q1 , G
′
q2 ,GZ ,Gw). Indeed, in the ball

||q1||αR,1 + ||q2||αR,2 + ||w||1,α
R,2 + ||Z||απεD,w ≤ δ,

and taking into account that the Hölder norm of eiψφ(x) is bounded by cε−α, we
obtain, due to (10.13) and (10.14)

||G′q ||Bα
2 (R)×Bα

3 (R) ≤ c
[
|A0|+ ε1−α + ||w||α

R,2(||q1||αR,1 + ||q2||αR,2)
]
,

||GZ ||απεD,w ≤ c
[
ε+ ε1−α(|A0|+ ||q1||αR,1 + ||q2||αR,2)

]
,

||Gw||αR,2 ≤ c
[
ε+ ε1−α(|A0|+ ||q1||αR,1 + ||q2||αR,2) + |A0|||q2||αR,2

]
+

+ c
(
||w||α

R,2 + ||q1||αR,1 + ||q2||αR,2
)2
.

We also need estimates on the derivatives of G′
q ,GZ ,Gw with respect to (q1, q2, Z, w).

The corresponding estimates are not mentioned below, since they are in the same
spirit as above, and often simpler. In all this process the differentials at the origin
are close to the invertible operators defined at lemmas 10.2 and 10.3, hence have
a bounded inverse. In fact we need a slight adaptation of the implicit function
theorem, since we fix ε small enough, but non zero here. We replace G′(h1, ε, A0, φ)
by

G′(h1, ε, A0, φ)− (1− µεα−1)G′(0, ε, 0, φ),

and consider the analytic implicit function theorem for (h1, A0, µ) near 0, observing
that εα−1G′(0, ε, 0, φ) is bounded in Bα2 (R)×Bα3 (R)×BαπεD,w×Bα2 (R). For µ = 0,

we have the trivial solution (h1, A0) = 0, while our system (10.8) corresponds to
µ = ε1−α, which lies in the domain of existence of the solution, for ε and |A0| small
enough.

We first solve the two first equations with respect to (q1, q2), using lemma 10.2
and implicit function theorem. We then obtain (q1, q2) as an analytic function of
(φ, Z, v) for δ, A0, ε small enough, and

||q1||αR,1 + ||q2||αR,2 ≤ c(|A0|+ ε1−α).

Now solving the two last equations with respect to (Z,w) in using lemma 10.3 in
the analytic implicit function theorem, we finally obtain (w,Z) analytic in φ, which
satisfies

||w||α
R,2 + ||Z||απεD,w ≤ c

[
ε+ (|A0|+ ε1−α)2

]
.
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(ii) Compatibility condition

The previously found homoclinic connections h1,ε,A0,φ of the modified equation
(10.8) are solutions of the full equation (10.6) if and only if

J(h1,ε,A0,φ, φ, A0, ε) = 0.

The study of J , made in subsection 10.(f) ensures that for every φ, α ≤ 1/2,
0 ≤ |A0| ≤ δ, ε ∈ (0, ε0), J reads

J(h1,ε,A0,φ, φ, A0, ε) = A0 sinΓ(∞) + J ′(h1,ε,A0,φ, φ, A0, ε)

with

J ′(h1,ε,A0,φ, φ, A0, ε) = O(ε2−α + ε|A0|+ ε1−α|A0|2 + |A0|3),

and

Γ(∞) =

∫ ∞

0

γ1[u
h
0(τ), 0, 0, ε]dτ − φ

ρπ

2
[λ+ γ(0, 0, A2

0, ε)].

Equation J = 0 can be solved with respect to φ for fixed values of A0 and ε,
provided that δ0ε

2−α < |A0|, ε < ε1. Indeed this allows to have an acceptable value
of sinΓ(∞) ∈ (−1, 1) giving two angles Γ(∞) modulo 2π. If | sin Γ(∞)| < 1 strictly,
an implicit function theorem argument provides two corresponding solutions for φ.

Indeed, we consider the solutions φ
(0)
j ∈ [0, π[ (or [π, 2π[ depending of the signs of

A0 and J ′) of the equation

A0 sin Γ(∞) + J ′(h1,ε,0,0, 0, 0, ε) = 0,

then a rescaling of the form ε2−α = A0ε
′, and the implicit function theorem allows

to find two solutions φj near φ
(0)
j for ε′ small enough.

However, because of the modulo 2π indeterminacy, we find infinitely many values
of the phase shift φ. For instance when |A0| >> ε2−α , they are near the values

φk =
2

ρπ[λ+ γ(0, 0, A2
0, ε)]

[∫ ∞

0

γ1[u
h
0 (τ), 0, 0, ε]dτ − kπ

]
.

More generally, we observe, that changing φk into φk+1 is equivalent to changing A0

into −A0 in the principal part of the equation. We observe also that our homoclinics
to periodic solutions are not really well defined by (10.1) since a phase shift in x
of nπε/[λ + γ(0, 0, A2

0, ε)] at +∞, and −nπε/[λ + γ(0, 0, A2
0, ε)] at −∞ in (10.1)

would lead to the same solution, with φk changed into φk+n. So, observing that a
fixed value of sinΓ(∞) gives only two solutions for Γ(∞) in an interval of length
2π, we deduce that there are only two different solutions of our problem for a given
value of A0, provided |A0| > δ0ε

2. We also observe that the two solutions for −A0

correspond to the previous one in changing the phase (n = 1 in the above phase
shift). Finally theorem 10.1 is proved.
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11. Appendix Normal Form

In this appendix, we prove lemma 7.2. The change of variables (7.8) is determined by
its property to manage all linear terms in W only depending on (A,A) (not depend-
ing on u and v) in (7.1,7.3,7.5). Indeed we need to solve with respect to µ∗ε , ν

∗
ε ,Γε

[unknown functions of (A,A)], and ∆ε(A,A) such that η∗ε{∆ε(A,A)[W ]} = 0 (η∗ε
is defined in (5.7)), the following system

µ∗ε

[
(i
λ

ε
+ iγ10 − π̃εLε)W

]
= (

iλ

ε
+ iγ10)

[
A
∂µ∗ε
∂A

(W )−A
∂µ∗ε
∂A

(W )

]
+ (11.1)

+M∗
A(µ∗ε , ν

∗
ε ,Γε)(W )−RA(A,A)[W ],

−ν∗ε [π̃εLεW ] = (
iλ

ε
+ iγ10)

[
A
∂ν∗ε
∂A

(W )−A
∂ν∗ε
∂A

(W )

]
+ (11.2)

+M∗
u(ν

∗
ε ,Γε)(W ) −Ru(A,A)[W ]− p∗0(LεΓεW ),

πεLεΓεW = Γεπ̃εLεW + (
iλ

ε
+ iγ10)

[
A
∂Γε
∂A

(W )−A
∂Γε

∂A
(W )

]
+ (11.3)

+MW (Γε)(W ) + ∆ε(A,A)[W ]−RW (A,A)[W ],

with

M∗
A(µ∗ε , ν

∗
ε ,Γε)(W ) = µ∗ε [π̃ε∆ε(A,A)](W )−RA(A,A)[ΓεW ]+

− iAγ20(|A|2)ν∗ε (W )− iAγ30(|A|2)p∗1[Γε(W )]+

− iγ′10(|A|2)[|A|2µ∗ε(W ) +A2µ∗ε(W )],

M∗
u(ν

∗
ε ,Γε)(W ) = ν∗ε [π̃ε∆ε(A,A)](W ) −Ru(A,A)[ΓεW ],

MW (Γε)(W ) = Γεπ̃ε∆ε(A,A)[W ]−RW (A,A)[ΓεW ],

where [from (7.1,7.3,7.4)]

γ10(|A|2) = γ1(0, 0, |A|2, ε) = O(|A|2),

γ20(|A|2) =
∂γ1

∂u
(0, 0, |A|2, ε) = O(1),

γ30(|A|2) =
∂γ1

∂v
(0, 0, |A|2, ε) = O(1),

RA(A,A) = DWRA(A,A, 0, 0, 0) = O(|A|),
Ru(A,A) = DWRu(A,A, 0, 0, 0) = O(|A|),
RW (A,A) = DWRW (A,A, 0, 0, 0) = O(|A|),

and it is clear that RA(A,A),Ru(A,A),RW (A,A) are analytic in their arguments,

in a ball |A| < M, with coefficients of order εp+q−1 for ApA
q
, and that they operate

linearly only on the component PW of W. In (11.3) we notice that both projections
π̃ε and πε occur, since this equation stays in πεH (⊃ π̃εH).
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Step 1. Let us first solve (11.3) with respect to Γε, and find ∆ε such that
η∗ε [∆ε(W )] = 0. Let consider the converging Taylor series in powers of A,A of
Γε(A,A), ∆ε(A,A), RW (A,A), coefficients of ApA

q
being denoted respectively by

Γpq , ∆pq , RW,pq . For solving this system, let us first consider a more basic problem,
where we look for a linear form Γ∗ such that

Γ∗π̃εLεW + (
iλ

ε
+ iγ10)

[
A
∂Γ∗

∂A
(W )−A

∂Γ∗

∂A
(W )

]
= f∗(W ) (11.4)

where we assume that

f∗ analytic in (A,A) taking values in (π̃εD)∗

and we look for

Γ∗ analytic in (A,A) taking values in (π̃εH)∗.

Remark. Notice that we incorporate γ10(|A|2) inside the equation (11.4). If we
chose to treat this term in the process of identification of powers of A,A, this would
lead to serious difficulties, related with the unboundedness of the perturbation terms
in any reasonable Banach norm of analytic functions.

For p 6= q, we can find for any Z ∈ π̃εH

Γ∗pq(Z) = f∗pq

{
[π̃εLε + (

iλ

ε
+ iγ10)(p− q)]−1Z

}

and we have (see lemma 5.3)

|Γ∗pq(Z)| ≤ c||f∗pq||(π̃εD)∗ ||Z||π̃εH

where c is independent of p, q, and where Γ∗pq is analytic in |A|2 [the inverse operator
is analytic in (λ + εγ10)]. Now, for p = q we are faced with the problem of non
invertibility of π̃εLε (see lemma 5.5), since we have to solve

Γ∗pp(π̃εLεW ) = f∗pp(W ).

We now observe that in all equations we need to solve, the linear form f ∗ can be
extended to a space larger than π̃εD in the sense that the components α1, β1 may
grow as y→ −∞. This is mainly due to the property of RA,Ru,RW which do not
depend on 3rd and 4th components of their argument.

Let us introduce the following Banach space

D̃ = {U = (β10, β21, α1, β1, α2, β2)
t,

(α′1, β
′
1) ∈ [C0

1 (R−)]2, (α2, β2) ∈ [C1(0, 1)]2,

β10 = β1|y=0, β21 = β2|y=1, α10 = α20},

with the norm
||U ||

D̃
= ||α′1||1,∞ + ||β′1||1,∞ + ||PU ||DP .

We observe that α1 and β1 may grow as y→ −∞, like | ln |y||.
Now, we can prove the following
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Lemma 11.1. For any given linear form f ∗ analytic in (A,A) for |A| < δ, taking

values in (π̃εD̃)∗, there exists δ′ > 0, δ′ ≤ δ such that equation (11.4) has a solution
Γ∗, analytic in (A,A) for |A| < δ′, and taking its values in (π̃εH)∗, denoted by

Γ∗ = Q(A,A)f∗

and we have

||Q(A,A)f∗||(π̃εH)∗ ≤ c||f∗||(π̃εD̃)∗ .

Notice that in this lemma there is no need to have uniqueness of the solution
Γ∗; in fact this solution is indeed unique, but this needs a little more work. Before
starting the proof of this lemma, let us examine the computation of the resolvent,
made at section 5.(c), and show the following

Lemma 11.2. The operator π̃εLε + (ik/ε)I which acts from π̃εD̃ onto π̃εH has a
bounded inverse for |k| > 2ε, which satisfies

||(π̃εLε + (ik/ε)I)
−1||L(π̃εH,π̃εD̃) ≤ c,

||P(π̃εLε + (ik/ε)I)−1||L(π̃εH,π̃εD) ≤ cε,

where c is independent of k and ε.

Proof : this lemma follows directly from lemma 5.3, where the operator π̃ε does not
perturb the computation, more than when we obtained lemma 5.3 with πε. Notice
that the integrals in the expression of the linear form ζ∗ε are all convergent, which

allows to define the space π̃εD̃. The estimate follows from the continuous linear
embedding

D ↪→D̃.

Now a nice property is that π̃εLε is invertible in the above space! This is the
following

Lemma 11.3. The operator π̃εLεwhich acts from π̃εD̃ onto π̃εH has a bounded

inverse (˜̃πεLε)−1, which satisfies

||(˜̃πεLε)−1||L(π̃εH,π̃εD̃) ≤ c,

||P(˜̃πεLε)−1||L(π̃εH,π̃εD) ≤ c.

Proof. Let us consider the linear equation

π̃εLεW = Z ∈ π̃εH.
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For Z = (a, b, f1, g1, f2, g2)
t given in π̃εH, this equation determines a unique W =

(0, 0, α1, β1, α2, β2) ∈ π̃εD̃ of the form

α1 =

∫ 0

y

[g1(τ) − lim g1]dτ + ρ̃[ξ∗ε (Z)− lim g1]+

+ ε

(∫ 1

0

g2(τ)dτ − b/λ

)
,

β1 = −
∫ 0

y

f1(τ)dτ,

α2 = ε

(∫ 1

y

g2(τ)dτ − b/λ

)
+ (ρ̃− y)[ξ∗ε (Z)− lim g1],

β2 = −ε
∫ 1

y

f2(τ)dτ.

ThisW is denoted (˜̃πεLε)−1Z and is such that β10 = 0, p∗0(W ) = p∗1(W ) = ζ∗ε (W ) =

ζ
∗

ε(W ) = 0, so it is clear that W ∈ π̃εD̃. We observe that PW ∈ π̃εD, and the
estimates of the lemma are straightforward.

Proof of lemma 11.1. Coming back to (11.4), we now assume the linear form

f∗ ∈ (π̃εD̃)∗. Then the solution Γ∗ may be explicitly written, for any Z ∈ π̃εH, as

Γ∗(Z) =
∑

p6=q

f∗pq

{
[π̃εLε + (

iλ

ε
+ iγ10)(p− q)]−1Z

}
+

+
∑

p

f∗pp

{
(˜̃πεLε)−1Z

}
,

which is denoted by

Γ∗ = Q(A,A)f∗

and (A,A) → Q(A,A)f∗ is analytic for |A| < δ′, for some δ′ ≤ δ. Moreover, we
have

||Q(A,A)f∗||(π̃εH)∗ ≤ c||f∗||(π̃εD̃)∗ .

End of step 1. We now come to equation (11.3), which is solved first, since we
observe that it is uncoupled from equations for µ∗ε , and ν∗ε . Let us introduce ηε such
that

ηε ∈ πεEε, η∗ε (ηε) = 1, ||ηε||Eε
= O(1), ||Lεηε||Fε

= O(1/ε), η∗ε (πεLεηε) = 0.

Indeed, we can take

ηε = (β10, 0, 0, β1, 0, β2)
t

with

β1 = b1e
λy

2ε , β2 = b2(y − 1),
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and ηε ∈ πεEε as soon as

b1
3
− ρb2

λ
(2λ+ 1− eλ) = 0,

and

||ηε||Eε
= (2 + λ/2)|b1|+ 2|b2|,

||Lεηε||Fε
=

1

ε

(
|b2|+

λ

2
(1 + λ/2)|b1|

)
.

The condition η∗ε (πεLεηε) = 0 is satisfied, since

πεLεηε = Lεηε, and η∗ε (Lεηε) = 0,

and the condition η∗ε (ηε) = 1 is satisfied for

2

λ
b1 −

1

2
b2 = 1.

Solving the two equations for b1 and b2 then gives a suitable ηε (if ρ and λ are
such that this system cannot be solved, then we might choose another ηε with
β2 = b′2(y − 1)2).

Now, we choose Γε of the form

Γε(W ) = ηεΓ
∗
ε(W ),

where we look for Γ∗ε ∈ (π̃εH)∗. Then (11.3) reads (we omit the variable A)

Γ∗ε = Q
{
χ∗ε(RW [·])− Γ∗ε(π̃ε∆ε[·]) + η∗ε (RW [ηε])Γ

∗
ε [·]
}
, (11.5)

∆ε[W ] = (πεLεηε)Γ∗εW + {RW [W ]− η∗ε (RW [W ])ηε}+
+
{
RW [ηε]Γ

∗
ε(W )− η∗ε (RW [ηε])Γ

∗
ε(W )ηε

}
,

where we may replace ∆ε[·] by its expression in the first equation, which is then
polynomial of degree two in Γ∗ε . We indeed observe that η∗ε (∆ε[·]) = 0 as required.
We can solve (11.5) in using the implicit function theorem in the Banach space of
analytic functions of (A,A) in the ball of radius δ′ ≤ δ, taking values in (π̃εH)∗

(with the sup norm with respect to A). Notice that the extension of the operator
to space π̃εH allows to have an equation above, which is well posed in the required
spaces. Separating now (for obtaining better estimates) the sum with p 6= q, and

the sum for p = q, we decompose RW [·] = R′
W [·] +R(0)

W [·] which satisfies, because

of the independence of RW [·] into the 3rd and 4th components of its argument

||Qχ∗ε(R′
W [·])||(π̃εH)∗ = O(ε|A|),

||Qχ∗ε(R(0)
W [·])||(π̃εH)∗ = O(ε|A|2),

as it comes from lemma 11.2 (where we win a factor ε).
This leads to Γ∗ε ∈ (π̃εH)∗ for |A| < δ′, δ′ being small enough, independent of ε,

||Γ∗ε(A,A)||(π̃εH)∗ ≤ cε|A|,
||∆ε(A,A)[·]||L(π̃εD̃,πεFε)

≤ c|A|.
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Important remark. Notice that this solves (11.3) also for Γ∗ε(A,A) in (π̃εH)∗ and
∆ε(A,A)[·] in L(π̃εD, πεFε), since we showed that the definitions of these operators
are extended to larger spaces!

Step 2. Now we can invert (11.2), after replacing Γε by the result given by step 1
above. This equation may be written in (π̃εH)∗ as

ν∗ε = Q{Ru[·] + p∗0(Lεηε)Γ∗ε [·] +Ru[ηε]Γ
∗
ε [·]− ν∗ε (π̃ε∆ε[·])} ,

which is linear in ν∗ε . It is clear that for |A| < δ′′ (≤ δ′) small enough, we obtain a
unique ν∗ε (A,A) ∈ (π̃εH)∗, analytic in (A,A), such that

||ν∗ε (A,A)||(π̃εH)∗ ≤ c|A|.

Step 3. We now invert (11.1) after replacing ν∗ε and Γε by their expressions, ob-
tained above at steps 1 and 2. We define an operator Q1 of the same type as Q in
solving

Γ∗1

[
π̃εLε − (

iλ

ε
+ iγ10)

]
W + (

iλ

ε
+ iγ10)

[
A
∂Γ∗1
∂A

(W )−A
∂Γ∗1
∂A

(W )

]
= f∗(W )

for any f∗ ∈ (π̃εD̃)∗, by

Γ∗1 = Q1(A,A)f∗ ∈ (π̃εH)∗,

analytic in (A,A), and satisfying

||Q1(A,A)f∗||(π̃εH)∗ ≤ c||f∗||(π̃εD̃)∗ .

Equation (11.1) may be written as follows (we omit A)

µ∗ε = Q1 {RA[·] +RA[ηε]Γ
∗
ε [·] + iAγ20ν

∗
ε [·] + iAγ30p

∗
1(ηε)Γ

∗
ε [·]}+

+Q1{iγ′10
(
|A|2µ∗ε [·] +A2µ∗ε [·]

)
− µ∗ε(π̃ε∆ε[·])},

which is linear in µ∗ε . It is clear that for |A| < δ′′′ (≤ δ′′) small enough, we obtain
a unique µ∗ε(A,A) ∈ (π̃εH)∗, analytic in (A,A). Now we have

||Q1RA[·]||(π̃εH)∗ = O(|A|)

hence the estimate
||µ∗ε(A,A)||(π̃εH)∗ ≤ c|A|

holds. This ends the resolution of system (11.1,11.2,11.3).
For ending the proof of lemma 7.2, we just need to check the new estimates of

the new rests RA, Ru, RW , which is straightforward.

12. Appendix A

In this appendix, we prove a technical lemma (lemma 12.1) which is useful here and
in the next appendices, We also give a corollary 12.2 useful at various places, in
particular for lemma 8.3 and we provide the rest of the proof of lemma 8.3 (corollary
12.3).
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Lemma 12.1. (a) Assume K is a real function which is C1 on R\{0}, such that
i) |K(x)| ≤ C0/|x|, |K ′(x)| ≤ C0/|x|2 for |x| ≤ 1,

ii) |K(x)| ≤ C1/|x|2 for |x| ≥ 1, and p.v.
∫ 1

−1K(x)dx <∞.
Then, the linear map K defined by

f 7→ Kf = p.v.

∫

R

K(s)f(· − s)ds

is bounded from Bα2 (R) into itself.
(b) Let E be a Banach space and L(E) be the space of bounded linear operators

in E. Assume that K : R\{0} → L(E) is C1 such that
i) ||K(x)||L(E) ≤ C0/|x|, ||K ′(x)||L(E) ≤ C0/|x|2 for |x| ≤ 1,

ii) ||K(x)||L(E) ≤ C1/|x|2 for |x| ≥ 1, and p.v.
∫ 1

−1K(x)dx ∈ L(E).
Then, the linear map K defined by

f 7→ Kf = p.v.

∫

R

K(s)f(· − s)ds

is bounded from Bα2 (E) into itself.

Proof. We write

Kf(x) =

(∫ −1

−∞

+p.v.

∫ 1

−1

+

∫ ∞

1

)
K(s)f(x− s)ds = I−1 + I0 + I1.

First consider I−1 and I1. Using the estimate
∫

R

1 + x2

(1 + t2)[1 + (x− t)2]
dt < 2π,

we already see that there exists c > 0 such that I1 and I−1 ∈ Bα2 (R) and

||I−1 + I1||αR,2 ≤ c||f ||α
R,2.

We consider now I0. We can write

I0(x) =

∫ 1

−1

K(s) [f(x− s)− f(x)] ds+ f(x)

(
p.v.

∫ 1

−1

K(s)ds

)
,

hence

|I0(x)| ≤ C0||f ||αR,2
∫ 1

−1

(
1

(1 + x2)|s|1−α +
c

1 + x2

)
ds

≤ C

1 + x2
||f ||α

R,2.

Now, for the Hölder estimate, we have, for δ small enough

Ĩ0 = I0(x+ δ)− I0(x) = p.v.

∫ 1

−1

K(s) [f(x+ δ − s)− f(x− s)] ds

= p.v.

∫ 1

−1

[K(s+ δ)−K(s)]f(x− s)ds+

+

(∫ 1−δ

1

+

∫ −1

−1−δ

)
K(s+ δ)f(x − s)ds

= ĨI0 + ĨI00.
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The estimate for ĨI00 is straightforward:

|ĨI00| ≤
c|δ|

1 + x2
||f ||α

R,2.

Now, we notice that we may rewrite ĨI0 as (δ > 0)

ĨI0 =

∫ 1

−1

K(s+ δ)[f(x− s)− f(x+ δ)]ds− I0(x)+

+ p.v.

∫ 1

−1

K(s+ δ)f(x+ δ)ds

=

(∫ −2δ

−1

+

∫ δ

−2δ

+

∫ 1

δ

)
K(s+ δ)[f(x− s)− f(x+ δ)]ds+

−
(∫ −2δ

−1

+

∫ δ

−2δ

+

∫ 1

δ

)
K(s)[f(x− s)− f(x)]ds+

+ p.v.

∫ 1

−1

K(s+ δ)f(x+ δ)ds− p.v.

∫ 1

−1

K(s)f(x)ds.

We first see that

p.v.

∫ 1

−1

K(s+ δ)f(x+ δ)ds− p.v.

∫ 1

−1

K(s)f(x)ds

= [f(x+ δ)− f(x)]

(
p.v.

∫ 1

−1

K(s)ds

)
+ f(x+ δ)

(∫ −1

−1+δ

+

∫ 1+δ

1

)
K(s)ds,

is bounded by
c|δ|α

1 + x2
||f ||α

R,2.

Now consider

ĨI1 =

∫ δ

−2δ

K(s+ δ)[f(x− s)− f(x+ δ)]ds,

then we have

|ĨI1| ≤
c||f ||α

R,2

1 + x2

∫ δ

−2δ

|s+ δ|α
|s+ δ| ds = cα−1(1 + 2α)

δα||f ||α
R,2

1 + x2
,

and a similar estimate holds for
∫ δ

−2δ

K(s)[f(x− s)− f(x)]ds.

Finally, the rest of ĨI0 can be written as

ĨI2 =

(∫ −2δ

−1

+

∫ 1

δ

)
[K(s+ δ)−K(s)] [f(x− s)− f(x)] ds

+

(∫ −2δ

−1

+

∫ 1

δ

)
K(s+ δ) [f(x)− f(x+ δ)] ds

= ĨI3 + ĨI4,
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where the last integral ĨI4 may be estimated in using the fact that, for δ small
enough ∣∣∣∣∣

(∫ −δ

−1+δ

+

∫ 1+δ

2δ

)
K(s)ds− p.v.

∫ 1

−1

K(s)ds

∣∣∣∣∣ ≤ c,

since |K(s)| ≤ C0|s|−1 for |s| ≤ 1; hence

|ĨI4| ≤ c
δα||f ||α

R,2

1 + x2
.

Now consider

ĨI5 =

∫ −2δ

−1

[K(s+ δ)−K(s)] [f(x− s)− f(x)] ds,

and use the assumption on K ′(x) giving (δ > 0)

|K(s+ δ)−K(s)| ≤ C0δ|s+ δ|−2,

for s ∈ (−1,−2δ), then ĨI5 satisfies

|ĨI5| ≤ c
δ||f ||α

R,2

1 + x2

∫ −2δ

−1

|s|α
|s+ δ|2 ds

≤ 2αc
δ||f ||α

R,2

1 + x2

∫ 1−δ

δ

sα + δα

s2
ds

≤ c′
δα||f ||α

R,2

1 + x2
,

and the same holds for the part
∫ 1

δ of ĨI2. All these estimates, for |δ| small enough
lead to the required property in the lemma.

Part (b) of the lemma may be proved in the same way.

Corollary 12.2. Let u ∈ B1,α
R,2 , then H(u′) ∈ Bα

R,2 and

||H(u′)||α
R,2 ≤ c||u||1,α

R,2.

Proof. We can write

H(u′) = p.v.
1

π

∫

R

K(s)u′(x− s)ds

with K(s) = 1/s. We introduce φ ∈ C∞(R) such that φ(s) = 1 for |s| ≤ 1, and
φ(s) = 0 for |s| ≥ 2, then we have

H(u′) = p.v.
1

π

∫

R

φ(s)K(s)u′(x − s)ds+

+
1

π

∫

R

([1− φ(s)]K(s))′s u(x− s)ds.

We now observe that both φK and ([1− φ(s)]K(s))′s satisfy the hypothesis on the
kernel K in the above lemma, hence the result of the corollary follows.
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Corollary 12.3. The functions α1 and β1 defined in lemma 8.3, satisfy

||α1||B−w ≤ c||u′0||αR,2,
||β1||B−w ≤ c||u0||1,αR,2.

Moreover β1(x, ·) is integrable in y on (−∞, 0).

Proof. First consider

I(x, y) =

∫

R

u′0(s)
y

(x− s)2 + y2
ds,

and, use the identity

∫

R

ds

(1 + s2)[(x− s)2 + y2]
=

π(1 + |y|)
|y|[(x2 + (1 + |y|)2] . (12.1)

It results that

|I(x, y)| ≤ π(1 + |y|)
x2 + (1 + |y|)2 ||u

′
0||αR,2,

hence

sup
x∈R,y<0

1 + x2 + y2

1 + |y| |I(x, y)| ≤ π||u′0||αR,2.

It remains to proceed similarly for the Hölder estimate

I(x + δ, y)− I(x, y) =

∫

R

[u′0(s+ δ)− u′0(s)]
y

(x − s)2 + y2
ds

in using

|u′0(s+ δ)− u′0(s)| ≤ ||u′0||αR,2
δα

1 + s2
.

We finally obtain the desired result for α1(x, y) = − ρ̃
π I(x, y)

||α1||B−w ≤ c||u′0||αR,2.

For β1 we first observe that

β1 =
∂

∂y

[
ρ̃

2π
u0 ∗

∂

∂y
ln(x2 + y2)

]

= − ∂

∂x

[
ρ̃

2π
u0 ∗

∂

∂x
ln(x2 + y2)

]

= − ρ̃
π
J(x, y)

holds, with

J(x, y) =

∫

R

u′0(x− s)
s

s2 + y2
ds

=

∫

R

u0(x− s)

(
s

s2 + y2

)′

s

ds.
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Since ∣∣∣∣∣

(
s

s2 + y2

)′

s

∣∣∣∣∣ ≤
1

s2 + y2
,

and in using the above method, we already have the required estimate for |y| ≥ 1,
i.e. more precisely

1 + x2 + y2

1 + |y|
(
|J(x, y)|+ δ−α|J(x+ δ, y)− J(x, y)|

)
≤ c

|y| ||u0||αR,2.

Now, for |y| ≤ 1, we can write

J(x, y) =

(∫ −1

−∞

+

∫ ∞

1

)
u0(x− s)

(
s[1− φ(s)]

s2 + y2

)′

s

ds+

+

∫ 2

−2

u′0(x− s)
sφ(s)

s2 + y2
ds

and the kernels
(
s[1−φ(s)]
s2+y2

)′
s

and sφ(s)
s2+y2 satisfy the conditions of the lemma above,

uniformly in |y| ≤ 1, hence

||J(·, y)||α
R,2 ≤ c||u0||1,αR,2,

where c is independent of y such that |y| ≤ 1. This estimate with the preceding one
ends the proof of

||β1||B−w ≤ c||u0||1,αR,2.

Moreover we observe that β1(x, y) is integrable in y on (−∞, 0), which may be
used for justifying the convergence of integrals in the Bernoulli first integral.

13. Appendix Resolvent ∞
In this appendix we prove estimates (8.18) and (8.17).

First, let us introduce some notations. We denote by a(x) a function of x ∈ R,
f1(x, y) a function with x ∈ R, y ∈ (−∞, 0], f2(x, y) a function with x ∈ R, y ∈
[0, 1]. For proving (8.18) and (8.17) we work on the Fourier transform (in x) of
(α1(x, y), β1(x, y), α2(x, y), β2(x, y)) given by the formulas of subsections 5.(a) and

5.(b). These formulas give the components of (ikI− Lε)−1V̂ , and here we need to
take

V̂ = εϕ1T̂Y ,

where

TY ∈ Bα2 (πεFε)η∗ +Bα3 (πεFε),

and where functions a, f1, f2 are typical components of V̂ (which cancel for k near

0). What we denote by ϕ1S
(1)
u (T̂Y ) is the component β21, i.e. β2|y=1, and we have

by construction

(ikI−Lε)−1εϕ1T̂Y = ϕ1S
(1)
u (T̂Y )ξ0 + εϕ1S

(1)
Y (T̂Y ).
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Now looking at formulas of section 5.(a) giving α1 and β1 we claim that they are
sums of typical terms as

K1,0(k; ε)â = εA(εk)ekyâ,

K1,10(k, y; ε)f̂1 =

∫ 0

−∞

sgn(y − τ)f̂1(k, τ)e
−|k||y−τ |dτ,

K1,11(k, y; ε)f̂1 =

∫ 0

−∞

sgn(k)f̂1(k, τ)e
−|k||y−τ |dτ,

K1,12(k, y; ε)f̂1 =

∫ 0

−∞

f̂1(k, τ)e
−|k||y+τ |dτ,

K1,13(k, y; ε)f̂1 =

∫ 0

−∞

sgn(k)f̂1(k, τ)e
−|k||y+τ |dτ,

K1,14(k, y; ε)f̂1 = εkA(εk)

∫ 0

−∞

f̂1(k, τ)e
−|k||y+τ |dτ,

K1,2(k, y; ε)f̂2 = εe|k|y
∫ 1

0

B(εk, τ)f̂2(k, τ)dτ,

where A and B are analytic functions, except at 0 for the first argument lying in
a sector of the complex plane centered on the real axis, and of angle O(1), either

even or odd and such that for |k̃| large we have the estimates

A(k̃) =
c

k̃
+A0(k̃),

B(k̃, τ) = c̃1e
−c1(τ)k̃ +

c̃2

k̃
e−c2(τ)k̃ +B0(k̃, τ),

with c1(·) and c2(·) ≥ 0 linear functions of their argument, and

|A0|+ |B0| ≤ c|k̃|−2, uniformly in τ ∈ (0, 1).

We can also see for α2 and β2 that they are sums of typical terms as

K2,0(εk, y; ε)â = εE(εk, y)â,

K2,1(k, y; ε)f̂1 = C(εk, y)

∫ 0

−∞

f̂1(k, τ)e
|k|τdτ,

K2,20(εk, y; ε)f̂2 = ε

∫ 1

0

D0(εk, y − τ ; ε)f̂2(k, τ)dτ,

K2,21(εk, y; ε)f̂2 = ε

∫ 1

0

D1(εk, y, τ ; ε)f̂2(k, τ)dτ,

where C,D and E are analytic in k̃ = εk except at 0 for the first argument lying in
a sector of the complex plane centered on the real axis, and of angle O(1), either
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even or odd, and satisfy the estimates for |k̃| large

E(k̃, y) =
c

k̃
e−c0(y)|k̃| +E0(k̃, y),

C(k̃, y) = c̃1e
−c1(y)|k̃| +

c̃2

k̃
e−c2(y)|k̃| + C0(k̃, y),

D0(k̃, y − τ ; ε) = ce−|y−τ ||k̃| +D00(k̃, y − τ ; ε),

D1(k̃, y, τ ; ε) = c̃1e
−|k̃|c1(y+τ) +

c̃2

k̃
e−|k̃|c2(y+τ) +D10(k̃, y, τ ; ε),

where c, c̃j are generic constants, and c0(·), c1(·), c2(·) ≥ 0 are linear functions of
their argument, and

|E0|+ |C0|+ |D00|+ |D10| ≤ c|k̃|−2, (13.1)

|∂yE0|+ |∂yC0|+ |∂yD00|+ |∂yD10| ≤ c|k̃|−2, (13.2)

holds uniformly in (y, τ) ∈ (0, 1)2. We should notice in these estimates that we
took account of the elimination of the poles at εk = ±λ, thanks to the projection
πε.

Let us denote by

K
(1)
i,j f̂ = ϕ1Ki,j f̂

L(1)
i,j f = F−1[K

(1)
i,j f̂ ] = K(1)

i,j ∗ f

where ∗ means convolution in x and K(1)
i,j = F−1K

(1)
i,j , then we have the following

lemma

Lemma 13.1. For any given a ∈ Bα2 (R), f1 ∈ Bα2 (C0,exp
ε ), and f2 ∈ B+

w , the
following holds

(i) L(1)
1,0a ∈ B−

w and ||L(1)
1,0a||B−w ≤ cε||a||α

R,2,

(ii) L(1)
1,jf1 ∈ B−

w and ||L(1)
1,jf1||B−w ≤ cε||f1||Bα

2 (C0,exp
ε ), j = 10, 11, 12, 13, 14,

(iii) L(1)
1,2f2 ∈ B−

w and ||L(1)
1,2f2||B−w ≤ cε||f2||B+

w
,

(iv) L(1)
2,0a ∈ B1,+

w and ||L(1)
2,0a||B+

w
+ || ∂∂yL

(1)
2,0a||B+

w
≤ cε||a||α

R,2,

(v) L(1)
2,1f1 ∈ B1,+

w and ||L(1)
2,1f1||B+

w
+ || ∂∂yL

(1)
2,1f1||B+

w
≤ cε||f1||Bα

2 (C0,exp
ε ),

(vi) L(1)
2,jf2 ∈ B1,+

w and ||L(1)
2,jf2||B+

w
+ || ∂∂yL

(1)
2,jf2||B+

w
≤ cε||f2||B+

w
, j = 20, 21.

Proof of estimates (8.17), (8.18). This lemma, for V̂ = εϕ1T̂Y , gives directly the
estimate (8.17), by construction of

T21(TY ) = F−1
[
ϕ1S

(1)
Y (T̂Y )

]
.

Moreover, we have the following estimate in Bα
2 (R) of F−1

[
ϕ1S

(1)
u (T̂Y )

]
= β21 :

||F−1
[
ϕ1S

(1)
u (T̂Y )

]
||α

R,2 ≤ cε2(||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3)
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which, with the relationship

ikβ̂2 + ε−1α̂′2 = ĝ2,

leads to

||(d/dx)F−1
[
ϕ1S

(1)
u (T̂Y )

]
||α

R,2 ≤ ε−1|| ∂
∂y
F−1α̂2|y=1||αR,2 + ||g21||αR,2

≤ cε(||T (1)
Y ||απεFε,2 + ||T (2)

Y ||απεFε,3).

Hence the estimate (8.18) holds.

Proof of lemma 13.1. We only prove the lemma for L(1)
1,10,L

(1)
2,0,L

(1)
2,20. The rest of

the proof would be similar.

Step 1. Let first consider L(1)
1,10f1, and introduce, for y − τ 6= 0

I(x, y − τ) =

∫

R

sgn(y − τ)ϕ1(εk)e
ixk−|k||y−τ |dk.

Then we have

(
L(1)

1,10f1

)
(x, y) =

1

2π

∫ 0

−∞

∫

R

I(x− s, y − τ)f1(s, τ)dsdτ.

We can work on I and obtain first (since ϕ′1 = 0 outside (δ/2ε, δ/ε))

I(x, y − τ) = −2 Re

(
ε

ix− |y − τ |

∫ δ/ε

δ/2ε

sgn(y − τ)ϕ′1(εk)e
ixk−k|y−τ |dk

)
,

which (after several integrations by parts for the second and last estimates), leads
to

|I(x, y − τ)| ≤ c

(x2 + |y − τ |2)1/2
e−(δ/2ε)|y−τ |,

|I(x, y − τ)| ≤ cεn

|x|n+1
e−(δ/2ε)|y−τ |,

|I ′x(x, y − τ)| ≤ c

(x2 + |y − τ |2)e
−(δ/2ε)|y−τ | ≤ c

x2
e−(δ/2ε)|y−τ |,

where c only depends on n ≥ 0. Moreover, we have

∫ 1

−1

I(x, y − τ)dx = e−(δ/2ε)|y−τ |

∫ ∞

δ/2ε

4
sin k

k
sgn(y − τ)ϕ1(εk)e

−[k−(δ/2ε)]|y−τ |dk,

hence

|
∫ 1

−1

I(x, y − τ)dx| ≤ ce−(δ/2ε)|y−τ |

holds. We can then apply lemma 12.1 for any fixed τ, and obtain

∥∥∥∥
∫

R

I(x− s, y − τ)f1(s, τ)ds

∥∥∥∥
α

R,2

≤ ce−(δ/2ε)|y−τ |||f1(·, τ)||αR,2.
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Let us choose δ = λ, then we have the identity

∫ 0

−∞

e−(λ/2ε)|y−τ |e−(λ/2ε)|τ |dτ =
2ε

λ

(
2e−(λ/2ε)|y| − e−2(λ/2ε)|y|

)

≤ cεe−(λ/2ε)|y|,

and thanks to the inequality (valid for ε < eλ/2)

(1 + x2)−1e−(λ/2ε)|y| ≤ 1 + |y|
1 + x2 + y2

we can deduce the required estimate in B−
w :

∥∥∥L(1)
1,10f1

∥∥∥
B−w

≤ cε||f1||Bα
2 (C0,exp

ε ).

Step 2. Let consider now L(1)
2,0 and introduce

K(1)
2,0(x, y) =

1

2π

∫

R

eikxεE(εk, y)ϕ1(εk)dk,

such that (
L(1)

2,0a
)

(x, y) =

∫

R

K(1)
2,0(x− s, y)a(s)ds.

We intend to use the lemma 12.1 again, uniformly in y. Splitting the kernel

K(1)
2,0(x, y) = K(1)+

2,0 (x, y) +K(1)−
2,0 (x, y)

in separating the integral on R+ and R−, one integration by parts leads to (ϕ1(εk) =
0 for |k| < δ/2ε)

K(1)+
2,0 (x, y) = − 1

2π

∫

R+

ε

ix− εc0(y)
e[ixk−εc0(y)|k|]

( c
εk
ϕ1(εk)

)′
k
dk+

− 1

2π

∫

R+

ε

ix
eikx (E0(εk, y)ϕ1(εk))

′
k dk,

which gives the estimate

|K(1)
2,0(x, y)| ≤ c

ε

|x| , uniformly in y,

and a second integration by parts gives

|K(1)
2,0(x, y)| ≤ c

ε2

|x|2 , uniformly in y.

We can also write

∫ 1

−1

K(1)
2,0(x, y)dx =

1

π

∫

R

sin k

k
εE(εk, y)ϕ1(εk)dk = O(ε)
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where the integral is absolutely convergent. Now, after one integration by parts for
half of the terms, we have

∂

∂x
K(1)+

2,0 (x, y) =
i

2π

∫

R+

ε

[ix− εc0(y)]2
e[ix−εc0(y)]k

( c

εk
ϕ1(εk)

)′
k
dk+

+
i

2π

∫

R+

εc

[ix− εc0(y)]2
e[ix−εc0(y)]k

(
ϕ′1(εk)−

ϕ1(εk)

εk

)′

k

dk+

+
1

2π

∫

R+

ε

ix2
eikx (E0(εk, y)ϕ1(εk))

′
k dk+

+
1

2π

∫

R+

ε

ix2
eikx

[
k (E0(εk, y)ϕ1(εk))

′
k

]′
k
dk

and a similar formula holds for ∂
∂xK

(1)−
2,0 (x, y). Since ∂2

∂k̃2
E0(k̃, y) = O(1/k̃4) uni-

formly in y (thanks to analyticity in k̃, to the uniformity of (13.1), and to the
Cauchy formula), all terms give the estimate

| ∂
∂x
K(1)

2,0(x, y)| ≤ c
ε

|x|2 , uniformly in y.

Then using lemma 12.1, we have directly

||L(1)
2,0a||B+

w
≤ cε||a||α

R,2.

We proceed in the same way with

∂

∂y
K(1)+

2,0 (x, y) = − 1

2π

∫

R+

εcc′0
ix− εc0(y)

e[ix−εc0(y)]kεϕ′1(εk)dk+

− 1

2π

∫

R

ε

ix
eikx (∂yE0(εk, y)ϕ1(εk))

′
k dk,

where we observe that c′0 is constant, and we obtain easily, uniformly in y :

| ∂
∂y
K(1)

2,0(x, y)| ≤ c
ε

|x| ,

| ∂
∂y
K(1)

2,0(x, y)| ≤ c
ε2

|x|2 ,
∫ 1

−1

∂

∂y
K(1)

2,0(x, y)dx = O(ε),

∣∣∣∣
∂2

∂x∂y
K(1)

2,0(x, y)

∣∣∣∣ ≤ c
ε

|x|2 .

By lemma 12.1, it then results that

|| ∂
∂y
L(1)

2,0a||B+
w
≤ cε||a||α

R,2,

hence this part of the lemma is proved.
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Step 3. Let consider now L(1)
2,20 and introduce

K(1)
2,20(x, y) =

1

2π

∫

R

eikxεD0(εk, y)ϕ1(εk)dk,

such that

(
L(1)

2,20f2

)
(x, y) =

∫

R

∫ 1

0

K(1)
2,20(x − s, y − τ)f2(s, τ)dτds.

We intend to use the lemma 12.1 again, uniformly in y. We notice that we have

K(1)
2,20(x, y − τ) =

1

2π

∫

R

εceixk−ε|y−τ ||k|ϕ1(εk)dk+

+
1

2π

∫

R

eikxεD00(εk, y − τ)ϕ1(εk)dk,

hence the second integral may be treated exactly as above with the integral in E0.
Let us split the first integral on R+ and R− :

K(1)
2,201(x, y − τ) = K(1)+

2,201(x, y − τ) +K(1)−
2,201(x, y − τ),

K(1)−
2,201(x, y − τ) = K(1)+

2,201(−x, y − τ),

it then remains to study

K(1)+
2,201(x, y − τ) =

1

2π

∫ ∞

δ/2ε

εce(ix−ε|y−τ |)kϕ1(εk)dk

= − 1

2π

∫ δ/ε

δ/2ε

εc

ix− ε|y − τ |e
(ix−ε|y−τ |)kεϕ′1(εk)dk,

where these integrals are convergent for |y − τ | 6= 0. It is then clear that we have,
with an integration by parts for the second estimate

|K(1)+
2,201(x, y − τ)| ≤ c

ε

|x| ,

|K(1)+
2,201(x, y − τ)| ≤ c

ε2

|x|2 ,

and
∫ 1

−1

K(1)+
2,201(x, y − τ)dx =

εc

π

∫ ∞

δ/2ε

sin k

k
e−ε|y−τ |kϕ1(εk)dk

=
εc

2π

∫ ∞

δ/2ε

Re

(
ieik−ε|y−τ |k

i− ε|y − τ |

)(
ϕ1(εk)

k

)′

k

dk = O(ε2)

uniformly in |y − τ | ∈ (0, 1). In addition we have

∂

∂x
K(1)+

2,201(x, y − τ) =
i

2π

∫ δ/ε

δ/2ε

εc

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)kεϕ′1(εk)dk+

+
iεc

2π

∫ δ/ε

δ/2ε

1

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)k [εkϕ′1(εk)]

′
k dk
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hence ∣∣∣∣
∂

∂x
K(1)+

2,201(x, y − τ)

∣∣∣∣ ≤ c
ε

|x|2
holds uniformly in |y − τ | ∈ (0, 1). These estimates allow to use lemma 12.1 for
obtaining the estimate

||L(1)
2,20f2||B+

w
≤ cε||f2||B+

w
.

We need to do the same with ∂
∂yK

(1)+
2,201. Integrating by parts and splitting the

resulting integral into
∫ δ/ε
δ/2ε +

∫∞
δ/ε we have the following decomposition for |y−τ | 6=

0,

∂

∂y
K(1)+

2,201(x, y − τ) = − 1

2π

∫ ∞

δ/2ε

[sgn(y − τ)]ε2ce(ix−ε|y−τ |)kkϕ1(εk)dk

= ∂̃K(1)+
2,201(x, y − τ) + K̃(1)+

2,201(x, y − τ),

K̃(1)+
2,201(x, y − τ) = − 1

2π

ε2c[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(i δ

ε
x−δ|y−τ |),

∂̃K(1)+
2,201(x, y − τ) =

1

2π

∫ δ/ε

δ/2ε

εc[sgn(y − τ)]

ix− ε|y − τ | e
(ix−ε|y−τ |)k (εkϕ1(εk))

′
k dk

= − 1

2π

∫ δ/ε

δ/2ε

εc[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)k (εkϕ1(εk))

′′
kk dk,

hence

|∂̃K(1)+
2,201(x, y − τ)| ≤ cmin

(
ε

|x| ,
ε2

|x|2
)
,

and we treat the kernel K̃(1)+
2,201(x, y − τ) later. In addition we have

∫ 1

−1

∂

∂y
K(1)+

2,201(x, y − τ)dx = −ε
2c[sgn(y − τ)]

π

∫ ∞

δ/2ε

sin ke−ε|y−τ |kϕ1(εk)dk

=
ε2c[sgn(y − τ)]

2π

∫ δ/ε

δ/2ε

Re

(
ie(i−ε|y−τ |)k

i− ε|y − τ |

)
εϕ′1(εk)dk

= O(ε2)

uniformly in |y − τ | 6= 0, and

∂

∂x
∂̃K(1)+

2,201(x, y) =
1

2π

∫ δ/ε

δ/2ε

−iεc[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)k (εkϕ1(εk))

′
k dk+

− 1

2π

∫ δ/ε

δ/2ε

iεc[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)k

[
k (εkϕ1(εk))

′
k

]′
k
dk,

which gives ∣∣∣∣
∂

∂x
∂̃K(1)+

2,201(x, y − τ)

∣∣∣∣ ≤ c
ε

|x|2 ,

uniformly in |y − τ | 6= 0. Now we can check that
∫ 1

−1

∂̃K(1)+
2,201(x, y − τ)dx = O(ε2),
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uniformly in |y − τ | 6= 0. Indeed we have

∫ 1

−1

K̃(1)+
2,201(x, y − τ)dx = −cε

2

2π

∫ 1

−1

[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(ix−ε|y−τ |)δ/εdx

= − cε

2π

∫ 1/ε

−1/ε

[sgn(y − τ)]

(ix− |y − τ |)2 e
(ix−|y−τ |)δdx

= − cε

2π

∫ ∞

−∞

[sgn(y − τ)]

(ix− |y − τ |)2 e
(ix−|y−τ |)δdx+O(ε2)

uniformly in |y − τ | 6= 0, since we have uniformly

∫ ∞

1/ε

dx

x2 + y2
< ε,

and by the residue formula, the last integral on R is zero, hence the estimate follows.

It results that we can apply the lemma 12.1(a) for the part ∂̃K(1)+
2,201 of the kernel,

and it remains to study the action of the explicit kernel K̃(1)+
2,201.

In fact we want to control the function

∫

R

∫ 1

0

K̃(1)+
2,201(s, y − τ)f2(x− s, τ)dτds =

∫

R

˜̃K(s)f2(x − s, ·)ds

in B+
w = Bα2 [C0(0, 1)], where the kernel

˜̃K is defined for g ∈ C0(0, 1), by

(
˜̃K(x)g

)
(y) =

∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτ.

The idea is to use lemma 12.1(b), in noticing that x 7→ ˜̃K(x) is C1 in L[C0(0, 1)]
for x 6= 0. Thanks to the explicit expression

K̃(1)+
2,201(x, y − τ) = − 1

2π

ε2c[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(i δ

ε
x−δ|y−τ |),

we already have

∣∣∣∣
∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτ

∣∣∣∣ ≤ c
ε2

|x|2 sup
τ∈(0,1)

|g(τ)|,
∣∣∣∣
∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτ

∣∣∣∣ ≤ c

(∫ 1

0

ε2

x2 + ε2|y − τ |2 dτ
)

sup
τ∈(0,1)

|g(τ)|

≤ 2c
ε

|x|

(∫ ε
|x|

0

1

1 + u2
du

)
sup

τ∈(0,1)

|g(τ)|

≤ c′
ε

|x| sup
τ∈(0,1)

|g(τ)|.
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Moreover, the calculation made above, shows that, for µ > 0 (Fubini’s theorem
applies)

∫

(−1,−µ)∪(µ,1)

∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτdx

=

∫ 1

0

dτ

∫

(−1,−µ)∪(µ,1)

K̃(1)+
2,201(x, y − τ)g(τ)dx

= O(ε2) sup
τ∈(0,1)

|g(τ)|,

with a uniform limit for µ→ 0. It remains to check the x− derivative

∂

∂x

∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτ

=
1

π

∫ 1

0

iε2c[sgn(y − τ)]

(ix− ε|y − τ |)3 e
(i δ

ε
x−δ|y−τ |)g(τ)dτ+

+
1

2π

∫ 1

0

iεδc[sgn(y − τ)]

(ix− ε|y − τ |)2 e
(i δ

ε
x−δ|y−τ |)g(τ)dτ

and by the same type of estimate as above, we obtain

∣∣∣∣
∂

∂x

∫ 1

0

K̃(1)+
2,201(x, y − τ)g(τ)dτ

∣∣∣∣ ≤ c
ε

|x|2 sup
τ∈(0,1)

|g(τ)|,

and lemma 12.1(b) applies for getting the required estimate

|| ∂
∂y
L(1)

2,20f2||B+
w
≤ cε||f2||B+

w
.

14. Appendix Resolvent 0

In this appendix we prove estimates (8.11) and (8.15). First let us give a more

detailed form for the operators S
(0)
u and S

(0)
Y . If we denote T̂Y = (â, b̂, f̂1, ĝ1, f̂2, ĝ2)

t

then a straightforward computation from lemma 5.4 leads to

S(0)
u (T̂Y ) = −ε isgn(k)

1 + ρ̃|k|η
∗
ε (T̂Y ) + S̃u(T̂Y )(k),

S
(0)
Y (T̂Y ) = − ε

1 + ρ̃|k|η
∗
ε (T̂Y )χk + εΦ̃(f̂2, ĝ2) +

˜̃
Φ(f̂1, ĝ1) + S̃Y (T̂Y )(k),

where

|η∗ε (T̂Y )| ≤ c||T̂Y ||Fε
,

S̃u(T̂Y )(k) = O

(
ε

1 + |k| ||T̂Y ||Fε

)
,

S̃Y (T̂Y )(k) = O

(
ε|k|

1 + |k| ||T̂Y ||Fε

)
,
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the O(..) terms are now continuous in k, and for f2, g2 ∈ C0(0, 1) the term Φ̃(f2, g2)

is independent of k, defined in lemma 5.4, and for f1, g1 ∈ Cexp
0,ε the term

˜̃
Φ(f1, g1)

is continuous in k, and is defined by

˜̃
Φ(f1, g1)(k) =

(
˜̃
K10(f1, g1)(k), 0,

˜̃
H1(f1, g1)(k, y),

˜̃
K1(f1, g1)(k, y),

˜̃
H2(f1, g1)(k, y), 0

)t
,

˜̃
H1[f1, g1](k, y) = H1[f1, g1](k, y) +

1

1 + ρ̃|k|

∫ 0

−∞

g1(τ)e
|k|y(1 + ρ̃|k|e|k|τ )dτ+

− iρ̃k

1 + ρ̃|k|

∫ 0

−∞

f1(τ)e
|k|(τ+y)dτ,

˜̃
K1[f1, g1](k, y) = −1

2

∫ 0

−∞

f1(τ)

[
1− ρ̃|k|
1 + ρ̃|k|e

|k|(τ+y) + sgn(y − τ)e−|k||τ−y|
]
dτ+

− isgn(k)

2

∫ 0

−∞

g1(τ)

[
1− ρ̃|k|
1 + ρ̃|k|e

|k|(τ+y) + e−|k||τ−y| − 2e|k|y

1 + ρ̃|k|

]
dτ,

˜̃
K10[f1, g1](k) = −

∫ 0

−∞

[
f1(τ)

e|k|τ

1 + ρ̃|k| + isgn(k)g1(τ)

(
e|k|τ − 1

1 + ρ̃|k|

)]
dτ,

˜̃
H2[f1, g1](k, y) =

ik(y − ρ̃)

1 + ρ̃|k|

∫ 0

−∞

[f1(τ) + i(sgnk)g1(τ)]e
|k|τdτ +

1

1 + ρ̃|k|

∫ 0

−∞

g1(τ)dτ.

We notice that the terms with η∗ε (T̂Y ) only occur for T
(2)
Y since T

(1)
Y ∈ ker η∗ε .

Now, T
(2)
Y ∈ Bα3 (πεFε) is antireversible, hence η∗ε (TY ) is odd and

∫ x
−∞

η∗ε (TY )ds ∈
Bα2 (R) is even. We can then apply lemma 8.3 to

∫ x
−∞

η∗ε (TY )ds ∈ B1,α
2 (R) which

shows that

F−1
(
ϕ0η

∗
ε (T̂Y )χk

)
∈ Bα

D,w,

F−1
(
isgn(k)ϕ0η

∗
ε (T̂Y )

)
∈ Bα2 (R),

with

||F−1
(
ϕ0η

∗
ε (T̂Y )χk

)
||α

D,w ≤ c||T (2)
Y ||απεFε,3,

||F−1
(
isgn(k)ϕ0η

∗
ε (T̂Y )

)
||α

R,2 ≤ c||T (2)
Y ||απεFε,3.

Now, we observe that the function

K(x) = F−1

(
εϕ0(εk)

1 + ρ̃|k|

)

satisfies the conditions of lemma 12.1(a) (we denoted here ϕ2
0(εk) the function

previously noted ϕ0(εk) which does not change its properties). It results by lemma
12.1(a) that

F−1

(
ε
isgn(k)

1 + ρ̃|k|ϕ0(εk)η
∗
ε (T̂Y )

)
∈ Bα2 (R)
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with ∥∥∥∥F−1

(
ε
isgn(k)

1 + ρ̃|k|ϕ0(εk)η
∗
ε (T̂Y )

)∥∥∥∥
α

R,2

≤ cε||T (2)
Y ||απεFε,3.

Moreover, we have |k|
1+ρ̃|k| = 1

ρ̃ − 1
ρ̃(1+ρ̃|k|) so we can apply lemma 8.2 and lemma

12.1(a) to show that

F−1

(
ε

|k|
1 + ρ̃|k|ϕ0(εk)η

∗
ε (T̂Y )

)
∈ Bα2 (R)

and finally
∥∥∥∥F−1

(
ε
isgn(k)

1 + ρ̃|k|ϕ0(εk)η
∗
ε (T̂Y )

)∥∥∥∥
1,α

R,2

≤ cε||T (2)
Y ||απεFε,3. (14.1)

It now results directly from lemma 12.1(b) for components (β10, α2, β2) and for
the components α1 and β1 restricted to y ∈ (−1, 0), that these components of

F−1
(

ε
1+ρ̃|k|ϕ0(εk)η

∗
ε (T̂Y )χk

)
may be estimated in Bα2 of the corresponding spaces.

It remains to study the α1 and β1 components for y ∈ (−∞,−1) (i.e. the decay
rate in y) for finally showing that

F−1

(
ε

1 + ρ̃|k|ϕ0(εk)η
∗
ε (T̂Y )χk

)
∈ Bα

D,w,

with ∥∥∥∥F−1

(
ε

1 + ρ̃|k|ϕ0(εk)η
∗
ε (T̂Y )χk

)∥∥∥∥
α

D,w

≤ cε||T (2)
Y ||απεFε,3. (14.2)

This last part is proved as soon as we show that
∥∥∥∥F−1

( |k|
1 + ρ̃|k|ϕ0(εk)e

|k|yf̂(k)

)∥∥∥∥
B−w

≤ c||f ||Bα
2 (R)

for any f ∈ Bα2 (R), where it is only needed to show the estimate for |y| > 1. We
may introduce

Ĩ(x, y) = F−1

( |k|
1 + ρ̃|k|ϕ0(εk)e

|k|y

)

=
y

π(x2 + y2)
−Re

{
1

π(y + ix)

∫ δ/ε

0

(
k

1 + ρ̃k
ϕ0(εk)

)′

k

ek(y+ix)dk

}

where the first part is treated at Corollary 12.3 for α1. The second part may be
split in two, where the part

Re
1

π(y + ix)

∫ δ/ε

δ/2ε

εk

1 + ρ̃k
ϕ′0(εk)e

k(y+ix)dk

may be treated exactly as I(x, y) at step 1 of the proof of lemma 13.1. It then still
remains to estimate for |y| > 1 the convolution by the kernel

1

π(y + ix)

∫ δ/ε

0

1

(1 + ρ̃k)2
ϕ0(εk)e

k(y+ix)dk

= − 1

π(y + ix)2
− 1

π(y + ix)2

∫ δ/ε

0

(
ϕ0(εk)

(1 + ρ̃k)2

)′

k

ek(y+ix)dk.
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This kernel is no longer singular (since |y| > 1), moreover it is regular in (x, y) and
O[1/(x2 + y2)] near infinity. Then, the identity (12.1) gives

∫

R

ds

(1 + s2)[(x − s)2 + y2]
≤ c

1 + x2 + y2
for |y| > 1,

and we obtain the required estimate (14.2).

For the term εϕ0(εk)Φ̃(f̂2, ĝ2) we have easily by lemma 8.2 (see the form of

Φ̃(f̂2, ĝ2) in lemma 5.4)

||F−1
(
εϕ0(εk)Φ̃(f̂2, ĝ2)

)
||α

D,w ≤ cε||TY ||απεFε,2. (14.3)

The three estimates (14.1), (14.2) and (14.3) are parts of (8.11) and (8.15).

Now looking at formulas of section 5.(d) giving α1, β1, α2, β2 and
˜̃
Φ(f̂1, ĝ1),

S̃u(T̂Y ), S̃Y (T̂Y ) defined above, we claim that it remains to study sums of typical
terms as

K1,0(k; ε)â = ε|k|(1 + |k|)−1A(εk)e|k|yâ,

K1,10(k, y; ε)f̂1 =

∫ 0

−∞

f̂1(k, τ)e
−|k||y−τ |dτ,

K1,11(k, y; ε)f̂1 =

∫ 0

−∞

sgn(y − τ)f̂1(k, τ)e
−|k||y−τ |dτ,

K1,12(k, y; ε)f̂1 =

∫ 0

−∞

f̂1(k, τ)e
−|k||y+τ |dτ,

K1,13(k, y; ε)f̂1 =

∫ 0

−∞

sgn(k)f̂1(k, τ)(e
−|k||y−τ | − e−|k||y+τ |)dτ,

K1,14(k, y; ε)f̂1 = (1 + |k|)−1

∫ 0

−∞

sgn(k)f̂1(k, τ)(e
|k|y − e|k|(y+τ))dτ,

K1,15(k, y; ε)f̂1 = |k|(1 + |k|)−1A(εk)

∫ 0

−∞

f̂1(k, τ)e
−|k||y+τ |dτ,

K1,2(k, y; ε)f̂2 = ε|k|(1 + |k|)−1e|k|y
∫ 1

0

f̂2(k, τ)B(εk, εkτ)dτ,

K2,0(εk, y; ε)â = ε|k|(1 + |k|)−1C0(εk, εky)â,

K2,1(k, y; ε)f̂1 = |k|(1 + |k|)−1C1(εk, y)

∫ 0

−∞

f̂1(k, τ)e
|k|τdτ,

K2,2(εk, y; ε)f̂2 = ε|k|(1 + |k|)−1

∫ 1

0

f̂2(k, τ)D(εk, y, τ ; ε)dτ,

where A, B, C0, C1, D are uniformly bounded, as well as their derivatives in their
arguments, for ε(1 + |k|) ≤ δ, analytic for k 6= 0, continuous for k = 0.
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Let us denote by

K
(0)
i,j f̂ = ϕ0Ki,j f̂

L(0)
i,j f = F−1[K

(0)
i,j f̂ ] = K(0)

i,j ∗ f

where ∗ means convolution in x and K(0)
i,j = F−1K

(0)
i,j , then we have the following

lemma

Lemma 14.1. For any given a ∈ Bα2 (R), f1 ∈ Bα2 (C0,exp
ε ), and f2 ∈ B+

w =
Bα2 [C0(0, 1)], the following holds

(i) L(0)
1,0a ∈ B−

w and ||L(0)
1,0a||B−w ≤ cε||a||α

R,2,

(ii) L(0)
1,jf1 ∈ B−

w and ||L(0)
1,jf1||B−w ≤ cε||f1||Bα

2 (C0,exp
ε ), j = 10, 11, 12, 13, 14, 15

(iii) L(0)
1,2f2 ∈ B−

w and ||L(0)
1,2f2||B−w ≤ cε||f2||B+

w
,

(iv) L(0)
2,0a ∈ B1,+

w and ||L(0)
2,0a||B+

w
+ || ∂∂yL

(0)
2,0a||B+

w
≤ cε||a||α

R,2,

(v) L(0)
2,1f1 ∈ B1,+

w and ||L(0)
2,1f1||B+

w
+ || ∂∂yL

(0)
2,1f1||B+

w
≤ cε||f1||Bα

2 (C0,exp
ε ),

(vi) L(0)
2,2f2 ∈ B1,+

w and ||L(0)
2,2f2||B+

w
+ || ∂∂yL

(0)
2,2f2||B+

w
≤ cε||f2||B+

w
.

Proof of lemma 14.1. To prove this lemma we only consider L(0)
2,0 and L(0)

1,10, the

rest of the proof being similar. For L(0)
2,0, L

(0)
2,1, L

(0)
2,2 we use lemma 12.1(b). Let us

take for example the case when K2,0(εk, y; ε) is even in k, then

K(0)
2,0(x, y; ε) =

1

π

∫ δ/ε

0

ϕ0(εk)K2,0(εk, y; ε) cos(kx)dk.

It is straightforward to show (by simple integration by parts) that

|K(0)
2,0(x, y; ε)| ≤ cεmin

(
1

|x| ,
1

|x|2
)
,

∣∣∣∣∣
∂K(0)

2,0(x, y; ε)

∂x

∣∣∣∣∣ ≤
cε

|x|2 ,
∫ 1

−1

K(0)
2,0(x, y; ε)dx = O(ε)

uniformly in y ∈ [0, 1]. Similarly, the derivative with respect to y,
∂K

(0)
2,0(x,y;ε)

∂y satisfies

the same estimates. Hence by lemma 12.1(b), part (iv) of lemma 14.1 is proved.
Exactly the same argument applies for parts (vi), and (v) just noticing for the last
case that the factor ε comes from the fact that the integral in τ for K2,1 is O(ε)
because f1(x, ·) ∈ C0,exp

ε (space E in lemma 12.1(b)).

Let consider now the operator L(0)
1,10, which can be written as

(
L(0)

1,10f1

)
(x, y) =

∫ 0

−∞

∫

R

K̃(0)
1,10(s, y − τ)f1(x− s, τ)dsdτ

where f1 ∈ Bα2 (C0,exp
ε ) and with

K̃(0)
1,10(x, y) =

1

2π

∫

R

ϕ0(εk)e
ikx−|k||y|dk.
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After one integration by parts we obtain

K̃(0)
1,10(x, y) =

|y|
π(x2 + y2)

+
˜̃K

(0)

1,10(x, y)

with

˜̃K
(0)

1,10(x, y) =
ε

2π(|y| − ix)

∫ δ/ε

δ/2ε

ϕ′0(εk)e
k(ix−|y|)dk+

+
ε

2π(|y|+ ix)

∫ δ/ε

δ/2ε

ϕ′0(εk)e
−k(ix+|y|)dk.

Now the first part with |y|
π(x2+y2) may be treated as we did for α1 in Corollary 12.3

in Appendix A. The estimate in B−
w is straightforward, once we replace u′0(s) by

f1(s, τ) and we notice that

||f1(·, τ)||αR,2 ≤ eλτ/2ε||f1||Bα
2 (C0,exp

ε ),

and ∫ 0

−∞

(
1 + x2 + y2

1 + |y|

)(
1 + |y − τ |

1 + x2 + |y − τ |2
)
eλτ/2εdτ ≤ cε (14.4)

with c independent of (x, y) ∈ R× R−. The inequality (14.4) can be obtained simply
in splitting the integral into the part where |y− τ | > |y|/2, and the complementary
part, noticing that

∫ 0

−∞

(1 + |τ |)eλτ/2εdτ = O(ε),

(1 + y2)eλy/ε = O(1) uniformly in y.

The second part
˜̃K

(0)

1,10(x, y) of the kernel is of the same form as I(x, y) at step 1 of

the proof of lemma 13.1, hence the estimate (ii) of lemma 14.1 holds for L(0)
1,10f1.

This ends the proof of lemma 14.1, hence estimate (8.15) is proved, as well as the
part in Bα2 of (8.11).

It remains to estimate in B1,α
2 the function F−1(ϕ0S̃u(T̂Y )) (in particular the

x−derivative). The principal part of this term is such that

S̃u(T̂Y )(k) = − 1

1 + ρ̃|k|

∫ 0

−∞

[f̂1(k, τ)e
|k|τ + isgn(k)(e|k|τ − 1)ĝ1(k, τ)dτ+

+
ε

1 + ρ̃|k|

∫ 1

0

[τ(1− ε)− ρ]f̂2(k, τ)dτ

where f1 and g1 ∈ Bα2 (C0,exp
ε ), f2 ∈ Bα2 [C0(0, 1)] are components of TY . It can be

checked that the kernels

F−1

(
ϕ0

1 + ρ̃|k|

)
, F−1

(
ikϕ0

1 + ρ̃|k|

)
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satisfy the conditions of lemma 12.1, with constants of order O(1), hence, by lemma

12.1(b), the part of F−1(ϕ0S̃u(T̂Y )) depending on f2 has the good estimate in
B1,α

2 (R) bounded by cε||f2||B+
w
. Now we observe that

J̃(x, τ) = F−1

(
ϕ0e

|k|τ

1 + ρ̃|k|

)

=
|τ |

π(x2 + τ2)
+ Re

{
1

π(τ + ix)

∫ δ/ε

0

ek(τ+ix)
(
ϕ0(εk)

1 + ρ̃k

)′

k

dk

}
,

and the first part leads to an estimate in Bα2 (R) of the integral over (−∞, 0) of its
convolution product with f1, thanks to the identity (12.1), and due to the fact that

∫ 0

−∞

(1 + |τ |)eλτ/2εdτ ≤ cε (c independent of ε).

The second part of the kernel satisfies all assumptions of lemma 12.1, with constants
of order 1, uniformly in τ ∈ R−, hence thanks to lemma 12.1(b), this leads to

∥∥∥∥
∫ 0

−∞

J̃(·, τ) ∗ f1(·, τ)dτ
∥∥∥∥
α

R,2

≤ cε||f1||Bα
2 (Cε,exp

ε ).

Now we also have

∂

∂x
J̃(x, τ) = Re

(
1

π

∫ δ/ε

0

ikϕ0(εk)

1 + ρ̃k
ek(τ+ix)dk

)

which satisfies all assumptions of lemma 12.1, with constants of order 1, uniformly
in τ ∈ R−, so in using lemma 12.1(b), the part of F−1(ϕ0S̃u(T̂Y )) depending on
f1 has the good estimate in B1,α

2 (R) bounded by cε||f1||Bα
2 (Cε,exp

ε ). For the part
depending on g1 the method is the same. Higher order terms have the same form,
multiplied by extra εkψ(k) where ψ(k) is smooth and bounded for ε(1 + |k|) ≤ δ,
hence the same method applies, and (8.11) is proved.
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