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Gravity travelling waves for two
superposed fluid layers, one being of
infinite depth: a new type of bifurcation

By GERARD Iooss!?, Eric LOMBARDIZ, SHU MING SUN?

L JUF, 2 INLN, UMR CNRS-UNSA 6618, 1361 route des Lucioles, 06560
Valbonne, France
3 Math. Dept., Virginia Tech, Blacksburg VA 24061, USA

In this paper, we study the travelling gravity waves in a system of two layers of
perfect fluids, the bottom one being infinitely deep, the upper one having a finite
thickness h. We assume that the flow is potential, and the dimensionless parameters
are the ratio between densities p = pa/p1 and A = gh/c?. We study special values
of the parameters such that A(1 — p) is near 17, where a bifurcation of a new type
occurs. We formulate the problem as a spatial reversible dynamical system, where
U = 0 corresponds to a uniform state (velocity ¢ in a moving reference frame), and
we consider the linearized operator around 0. We show that its spectrum contains
the entire real axis (essential spectrum), with in addition a double eigenvalue in
0, a pair of simple imaginary eigenvalues +i\ at a distance O(1) from 0, and for
A(1—p) above 1, another pair of simple imaginary eigenvalues tending towards 0 as
A(1—p) — 1. When A(1 — p) < 1 this pair disappears into the essential spectrum.
The rest of the spectrum lies at a distance at least O(1) from the imaginary axis.
We show in this paper that for A(1 — p) close to 17, there is a family of periodic
solutions like in the Lyapunov-Devaney theorem (despite the resonance due to the
point 0 in the spectrum). Moreover, showing that the full system can be seen as a
perturbation of the Benjamin-Ono equation, coupled with a nonlinear oscillation,
we also prove the existence of a family of homoclinic connections to these periodic
orbits, provided that these ones are not too small.
Keywords: nonlinear water waves, travelling waves, bifurcation theory, infinite

dimensional reversible dynamical systems, normal forms with essential
spectrum, homoclinic orbits, solitary waves with polynomial decay

This paper is dedicated to Klaus Kirchgéssner on the occasion of his 70th birth-
day.
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Gravity travelling waves for two superposed fluid layers 3

1. Position of the problem

Let us consider two layers of perfect fluids (densities p; (bottom layer), p2 (upper
layer)), assuming that there is no surface tension, neither at the free surface nor at
the interface, and assuming that the flow is potential. The thickness at rest of the
upper layer is h while the bottom one has infinite thickness (see figure 1). We are
interested in travelling waves of horizontal velocity c. The dimensionless parameters

are p=pa/p1 <1, and A = i—Q (inverse of (Froude number)?).

Figure 1. Two layers, the bottom one being of infinite depth

The existence of a family of periodic travelling waves, for generic values of these
parameters is known (Tooss 1999). Below, we study special values of the parameters
such that A(1 — p) is near 1, where a singularity of a new type occurs. Indeed, we
formulate the problem as a spatial reversible dynamical system

au

o = F(p,\;U), U(z) € D, (1.1)

where D is an appropriate infinite dimensional Banach space including the boundary
conditions and suitable decay in the i coordinate (see section 2), and where U = 0
corresponds to a uniform state (velocity ¢ in a moving reference frame). The galilean
invariance of the physical problem induces a mirror symmetry of the system in the
moving frame. This symmetry leads to the reversibility of system (1.1), i.e. to the
existence of a linear symmetry S which anticommutes with the vector field F(p, A; ).

iA i

—ik —iA
e=1-M1-p) <0 e=1-M1-p) =0

Figure 2. Spectrum of L.
Considering the linearized operator around 0
L. = DyF(p, X;0)

with ¢ = 1 — A(1 — p), we show that its spectrum contains the entire real line
(essential spectrum), with in addition a double eigenvalue in 0, a pair of simple
imaginary eigenvalues +i\ (where X is defined above) at a distance O(1) from 0
when ¢ is near 0, and for € below 0, another pair of simple imaginary eigenvalues
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4 G.Iooss, E.Lombardi, S.M.Sun

tending towards 0 as € — 0~. When ¢ > 0, this pair completely disappears into the
essential spectrum! (see figure 2). The rest of the spectrum consists of a discrete
set of eigenvalues situated at a distance at least O(1) from the imaginary axis.

For one or several layers of finite depth, the study of travelling waves may as well
be formulated as an infinite dimensional reversible dynamical system ( Kirchgéssner
1988; Dias & ITooss 2001). In these cases, the existence of travelling waves can be
obtained via a center manifold reduction (see for example (Mielke 1988)) which
leads to a finite dimensional reversible O.D.E. studied near a resonant fixed point,
i.e. a fixed point at which all the eigenvalues of the differential lie on the imaginary
axis, for a critical value of the set of parameters. For instance, for one layer of finite
depth in presence of gravity and surface tension, the existence of true solitary waves
have been obtained

i) for a Froude number close to 1, and a Bond number larger than 1/3 (Amick &
Kirchgéssner 1989). In this case the reduced O.D.E. is two-dimensional and admits
a 02 resonant fixed point (see figure 3).

R

F>1

Figure 3. (left) 0% resonance for a Bond number b >1/3, and a Froude number F close to
1, and (right) shape of the solitary waves for F < 1.

Remark: In all the diagrams of the paper, concerning the spectrum of a linear
operator, a point means a simple eigenvalue, and a cross means a double eigenvalue.

ii) True solitary waves have also been obtained for a Bond number b less than
1/3 and a Froude number F close to a critical value F = C(b) (see for instance (Iooss
& Kirchgassner 1990; Tooss & Péroueme 1993)), near which the reduced O.D.E. is
4-dimensional and admits a (iw)? resonance (also called 1:1 resonance) (see figure
4).

c

oo
F<C®) F=C(b) F>Cb)

Figure 4. (left) (iw)? resonance for F near C(b), and (right) shape of one of the two types
of solitary waves for b < 1/3, F < C(b).

iii) For a Froude number close to 1, and a Bond number less than 1/3, the
reduced O.D.E. is 4-dimensional and admits a 02%iw resonant fixed point. In this
case, for F > 1 and b < 1/3 periodic travelling waves and generalized solitary waves
asymptotic at infinity to each of these periodic waves, have been obtained provided
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Gravity travelling waves for two superposed fluid layers 5

that the amplitude of the ripples is larger than an exponentially small quantity (as
function of F — 1) ((Sun & Shen 1993; Lombardi 1997)), (see figure 5). The non
existence of true solitary waves has also been proved by Sun (1999) for a Froude
number F close to 11, and a Bond number b near 1/37.

1t

Figure 5. (left) 0%iw resonance, and (right) shape of the generalized solitary waves for
b<1/3,F>1.

In these three cases the solitary (resp. the generalized solitary waves) are ob-
tained as homoclinic connection to 0 (resp. to a periodic orbit) for the dynamical
system. In all cases, the homoclinic connections have an exponential decay rate at
infinity, given by the spectral gap of the linearized operator near the imaginary
axis.

For the cases with an infinitely deep layer, the situation is more intricate, and
in particular no center manifold reduction can be performed because the linearized
operators have no spectral gap near the imaginary axis: the entire real line lies in
the essential spectrum of the linearized operator.

A first example is the problem of the existence of solitary waves for one layer of
infinite depth, in presence of gravity and surface tension. In this case, the problem
may be formulated as a spatial reversible dynamical system in infinite dimensions,
such that the linearized operator at the origin (which corresponds to the rest state),
has an essential spectrum composed with the entire real line, with in addition 4
eigenvalues in the spectrum making a (iw)? resonance for a critical value of the
parameter p (~ b/F? for a very large depth h) (see figure 6).

.‘.T$ —<
o ko2

H’>MC M:HC u<p’c

Figure 6. (left) R(iw)? resonance, and (right) shape of one type of solitary waves for
1> e

For i > p., the existence of true solitary waves has been obtained by Iooss &
Kirrmann (1996). These homoclinics have their principal part at finite distance,
given by the 4-dimensional critical part of the vector field corresponding to the
(iw)? resonance, while at infinity they have a polynomial decay induced by the
essential spectrum. This is a major difference with the finite depth case, for which
the decay is exponential (given by the spectral gap).

Article submitted to Royal Society



6 G.looss, E.Lombardi, S.M.Sun

A second example is a system of two superposed layers, the bottom one being
infinitely deep, and the upper one being bounded by a rigid horizontal top, with no
interfacial tension (see figure 7).

—| —

K< M2 He

Figure 7. (left) RO0? resonance, and (right) shape of the internal solitary wave in the
two-layer system for u > p. (bottom layer infinitely deep).

This problem was first studied on a model equation derived from the Euler
equations with a long-wave approximation, by Benjamin (1967), Davis & Acrivos
(1967), and Ono (1975). The now called Benjamin-Ono equation is non local and
reads

H(u') +u—u? =0, (1.2)

where H is the Hilbert transform, and « is a scalar function. This equation admits
an homoclinic connection to 0, given explicitly by

2

= 1—"_—7-2. (1.3)

up(7)
All the other solutions of equation (1.2) have been described by Amick & Toland
(1991). For the full Euler equations, the existence of the solitary waves with poly-
nomial decay at infinity, has been obtained in this case independently by Amick
(1994) and Sun (1997). More precisely, they both proved that, for g > u. and close
to e (we can just play on the velocity ¢ of the wave), the form of the interface for
the solitary wave satisfies

Z(z) = pup(pw) + puq (pz)

where

sup(l + |7])
TER

d7
‘ S| <K;, j=0,1,2,..

dri (7)

Therefore, the solitary wave solution (1.3) of the Benjamin-Ono equation (1.2) gives
the first order approximation of a solitary wave solution of the full Euler equations.
Neither the approach of Amick, nor the one of Sun was based on a dynamical system
approach. However, we observe that the problem may be formulated as a reversible
dynamical system, for which the differential at the origin (which corresponds to the
rest state) admits the entire real line as essential spectrum, a zero eigenvalue, and
a pair of simple imaginary eigenvalues for p < p. tending towards 0 as p — p_ .
When 1 > p. this pair completely disappears in the essential spectrum (see figure
7).

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 7

A third example of problem involving an infinitely deep layer, is the one we
consider in this paper, which was described at the beginning of the introduction:
two layers, the bottom one infinitely deep, no surface tension, no interfacial tension.
As already mentioned, this problem takes the form (1.1)

dUu
— =F(p,\;U), U D
= F(p,AU), Ulw) €D,
and the spectrum of the linearized vector field

L. = DyF(p,\;0) withe=1—-A(1-p)

has the behavior described at figure 2 (R00?(i\) resonance here).

From now on, we consider p as fixed and we use € as our bifurcation parameter
(instead of \). So in all what follows, X := \. is seen as a function of .

Moreover we denote by &y and &; the two eigenvectors belonging to the 0 eigen-
value

LE&O = 07 Legl = 05

which come from the existence of a two parameters family of trivial solutions cor-
responding to a flow where each layer moves freely horizontally with different ve-
locities. We also denote by (. and Es the two eigenvectors belonging to the simple
eigenvalues £, i.e.

LeCe =iXeC,  LoC. = —iAC,.

We observe on figure 2 that the behavior of the spectrum of L. is the same as
the one of the previous example, with in addition an extra pair of simple eigenvalues
lying on the imaginary axis (not close to 0). These additional eigenvalues +i\ lead
to a competition between the oscillatory dynamics they induce, and the Benjamin-
Ono type of dynamics induced by the essential spectrum with the 0 eigenvalue.

In this paper, we first show that this extra pair of eigenvalues i\ induces
the existence of a family of periodic solutions (of arbitrary small size), like in the
Lyapunov-Devaney theorem (despite the resonance due to the point 0 in the spec-
trum) : for each € > 0, the linearized problem possesses a four parameter family of
periodic solutions

uo&o + vo&1 + Aoe" (. + Age™ (., (ug,v0) € R?, Ag € C

which are circles of radii | Ag| centered at up&p+voé1. For all these circles, the spatial
frequency of the corresponding periodic solution is A.. We prove in this paper that
periodic solution of the nonlinear problem are obtained by an analytic perturbation
of the graph p") and of the frequency v(!) of the periodic solution of the linearized
problem. This can be summed up in the following

Theorem A. For any M > 0, there exists €9 > 0 such that for any (ug, vo, Ao, €) €
R? x C x R satisfying

|uo| + |vo| + |Ao] < M, 0<e < e,

Article submitted to Royal Society



8 G.looss, E.Lombardi, S.M.Sun

equ. (1.1) admits a family of periodic solutions U = pag.ug.ve.e bifurcating from 0,
with
pAo7uo,U07€($) = ﬁA07uo7Uo,8(s)

and
= —_ A is Z —isF ~(1)
Paouowo.c(s) = € (uofo + vo1 + Aoe™Ce + Aoe™ () 4 Da, g wo.e(5)
5= ()\Jr'y(l)) x,
where 50,51,§5,Z€ are the eigenvectors defined above and where the two pertur-

bation terms ;5(14‘137”07%,8 and vV possess the following converging power series in
€, Uo, Vo, Aa Z

~(1) — r+1, n, m AP A9 ,i(p—q)s
Paouovo,e = z : € Ug Vg AOAOe Ynmpqr
p+q=1
2<n+m+p+q<r+1
1 2
YW= 3 umpruvl Ao P € R,
1<n+m+2p<r

where the coefficients Yompqr lie in D and Ypmpr lie in R.

A precise definition of the space D is given at page 12 in section 2 and a more
precise version of this theorem is given at section 6 (see theorem 6.3).
Remark i) Observe that the perturbation of the graph pM is quadratic in the
amplitudes (ug, vo, Ao).
Remark ii) Contrary to Lyapunov-Devaney Theorem, there is here a factor e
scaling the amplitudes. This is due to the resonance induced by the two small
eigenvalues (for € < 0) diving in the essential spectrum for ¢ > 0.

Remark iii) When A is real the periodic solution p4, ug.u,.e is reversible, i.e.

SP A 00,6 (T) = DAy o, 00,6 (—T) for all z € R.

On the other hand, Ay complex corresponds to a phase shift in x.

In addition, one might expect the existence of a Benjamin-Ono like soliton, in-
duced by the essential spectrum with eigenvalue 0, as for the problem with two
layers, one being deep, and with a rigid top. However, the coexistence of this
Benjamin-Ono type of dynamics with an oscillatory mode induced by the pair of
simple imaginary eigenvalues causes the appearance of oscillations at infinity for the
solutions. Such a coexistence of an oscillatory dynamics and a hyperbolic dynamics
also occurs in the 0%iw resonance (see figure 5) for which it is proved in (Lombardi
2000) that there are generically no homoclinic connections to 0, whereas there are
always homoclinic connections to periodic orbits, until they are exponentially small.
We expect a result of the same type here, i.e. non existence of true solitary waves
and existence of generalized solitary waves with exponentially small ripples at infin-
ity. In this paper we prove a weaker result, i.e. the existence of reversible homoclinic
connections to the periodic solutions found at theorem A, provided that the size of
the limiting periodic orbit is not too small (at least of order £°/2). The proof of the
existence of homoclinic connections to exponentially small periodic orbits is done in

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 9

a forthcoming paper (Lombardi & Iooss 2001). In the theorem below, we consider
Ag real positive, which corresponds to a specific choice of the origin of z on the
periodic solution. Moreover, for simplicity of the analysis we restrict our attention
to the homoclinic connections to periodic solutions of family with ug = vy = 0. The
same theorem is expected to be true for ug and vy near 0.

Theorem B. For any 0 < o < 1/2, there exist §, do, €0 > 0, such that for 0 <
e < go, and §pe®~* < Ag < 8, equ. (1.1) has two reversible homoclinic connections

UX){E (j = 1,2) to each periodic solution pa, 0,0,e found at theorem A, which satisfy

_ % e27% 4+ Age
US) (@) = pavooe (z + d;parctan(ea/p) ) — Tun(ea/p)éo + O (W)

where up, is the Benjamin-Ono homoclinic connection given by (1.3).

Remark i) The two distinct phase shift ¢; depend on (g, Ag), and (1 — ¢2)p%
tends towards half of the period of the limiting periodic orbits as its radius goes to
0. The proof of theorem B is the object of section 10.

Remark ii) Observe once more that, since there is no spectral gap (the entire
real line is the essential spectrum), the decay rate at infinity is polynomial, and
not exponential as it is the case for the finite dimensional reversible bifurcations
(resonances 02, (iw)?, 0%iw) obtained for finitely deep layers.

A
C

e _TIN
N [

Figure 8. shape of generalized solitary waves in the two layer system

Remark iii) At leading order, the shape of the free surface Z(x) and interface
Zi(x) are given by (see figure 8)

2(5) = 1+ 221~ phun(ex/p),

Z1(x) =~ pun(e/p).

The heart of the proof of theorem B is the following proposition, which ensures
that, up to an appropriate change of variables, the full Euler equations (1.1) are
equivalent to a Benjamin-Ono equation, coupled with a nonlinear oscillator equa-
tion, with higher order terms.

Proposition C. Provided that suitable decay conditions in x on the solution U are
satisfied, there exists an appropriate non local change of variables and a scaling

U=7"T.(4A,uY), x = ¢,

Article submitted to Royal Society



10 G.Iooss, E.Lombardi, S.M.Sun

with (A, u,Y)(z) € Cx R xD such that, close to the origin, equ. (1.1) is equivalent
to the reversible system

dA A _
— =i— [AE + ’Y(ua K |A|25 E):I + RA(A,A,U, Y)a
dx €
du 3, —
PH (@) +u+ QU = B-(A, A, u,Y),
Y =T(Au,Y),

where the reversibility means the commutation of the system with the symmetry
S (A(z),u(z),Y (z)) — (A(~2),u(—x),SY(~2)); where v € R, and where the
local rest R and the nonlocal rest B. are small in suitable norms, and T is a known
smooth nonlocal, nonlinear operator, such that Id — 7T is invertible with respect to
Y.

A more precise version of this proposition is given in section 8 (lemma 8.5).
Remark i) Roughly speaking, A corresponds to the amplitude of the oscillatory
mode, u corresponds to the amplitude along the 0-eigenvector £y, and Y corresponds
to the rest of the spectrum.

Remark ii) The required decay conditions are such that v and Y tends towards
0 in 1/z* while A tends to Ag in 1/x as |z| — co.
Remark iii) The norms we use are Holder norms in z, with the above decay rates.

Remark iv) This proposition may be seen as a ”rigorous derivation of the
Benjamin-Ono equation” in this context. It also clearly shows the competition
between the oscillatory dynamics and the Benjamin-Ono type of dynamics. We
should finally notice that the present problem is numerically studied by Parau &
Dias (2001), with lot of information on the shapes of the free surface and interface.

In what follows, after showing at section 2 how this problem may be formulated
as a reversible dynamical system in a suitable space, and making a precise study
of the resolvent of the linearized operator on the imaginary axis (sections 3, 5), we
prove the existence of a three parameter family of periodic solutions (theorem 6.3,
section 6), and we find an infinite dimensional normal form, where the whole family
of periodic solutions appears trivially, and where a special treatment is needed of
a priori reasoning terms coming from the point 0 in the essential spectrum of the
linearized operator (section 7 and Appendix Normal Form). The homoclinic of
Benjamin-Ono type also appears on this normal form, as an approximate solution
(section 9), and we are able to prove, close to the Benjamin-Ono (false) homoclinic
solution, the existence of a pair of reversible (i.e. symmetric) solutions homoclinic
to every periodic solution, provided their size is not too small (theorem 10.1). These
homoclinics differ mainly by a phase shift at infinity, and take physically the form
indicated at figure 8.

2. Formulation as a dynamical system

The domain of the flow can be transformed into two superposed horizontal strips
in using the (conformal) transformation defined below. The complex potential in
layer j is denoted by w;(§ + in) and the complex velocity (in dimensionless form)

Article submitted to Royal Society



Gravity travelling waves for two superposed fluid layers 11

w}(§ +9n) = u; — iv;. The Euler equations are expressed here by the fact that w;
is analytic in ¢ = & + in. The kinematic conditions at the free surface and interface
between the two fluids are

us Z'(€) — vy = 0 at n = 1+ Z(€) (free surface),

U Z(€) — vy = ur Z4(€) — vy = 0 at n = Z;(€) (interface).

The Bernoulli first integrals at the free surface, and at the interface, express the
continuity of the pressure:

1 ~ -
§(u§ +03) +A\Z =¢ at n =14 Z(£) (free surface),

%(uf +0?) — g(ug +02) + M1 = p)Z; =& at n = Z;(€) (interface),

where the parameters are p = pa/p1 < 1, and A = Z—Z, and ¢; and ¢y are arbitrary
constants. For formulating our problem as a dynamical system, we first transform
the unknown domain into a strip. There are different ways for such a change of
coordinates. We choose the one used by Levi-Civita (1925). Its advantage is that
it leads to a weakly nonlinear problem. The new unknown are o; +1¢53; , j = 1,2,
which are analytic functions of w; = x; + iy, where x; is the velocity potential in
the layer j, and y is the stream function, and where

w (& +in) = ePi 7,

the free surface is given by y = 1 , and the interface by y = 0. The region of the
flow is —oo < y < 0 for fluid 1, and 0 < y < 1 for fluid 2. One difficulty is that the
x coordinate is not the same in each strip! In fact we have

@ — eP20—Po
dl‘l

where (329 — (10 is the value of B3 — (31 taken at the interface y = 0.

We have to choose as the basic x coordinate the one given by the bottom layer
(1) which then introduces a factor in the Cauchy-Riemann equations of the upper
layer. In such a formulation, the unknown is defined by

[U(I)] (y) = (ﬂlo(x)v 521(39)7 aq (ZL', y)v 61 (ZL', y)v OQ(ZL', y)v 62(397 y))t
and the system has the form

au
7 = Pl AU 2.1
7 = Fle s U) (2.1)
with
=M1 — p)e™?10sin agg — pe3(ﬁ20*ﬁm)%|y:0
— e 3P211P20— 010 gin vy

98
F(p,sU) = oy } y € (—00,0) (2.2)
oy

%6520—510

f%ﬂeﬁzofﬁm } ye (O’ 1)
oy

Article submitted to Royal Society



12 G.Iooss, E.Lombardi, S.M.Sun

where we denote by agg, B10 and [ag the traces of (resp.) as, 81,02 at y =0, and
Q21, P21 the traces of as and B2 at y = 1. Here we choose the basic space

H=R?x CY(R7) x Ci, 1 (R7) x {C°(0,1)}?
and the domain of the operator F' is:

D= R?xCHRT)x Cy, 1 (R7) x {C1(0, 1)}

2.3
N{a10 = a2, B10 = Pily=0, f21 = Baly=1}, (2:3)
where we define the Banach spaces
CoRT) = {f € CORT ) If (I +y))” < oo}, v >0,
CoR™) ={f € CHR7), ' € CHR7)},
Cliny(R7) ={f € CO(R™);3L € R, [f(y) = U(1 + [y])" < o0},
Cllim,u(Ri) = {f € Cﬁm,y(Ri)’ f/ € CS(R*)}’
and we take for (a,b, f1,91, f2,g2)" = V € H, the norm
VIl = lal + (o] + |l fillio0 + llgal[¥5 + 11 folloc + [lg2]loc,
with
def v def
[fllvo = sup ([f(IA+1yD"), [Ifllc = suplf(y)l,
yeR— Yy
im def v
gl = sup lg(y)| + sup (lg(y) — UL+ |y])").
yER™ yER™
The definition of the norm in D is similar, in adding the norms of f]' and gé-.
The reversibility symmetry reads:
SU = (5107521770‘1751570‘2562)16' (24)

We notice that the system (2.1-2.2) has the two-parameter set of ”trivial” solutions

B1 = Bro, B2 = P21, a1 =0z =0,

which correspond to the sliding of one layer over the other, with different veloci-
ties. The system (2.1-2.2) should be completed by the following two Bernoulli first
integrals (interface and free surface), when the integrals are convergent:

0 1
: 1
/ (e Prcosag — e 1mP1) gy +/ (e7P2 cosay — 1)dy + 5(62621 —1) =c,
0

— 00

0
: 1
A1 - p)/ (e cosay — e MmA) gy + 5(62510 -1)- g(e%20 —1) = ¢y,

— 00

which give the two first components of (2.1-2.2) after differentiation. However, since
we do not impose a priori that a; and (1 —1lim ;) tend towards 0 fast enough at in-
finity, we cannot consider both these first integrals, but only a suitable combination
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of them
1

1 —
c= e —1) - —F Pe2Bn — 1) — g(em” — 1)+ (2.5)

1
— A1 -)p) / (e7P2 cosay — 1)dy.
0

Notice that the interface and free surface, expressed in the new coordinates satisfy
the following expressions:

0
Zr(x) :/ (e‘ﬁl cos a1 —e‘“mﬁl)dy,

— 00

1+Z(33)=1+/

— 00

0 1
(e7P1 cosag — e~ mAL) gy +/ (e7P2 cos ay — 1)dy,
0

provided the integrals are convergent, and (preferably)

dz
L _ e=Progin 10,

dz

d_Z — eB20=Bro—PF21 gipy Q.
dz

In principle we might choose to treat this problem on a codimension-2 manifold,
instead of expressing the two first components of (2.2) above. It appears that it
is easier to work as we do at present, just keeping in mind that there are two
arbitrary constants which may be fixed. We notice that the system is still linear in
the unbounded strip y < 0 (Cauchy-Riemann equations). It is no longer linear in
the bounded strip y € (0,1), but the dependency in y is still occurring in similar
”linear terms”, the multiplicator being only function of x.

3. The linearized Problem

Let us fix p and define € by
AMl=—p)=1-—¢ (3.1)

and rewrite F(p, \;U) = LU + N(e;U), where all linear terms are in L.U. The

linearized system then reads

dU
— =L.U 3.2
dx © (3.2)

in H. The following lemma describes the spectral properties of L. :

Lemma 3.1. (a) The spectrum of L. acting in H is symmetric with respect to
both axis of the complex plane. It is composed

(i) with the entire real line, which constitutes the essential spectrum, every real
o # 0 being such that (ol — L) is injective, but has a non closed range and 0 is a
double eigenvalue;

(i) with isolated eigenvalues o = ik of finite multiplicities, given by the roots of
the dispersion relation Al(sgnRek)k,c] =0 where, for Rek > 0

A(k,e) = [Me) — E]A1(k, ),
Aq(k,e) = [pk — (1 — ¢)]sinh k + k cosh k

Article submitted to Royal Society



14 G.Iooss, E.Lombardi, S.M.Sun

holds.

(b) For any €, 0 is a double eigenvalue, associated with the two eigenvectors

50 = (Oa 1705 O7Oa l)tv
51 = (150707 17Oa0)t7

satisfying
S& =&, S& =&

(c) For any e, there is a pair of simple eigenvalues ik = +il, associated with
the eigenvectors (. and (. such that

(= (1,6)\, —ieM, M, fie)‘y,e)‘y)t, S¢ = ZE. (3.3)

(d) For e > 0 the only eigenvalues with 0 real part are ik = +i), and 0, whereas
for e <0, in addition to the above imaginary eigenvalues, there is another pair of
simple eigenvalues, tending towards 0 as € — 0~ (see figure 2).

(e) For k real and |k| large enough, we have the following estimate (uniform

estimate for € near 0)
[1GkT = L) Iz < C/IKl- (3-4)

Proof. The spectrum of L. is symmetric with respect to both axis of the complex
plane, because of reversibility. Let us look for eigenvalues denoted by ik where k is
complex. The linearized problem for system (2.1-2.2) is given by the linear operator
L. acting in H, with domain D, and defined by

—(1 = e)azo — pG2|y—o
—1=an

LU= e : (3.5)

_ Oag
oy
9B2
By
b

Oy

Looking at the eigenvalues ¢k such that Re k > 0 leads to eigenvectors of the form

A A A
¢=(1, E ek, —ieky ekv, iEeky,Eeky)t—i—
k
[ (1+p)(0,e",0,0, —ier, )t (1 — p)(O,e_k,0,0,ie_ky,e_ky)t} ,
and the dispersion relation
Al(sgnRek)k,e] =0
has the form (for Rek > 0):

A(k,e) = [Me) — k]Ar(k, e), (3.6)
Ay (k,e) = [pk — (1 — &)] sinh k + k cosh k, (3.7)

An interesting property is that there is an explicit pair of simple eigenvalues +i\
associated with eigenvectors (. and ¢, defined by (3.3).

Article submitted to Royal Society
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The study of (3.6) shows that there is another pair of simple eigenvalues on
the imaginary axis +iky if and only if € < 0, moreover, we have ki(e) = —¢/p —
£2/3p3 4+ O(e?). This pair of eigenvalues tends towards 0 as e — 0=, and disappears
for € > 0 (see figure 2).

Notice that 0 is always an eigenvalue, associated with the eigenvectors &y and
&) given in the lemma. These eigenvectors correspond to the ezistence of the two-
parameter family of solutions P21&0 + B10€1 of the nonlinear system (2.1,2.2).

Contrary to the paper (Iooss 1999), where we assumed essentially that & was
not close to 0, the object of the present paper is to study what are the solutions of
(2.1) for € close to 0 and positive.

The study made in (Iooss 1999) on the resolvent operator (ikI — L.)~" is made
with another choice for space H. We show below at section 5 (on a rescaled formu-
lation) that the estimate (3.4), for k¥ € R and |k| large enough, stays valid with our
new choice of spaces.

As it is shown in (Iooss 1999), in addition to the above eigenvalues in the
spectrum of L., the spectrum contains the entire real axis which constitutes the
“essential spectrum”. With our choice of basic space H, any real o # 0 is not an
eigenvalue, and it is such that the range of (ol — L.) is not closed. The double
eigenvalue o = 0 is embedded into the essential spectrum. Moreover it is easy to
check that, even for ¢ = 0, there is no generalized eigenvector despite of the fact that
when e = 0~ two simple eigenvalues dive into the real line through 0! (perturbation
theory is no longer valid in this situation, with an essential spectrum containing 0).
We may also observe, that the operator L. has a non closed range, whose closure
has codimension two (see lemma 5.5 at section 5.(e)).

The divergence of the resolvent operator when k — 0 is worse for € = 0, than for
g # 0, as can be seen on formula (40) of (Iooss 1999), and in subsequent expressions
for the operators occurring in this formula. For understanding better this singular-
ity, we need now to make an adapted computation, tracking the dependency in ¢,
for € near 0. In what follows, we only consider the case € > 0. The case ¢ < 0
would give two new small frequencies, and the conjecture is that the solutions of
the problem would be analogous to the ones of the corresponding four dimensional
reversible vector field with two pairs of simple eigenvalues on the imaginary axis,
leading to tori of periodic solutions.

1

4. Rescaling for ¢ = 0
(a) Dynamical system formulation

Let us consider the case when 1 — A(1 — p) =€ > 0 is close to 0. The study of
the resolvent operator for k near 0, leads to rescaling of x and to a specific scaling
for y depending on whether —oo < y < 0, or 0 < y < 1. Moreover, the form of the
underlying homoclinic in our problem (analogous to the Benjamin-Ono homoclinic)
also leads to a rescaling of U. So, we rescale our system as follows:

ErT =I,¢Yy =Y, for Y€ (_O0,0),
U=c¢eU.

Article submitted to Royal Society
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Then system (2.1)
au

now reads
au
dr =L.U+ N(gU), (4.1)
where
g1 {—(1 —€)agy — paaay2 - }
7671(178)0[
1, (21
o5, "
LU= 9y
fele3y
9y
—10B2
g 1@
fgfl%tf

and we have in H
N(e;U) = e N(e;el) = N(U, U) + O(e||U| ),

where we denote again U = (819, f21, a1, 31, a2, B2)! and

NOWU,U) = NP (U, U) +eNP (U, U) (4.2)
NOW,U) = (a@,52,0,0, £, g2,
N1(2)(Q7Q) (—=3a20810, =0, 0,0,0,0)*,
a® = 30010 + 3P920)7

b® = (p— 1) a1 (—3B21 + Ba0 — Bro),
852

f2(2) (520 — B1o),
§2) = *%(520 — B1o)

The domain of the operator L. acting in H, is still D. However, we observe that
the nonlinear operator N (g;-) is analytic from D into H, where D is larger than D.
Such a space D is used in Appendix Normal Form, where a1 and (31 are allowed
to grow as y — —oo, while their derivatives lie in CY. Moreover, it is used in all
section 8 (see the choice we make for the space Bg ), that the nonlinear terms do
not contain derivatives of a; and (31, but just their traces at y = 0. This explains
why we don’t need to estimate y—derivatives of o; and £, in Appendices Resolvent
oo, and Resolvent 0. -

We have a pair of simple eigenvalues +i)/e for L., with eigenvectors QE and ;,
and

¢ = (1,e, —ie /e /e eV M)t (4.3)

and o and & are still the eigenvectors belonging to the eigenvalue 0 of L.

For later use, let us define the symmetry S by

(SU) (@) = sU(-a).

Article submitted to Royal Society
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(b) Nonlocal formulation

We shall exploit at sections 6 and 9 the form of the third and fourth components
of system (2.1,2.2), which are just the Cauchy-Riemann equations for ay, S in
the half plane y < 0. The other components of the right hand side are expressed
completely in terms of (810, ag, B2). Provided that a; and $; tends towards 0 as
y — —oo, we write the relationship between (319 and asy = a9, with the help
of Hilbert transform (hence non local in x). This simplifies a lot in some sense
the analysis, but we pay this by loosing (for a moment) the ”dynamical system”
formulation. Indeed, consider the system

day  0p
Or Oy’
0B O
i

in the half plane y < 0, with a decaying (to 0) condition as y — —oo. In the case
of a suitable decaying condition as x — Fo00, we can write for example

Bi(z,y) = —%/R%Oﬂo(i)d&

which leads to (19 + H(a10) = 0, if we define the Hilbert transform of a function g

by
1 [ g(§)
H =pv.— | —=dE,
(Ha)(w) = o [ e
which is OK for instance for g € L?(R). Now, we notice that this formula is still
valid for functions which are periodic in z, i.e for g € L?(R) (a.e. periodic, locally
square integrable), with the convention that Ha = 0 for any constant a.

In the following, we restrict our attention to solutions of (2.1,2.2) which are
either periodic, or asymptotic to a x — periodic solution, or tending to 0 at infinity.
So, we choose function spaces such that the Hilbert transform H of ajg exists.
When they exist, the Fourier transforms satisfy

—

(Hg)(k) = —i(sgnk)g(k).
Notice that if we define sz = —z the reflection in R, and for any A € R, then
(Hg o5)(z) = —(Hg) o 5(x),
(He)(z) = —i(sgn\)e™®, for X #£0

hold.
Let us denote by P the projection: (a,b, f1, g1, f2,92)" — (a,b, f2,g2)?, then we
define

W ="PU,
Then system (2.1,2.2) now reads
aw
S = LW NP W), (1.4)
T
D(W) =0, (4.5)
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provided that D(W) is well defined, where

Egp) = 6_1A0 + Ay,

D(W) = B1o — [Bro] + Harzo,

where [(319] is the average of 519 and where

d
—Qi0 — P@Lﬂyzo

_Lam
1—
AW = 652’) ,
oy
_ Oag
9y
Q20
Laﬂ
AW = 1—p ,
0
0

and NP)(g; W) = PN (g; U).
Let us define the new spaces

H” = R? x {C°(0,1)}?,
D” = R? x {C(0,1)}* N {1 = faly=1},

then, the domain of the operator £ acting in HP, is still D”.

We have now eigenvectors C(P), C(P), Eép), «Eip) with
(P = (1, —ieM, M)t € D, (4.6)
¢”) = (0,1,0,1)" € D", (4.7)
™ =(1,0,0,0) € D, (4.8)

and

E(P)C(P) =i(\e) ¢,

=(P) _ (7’)
s R
ﬁ?’)fé” =0, Mg =0

Finally, we observe that the Bernoulli first integral (2.5) gives a first integral for
our remaining rescaled variables (independent of o7 and £;):

e 1 -1 1— -1
hig; W) = def 62 (e 20 _ 1) — %(625520 -1)— ( 5)5 (e2sﬁ21 —1)+
1

(1—g)et ~02 coseay — 1)dy. (4.9)
0

Denoting
Dy h(e; 0)W
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we then have
h(e; W) = & [W (2)] + O(el|W (z,-)|[f» ) = e3 (indep of x) (4.10)

where for any V = (a,b, f1,01, f2,92)" € H,, the linear form & € HP* N H* is
defined by

1
V) =apgo— (1= b+ (1-2) [ galw)dy (111)
0
Moreover, we observe that the following identities hold

E (&) = —e, (&) =1, &(C)=¢&()=0,
(V) =¢(V), forallVeH,

€

E(LPW) = ¢ (L.U) =0, for all W € DP,U € D. (4.12)

5. Resolvent operator of L.

This section is devoted to the study of the resolvent operator (ik — L)t for e > 0
and small enough. In subsection 5.(a) we give explicit formulas and we use them in
further subsections for obtaining estimates of the resolvent for |k| large (subsection
5.(b)), near the poles ik = +i)\/e (subsection 5.(c)), and near 0 (subsection 5.(d)).

(a) Ezplicit formulas for the resolvent

Here we solve the resolvent equation

(ik - £E)Q = V7
(a,b, f1,91, f2,92)" =V € H is given

where we look for U € . We then need to solve the following system

ikBro+e (1 — &)aro +e 1 pab(0) = a
ikfor +e (1 —e)(1—p)lam =b
ikon — By = f1
. € (—00,0
kg +ol =g [ ¢ (=00,0)
ikag — 718, = fo
1).
ik + 8710/2 = g2 ye (07 )

Solving this linear ordinary differential equation for k& > 0 and A(ek,e) # 0 we get

a1(y) = Ae™ + Hi[f1, 1] (k. y),

) =iAe" + Ki[f1, 1] (k. y),

) = Acosheky + Bsinheky + Hy[f2, g2)(k, y),

) = iAsinheky + iB cosheky + iK,[f2, 92](k, v),
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where (for k € R\{0})

Hilf, g)(k,y) =%/_ [(sgnk) f (1) + ig(r)]e™ T+ gr4
_ %/_ [(sgnk) f(T) +ig(T)sgn(y — T)]e_‘kuﬂ_T‘dT,
Ka[f, g](k, y) -2 [ [f(7) + i(sgnk)g(r)]eHT+Y g4

[f(T)sgn(y —7) + i(sgnk)g('r)]eﬂk'|E*T‘d7’,

o0

N =
\[\9

ﬂﬂﬁm@wr:géwﬂﬂﬂm@no—mﬂHm@mmm

Eﬂﬁd@w)géwﬂﬂKm@n0MﬂKm@xmh

with (for k > 0)

Hai(y,7) = Hai(7,y) = (sinhek) ™ sinhek(y — 1) sinh(ekr), for 0 < 7 <y < 1,

Hao(y,7) = Ko1(1,y) = (sinhek) ™! {

sinhek(y — 1) cosh(ekr),for 0 <7 <y < 1,
sinh(eky) coshek(r — 1), for 0 <y < 7 < 1,

Koo(y,7) = Koo(1,y) = (sinhsk)*1 coshek(y — 1) cosh(ekr), for 0 < 7 <y < 1.

Alek,e) (ekcoshek — (1 —&)(1 — p)~!sinhek)a, + pekb;,
JE

€ A=
A(ek,e)B = ((1 —&)(1 — p) "' coshek — cksinhek)a, + [ek — (1 — €)]by,

0
gfwwww/[ﬁm+wmwﬁw7m%ﬁ

— 00

— p?k(sinhek) ™! /1[if2(7) sinhek(r — 1) — ga(7) cosh ek(r — 1)]dr,
0

1
by = eb+ e%k(sinhek) ™! / [i f2(7) sinh(ekT) — g2(T) cosh(ekT)]dT.
0

Lemma 5.1. For A(elk|,e) # 0, ay and 31 € C{(R™), and az and 32 € C1(0,1).

Proof. For A(e|k|,e) # 0 the above formulas insure that as and f; are bounded
in C1(0,1). We also check that a; and 31 € C'(R™), and more precisely, we show
that indeed a1 and 3; € C{(R™) (hence 31 € CL_ | (R7)) thanks to the estimate

im,1

0
H/ FE)e = drll e < )l Flluce. as k= oo,

which results from the two elementary estimates

<1 fork>1,

ky
c (1+|y|){ <c(l+k™1) fork<1, ’ y <0,
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* 1+ 1
—k(xz—7) [ 2T & _ - _—kx 2
/0 e (1+r) dr k[1 e " (14 )] + O(1/k?).

(b) FEstimate of the resolvent for |k| large

The following lemma gives estimates of the resolvent for k real and |k| large
enough:

Lemma 5.2. For elk| > M (M large enough) and k real, there exists ¢ > 0 such
that we have the estimates

) _ c
[|(GkL— L)l 2 < R

||(Z]€H — [:5)71”[:(]}]1,]@) S C. (53)
Moreover, if we only consider the components in D, then

||7)(’Lk]l — EE)_1||£(H,]D)‘P) S CE.

Proof. For |k| large, let us follow the proof made in (Tooss 1999). It is easy to show
that, for |k| large enough

p+1
AlH,2) = —L5=

(ek)2es ¥l 4 Ae|k|es!®l + O(e2k2e eI,
a1 |+ [01] < ce(fal + [b] + [ filloo + llgilloo + [1f2]o0 + lg2]]o0);

&
Al +[B| < m(lal + 16+ |1 f1lleo + [lg91lloo + [[f2lo0 + [lg2]]o0),

holds. From the estimates (5.1,5.2), we deduce that for e|k| > M, «a; and [ satisfy

: c
llea[l1,00 + 1611175 < R

So, in using the same proof as in (Iooss 1999), we obtain the following identities
(here k > 0)

ai

az(y) = m[akcoshek(l — ) — Asinhek(1 — y)]+
+ ﬁ {[ek — (1 — )] sinheky + pcosheky} + Ha[f2, g2) (k, y),
Pa(y) = %[A coshek(1 — y) — eksinhek(1 — )]+
+ ﬁ {[ek — (1 — &)] cosheky + peksinh eky} + i Ko fo, ga] (k, y),

which finally allow to get (5.3).
The last part of the lemma comes from an examination of the consequence of
differentiating with respect to y [this introduces a factor |k| only in the components

(a2, £2)].
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(¢) Study of the resolvent near the poles ik = +i\/e

Near k = /e, we have (uniformly in )

1 de*
ACk) A —ch) o),

with
d=(1-p+ pe®)~L

It then results immediately the following

Lemma 5.3. For k in the neighborhood of £\/e we have in L(H,D)

. o -1 __ ge *
(1= L™ = 2562+ O)
T -1 _ §E >
(kI — L) = it é)cg + O(1),

where O(1) is uniform in k and € and, for any V = (a,b, f1,91, f2,92)t € H
1
) =afa pa+ 0204 [ lifao) - o)+
0

A [ OOO lifa () — gl(m)]e”czr}. (5.4)

The linear form ¢ satisfies for any U € D,

i\
CHC) =0, CHLU) = W), C(E) = 0. ¢X(E) =0,
C(SV)=C.(V), forall V eH.

Moreover, we have the following better estimates in L(H, D)

. L &
Pkl - Le)™ = m@ +0(e),
i &
,P(Zk:[[_ﬁg) = m@ +O(E),

where O(e) is uniform in k.
Defining the projection . commuting with L.

me=1-¢ ¢ -CC,

and restricting the resolvent to the subspace ker ¢ N kerzz = range(r.), we have
for any § > 0, the existence of ¢ independent of k and € such that, for e|k| > ¢

(kL = L) el oy < ¢/ [,
|(ikI — L) el camy < €
PRI — Lo) ™ el capry < ce.
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We notice that (¥ € H* (i.e. is a linear bounded form on H), C° function of ¢
[because f1 and g; € C°(R™)], while ¢ is analytic in ¢, if restricted to H” (recall
that A = (1 —¢)(1 — p)~!). For obtaining the estimate of the remaining term of the
resolvent, of order O(1) in L(H, D), we use the fact that e’ has a norm in CH(R7)
of order 1/e.

(d) Study of the resolvent near 0

Let us define 5 and A(|k|,¢) b
-~ _p—¢€ 1 1 €

C1-¢ P W
A = Aelk] &) = [FAA(|K], €),
A(lkl,e) =1+ plk| + (% — £)ek? + O (1 + []).
The following lemma describes the resolvent near 0:
Lemma 5.4. For any V = (a,b, f1,91, f2,92)" € H, and any k € R\{0}, we have

the following asymptotic expansion for ¢ — 0V, which is uniformly valid in H for
e(1+ |k|]) < o:

(i — £)7'V = { (kA (K] ) €, (V)] + [E (V] () } ot

1 ~ € b !
tIT ~|k| &WV) (y&e — pxe) + T [X _/o 92(7)057] Xk+
+eb(farg) + 0] 0+ 0 (T IVl ) (55)

where a uniformly valid estimate in D is obtained in replacing the O(-) term, by

0 (flf\lk\ ||V||H) for components oy and (1, and by O (ElJyr,LI ||V||H) in ag and (2,

(no change for the two first components). In the above expression, we use the no-
tations

€4V =W +ik [ (A0 +ilsgmbn (e dr (56)

=010 = (14 k) {itoom) [2 [ + [~ 0) - Ao}

t
Xk = (i(sgnk),0, elkly i(sgnk)e‘k‘ﬂ,l,()) eD,

y& = (0,0,0,0,y,0)" € D,
t

fg,gg (0000 gg dT/ f2 dT) GD
0

[®(f1,91)] ( 1+~|k|/ [f1(7) +i(sgnk)gr (7)™ 7 dr,0, Hy [ f1, 91] (K, ),

ik(y — p)
1+ plk|

t

Ki[f1,01)(k,y), [fl(T) Jri(sgnk)gl('r)]edeT,O) ,
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_ ~ 0
il anlkg) = il ranl(hg) — 125 [ (o) () + i (e Dar
[

Kilfr, g1)(k,y) = Ka[f1, g1)(k, y) + [f1(7) + i(sgnk) g1 (r)]e!HI T T dr,

T+ 70k )

Notice that in this expansion we do not expand with respect to k, to keep
track of the exponentials [the choice of the scaling is crucial here, and notice that

[IXkllp = O(1 + [K[)].
Notice also that the principal part for k£ — 0 is given by

(ik — Lo)TV ~ —(ick) 7 €2 (V)]€o,

which corresponds to the pole at the double 0 eigenvalue, but only in the direction
of &. Moreover the projection —e~1&E* on the eigenvector & becomes singular as
¢ — 0, since its norm diverges. We also notice that if £5(V) = 0, there is still a
jump in the resolvent as k crosses 0. Let us define the following linear form, only
bounded if g; decays sufficiently fast as y— —oo

1 0
(V) = /0 g2(7)dr + 5_1/ g1(T)dr — ; (5.7)

— 00

The jump in the resolvent then disappears if 7(V) = 0 (see the ; and B2 com-
ponents). Indeed, if we impose a decay towards 0 as y— —oo, the two conditions
£(V) =0 and n*(V) = 0 are necessary conditions for V being in the range of L..

In fact, in the following we do not use the projection —e~1¢H€* because of its
diverging norm as € — 0. Let us define the uniformly bounded linear forms pg and
p; defined for any V = (a,b, f1, 91, f2,g2)" € H, by

po(V) = g21 = galy=1, (5.8)
pi(V)=a. (5.9)
We check that

Po(&) =1, po(&) =0, po(C,) = pol

=€

pi(é) =0, pi(&) =1, pi()=pi(

Now, the linear operators {op; and &;p] are projections on the subspaces, respec-
tively spanned by &y, and &;, which are bounded uniformly in e, as well in H as in
D.

Proof of lemma 5.4. For ¢ — 07 we have (uniform estimates for e|k| < §)
A(kl,e)™" = (L+plk) ™" + O {elk[*(1 + k) 7}
and (below the formulas are for & > 0)

A(ek,e)A = e*k[—pAaio + pbio] + O (°K*||V||m) ,
A(Ek,é‘)ﬁ = 6[)\@10 — (1 — €)b10]+
+ %k[Aair + bio — (1 — €)bia] + O (°K?||V )
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1 0
a1p = a — pgso + p/ g2(T)dr + zk/ [f1(1) +igi(7)]edr,
0 —00

a1 = —ip /01(7 C D) fo(r)dr

1
bloibf/ gQ(T)d’I'7
0
1
b11 :i/ TfQ(T)dT
0

H3[f2, g2)(k,y) = ey/o gz(T)dT+€/0ygz(T)dT+0 [ (1 /2]l + llg2ll0)]

. 1 1 1
iKalfo,g2l(kv) =~ [ ga(nidr— [ rhandr e [ fandre
0 0 y

+0 [%k(|[ folloe + [1g21l0)] -
Then, for k£ € R\{0}, and (1 + |k|) < 0, we arrive to

oy L — 1 2 (T T—E elkly
W) =~ €N - =S | [ atryar = ] v
~ e|kle*ly
__(sgnk)B ik BsgnR)e [ B
R e ) T A e

~ elkle*ly
K
+ 1[flagl](kag)+0< 1+|]€| ||VY||]HI )

_ [yim * Y g 1 b
Oéz(y) - Tﬁ'k,l[ge,k(v)] +€/0 QQ(T)dT - ka’l [/0 gz(T)dT — X] +

+ O {elk| (1 + [E) M|V ]a}

R S _i(sgnk) ! . T_Q
Baly) = =l (V)] - 120 [ [ty - 3]+

e|k|
{1+p|kl/ P2(t dT“/ falr d7}+0(1+|k|” ”H)’

The linear form &, is a bounded linear form in H, uniformly bounded in k. If
V has its components f; and ¢; sufficiently decaying as y— —oo then E;‘,k(V) ~
£5(V) [see (4.11)] for k = 0. In fact, in a further section, we need to apply the
resolvent to V' € H such that the components f; and g1 decay exponentially fast (in
e/\g/g) as y— —o0; in such cases we have a precise behavior of H, [f1,01], K [f1,91],
€4(V) =€ (V) as k0.

The estimates in the rests for a1, 31 and as, B2 are uniform for (1 + |k|) < 4,
when ¢ — 0. We then obtain the asymptotic expression for (ik — £.)~!, with
estimates in H and in D, and the lemma is proved.
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(e) Study of the range of L.
Let us give more details on the range of the operator £.. We use extensively

two projections 7. and 7. defined for any V € H by

x.V =7V — py(meV)éo,

7V =mnV — pS(WsV)EO *pT(WsV)élv
where we defined already 7. at lemma 5.3. We also need in the following, the range
of the reduced linear operator acting on the subspace 7.H. Finally we need the
range of L. on a subspace where the components f; and g; are rapidly decaying.

For this result we need to introduce new spaces, which will be also useful at next
section. So we define

Cf,exp _ {f “R™ — (C;ef)\y/st c Ck(R—)}
equipped with the norms

NFIEP = sup [e /% f(y)|, for k =0,
yeR~

TS = ellF N5 + 1162 for k=1,

where we notice the factor € in the second norm. We also notice that for ¢ small
enough

100 < I f1l00 -

We also define the Banach spaces

K. ={U € H; of(U) € C2, 31 (U) € COP},
E. = {U € D;af(U) € CH*® 31 (U) € CL=P}, (5.10)
F. = {U € H; o} (U) € C1P, 57 (U) € CL**P},

with the appropriate norms

1Ullk. = [[PUle + [lef@)I52 + 181 @)ll5e
1Ulle. = [[PUllp + [lei @[T + 18T (DI
Ulle. = [1PUle + e (DITL + 18T (W)ITL

and where we denote for example by o (U) the oy component of U. We notice that
o and (. € E. with a uniformly bounded norm, as ¢ — 0, while &; ¢ E.. We also
notice that we have the following continuous embeddings

E, — F, — K..

These spaces are useful in the sequel when we treat the rests originated from the
nonlinear terms of the system. We observe that the 3rd and 4th components of
vectors have an exponential decay in y, which is a strong restriction with respect
to the decay or boundedness required in H and D.

A consequence is that the projections 7. and . are bounded uniformly in & in
L(K.), L(F.), and in L(E.), whereas this is not the case for the projection 7.
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Let us denote U and V as

U = (B10, Bo1, 01, B1, a2, B2)" €D,
V= (a’a b7 flvglvaaQQ)t S ]HL

then we state

Lemma 5.5. (i) The range of L. in H is the set of V' such that £(V) =0, and

0
fl(T)dT S C]?m,l’ and g1 S C?v

0
g1(T)dr € Cﬁmjl,

S
|<N

e (V) =0,
where £ and 0 are defined in (4.11),(5.7).
(i) The range of TLe in TH is the set of Z € w.H, such that

0 0
/ fi(r)dr € Gy, / lg1(7) — limgaJdr € G 1,
y y

and
X:(Z) =0,

where the linear form x% is defined by

v [ ' f(r) ~ limguldr + = [ / a(r)ir - b/A] +
+plé2(2) —limga].
(iii) The range of w.L. in w K is the set of Z € w K, such that
X:(Z) =0,

where the linear form xZ reduces to

@ [ g ve] [ anar o] ez

Proof of (i). This is straightforward, and it is the same as the proof in (Iooss
1999).
Proof of (ii). Looking at the range of 7.L. means that we solve

T LW =7 e 7.H,

where
G(2) =(.(2) =ps(Z2) =pi(Z) =0,
and where we look for W € 7.D such that

—%

CW) = (W) =ps(W)=p;(W)=0.
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Since (7 is a projection commuting with L., this implies the existence of co and
c1 such that

LW = Z + coo + c161.
Hence we obtain

Y

al(g) = — /O_gl(T)dT +e {/01 ga2(7)dT — b/)\] + epcy — c1y,
aiw = [ " iy,
or(y) = ¢ [ / go(r)dr - b/A} T ecolF— ),

Paly) = —¢ /yl fa(T)dr,

with
eco — ey = EX(Z).

It is then clear that the condition fog[gl (1) 4+ c1]dT bounded, defines ¢; = —lim g1
(exists since g1 € C’Sml), hence ¢g is also uniquely defined, and the part (ii) of the
lemma is straightforward.
Proof of (iii). We modify the proof made for (ii), in relaxing the conditions with
py on Z and W. Instead we impose an exponential decay for a; and (1. We look
for W in _E. and

o L.W=7¢crK,,

which leads to

) = [+ [ [ wiwar-op] 422
Brly) = i fi(r)dr,

orfy) = Uylgz(T)dT - b/A] L E2) G-,

Ba(y) = —¢ | fa(r)dr,

Yy

and the condition for having a; decaying to 0 (same exponential as f1 and g1) at

infinity, is then x%(Z) = 0, where x? is defined in the lemma, and we notice that
Xz =en; +p&l

[see (5.7)]. Hence, part (iii) of the lemma is proved. We observe in addition that the
integrals f_goo fi(7)dr and f_yoo g1(7)dr are bounded in C2°*P_ with O(g), hence

&E(Z)=—pt [/0 g1(7)dr + 5/01 go(T)dT — Eb/)\:|

— 00

verifies
£2(2)| < cel|Z]|k.
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hence

Wlle. < cellZ]|k. -

6. Periodic solutions

In this section, we study periodic solutions of (4.1). First, we give at theorem 6.1,
periodic solutions of (4.4,4.5) provided we define correctly the condition (4.5), i.e.
without mentioning 3rd and 4th components of U [we denote these vectors by
W or with an upper index (P)]. The analyticity in € disappears in incorporating
the two missing components because of the non analyticity of ¢_ (see (4.3)) for &

near 0 contrary to ggp) (see (4.6)). The result given at theorem 6.3 comes from
the structure of the eigenvectors belonging to the eigenvalues +i\/e, and from
the structure of the third and fourth equations in (4.1). Theorems 6.1 and 6.3 are
analogous to the classical Lyapunov-Devaney theorem which ensures the existence
of a one-parameter family of periodic solutions, bifurcating from a pair of simple
imaginary eigenvalues for reversible vector fields in finite dimensions. In the present
case, there are two extra difficulties: i) 0 lies in the spectrum of £, and is resonant
with the pair of eigenvalues +i)/e, ii) 0 also lies in the essential spectrum of L.,
since the entire real line constitutes the essential spectrum.
In this section we use the spaces

Hi o5 ={V € H} p(H); SV = -V},
DY = {U € H} 7 (H) N H}.(D); SU = U} :
where, for any Banach space £, H["»(E) = {u € Hj,.(E);u(s +T) —u(s) = 0 in
E for almost all s}. The superscript 7' may be omitted if there is no ambiguity
about the spatial period. We put in the above spaces an index S or an index AS

when we restrict respectively to vector functions such that SV = V, or SV =-V.
If U € Dyg, then LU € Hy ag, N(e;U) € Hg ag. Notice that if W e ID)ES, then

cPw e HY 450 NP (e;W) € H] 45, and D(W) € Hfg(R). Let us state the
following

Theorem 6.1. For any constant M > 0, there exists €9 > 0 such that for any
(ug,v0, Ag,€) € R?xC x R satisfying
|U0| + |’Uo| + |A0| < ]\47 O<e< €0,

there is a family of periodic solutions p(P) of (4.4,4.5) in ID);D’Z, bifurcating

Ao,u0,v0,€
from 0, where T denotes the period, and

(P) (z) ~(P) (s)

D A¢ u0,v0,e = P agy,uo,v0,e

. . . - . . 2
possesses the following power series in €, ug,vo, Ao, Ao converging in Df’ T

18 A 71'5_77
PP (5) = uotS” + vo&lP) + Apei*¢P) + Ape=iT 4

DAy u0,00,e

r,n, m AP A4 i(p—q)sy (P)
+ g e"ugug AOAOe( ) Ynmqu
p+g>1
2<n+m+p+q<r+1
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where
1 Ntz T 2me
s=¢ , I = ,
e A+
Y= Z VnmprugvgwAOlQpET € R,
1<n+m+2p<r
C&gp) = (1a6)\a _ieAy’eAy)ta
C(YVihpar) =0 forp=q+1, pi(Yii,,) =0, pi(Yi7),,) = 0.

These solutions are reversible for Ag real, and we have SYéZ;LQT = YH(ZZZJW =
?'I(’Z:n)/pq'l"'

Proof. Let us set s = e 71 (A+7)x, where A = (1—¢)/(1—p) , where 7 is close to 0,
and (X +v)e~! is the wave number in coordinate z of the periodic solution we are
looking for. We then look for (2w —periodic) functions of s. Let us precise the norm
we choose in the Banach space Hf (E), the space of (2r—periodic) functions such
that their derivatives up to order p are in L?*(R/27Z), taking values in the Banach
space E:
[ullFzp = 3200+ 02) fun 7
neZ

where
1 2

Up, u(s)e” "5 ds.

:% )

Let us define the linear operator T, = AL — (Ag + eA;) which maps D into HY .
The basic tool is the following

Lemma 6.2. For any given V in HT, such that

27
—x

CV(s)e*ds = / T W(s)etds = / " V(s)lds =0,

there exists a unique W in Df such that

T.W =V, DW)=0, (6.1)

[ cwteras= [T e =o
/027r po[W (s)]ds = /O% pi[W(s)]ds = 0,

where ¢ and ZZ are given by (5.4). Moreover, the linear mapping V. — W = T;lv
is bounded: B
7 Vllp < cllVlsg-

Important remark. In the above lemma the condition D(W) = 0 only applies on
Fourier coefficients of non-zero index. Indeed, for the average [W]o = 5 02 "W (s)ds
we have no condition on 31¢.
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Proof of lemma 6.2. Expanding in Fourier series V' and W, equation (6.1) gives
forn#£0,1,—-1
Wye™ = [inAl — (Ag + eAp)] = Vie™,
W, e DP N {B10 =isgn(n)agp}.

Now using the resolvent estimate for |k| large (see (5.3) at lemma 5.2 of section
5.(b)), this insures that, if we define

W= > W.e™ eD], then W' llpp < Cul|V||p holds. (6.2)
nezZ\{0,1,—1}

It then remains to study the equations [inAl— (Ag+eA1)|W,, =V, forn = 0,1, —1.
For n = 0, we have

*(.Ao + E.Al)Wo =V e H”.

If we note Vo = (a, b, f2,92)¢, the following compatibility condition has to be satis-
fied (see lemma 5.5)

& (Vo) =0, (63)
where £ is defined in (4.11). All solutions such that W, € D7 are given by

Wy = WO + koégj + kléf, (64)
t

—~ 1 !
Wy = <0,0,/ gz(T)dr+§,/ fz(T)dT> ;
Yy Y

where ko and k; are arbitrary. Then, provided that £(Vp) = 0 holds, there is a
_ — -1
unique solution Wy = Wy = —(Ag + eA41) Vp which satisfies

—(Ag + AWy = Vi,
ps(Wo) =0,
pi(Wo) =0,

and we have the estimate .
[Wollpr < cf[Vollzm-

This means that we have a pseudo-inverse of —¢L. acting from H” Nker £* towards
D” N ker p§ N ker p} with a uniformly bounded norm with respect to ¢.

For n = 1, we need to use the linear forms (} and E: for any V'=(a,b,0,0, f, g2)*
lying in Hy, we define

1

Z:(V) = 5

2m
/ e S PV (s)]ds.
0
It is easy to check that for any W € ID)g’

ZX(Ao +eA)W] = iXZZ (W),
& [(Ao +eA1)W] =0 (as a function of s),
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and ' N o
z:(e (P =1, ZX8V)=Z(V).

The necessary and sufficient conditions for finding the components W7 and W_; of
the solution W in (6.1) may be written as

Z2:(V)=¢ () =0,

ZA(V)= (Vo) =0,
and W7 and W_; are respectively defined up to arbitrary multiples of the eigenvec-
tors CE(P) and Eip) € DP.

We define now two projections P, and P, as well on Hg’ as on ]D)g), as follows, for

any V and W ¢ Hf (identified with V' and W € Hy with 3rd and 4th components
identically 0):

W = upt” + ve® + Aei*¢® 4 Be=is¢”) 1y, (6.5)
A=2Z:(W), B=Z.(W),
up = po(Wo), vo = pT(Wo),
* def 1 o * —1is
zzw) < — | cw(s)e s,
™ Jo
Z:(Y) =Z.(Y) = pj(Yo) = pi(Yo) =0,
v pw,
_ 1 is ~(P) ; —is=P) | 17
V=Cxo+ A" +B'e (., "+, (6.6)
A'=7:(V), B =Z.(V),
27
* def 1 * —18
Zs (V) = % 0 Ce [V(S)]e dS’
1 27
C=&W) =5 E[V (s)]ds,
™ Jo

X0 = (1’07070>ta 6;()(0) =1,
ZX(V)=Z.(V) =& (Vo) =0,
v Ry,
where, for instance, Yy denotes the 0-Fourier component of Y. We check that
15 —is7P
D(e™¢F) =0, D(e () =0,

hence D(W) = 0 implies D(P.W) = 0. Finally, we just built above, a (uniformly
bounded in ¢) pseudo-inverse 7. 'of 1%, from PEHf onto PE]D)g) N ker D, and the
lemma is proved.

Proof of theorem 6.1. Let us now consider the system (4.4, 4.5) where we look
for solutions in ]D)g’. We can rewrite this system under the form of the following

equation in Hf:
TEW = G(Ev s W)7 D(W) = O’ (67)
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where

G(e,v,W) = —’y(il—z/ + 5N(P)(5; W). (6.8)

We observe that, due to the form of the scaling, (6.7) may be written as

T-W' =G'(e,v,W'), B(W') =0, (6.9)
dw’
Ge, 7, W) = = (& W),

where W’ = eW, and G'(-,-,-) is analytic: R? x Df — Hf in the neighborhood
of 0, and is such that

G'(,7,0) =0, D(ywnG'(,0,0) = 0.
It is also easy to check that the following properties hold:
ST. = ~T.5, S5C'(e,7,W') = ~G'(,7,SW"), D(SW') = D(W') 0 5

where sz = —z.
We want to apply the decompositions (6.5,6.6) to the system (6.9), with

W' =u (P)+UO§(7’) A/ zs§(P)+A 7154-(77)

— PEW’,

+Y/,

since W’ is real. This leads to the system

dY/ D s ! —is#(P
T.Y = vt P NP (g;upeS7) + vheP) + Abets¢(P) 4+ Age Ci - Y,

(6.10)
0= —ivAL+ Z [N(P)(s UOS(P) (P) + Ajets¢P) +Z’Oe*”ZiP) + Y’)} ,

(6.11)
0= ¢ [N (upes” +vpel™ + 46" + L0 +Y)] L (6.12)

Remark. In the proof of the classical Lyapunov-Devaney theorem, there are two
equations similar to (6.10,6.11), the other compatibility condition comes from the
fact that in the present case, the operator L. has 0 for eigenvalue, which is resonant
with +i)\/e. We show below that, roughly speaking, (6.10) gives Y, (6.11) gives ~,
and fortunately (6.12) is automatically satisfied because of all equivariances of our
system.

Using the pseudo-inverse, we defined above, we have first from (6.10) in using
the analytic implicit function theorem

!

Y = V(e 7, up, v, Ap, Ao)

where ) is analytic in its arguments and, because of the fact that the identity

NP (&;upe” +v0e™)
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holds, we have the estimate

!

))(6, s u6a ’U6, A67 ZO) = OHA/O

(lug| + [v, | + [Ap])]

with the following principal part
=’ T-1p is 2 —isF
y(5577u65v67A67A0> ~ Ts IPEN(EQ) (U6§0 +U6§1 +A66 gg +A06 QE)@) )

where we notice that

Moreover, we have in addition the equivariance of (6.10,6.11,6.12) with respect to

the symmetry S and to the representation of the group SO(2) given by (1W')(s) =
W'(s + ¢). We know that S§ = &, S¢_ = ¢_ holds, then we have, due to the

uniqueness of the solution

— RN
T¢y(5577u65v67A67A0) = y(€773u/05v65A/061¢7A06 Zd))v

— —
Sy(&‘,’%u{), ’U6, A6, AO) = y(gv% U/Oa 'Uéa Ay, A6)

Replacing Y’ by y(s,%ua,vé,A’O,Zg) in (6.11,6.12), these equations take the
form

fl(ga Y5 u6a ’1}6, A{),Z:)) =0in (C7
fO(Ea s uaa ’1}6, A(),Z:)) =0in R7
satisfying, because of all equivariances (anticommutation of G’ with S ),
= f1(e, 7y, uh, vh, Ape™®, Aye %),
—
file, v, U6, 1)6, Ay, A6>;
fole. 7, s vh, Ape?, Age ™),

—
7f0(€7 Y u/07 ’U(/), AO’ AlO)’

2 / / /
€ ¢f1(€7’yau07UOaAOa

Ao)
—7F1(e,7,up, v, Aps Ap)
Fole,y,ul,vh, AL Ay) =
Fole, v, ub, vh, Ay Ay) =

for any ¢ € R. This leads to
Fi(e, . uh, vh, Ay, Ag) = iAhg(e, v, uh, v, |AG 1),

!

fO(E) v, ué)a U(I)a Aé)’ZO) = 07
where g(e, 7, uf, vy, |Aj|?) is real valued and analytic.

Remark. We observe here that the compatibility condition (6.12) is automatically
satisfied, thanks to the equivariances of the system.
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More precisely, it can be checked that
g(e, 7, up, vp, | 4g]*) = = + Ol(Jug| + [vg| + [ 45]*)]-
and by implicit function theorem, we have:
v = T(e, up, vo, [ 45]).
We now perform the scaling
o =¢cAo, ujy=cug, v,,=cvy, W' =eW,

and the theorem follows directly, after noticing that monomials " uf*vf™ A{ qu
become g TrHmHpraynym AFAL which shows that the exponent of ¢ is r = 1/ +
n+m+p+q—1, hence n+m+ p+ q < r + 1. This ends the proof of theorem
6.1. We can now treat the two missing components of U, which is stated in the
following

Theorem 6.3. For any constant M > 0, there exists €9 > 0 such that for any
(ug,v0, Ag,€) € R2xC x R satisfying

|uo| + |vo| + Aol < M, 0 <e < eo,

there is a family of periodic solutions U= DAy ugvo.e Of (4-1) in Dﬁz, bifurcating
from 0, where
pAo,uoﬂlo,E(g) = ﬁA07uo,U07€(s)

possesses the following power series in g, vg, A, A, € converging in D?” :

Do uowoc(8) = oo + vobr + Age™(_+ Age ™" _+

+ Z ETugU(TAngei(p_Q)sYnmqu
p+g>1
2<n+m+p+q<r+1
where
2me
-1
s=¢e¢ [ A+~vlx, T=
A+9]z, T ppret
7(“07 o, |A0|27 5) = Z ’Ynmprugvg)n|AO|2p5T S R,
1<n+m+2p<r
¢ = (1,e, —jeM/E e e, eM)t,
Cz(Ynmpqr) =0 fO’I"p =q+ 17
Do (Yomppr) = D1 (Ynmppr) = 0.
These solutions are reversible for Ag real, and we have SYpmpgr = Yamgpr =

Y nmpqr- Moreover, there exist ¢ > 0, and K > 0 such that we have the estimates
&|[Ynmpar| D + [|PYnmpgr I + [|[Yampgr [z < ceg "KM P+,

We have in fact better estimates, due to the exponential decay of 3rd and 4th
components as y— —oo. This is stated as follows:
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Corollary 6.4. There exist ¢’ > 0 and K' > 0 such that

Yompar|le. < ¢/eq " K™,

Remarks. With respect to theorem 6.1, we notice that we need to manage the
relative loss of analyticity with respect to €. This comes in particular, from the
3rd and 4th components of (. where e*¥/¢ introduces this loss, even in CY, when
e — 0. Another remark is that the family of periodic solutions does depend on two
constants, which is natural, because of the freedom we had from the beginning in
our system. This is a consequence of the fact that we did not impose 51 — 0 as
y— —00.

Proof of theorem 6.3. Because of the analyticity of the expansion at theorem
6.1, we already know that there exists K > 0 such that

1PYsmparllor < ceg” KmHm4v+a,

We just need now to compute the 3rd and 4th components of the solutions where
the 4 other components are known, thanks to theorem 6.1. So, we consider the 3rd
and 4th components of system (4.1), which are just the Cauchy-Riemann equations.
It results immediately, that the mth Fourier coefficients are given for [ # 0, by

o = —ilsgn())ige! 7,
BY = g llO+y/e,

where ﬂglo) is the first component of the [—th Fourier coefficient of the (already

P)

found) solution j)\(A wg.e(8)- For I = 0, we notice that, by construction ﬁ;g) = 20,

hence we have 650) (y) = vo and, ago) is given by
0 0 r.on,m *
o’@=as = Y ugu Ao ol Vamppr)-
p+q=1
2<n+m+p+q<r+1
For [ # 0, we have for instance
1 . r,n,m *
oy =—id |1+ 3 ufu AP Yo genar) | XTIV

1<n+m+2q<r—2
Now, we observe that el!l*+7v/e — em)\g/s[zj_l! [(”W/E)Q]j ’
Jj=20
with /e = O(|A|? + |uo| + |vo|) and

: j j JHle=(i+1)
%H [(|l|’7/€)ﬂﬂ lPW/||) o < (y/N)? {1 + <ﬁ) (j+1) -

< e(y/A (14 ¢ jY/?) for large j.

Replacing v by its expression, we deduce that e/!®+7)¥%/¢ may be expanded in
powers of (|Ag|?, uo, vo) the series converging in C'(R™) and we have

1 .
||€\l|>\y/€[z7 [(117v/2)y])’ ller < €]i|/e, for e small enough.

§>07"
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Moreover, the factor of e/*2/¢ is analytic in (g,]Ao]?, 1o, vo). This above estimate
explains the factor 1 /¢ for the estimate of ||Yympgr ||p. The estimates of the Corollary
with the 3rd and 4th components in C1*P follow easily, with K’ larger than K,

since we use a part of the exponential decay in the norm.

Now the orthogonality condition (* (Y,%’,JL) = 0 for p = g+1, leads to (} (Yopgr) =

0 (since i[sgn(p — )] f1 — g1 = 0). The result of theorem 6.3 then follows.
The Bernoulli first integral and periodic solutions

We already defined the Bernoulli first integral (4.9) of our nonlinear rescaled
system. Any solution U(x) of system (4.1), satisfies h[e; U(z)] = const. Moreover
we already observed that

Dyh(s;0)U = £5(U), for U € H.

Let us consider the family of periodic solutions pa, ug,ve,e (2) and compute the value
of the Bernoulli first integral. We first observe that

hle; U] - &2(U) = )
o0t 00— (1= 3 - 155 [ (38 - )i+ OIPLIR ).
and
Pio oo, (8) = oo + voé1 + Age™¢_+ Age™ ¢ +
+ @ (Ape™, Age™ " ug),
D (Age™, Age ™", ug) = O [e|Ao|(|Ao| + [uo] + [vo])]
Since h is a constant, we have the following invariance property
hlE; Dao.uo,vo.e (8 + @)] = hle; Pag,uo o, (8)];
hence, a straightforward consequence is that
BlE; Paao,uo w02 (5)] = h(| Ao o, o, €)
where £ is analytic in its arguments. Now we use
&£ (oo + vo&1 + Age™(_ + Age™ () = vo — ey,
and we obtain, after a simple computation

Lemma 6.5. The Bernoulli first integral h(e; U), evaluated on the family of periodic
solutions found at theorem 6.3, satisfies

R[E; Py ug.vo.e(8)] = vo — €[ug + he(|Ao|?, uo, v0)], (6.13)
el 4ol o, v0) = 2(1 — p) (e — )| Aol + 5(3 — £)ud — 13+
+ Ole([uo| + [vo|)[ Ao|? + &2 Ao[* + &(|uo| + [vo])?],
where he is analytic in its arguments.

Remark. The coefficient 3/2 in the expression of h. is the one which will occur in
the Benjamin-Ono equation later on.
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7. Normal form

In this section, we introduce new variables such that the system they satisfy has a
nicer form than the original system. Indeed, on the new system the set of periodic
solutions of theorem 6.3 appears trivially on a flat 4 dimensional manifold, and many
terms of the system are transformed in such a way that for the study of solutions
homoclinics to anyone of the periodic solutions above mentioned, the decay rate
of the rests will be sufficiently good. As we shall see, this needs some (instructive)
technical work.

In section 5.(e), we defined the projection 7. on a subspace supplementary to
the space spanned by (e, gg, & and & :

7.U =7.U — p(*)(ﬂ'aU)EO - PI (7T8U)§1,
where we observe that
¢ (7U) = CL(7U) = pj(7U) = pi (7.U) = 0,
[Tell ey < ¢ |[Tellemy < c/e.

In this section we prove the following (the notation W is not the one used at section
6).

Lemma 7.1. For |A| + |u| + |[v| + ||W]lm < M, 0 < ¢ < gg there is an ana-
lytic mapping ®. : C2xR*— E., smoothly depending on e, such that the change of
variables

U= AC + AL +up+v& + W + ®c(A, A, u,v),
W) = (W) = ps(W) = pi (W) =0,
with (see theorem 6.3)
O (A, A u,v) = Z ETu"vaquYnmqu
pt+q=>1
2<n+m+p+q<r+1

transforms the system (4.1) into the following new reversible system in C x RZx 7 H

dA A _
=i 2 (|47, 9)| + Rad A1), (7.1)
do . _
e PILW 4+ Ry(A, A u, v, W), (7.2)
du _
s PoLW + Ry(A, A, u,v, W), (7.3)
Cfi—W =T LW + Ry (A, A u,v, W), (7.4)
L

where y1 = y/e (see theorem 6.3), Ra, Ry, Ry, Rw are analytic in their arguments,
and

[Ral + [Ro| + [Ru| + |[Rw |71 = O{[[PW|p(|A] + [u] + [ + [|PW|[p)} ,
1Ro&1 + Bw ||z 5. = O{{[PW|p(|A] + |ul + [v] + [[PW]|p)}
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where F. is defined in (5.10). The system (7.1,7.2,7.8,7.4) is reversible under the
symmetry S, acting in C2xR*x7.H

(A, A u,v, W) — (A, A, u, v, SW).

Remark 1. The family of periodic solutions appears explicitly in the above normal
form, in taking W = 0, u = ug = const, v = vg = const and A = Age®*, |Ag| =
const. This is a very remarkable property of the above system, which simplifies a lot
many of forthcoming calculations. Indeed, we flatten the four-dimensional manifold
of periodic solutions.

Remark 2. In the equation for W, the 3rd and 4th components of the nonlinear
part are y-dependent. Indeed, the very good fact is that the nonlinear terms (all
terms except . L.W), have a fast exponential decay as y— —oo, at least as eM/e,
Moreover these components are continuously differentiable in y such that R,& +
Ry € F..

Remark 3. If we collect the equations for v and W, in making
m:v£1+W€£gD7

then we obtain I
ﬁ =n. LW + Rw (A, A u,v, W), (7.5)

where we observe that L. operates only on the component W of W, and the fol-
lowing estimate

1 Rw (A, A, u,0,W)||g 5. = O{I[PWIIo(|Al + Jul + o] + [[PW||p)}

holds. The important fact is that Rw, as well as R4 and Ry, cancels if PW cancels.
This will allow us to improve this system (see next lemma).

Proof of lemma 7.1 From the form of the periodic solutions pag ug,v,e(S), and
the identities

A d . N -
(g +71)£ =L.p+N(e;p),
Baowne(s) = ubo +v&1 + AC + A +Be(A, A, u,v), A= Age',

and defining
Na = iAvy(u,v, |A]?,€),

we obtain the new identity in K.

(i PV
Nal_+Nal_+ (ZT + NA) 04P. + <ZT + NA> 05®.
= Lo®e + N (g; AC_ + AC_ + ubo + v&1 + o), (7.6)

which is valid for any u,v, A, e such that |A| 4 |u| + |v]| < M, 0 < e < g¢. It results
that

Ra(C_ +0a®c) + Ra(C_+ 075®c) + Rw + Ru(6o + 0uPe) + Ry (&1 + 0, ®.) =
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= N(e; AC_+ AL+ uéo +vér + W + &)+ (7.7)
= N(&; AC_ + AC_ + uo + v&1 + Do)+
—po(LW)0y @ — pi(LW)0, e

holds, and then R,&; + Ry lies in fact in F., because &, (., P, 0aP., 0, P,
0,®. € F., and N has no 3rd and 4th components. We now use the estimates

10AP:||r. + [|0u®ellr. + [[0sPcllr. < ce(|A] + |ul + |v]),

for being able to solve equation (7.7) with respect to (R, Ry, Ry, Rw) € C X
R2x7.H, in projecting this equation on QE, &o, &1, TH. We observe that

[1P6 (£ W)0u@e||e. < | All|PW][7.p,
T (LeW)0uc|[r. < ¢ Al||[PW||z.p,

holds, and NV (g; W) only depends on PW, hence the lemma, is proved, after straight-
forward estimates.

Now, we can improve lemma 7.1 in treating, by a normal form technique, all
terms which are linear in W, with coefficients depending on A. This is useful for
eliminating oscillating terms having a not as good decay rate when |z| — oo as
higher order nonlinear terms in W. Below we will be only interested in solutions
such that u v, and W tend towards 0 as |z| — co. We might do the same analysis
for solutions such that the limiting u and v are not 0. We have the following

Lemma 7.2. There exists 6 > 0, such that for |A| < 0, |u|+ |v| + ||W]lm < M,
0 < e < €, there is a change of variables of the form

A=A+ (A AW,
w=u+ v (A, AW, (7.8)
W =W +T.(A, AW,
where p* (A, A), v¥(A, A), T(A, A) have respectively their values in
L(7H,C), L(7H,R), L(7H, x E.),
they are analytic in their arguments and
pe = O(|A]), 2 = O(|A]), T = O(e| A]),

and they are such that the system satisfied by (A, u', W' = v'& + W') takes the
form (dropping the primes)

dA A —
5 :ZA —+’}/1(U,’U, |A|25‘€) +RA(A5A7U7E)7
dx €

du N —

% = pO(EEW) + Ru(AvAa va)a

dw -
= = m LW+ AL(ADW] + R (44,0, W),
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where Ao (A, A) takes its values in L(7.D,x.F.) , and is analytic in its arguments
and satisfies

AE(SW) = 7SA€(W)5 ||AE||£(%5D,EEFE) = O(|A|)a

n{A(A, AW} =0,
where n¥ is defined in (5.7), and the following estimate

|Ral + [Ru| + [|Bwllr. = O [[IW][p(|u] + [[W]p)]
holds.

We observe in the above formulation, that the linear terms in W are simgliﬁed
in the two first equations. In addition, in the equation for W, the term A (A, A)[W]
satisfies a compatibility condition, which will be very helpful later.

Remark. We notice, in the above lemma, that if we suppress the equation for A,
and make A = 0 in the two other equations, we recover a system similar to the
original one, but in the subspace w.H. This is helpful for recognizing the homoclinic
given at main order by Benjamin-Ono equation (see next section).

Proof of lemma 7.2. This proof is given in Appendix Normal form. The fact that
this reduction is possible is not a surprise, except for the a priori resonant terms of
the form A|A|?"1*(W)| and |A|>"n*(W) respectively in the equation for A and the
equation for u. The elimination of these terms results from a particular property
of our system, where we can extend the basic space to functions having a growth
in In|y| as y— —o0, and observe that in such space the linear operator 7.L. has a
bounded inverse, Whlle this is not the case in 7.H. Another new fact is the ability
to impose the compatibility condition

n{A(A, D)W} =0,

which will be essential for being able to invert a certain linear operator, this operator
being basic in our proof of existence of homoclinics to periodic solutions. This
condition allows to treat the term A.(A, A)[W] which has an insufficient decay
rate in « (see Appendix Resolvent 0).

8. New working system

(a) Rescaling and Bernoulli first integral
For the rest of the paper, the good scaling is W= €Y i.e.

U= {A+ep(A,DFEY}C + {A+epZ(AADFEY] +V+
+ 0. {A+ ept(A A RY] A+ E (4 A)RY), (8.1)
ut ev? (A DY epi (Y + De(A DY)}
V={u+ev(AA)FY]} & +eY + el (A, A)[rY],

*

PS(Y) = C:(Y) = ZE(Y) =0, Ye EEID)
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then the system satisfied by (A, A, u,Y) reads (new R, R, and Ry here)

dA _
=i |2 (AP R4 T ),
du —
= = pi(eLoY) + 2eup [ NP (60, Y)| + RulA A u,Y), (8.2)
dy _
T =L LY +2urm, N (50, Y)+ A(A A)[F. Y]+ Ry (A, A u,Y),
with .
n:{A (A, A)[7Y]} =0,
and

[Ral = O{ellYllp[lul + &l[Y]lp]},
|Rul = O {2IY |Ip[(1A] + [uD|ul + [[¥ ||n]} . (8.3)
1By [lr. = O{el|Y[[p[([A] + [u])]u] + |[Y]lp]} -

Remark. We observe that
§X(m LY) = po(eLeY).

The aim of this section is to replace the system (8.2), by another equivalent one
where the oscillating part in A is kept, and where the (u,Y’) part is transformed
into one equation expressing directly Y in terms of u and of the nonlinear terms,
and another equation which is a perturbation of the Benjamin-Ono equation for u.
This new system has the following form [see (8.20)]

dA

L

A _
=i |2 E 47| + RaA A0 Y)

Y =gx.Tou+ Ry (4, 4,u,Y),

pH( ) +u+ 2u =B (A, A u,Y),

where the operators 7y, Ry, B. are non local in z, and Ry, B. are small in a
suitable norm. In the above system 7 is linear and H is the Hilbert transform,
occurring in the Benjamin-Ono equation (Benjamin 1967; Davis & Acrivos 1967;
Ono 1975). This equation plays a deep role here, and will be derived with the help
of the Bernoulli first integral h(e;U) as defined in (4.9).

Indeed, we now consider the Bernoulli first integral
hle: U(a)] = const,
where we know that for U€ H, one has

hle; U] — §2(U) =
€ {5%0 —pB5y — (1= p)B3; — f (85 — a3)dy| + O(?||PU|I).
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We already computed the Bernoulli integral for the family of periodic solutions (see
lemma 6.5), which leads to the identity

hle; AC +A_£E +uby +v€ + P (A, A u)] = v — eu + ho(|A]?, u, v)].
Finally, we have
Lemma 8.1. The Bernoulli first integral of the system (4.1), written with the new
variables defined in (8.1), takes the form
3 ~ -
u=¢&(Y) = gu’ +he[[ AP, u,epi (V)] + Ru(4, 4w, Y) + o, (84)
|Rul = Ole(|A] + [ul)[|Y ]l + €[V |),
|he| = O(JA]? + eu® + | AP (Ju| + elpi (V)]) + %[pi (YV)[?).

where lNLE and Eu are analytic in their arguments, and ¢y a constant.

From now on, we really need to specify the required behavior in z near infinity,
specially for (u,Y’). So we introduce new basic spaces.

(b) Basic spaces for the x - dependence

Let us introduce the following (Holder) spaces for the z dependence, where E
is a Banach space:

BS(E) = {f € C*(E)||fllg, < 0o}, 0<a<l,

17112, = sup(1 + [2P)If @)lle + sup (14 o) L@ [ @l
P zer z€R, |5|<1 |o]

hence, we use for example in the following B¢ (R), BS (7.F.)... and also By*(R)
defined by
daf

Bye®) = {r e R L € Bym) )

and we denote for instance ||f||% the corresponding norm. We also introduce the
spaces By, and Bf , defined by

Bﬁ,w = {V = (avb7 flaglaf2592>t;v(z) € Ha
(a,b) € BF(R?), (f1.01) € (By,)?, (f2.92) € (B)*},
where

B, = {f(z,y); (z,y) ERxR™, fis C*in z, C”in y, I1fllg- < oo},

B} = B3[C°(0,1)], Byt = B[C'(0,1))],
(1 + |=[* +[yl*)
Tlgs = sup ST T g g4
s = sup B2 )
1 2 2 5} _
v ey PG00~ S
z€R,y<0, |§|<1 1+ |y| |5|a

Article submitted to Royal Society



44 G.Iooss, E.Lombardi, S.M.Sun

B, = {U = (Br0, Ba1, o1, Br, 2, B2)"; Bro = Bily=0, 20 = 10, fa1 = Baly=1
(alaﬁl) € (B’l;)2) (042,52) € (B11117+)2}7

dv
By® = {VeBﬁw;d— eBﬁw},
$] ? i ?

and we denote by |[U]|5 ,,, and ||V||]%H?U the corresponding norms.

(¢) A new linear lemma

In this section, we consider the following linear system appearing as a part of
system (8.2):

du .
@ = pOEEEY + €Tu, (85)
day

where (T, Ty) satisfies
T, € BS(R), odd
Ty € [By(w Fe)y + Bs (z.F.)], antireversible,
where we denote by [BS (z.F. ), + B§ (z.F.)] the set of Ty = T)(,l) +T§(,2), such that
) € Bg(x.F.) Nkern?,
7 € B (x.F.).

Taking the Fourier transform of the system (8.5,8.6), we are lead to use the results
of lemma 5.4 for the resolvent near k¥ = 0. We now introduce a splitting of unity,
with smooth even functions ¢y and ¢ such that

(1 k] < 6)2
SDO(EI{;) - { 07 €|]€| >4 )

[0, elk] < /2
#1(ek) { 1, elk| >0

wo(ek) + ¢1(ck) = 1.

Then we have first the following results

Lemma 8.2. For any u € B$(R), we define the function
Up = 1/)0 * U,
Yo = F po(ek)).
Then ug and all derivatives ug") € B$(R),and
[luollg 2 < cllullg 2,
(n)
0

C
llug™[[f2 < ZElullf2

holds.
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Lemma 8.3. For u € By*(R), and u even, let define the operator Ty : By®(R) —
Bp,w by

%U = (ﬁlOaOaalaﬁlaQan)ta
- ~ duo o~ duo
Bro = PH<C@),Q2(P y)<dm)’

Q*Eu*&ig ﬂ*ﬁu*
1*7_[_0 (£2+g2)27 1*7_‘_0

where
ug = Yo * U.

Then, we have
« ~ duo
£ (Tou) = Pro = —pH (d_g) ;
a 1,
| Toull5,., < cllullgla-
The main result of this section is then the following

Lemma 8.4. The solution (u,Y) € By®(R) x B of system (8.5,8.6) satisfies

. D,w
Y = Tou+ Ti(T3) + T(Ty), (87)
N [ du
e+ () =@y + @) O, )

where Tou is defined at previous lemma, and the following estimates

1T (T) 18, < el Tullf )
« 1 « 2 o
1T (T )18, < ce(ITV]1S 5, o + ITE][S g, 5),

ICO(T)18 5 < cel| Tl 50
NI D«
e @M)Ig 5 < cel| T2 v, o,

NI 21
I (@185 < eI T[S . 5

hold.

Proof of lemma 8.2. We have 1y even, indefinitely differentiable, and decaying
fast at infinity. Moreover, for any fixed n

[vo(x)| < cmin{e™ !, e/a?, ... /2™)
holds, as can be deduced from the identity

in(a) = L [ okl i

7r1.271
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which is valid for any n > 0. This implies
(1 + 2o~ < ¢,

hence, the identity

Uy = Yo * u

leads to the result of the lemma 8.2, using the property (see for instance (Iooss &
Kirrmann 1996))

1+ 22
/R i@ =

Proof of lemma 8.3. The fact that 810 € BY(R) results from the property that
up and ug € BS(R) and a result of Corollary 12.2 of Appendix A, where we show
that H(up) € BS(R) (see also (Amick & Toland 1991)). Moreover, the result for as
is straightforward. For oy and (31 we prove in Appendix A that

9 |p Yy
e = =5 [ ()|

o7
ﬁ1(£7g) = a_y |:£'U/O * (%W)} B

el +118ull5; < elluollg’-

satisty

In addition, we notice that
Tou(k) = ikiio (k) (Pxx — y&a)

holds, which shows how we extract this operator 7y from our previous computation
of the resolvent near 0 (see section 5.(d)).

Proof of lemma 8.4. We have by Fourier transform

(K1~ L)@ + V) = (Tt + Ty )

then, using the splitting of unity, we now solve the system

(iK1 = £2) (oo + €%0) = epo (Tubo + Ty ), (8.9)
(iR = £) (@& + 1) = epr (Tubo + Ty ) (8.10)

where

’/LL\Q = (,00(6/6)@, al = Y1 (Ek/’)a,
}/}0 = (‘00(61{/’)?, }/}1 = @1 (Ek/’)i},
u=1ug+uy, Y=Y+ Y.
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Step 1. For solving the first equation (8.9), we use lemma 5.4 (since the right
hand side cancels for |k| > §/¢), and then find, in fact for any k € R (below is the

definition of operators S&O) and S§9 ), detailed in Appendix Resolvent 0)

1 - —~ £ =~
o (k) ik(l+ﬁ\k|)<p0€€ ( Y) + ooy, ( Y) TPl
S 1 w (7 = ©) (73

Yo(k) = T 78] woéZ (TY) (y&2 — pxx) + oSy (TY) ’

with

oS () () = 0 (1Tl )
o5 (T ) () = [&(f1,90)] (k) + O (el 0Ty i) .

Whgre f1 and g1 are the 3rd and 4th components of @07/}\/, and where the estimate
of Yy(k) is in D. We show at Appendix Resolvent 0, that

F eSO (Tv)] € By (R), (8.11)

with
177 [0S ()] 11RS < c=UITEV g 6.2 + T2 6. ).

We observe now that the fast exponential decay in y of the 3rd and 4th compo-
nents of Ty implies

112(f1,90)] (B)llp = O (<llpo(T)lle. ) -

Finally we have, for any k € R
208y (Tv) (0) = O (<livo (T ) IIs.)
Now we can compute
Yo(k) = Tou(k) + o (ek) S (f;) (k)+ (8.12)
+ (y€2 — pxr)wo(ek) {iksﬁo) (7/”1\/) (k) + Eﬁ(k)} ,

which allows to define

Tio(T) = F~* {epo )T () (yé2 — ) |

Too(Ty) = F~ {po(eh) [S1 (T ) () + ik(yez — )P (Tv ) ()]}

and we obtain in addition

~ duo

E Yol + (=) = &To(Tu) + Too(Ty))- (8.13)
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We observe that 719(7,) is easily estimated, since it is the same estimate as at
lemma 8.3, once we notice that [*_ T,(7)dr € B$(R) is an even primitive of T.
Hence we have directly

1 T0(Tu)l[B,w < cellTullg s (8.14)

We prove at the Appendix Resolvent 0, that we have the estimate

« 1 « 2 «
1 To0(T)I8 < (I3 ]19 5, 2 + T2 112 5 ), (8.15)

where the above estimate (8.11) on F ! [woSéo) (T;H solves half of this estimate,

because of lemma 8.3. Hence we finally obtain
(1
€2 [Yo] +PH( )Ilm < ce(||Tullg s + IS 5. 2 + 1119 5, 5 (8.16)

Step 2. For solving the equation (8.10), we use lemma 5.3. Indeed we have

(kL — L) el oy < ¢/ K,
[P(ik] — Le) ™ 7|l cupry < ce,

and noticing that (k) is the (a1 component of eps(ikl — L)~} (T;fo + 7/“;) ,
this leads to (below is the definition of the operators SO, S)(,1 ))

) = i+ erS (77) =0 (i ller (Tt + 7)1l )
(k) =18 (Tv) = Oellr (T3 ) l1s),
hence we can define
T11(Tu) =0,
T(Ty) = 7 [rlem)s? (T ) ()]
with the following estimate proved at Appendix Resolvent oo
11 (D) 13,00 < ce(ITV115 . 2 + 11715 . 5): (8.17)

hence the lemma for (8.7) is proved. Moreover it is also proved in Appendix Resol-
vent co that .
F {cplsfﬁ (Ty):| c BY(R) (8.18)

holds, with

177 (o180 (T9)] 1165 < ceIT 112 o0 + 1ITNS . 5),
so, we obtain in addition

Ml = -G + 77 ke ensd (B)] + €@+ (6.19)

_F1 [zsgn(k)ﬁfwl(fk)ﬁ(k)} )
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with an estimate (see corollary 12.2 in Appendix A, and use the fact that ffoo T.dr
and g * ffoo T.dr € B;’O‘(R))

. o dun o ) 2)||a
e Vil + AR 2 < cellITulli s + 1ITNE e + 1T 1S 2. 0):

Step 3. We now collect the results (8.13,8.19), and finally obtain (8.8)
. - du
e+ () =e ) + @) + I ),

with
COT,) = € [Tio(T)] = F~* [isgn(k)peer (k) Tu(k)]

c(1y) + e (1y?) = F [ilklen(eh) S0 (T )] +
+ & T2 (Ty) + T20(Ty )],

and with estimates announced at the lemma.

(d) New system

We now replace the two last equations in (8.2) by two equivalent new equations.
The first equation will be (8.7) where T}, and Ty are expressed in terms of the
nonlinear terms on the right hand side of (8.2). The second one is a combination
of the Bernoulli first integral (which results from the full system, see lemma 8.1)
and the identity (8.8) which comes from the two last equations, and where T, and
Ty are expressed in terms of the nonlinear terms as above. Let us express our new
system in the following lemma

Lemma 8.5. There exists § > 0, such that for any M > 0, |A| < 0, |u|+€|]Y||z.p <
M, 0 < e < eg the system satisfied by A,u,Y as defined by (8.1) takes the following
equivalent form

dA A _
i 1A [E + 71 (u, epi (Y), |A|2,5) + Ra(A A u,Y),
Y = m.[Tou+ Ti(T,) + To(Ty ), (5.20)

d 3 —
pH (ﬁ) +u+ 5”2 = BE(AaAau7Y)a

provided the nonlocal operators are defined, and where
T, = 2upim NP (€0, Y) + e " Ru(A, A, u,Y),
Ty = T3 + T,
7 = A (A, )Y,
TP = 2um NP (&,Y) + Ry (A4, 4, u,Y),
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_ d -
B.(AAuY)=SH (ﬁ) + hel| AP, u,epi (V)] + CEV (Tu)+
+COTM) + COTP) + Ru(A, A0, Y) + co.
The right hand side of this system is well defined for A € C*(R,C), u € By*(R),

Y € Bg D 0nd the operators Ty, Ts, Cg(l), CE(Q), Cég) satisfy the estimates of lemma
8.4.

Remark. The operators H, B., 7;, C) are nonlocal with respect to the z coordi-
nate.

,w

Proof. We put the projection zr, in equation (8.20)2 since this does not change the
result, Y (z) lying in 7. D. Equation (8.20)3 is obtained in replacing £ (Y") in (8.4)
by its expression from (8.8) in lemma 8.4. The remarkable fact here is that the left
hand side of (8.20)3 is the Benjamin-Ono equation! (see (Benjamin 1967; Davis &
Acrivos 1967; Ono 1975)), and that its right hand side will play the role of a nice
perturbation.

The equivalence between system (8.2) and (8.20) can be seen in realizing that
(8.2) is equivalent to a system with the same equation for A, and where we deduce
(u,Y) from the inverse Fourier transform of the resolvent, as done in the proof
of lemma 8.4. The combination Y — 7gu gives one of the final equations, and the
result for u is precisely identified with the Benjamin-Ono equation differentiated
with respect to x, as might be seen in the expression found at step 1 of the proof
of lemma 8.4:

ik(1 + Pk (k) = — otz (Tv) + k(L + AlkDeo S (T5) +2(1 + AlkDeoT

It can be seen that the term —3u/u which corresponds to the main next term in
Benjamin-Ono equation comes from the term

QUEE NO(Q) (§0a Y)

belonging to Ty, inserted in —&7 (f;) , where Y is replaced by Zou (or m-Tou, which
gives the same result). We did not use this way for deriving the Benjamin-Ono
equation, because it is simpler to use the Bernoulli first integral. So the equivalence
of (8.2) and (8.20) results from the resolution of the linear part of equations for
(u,Y), thanks to a double combination made on their Fourier transforms.

Remark. It should be clear that our new system (8.20) is non local, which implies
the necessity to define a priori an acceptable behavior in z, for the solution. Before
doing this, we give in the next section an approximate solution of the full system,
under the form of an homoclinic, whose principal part is solution of the Benjamin-
Ono equation.

9. Asymptotic expansion of a solitary wave

In this section we give an asymptotic result without proof, since it is not used in
our further proofs, but which seems interesting by itself. It gives the asymptotic
expansion of a solitary wave, corresponding to a formal solution of our system (4.1),
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this expansion is expected to diverge. In the later proofs, we only use its principal
part. We have the following

Theorem 9.1. The system (4.1) has a formal reversible solution in the form of a
power series in € :

U= Ug'fo + Zgn[ungo + Zn—l]a

n>1
where coefficients u, € BS(R), Z, satisfies py(Z,) = 0 and Z,, € By, with a decay
of 3rd and 4th components at least in l/g2 as y— —oo. Coefficient uf is given by

—4p2
h
= 2020 2 9.1
UO(Q) 3(p2+£2)3 ( )
and Zy is given by
Zo(w.y) = (22 —27) 8p%z(p—y)  4p%((p —y)* — 2]
N (VE Eer . (PR o

t
8o%z(p—y)
3(p2 + 22)2’ ‘

Moreover, we have the following

Lemma 9.2. Let us define for a fixed integer p > 0
Hy=(ug+ Y, fuo+ D, 2,

1<k<p+1 1<k<p+2
then, by construction
dH,
d—p — L H, — N(g; Hy) = P2,
XL

holds, with IC,, = (ap, by, 0,0, f2,92,)" € PBy,, ; and as |x] — oo, we have

ap =0(1/2%), b, =0(1/2%), fop=0(/2"), g2, =0(1/2%).

The proof of the theorem and lemma above is based on an identification of
powers of ¢ in system (4.4,4.5), where we recover at main order the Benjamin-Ono

equation
dul
ub 4 pH <—d;> + 3l =0,

whose unique even solution, tending towards 0 at infinity, is given by (9.1) (as it is
proved in (Amick & Toland 1991)). We observe that this equation also appears on
the new system (8.20) in lemma 8.5, hence we can state the following

Lemma 9.3. There is a reversible homoclinic, approximate solution of the system
(8.20) of the form

A =0,

u = ug,

Y =Y) =z Toug,
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1 . . . .

where ul € By“(R) is even in z, and YJ' € BS . and is reversible, and ul
- —€ ’

satisfies

h o gy dug) 3uM2 =0
ug +p dz + 5(ug)” =0.
Remark (Physical shape of the approximate homoclinic). From the expres-
sions of the interface and free surface, we have

dZr
dx
az
g(x) ~ a1 ().

(z) ~ a10(7) = ago (),

Hence, after reestablishing the unscaled variables, and from the expressions of com-
ponents of Zy(z,y), we obtain for the approximate homoclinic

422 9
3007 + %27’

4e2p*(1 — p)
T 3(p7 +e2?)
which gives at finite distance, the physical shape indicated at figure 8, once we
notice that x ~ £. For the shape of the solutions near infinity, this corresponds to
the periodic waves whose principal part is based on the eigenvectors belonging to

eigenvalues i\ /e of L.. For the computation of Z;(z) and Z(z), it is better to use
the formulas

Z]((E) ~ —

Z(x)

0
%@~—[,&@w@

ﬂ@~/;mmw@4ﬁme%

and it is shown in (Tooss 1999) that the periodic waves at the free surface and at
the interface are in phase, hence this will be the case for our generalized solitary
waves here, as || — oo (this is proved at next section).

10. Homoclinics to periodic solutions

The purpose of the paper is to find solutions homoclinic to each of the periodic
solutions pa, 0,0, found at section 6, such that ug = vg = 0 (we might generalize
our results for ug.vg # 0). In this section we prove

Theorem 10.1. For any 0 < a < 1/2, there exist 8, dy, €9 > 0, such that for

0 < € < eg, and 6pe?™® < Ay < 4, the following statement holds: there exist

two distinct reversible solutions QSLQ’E (j = 1,2) of the scaled system (4.1), Holder
continuous in D, homoclinic to each periodic solution p a,,0,0,c found at theorem 6.3
which satisfy

El_a + Ao)

US) (@) = pagoe (:c + ¢;parctan(z/ ,0)) + g (2)éo + O ( T

where ug is the Benjamin-Ono homoclinic, of order 1, decaying at infinity as 1/|x|?.
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As shown in the last remark of section 9, provided that the integrals invoked
in the remark are convergent, these solutions give generalized solitary waves with
a shape indicated at figure 8, where they all look the same at finite distance, and
where they fit with one of the periodic travelling waves at infinity, with opposite
phase shifts at +00. Moreover, the form of periodic solutions found at theorem 6.3
shows that these ones have principal parts given by Ag (ggeiS + gge*”), and then
the form of ¢. shows that the free surface and the interface are in phase.

Remark 1. A natural question is how can we improve the above result in allowing
a smaller size for Ag? A first improvement may be made in improving the normal
form in lemma 7.2. This can be done in treating terms of order |u|™||[W]|| in the A
equation. Indeed they can be suppressed up to an arbitrary order, by a technique
analogous to the one showed at Appendix Normal Form. A second improvement
may be made if we use a better approximation of the approximate homoclinic (see
lemma 9.2). These two actions may arrive to a lower bound for |Ag| in €™ with
m > 2. Now, the major improvement would be to obtain an exponentially small
lower bound for |Ag|. This needs to work on analytic functions in a strip of the
complex plane containing the real axis, using methods developed for example in
(Lombardi 2000). However, in the context here, where an essential spectrum passes
through 0, this needs additional work which is provided in the forthcoming paper
(Lombardi & Iooss 2001).

Remark 2. In the above theorem the limiting periodic solutions p 4,.0,0,c are those
with parameters ug = vg = 0. We might produce the same result for |ug|+ |vo| < 4,
in adapting the normal form of lemma 7.2, as indicated in the previous remark
(modulo additional complications). These new homoclinics would correspond to
non zero mean horizontal flows in both layers.

The rest of this section is devoted to the proof of this theorem.

(a) Shifted system

For proving theorem 10.1, we use a fixed point technique, in starting from an
approximate homoclinic connection computed in section 9, and coming from the
Benjamin-Ono equation.

After the changes of coordinates made in sections 7 and 8, the system (4.1) is
equivalent to (8.20), and the family of periodic orbits pa, 0,0, found at section 6
reads now

pAo,e(S) = (AA(ME’ YAU,Ea uAmE)
= (Aoeis, 07 0)

with Ag € R (reversible solutions), and

A
s = [E +71(0,0,A(2),5)] .

We look for homoclinic connections to the periodic orbits p 4, . under the form

HAO,E = P4ag,e® 1/%(@) + hE(i) (101)
where \
bol) |2 4 3(0.0.43.5)| [z + epot(a/ )]
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0(z) = arctan(z).

The unknown are ¢ € R, which is proportional to the phase shift at infinity, and h,
which is required to be a reversible homoclinic connection to 0. We look for h.(z)
under the form

ho(z) = ((i(h + q2)eiw(z)’y’u) )

So, we are looking for ¢ € R and (¢1, g2, Y, u) tending towards 0 as x— +oo with ¢;
odd, (gz,u) even, and Y satisfying SY (z) = Y (—z). Notice that we have a freedom
in the choice of the odd function 6; the important request is that 6’ is positive and
decays at least as 1/x2.

The new system satisfied by (q1, g2, Y, u, ¢) reads

dq
o = (Ao + 22) 11 (4,0,0,€) = dpo] + Ry,
dg
dﬂj =—q1 [’yl(ua O7Oa5) - ¢PO] + th) (102)
Y = Es[%u] + R/Y’
du 3
pH (@) —+ u + 511,2 = Bé,
where
2 P2
= (A 0,0, A —_
PO(&) [ +’Y( s Uy 055)] £2 +p25

Ry, +iRg, = Rae™ @ 4 i(Ag + 2 +iq1) {m (u, epi(Y), |A]% &)+
-7 (’LL, Oa 07 5) -7 (07 Oa A%a E)} )
v = r[T(T) + T2(Ty)],

where we put a prime when we need to replace A by (Ag + q2 +iq1)e’¥#, and where
we choose the constant ¢g in B, such that (¢1,¢2,Y,u) = 0 cancels it.

(b) Decay rates

Let us consider the expected decay rates as x — oo for (¢1,¢e,Y,u). We have
an approximate homoclinic computed at section 9, which decays as 1/2% for the
components (Y, ul). Moreover, if we make R,, = R,, = 0, and replace u by uf
in the two first equations of (10.2), we can compute explicitly a solution tending
towards 0 at infinity, with non zero ¢; and ¢ functions:

q1 = Apsin /£ [v1(uf(7),0,0,€) — ¢ppo(7)] dr (10.3)

— 00
x

g2 = Ao {cos /_ [71 (ug(T), 0,0,e) — qbpo(r)] dr — 1} , (10.4)
where ¢ is determined by

+oo
/ [71(US(T), 0,0,€) — ¢po(7)] dr = 0. (10.5)

— 00
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The decay rate of 1 (ul(7),0,0,€) and po(7) is in 1/72, hence q; decays as 1/z
while g2 decays as 1/z2. It results that we choose to work in spaces such that q;
decays as 1/z, while g2, u and Y decay as 1/22.

We now observe, because of reversibility of (8.2) under the symmetry

(A, A,Y,u) — (A, A, SY,u),
that the equations (10.2) are invariant under the symmetry S

[1(2), g2(2), Y (2), u(z)] — [—q1(—2), g2(—2), SY (=z), u(—z)]

and that if we assume (q1,q2,Y,u) € Bf(R) x B§(R) x BY p ,, X By“(R) then the

right hand side of the system (10.2) lies in B§(R) x B§(R) x By p ,, x B§(R).
These decay rates are shown below to be sufficient for our proo?. We just observe

that this constitutes the big benefits of the normal form reduction made at section
7, allowing to kill all not sufficiently decaying terms, linear in Y. In addition we
observe that, since the right hand side of equation for ¢; is even, we have to write
a compatibility condition for insuring the limit to 0 at both infinities [notice this
on (10.3,10.4)]. Precisely, this compatibility condition will allow to determine ¢, as
in (10.5).

(¢) Strategy for the resolution of the full equation

We look for a reversible homoclinic connection b = (g1, g2, Y, u) to 0 of the full
equation (10.2) under the form

h= bO,E + b1
with
bO,E = (OaO7Y0hau8)7
hl = (qlv(IQava)v

where (ult, Y') are the components of the approximate homoclinic defined in lemma
9.3 and where

hl = (qlv(IQava) = O(

More precisely, we look for ¢ € R and

b1 € BY(R) x B§(R) x B2 ,, x By*(R),

. D,w

which satisfies
Ly (z)b1 = G(b1,e, Ao, 9) (10.6)

where J
% - [71 (U’ga 07 05 5) - pro] q2
dgz
L (;L')hl _ é + [71(11{)15 07 055) - ¢p0:| q1
oA Z - Es[%w]

pH (%) + w + 3ubw
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and
G = (GQ17Gq2agZa gw)

with
qu = AO [71 (Ug + w, 07 Ov 6) - ¢PO]+
+ Q2[’Yl (ug + w, 07 Ov 5) - ’Yl(uga 07 0, 5)] + R!hv
qu =—q [71 (Ug +w,0,0, 5) -M (U’gﬂ 0,0, 5)] + quv
gZ = /Ya

3
gw = B; — 5’11}2.

Here the reversibility comes from the invariance of the system under the symmetry

(ia q1,42, Z7 ’LU) = (_£7 —q1,42, SZ7 ’LU)

Moreover the map
(¢7 q1,42, Z7 ’LU) = (qu 3 qua gZ? gw)

is analytic from a fixed ball

1,
61 < M, x|l + llg2llg 2 + [lwllgs + 12115, <6,

of
R x BY(R) x BS(R) x B ., x By*(R)
to
B$(R) x B§(R) x By p., X BY (R).

For finding homoclinic connection to 0 of (10.6) we proceed in several steps:

Step 1. In subsection 10.(d) we consider the affine equation
Ly(z)h = F.

More precisely we prove that for any antireversible F € B$(R) x B (R) x B 1, X

m D,w
BS(R) there exists a reversible solution b in Bf(R) x B§(R) x By, ¥ By*(R) if
and only if F satisfies the solvability condition o

/OO <r_(z),F(z) >dr =0 (10.7)
0
where r_ is given by
r_ = (cosT'(z), —sinT'(z),0,0),
with .
M@ = [ [ (r).0.0.9) = dpu(r)]

In other words the range R(Ly) of Ly is the subset of BS(R) x B (R) x B X

. Dw

B$ (R) spanned by the functions which satisfy (10.7). So, a necessary condition for
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the existence of a solution by of (10.6) in Bf(R) x B§(R) x By p ,, ¥ By*(R) is
that -
J(bla ¢a AOa 5) = Oa

where -
J:/ <T—3G(hla€aAOa¢)>dx‘
0

Step 2. For studying J and (10.7), we need precise estimates of Ry, , Ry,, R%, BL.
They are given in subsection 10.(e).

Step 3. In subsection 10.(f), we study the solvability function J and we compute
its principal part.

L,

R(Ly)

B )
Y — T e Z0

Figure 9. Diagram of the modified equation where R(Ly) is the range of Lg; where
Bo = B3 (R) x B§'(R) x B p ., x B3 (R) and By = B (R) x B3 (R) X B p ., X By*(R); and
where Id — IL._ is a projection onto the range of Ly with IL._(G) = (G)e‘zzr, (z)

and J(G) = [; <r—(7),G(7) > dx

2
2

Step 4. In subsection 10.(g), we introduce the modified equation

Lg(z)h1 = G'(h1, ¢, Ao, ) (10.8)

where 5
! _ = 7§2
G =G ﬁJe r_(x).

The term G’ has been designed so that it lies in the range R(Ly) of Ly, for every
g, Ao, (b, bla i.e.

/ <r_,G'(h1,¢&, Ag,¢) > dx = 0.
0

Then, using the implicit function theorem, we prove that for any ¢ and any suffi-
ciently small [Ap|, € the system (10.8) admits a solution b1 ¢ 4,.4 in Bf(R)x By (R) x
B® ;. x By *(R).

. D,w

Step 5. Finally, in subsection 10.(g), using the study of J made in 10.(f), we
prove that for 0 < a < 1/2, there exist 4, dg, €9 such that for every 0 < & < &y,
§0e%™® < Ag < 6, there exists ¢(e, Ag) such that

J[hl,E,Ag,d)(s,Ag)a ¢(57 A0)7 AO; E] =0.
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Hence, b1, 4,,4(c,A,) is a reversible solution of (10.6) in B{'(R) x BS(R) x By X

. D,w
By“(R) which gives the existence of an homoclinic connection to 0 for (10.2) under
the form

h=hoe+ hl,a,Ao,¢(87Ao)'

(d) Linearized system around the approximate homoclinic

This subsection is devoted to the study of the affine equation
Ly(z)h = F, (10.9)

for any given F = (Fy,, Fy,, Fz, ) € B (R) x B§(R) x By ,, x B (R) which is
antireversible, i.e. such that Fy,, and F,, are even, Fy, is odd, while F is reversible

(i.e. SF; = Fz). Equation (10.9) reads

dg

d_xl = q2 [71(Ug,070a5) - (pr} + Fiha

dqz h

dr =—q1 [71(“0,07 0,¢) — ¢P0] + Fos, (10.10)

Z =mn_ [Tow] + Fz,

d
pH <£> + w4+ 3u8w =F,.

Let us first show the inversion for the two first coordinates. Let us consider a
basis of solutions of the homogeneous system in (g1, ¢2)

ry = (sinI'(z), cosT'(z),0,0),
r— = (cosI'(z), —sinT'(z),0,0),

T = [ elr).0,0.2) = opu(r)] ar (10.11)

then ry is reversible, while r_ is antireversible, and I' is odd and may be also
written as

I(z) = /j'yl(ug(T), 0,0,e)dr — ¢p[A + (0,0, Ag, g)] arctan(z/p).

We show the following

Lemma 10.2. Let consider the affine system

dq,

dr =q2 [71(u85070a5) - (bpo} + Fqn
dgz

dr =—q1 [’yl(uga 07 0)‘5) - ¢PO] + qua

with Fy = (Fy,, Fy,) € BS(R) x B§(R), antireversible (Fy, even, F,, odd). This sys-
tem has a unique reversible, continuously differentiable solution (q1,q2) = Fq(Fy),
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(@1 odd, g2 even) tending towards 0 at infinity, if and only if (we identify r_ with
its two first components)

/ <r_(z),Fy;(z) > dx=0. (10.12)
0
We have

FolFy)(@) = —r4 () /

N <r(7), Fy(r) > dr —r_(z) /OO <r_(1),Fy(r) > dr,

and Fq, (Fy) € BY(R) x B3 (R), with
1 Faq (Fllg + [Fao (F)IIR 2 < cllFo[[R 2 + [ Foo R 3-

Proof. Variation of constants method leads to

Fo(Fy)(z) = <c+ + /Oz < ry(7), Fy(r) > dT> ry(x)+

+ (c_ + /j <r_(7), Fy(r) > dT) r_(z).

Reversibility of F,(F,) leads to c— = 0. The imposed decay towards 0 at infinity
implies the conditions

cy = —/ <ry(r), Fy(r) > dr,
0

c_ = 7/00 <r_(1),Fy(r) > dr.
0

We deduce the compatibility condition (10.12), and the explicit form of F,(Fy).
The sufficiency of the compatibility condition follows easily. About the decay rate
at infinity, we first observe that the decay of order 1/z? of F, and the reversibility
of the solution, give immediately a decay rate in 1/z for F,(F,). It remains to
prove the decay rate in 1/z? of the component F,, (Fy), which is easy in using the
differential equation, since dqs/dx decays as 1/x®. Hence the lemma is proved.

It remains to invert the second part of system (10.10) with respect to (w, Z).
This is given by the following

Lemma 10.3. Let consider the affine system in B x B$(R)

. D,w

Z =n_ [Tow] + Fz,

d
oH <£> + w4+ 3ugw = Fy,

where Fy is reversible, and F,, is even. Then, there is a unique reversible solution
(Z,w) such that (Fz, Fy) — (Z,w) is a bounded linear map:
g D,w X BS(R) - Bg D,w X B;a(R)

with an estimate

1,
lwllgs + 12115 pw < cllFullg 2 + 1 Fzll7 pw)-
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Proof. From the result of lemma 8.3, it is sufficient to solve the equation for w,
which is the linearized Benjamin-Ono equation. It is shown in (Amick 1994) that
if F,, € B$(R), then the solution w of the linearized B-O equation lies in By (R),
with the above estimate.

(e) Estimates of the rests

In this subsection we give estimates on Ry, , Ry,, RS-, BL which occur in system
(10.2). We observe that

71(“; ev, |A|2a 5) - 71(0a 07 A(%a 5) = '71(“, 07 O’ 5) + eO [|AO||q2|+
+lol + ¢f + ¢3 + elu|A7]
and that we have a ”bad” Holder norm of e*¥¢
||€iw¢||ca < e
Now, for
[Ao| + [la1llR 1 + lla2lR,2 <6,
ullg,2 +ellY |z pw < M,

we have from lemma 8.5

Tl s < ellY 112 oo (lullg 2 + €1V 112 p,0),
1 [e%
TSNS 5. o < ce™ (Aol + [laallg 1 + a2l 18 )Y IS .00
2
T2 5,5 < YIS o (lullf 2 + eV 1S p0)-

Hence it results the following estimates

1R I 2 < ce(|Ao|+laallg 2) [eAFNullg o+ (llaallR 1)?]
+ e TYIZ b w ([ullg 2+ (| Aol +lazl I 2) el Y112 p.w)
+eellgallR 2 (| Aol + a2l )%,
IIqullﬁg < Cfll@hllﬁ 1 [[Aolllgallz 2 +e AR ullf o+ (llgall& 1) *+ (a2l 2)]
e Y NZ b w (lullg o +ellarl[g 1 +elYIIZ pw) (10.13)
IRy [la.pw < [ 1_a(|A0|+||q1||ﬂ%,1+||q2||1%,2)+5(||u||R,2+5||Y||g€D,w)} Y112, D,

IBL[|g2 < c [El_a(|A0|+||q1||ﬁ,1+||(h||ﬁ,2)+€(||u||ﬂ%,2+€||y||gam,w)} Y112 w
¢ [(laullg 1) +la2llg o (| Aol +lg2l1E 2)]
1,
+eell ullg 5+ (llullg 2)%);

which comes from the estimates given at section 8 on system (8.2), and where we
observe that Ry, , Ry,, RYy, B are analytic in (g1, ¢2,u, Y, Ag). Notice that s = ¢4(x)
implies a loss of e~ in the Holder constant, each time ¢1, g2, Ag occur, except when
A appears as |A|?.
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(f) Principal part of J

This subsection is devoted to the computation of the principal part of J. More
precisely we prove

Lemma 10.4. For every sufficiently small §,¢,|Ao|, every ¢ € R, and every

b= (q1,q2, Z,w) € B{'(R) x By (R) x By

. D,w

x By (R)

with
g% 1+l g2l & 2+ 1wl g5+ 2113w <6,

(5,6, Ao, ) reads
J(b, ¢, Ao, ) = AgsinT'(c0) + J'(h, ¢, Ao, €)
where
J = 0{em +e(llwllgz + 12112 p.u)+ (10.14)

+ (gl 1 + lla2llz 2)[e® + [Jwllg » + e(lanllg )* + e(llgallE 2)°]
+Aolle? + [[wllf 5 + el Aollla2llf » + el )* + e (21l 2)°] }

and (T'(z) is given by (10.11)
_ [ h P 2
Do) = [ mluh(r).0.0,eldr — 657 3+ 5(0,0.43, ).
0
Proof. Assume that
laullg 1 + llazllf 2 + llwllg + 112113 pw < 6,
holds, where § is small enough, J may be written more precisely
J :/ <r_(z),Ry(x) > dx —l—/ Ag [11(uf,0,0,¢) — ¢po] cosTdz+ (10.15)
0 0
+ / [(Ao + g2) cosT + gu sin T][yi (ug + w, 0,0, ) — 71 (ug, 0,0, ) dz,
0

where we notice already that the last integral is bounded by

O[([Aof + llgrllz,1 + la2llz 2)[lwl|z 2]-

We notice also that the second integral reads

< dr
/ Apg— cosT'dx = AgsinT'(c0).
0 dx

Now, from the expression of R, [see (10.2)], we have

/ <r_(z),Ry(x) > dx =Im (/ RAe_i(F+¢¢)dm) +
0 0

+Ole(Ao] + [lanlli 1 + a2l 2) [ + [ollla2llf 2 + (ol 1)* + (llazl[2 2)?]]-
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Since we look for reversible solutions, we have in the reversible system (8.2)

—Ra[A(z), A(z), u(2), Y (z)] = RalA(z), A(z), u(), SY ()]

= Ra[A(~z), A(—x),u(~x),Y (~z)],

Im (/OO RAe_i(F+w¢)dm) = %/m RAe_i(F+¢¢)dx.
0 ) -

Now we can write from (8.2)

hence

Ra=RY +RY,
RY = RA(0,0,ull, Y,
RS 13 = Ole(lwlg 2 + 112115 5.0))
hence
J = ApsinT(c0) + J1 + J2
with
Sy = %/Z RYemiT+ve) gy (10.16)

J2 = Ole(llwllg 2 + 12117 pw) + llwllg 2 (140l + llar|& 1 + [lg2llR 2)]+
+Ole(| Aol + a1 1 + lla2llg 2) [e + [Aollla2lE 2 + (a1 1)? + (la2]8 2)*])-
We observe that J; is an oscillating integral, since Rff) decays at least in 1/22,

is indefinitely differentiable with good decays of its derivatives, and I' 4+ 9g4 =
(2 +710)z+ smooth function tending towards a constant at infinity. It results that

|Ji| = O(e™), for any fixed m > 0

holds (this can be improved in using analyticity of Ri?) in a strip near real axis).

We only need m = 2 in the proof. The estimate of the lemma follows.
(g) Proof of theorem 10.1
(i) Homoclinics of the modified equation (10.8)

As already explained in subsection 10.(c), for finding homoclinic connections of
(10.6) we first study the modified equation (10.8)

Ly(z)h1 = G'(h1,¢, Ao, 0)

where

2 2
G =G - ﬁJ«e*g r_(z) =(G,,,G.,,92,Guw).

We first prove
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Proposition 10.5. For every 0 < o < 1, and every T > 0, there exist §, g, ¢ > 0
such that for every ¢ € [-T,T], € € (0,e0), |Ao| < I, equation (10.8) admits an
homoclinic connection b1 a,.6 to 0, satisfying

D1,e,40,0 = (qlaq?a Z, w) € B?(R) X BS(R) x By B217Q(R)

71']1))71)

and

llalg 1 + lleallf 2 < e(lAol +'79),
lwllg 2 + 12117 p.w < e+ (|0l +" )] .

Proof. Our aim is to solve (10.8) by using the analytic implicit function theorem.
For this purpose we need estimates on (G’ e qz,gz, Gw)- Indeed, in the ball

laallg + llgal 82 + llwllgs + 12115 pw < 6,
and taking into account that the Holder norm of e*¥+®) is bounded by ce~®, we
obtain, due to (10.13) and (10.14)

G4l | B (%)= BS (%) <C[|Ao|ﬁL€1 A+ [Jwllg 2 (larllR 1 + [lg2lR 2)] 5
192115 p.w < ce+e (o] + larlI§ 1 + lla2llR 2)]
1GulI§ 2 < e+ (Aol + llaall§ 1 + [la2l IR 2) + [Aollla2|IR 2] +
+e(llwllg s+ llallg +lallg )’

We also need estimates on the derivatives of G7, Gz, G,, with respect to (q1, g2, Z, w).
The corresponding estimates are not mentioned below, since they are in the same
spirit as above, and often simpler. In all this process the differentials at the origin
are close to the invertible operators defined at lemmas 10.2 and 10.3, hence have
a bounded inverse. In fact we need a slight adaptation of the implicit function
theorem, since we fix € small enough, but non zero here. We replace G'(h1, ¢, Ao, ¢)
by
G/(bla & AOa ¢) - (1 - :uga_l)G/(Oa &,0, ¢)7

and consider the analytic implicit function theorem for (b1, Ag, u) near 0, observing
that e*~1G'(0,¢,0, ¢) is bounded in Bg(R) x B$(R) x BE p . X Bg(R). For u =0,
we have the trivial solution (b1, Ag) = 0, while our system (10.8) corresponds to
p = &'~ which lies in the domain of existence of the solution, for € and |A4¢| small
enough.

We first solve the two first equations with respect to (g1, ¢2), using lemma 10.2
and implicit function theorem. We then obtain (¢1,¢2) as an analytic function of
(¢, Z,v) for §, Ag, e small enough, and

laalli 1 + [la2llf 2 < e(lAo] +'7).

Now solving the two last equations with respect to (Z,w) in using lemma 10.3 in
the analytic implicit function theorem, we finally obtain (w, Z) analytic in ¢, which
satisfies

lwllg s + 11Z]|z p.w < c e+ (|4o] +'7%)?] .
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(ii) Compatibility condition

The previously found homoclinic connections b1 ¢ 4,,¢ of the modified equation
(10.8) are solutions of the full equation (10.6) if and only if

J(bl,e,Ao,qﬁa ¢7 AO) E) =0.

The study of J, made in subsection 10.(f) ensures that for every ¢, a < 1/2,
0 <|Ao| <9, ¢e€(0,e0), J reads

J(01,c,40,6, 95 Ao, €) = AgsinI'(00) + J' (h1,¢, 40,0, P, Ao, €)

with

Jl(hl,E,Ao,d)a ¢a Ao,E) = 0(52_a + 5|140| + 51_O[|"40|2 + |A0|3>’
and

(o) = [ (7). 0.0,eldr — 65T (A (0.0, 43, ).

Equation J = 0 can be solved with respect to ¢ for fixed values of Ay and e,
provided that doe?~® < |Ag|, € < £1. Indeed this allows to have an acceptable value
of sinT'(c0) € (—1,1) giving two angles I'(co) modulo 2. If | sin'(c0)| < 1 strictly,
an implicit function theorem argument provides two corresponding solutions for ¢.
Indeed, we consider the solutions ¢§-0) € [0, 7] (or [, 27| depending of the signs of
Ap and J') of the equation

AQ sin F(OO) + Jl(bl,e,0,0a 0; 07 5) = 07

2=a = Aye’, and the implicit function theorem allows

then a rescaling of the form e
to find two solutions ¢; near qﬁgo) for ¢’ small enough.
However, because of the modulo 27 indeterminacy, we find infinitely many values

of the phase shift ¢. For instance when |Ag| >> 27 | they are near the values

2

ok = pm[A + (0,0, A3, e

) [/Ooovl[ug(T),o,o,g}diﬂ _

More generally, we observe, that changing ¢y, into ¢x41 is equivalent to changing Ag
into — Ag in the principal part of the equation. We observe also that our homoclinics
to periodic solutions are not really well defined by (10.1) since a phase shift in
of nme/[A +7(0,0, A3,¢)] at +o00, and —nme/[A + 7(0,0, A3,¢)] at —oo in (10.1)
would lead to the same solution, with ¢ changed into ¢x1,. So, observing that a
fixed value of sinI'(co) gives only two solutions for I'(c0) in an interval of length
27, we deduce that there are only two different solutions of our problem for a given
value of Ay, provided |Ag| > doe?. We also observe that the two solutions for —Ag
correspond to the previous one in changing the phase (n = 1 in the above phase
shift). Finally theorem 10.1 is proved.
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11. Appendix Normal Form

In this appendix, we prove lemma 7.2. The change of variables (7.8) is determined by
its property to manage all linear terms in W only depending on (4, A) (not depend-
ing on w and v) in (7.1,7.3,7.5). Indeed we need to solve with respect to pk, v:, T’
[unknown functions of (A, A)], and A.(A, A) such that n*{A. (A4, A)[W]} =0 (n}
is defined in (5.7)), the following system

A - I
s (Zg + 710 — Wsﬁe)W} = (; +710) [A

+ MTLX(MZ) V:ara)(W) - RA(sz)[W]’

N i ov’ _ v
L [WEEEW]:(%—H%O)[ 82 (W) - A<

+ MZ(V:a FE)(W) - Ru(Aa Z) [W] - pS(EEFsW)a

(W)} + (11.2)

ar. _ T,
EXMU_AaZ
+ Mw (Te)(W) + A (A, A)[W] — Rw (A, A)[W],

o LT W =T7.L. W+()\+W10) [A

with
Ml V2, T (W) = pZ[FAc(A, A)J(W) — Ra(A, AW+
— iAo (|AP)Z (W) — iAyso(| AP )pi [T (W) +
= oA AP RZ(W) + AE(W)],
MW T)(W) = V[T A (A, D(W) = Ru(A, A)L W],
M (Te)(W) =T A (A, A)[W] — Rw (A, A)[L W],
where [from (7.1,7.3,7.4)]

Y10(|AI*) = 71(0,0,]4,e) = O(JA]?)

10(14P) = F(0,0,14P, ) = 0(1)
To(14P) = T2(0,0,14P, ) = 0(1)
Ra(A, A) = DwRA(A,A,0,0,0) = O(]A]),
Ru(A,A) = DwRy(A,A,0,0,0) = O(|A]),
R (A, A) = Dy R (A, 4,0,0,0) = O(|A]),

and it is clear that R4 (A, A), Ry (A, A), Rw (A, A) are analytic in their arguments,
in a ball |A| < M, with coefficients of order eP*4~1 for APA? and that they operate
linearly only on the component PW of W. In (11.3) we notice that both projections
7. and . occur, since this equation stays in 7. H (D 7.H).

Article submitted to Royal Society



66 G.Iooss, E.Lombardi, S.M.Sun

Step 1. Let us first solve (11.3) with respect to I'., and find A, such that
n:[A:(W)] = 0. Let consider the converging Taylor series in powers of A, A of
I (A, A), A(A,A), Rw (A, A), coefficients of AP A’ being denoted respectively by
I'pgs Apg, Rw ,pg- For solving this system, let us first consider a more basic problem,
where we look for a linear form I'* such that

or+ —or

o W) = A= (W) = (W) (11.4)

_ 2
F*WEEEWJr(% +im) |A

where we assume that

f* analytic in (A, A) taking values in (7.D)*
and we look for
I'* analytic in (A, A) taking values in (7.H)*.

Remark. Notice that we incorporate v19(|AJ?) inside the equation (11.4). If we
chose to treat this term in the process of identification of powers of A, A, this would
lead to serious difficulties, related with the unboundedness of the perturbation terms
in any reasonable Banach norm of analytic functions.

For p # ¢, we can find for any Z € w.H

A

032 = fy { e + (2 40— )2
and we have (see lemma 5.3)

IT3q(2)] < cllfpall oy 11 2] 7.1

where c is independent of p, ¢, and where '}, is analytic in | A]? [the inverse operator
is analytic in (A 4+ e710)]. Now, for p = ¢ we are faced with the problem of non
invertibility of 7. L. (see lemma 5.5), since we have to solve

T (FLW) = £, ().

pp

We now observe that in all equations we need to solve, the linear form f* can be
extended to a space larger than 7.ID in the sense that the components a1, 51 may
grow as y— —oo. This is mainly due to the property of R 4, Ry, Rw which do not
depend on 3rd and 4th components of their argument.

Let us introduce the following Banach space

D = {U = (10, fa1, 011, B, 2, Bo)",
(0/1753) € [O?(Ri)]a (O‘2562) € [01(0, 1)]27
Bio = Bily=0, B21 = Baly=1, @10 = a2},
with the norm
1U|l5 = llaill,co + 1811100 + [[PU|IpP-

We observe that a; and $; may grow as y— —oo, like | In |g||
Now, we can prove the following
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Lemma 11.1. For any given linear form f* analytic in (A, A) for |A| < 8, taking

values in (7.D)*, there exists 6’ > 0, 6’ < & such that equation (11.4) has a solution
I*, analytic in (A, A) for |A| < &', and taking its values in (T.H)*, denoted by

"=0Q9(AA)f"
and we have
1Q(A4, A) f* |Gy~ < cllf*llz.5)--
Notice that in this lemma there is no need to have uniqueness of the solution
I'*; in fact this solution is indeed unique, but this needs a little more work. Before

starting the proof of this lemma, let us examine the computation of the resolvent,
made at section 5.(c), and show the following

Lemma 11.2. The operator 7. L. + (ik/e)l which acts from %E]ﬁ) onto w-H has a
bounded inverse for |k| > 2e, which satisfies

[[(TLe + (ik/ff)]D_l”g(%EHﬁg]ﬁ) <g,
IP(FeLe + (ik/e)D) || ooz < ce,

where ¢ is independent of k and ¢.

Proof: this lemma follows directly from lemma 5.3, where the operator 7. does not
perturb the computation, more than when we obtained lemma 5.3 with 7.. Notice
that the integrals in the expression of the linear form ¢} are all convergent, which
allows to define the space %Eﬁ). The estimate follows from the continuous linear
embedding

D —D.

Now a nice property is that 7m.L. is invertible in the above space! This is the
following

Lemma 11.3. The operator 7. L.which acts from %Eﬁ) onto mH has a bounded
inverse (.L.)"", which satisfies

1
[|(TeLe) ||L(%EH,%55) =6

A -1
|P(7eLe)  |leomzn) < c
Proof. Let us consider the linear equation

T LW =7 € w H.
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For Z = (a,b, f1,91, f2,92)t given in .H, this equation determines a unique W =
(0,0,a1, 51, a2, 32) € 7D of the form

0
o1 = / [g1(7) —lim g1 ]dT + p[¢2(Z) — lim g1 ]+

te </01 go(7)dr — b/)\) ,

m:—fﬁmm
a2=s(éﬂnvwf—au)+«ﬁ—wmyZ>—nmg¢

1
Bo = —¢ fa(r)dr.
y

—_—

This W is denoted (7. £:) ™' Z and is such that 819 = 0, pj(W) = p; (W) = (W) =

(. (W) = 0, so it is clear that W € 7.D. We observe that PW € 7.D, and the
estimates of the lemma are straightforward.

Proof of lemma 11.1. Coming back to (11.4), we now assume the linear form
f* € (7eD)*. Then the solution I'* may be explicitly written, for any Z € 7.H, as

* _ * % 2 il _ —1
r@—;mﬁxﬁg+va@14+

+ Y f{ &Lz},

which is denoted by
I = QA A) f*

and (A, A) — Q(A, A)f* is analytic for |A| < &', for some §' < §. Moreover, we
have

194, A) f*l| gy < ellf |l z.5)--

End of step 1. We now come to equation (11.3), which is solved first, since we
observe that it is uncoupled from equations for p}, and vZ. Let us introduce . such
that

e € T Be, 12(ne) = 1, |nelle. = O, [[Lenelle. = O(1/e), nZ(z.Lene) = 0.

Indeed, we can take
ne = ($10,0,0, 51,0, B2)"
with
B = b162_§, Ba =ba(y — 1),
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and 7. € 7 E. as soon as

bi _ pbs

3 A@A+1—@):Q

and

|I7elle. = (2+ A/2)[b1] + 2[ba],

1 A
el =2 (1l + 30+ 2230

The condition n}(x.L.n.) = 0 is satisfied, since
T Lene = Lene, and nZ(Len.) =0,
and the condition n*(n.) = 1 is satisfied for
2
A

Solving the two equations for b; and by then gives a suitable 7. (if p and A are
such that this system cannot be solved, then we might choose another n. with
By = by(y — 1)2).

Now, we choose I'c of the form

1
blfibgzl.

Le(W) =nI2(W),
where we look for T'} € (7.H)*. Then (11.3) reads (we omit the variable A)

Il = Q{X!(Rwl[]) — Ti(@A[]) + 0 (Rw [n)TE[]} (11.5)
AcW] = (mLen)TeW + {Rw [W] = 02 (Rw [W])ne 1+
+{Rw [T (W) — nZ (Rw [n)TZ(W)n. }

where we may replace A.[-] by its expression in the first equation, which is then
polynomial of degree two in I'}. We indeed observe that n}(A.[-]) = 0 as required.
We can solve (11.5) in using the implicit function theorem in the Banach space of
analytic functions of (A, A) in the ball of radius ¢’ < §, taking values in (7.H)*
(with the sup norm with respect to A). Notice that the extension of the operator
to space 7. H allows to have an equation above, which is well posed in the required
spaces. Separating now (for obtaining better estimates) the sum with p # ¢, and
the sum for p = ¢, we decompose Rw [-] = Ry [-] + R%,?,)H which satisfies, because
of the independence of Ry [-] into the 3rd and 4th components of its argument

10X (Rhy [ DIl i)+ = O(elA)),
19 (RO .50~ = OCe] AP,

as it comes from lemma 11.2 (where we win a factor ¢).
This leads to I'} € (7.H)* for |A| < §’, ¢’ being small enough, independent of ,
IT2(A, A oy~ < cel Al
||A€(AvA)[']HL(%E]TD,L]FE) < C|A|-
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Important remark. Notice that this solves (11.3) also for I'*(A, A) in (7.H)* and
A (A, A)]] in L(7D, x F.), since we showed that the definitions of these operators
are extended to larger spaces!

Step 2. Now we can invert (11.2), after replacing I'. by the result given by step 1
above. This equation may be written in (7.H)* as

ve = Q{Rul] + po(Leno) T2 ] + Rune] U2l — v2 (T ALD}

which is linear in v7. It is clear that for [A] < ¢” (< §’) small enough, we obtain a
unique v} (A4, A) € (7.H)*, analytic in (4, A), such that

V2 (A, Al < clA.

Step 3. We now invert (11.1) after replacing v and I'. by their expressions, ob-
tained above at steps 1 and 2. We define an operator Q; of the same type as Q in
solving

ory oIy

Ay (W) -4 o1 W =)

_ A A
;| 7Le — (? + iv10) | W + (? + i710)

for any f* € (%Eﬁ))*, by
7= Qi(A,A)f € (7H)",
analytic in (A, A), and satisfying
Q1 (A, A) f* |l zomy- < ellf M5
Equation (11.1) may be written as follows (we omit A)
pe = Qu{Ral] + Ran:T[] + iAv20rZ[] + iAvysopi (n) T2 ]} +
+ Qu{ino (IAPuEl] + APREL]) — pE(TA[])},
which is linear in 7. It is clear that for [A] < 6" (< §”) small enough, we obtain
a unique pf(A, A) € (7. H)*, analytic in (A4, A). Now we have
1@ Ralll.m- = O(A])
hence the estimate _
[l (A, Al oy < el Al

holds. This ends the resolution of system (11.1,11.2,11.3).
For ending the proof of lemma 7.2, we just need to check the new estimates of
the new rests R4, Ry, Rw, which is straightforward.

12. Appendix A

In this appendix, we prove a technical lemma (lemma 12.1) which is useful here and
in the next appendices, We also give a corollary 12.2 useful at various places, in
particular for lemma 8.3 and we provide the rest of the proof of lemma 8.3 (corollary
12.3).
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Lemma 12.1. (a) Assume K is a real function which is C* on R\{0}, such that
i) |[K (@) < Co/lz|, |K'(2)] < Co/lz|* for|z| <1,
i) |[K ()| < Cy/|x|* for x| > 1, and p.wv. fil K(z)dzx < oo.
Then, the linear map K defined by

fr—>ICf:p.v./RK(s)f(~fs)ds

is bounded from BS(R) into itself.

(b) Let E be a Banach space and L(E) be the space of bounded linear operators
in B. Assume that K : R\{0} — L(E) is C* such that

i) 1K@l < Co/lzl, 1K' (@)le@ < Co/laf® for o] <1,

i) [|K(z)|| ) < Ci/|z)? for |z| > 1, and p.v.f_ll K(z)dx € L(E).

Then, the linear map K defined by

f—Kf :pv/K(s)f( — §)ds
R

is bounded from BS(E) into itself.
Proof. We write

—1 1 [e%s}
Kf(x)z(/ +p.v./ +/ )K(s)f(x—s)ds:l_l—i—lo—i—ll.
—00 —1 1
First consider I_; and I;. Using the estimate

1+ 22
/R TEEE RN

we already see that there exists ¢ > 0 such that I; and I_; € B$(R) and
-1+ Dlg2 < ©lfllze-

We consider now Iy, We can write

0w - [ 11 K(s) [f (e — ) — ()] ds + f(x) (p / 11 K(s)ds) |

hence

1
1 c
< [e]
|IO(5E)| = OOHf”]R,Q /_1 <(1 +$2)|S|1_a + 1 +$2) ds

c o
< m”f“nm-

Now, for the Holder estimate, we have, for 6 small enough

Iy = In(z +9) — Ip(x) :p.v.[1 K(s)[fx+d—3s)— f(x—9)]ds

—po. [ [K(s+0) = K(s)f(a— s)ds+

-1

" </116 ’ /_1;) K(s+0)f(x — s)ds

= ﬁo + ﬁoo-
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The estimate for ﬁoo is straightforward:

/9]

ITgo| <
| OO|_1+.’L‘2

111 2-

Now, we notice that we may rewrite I1, as (0>0)
1
TTo = / K(s+0)[f(x — ) — f(z + 8)]ds — To(x)+

/ K(s+6)f(z+d)ds

:</_26 /26 /) (s+0)[f(xz—s)— flz+)ds+
R </—_125+/-2ﬁ/5 )K@[f(xs) — f(x)lds+

+p.v.[1 K(s+6)f(m+5)ds—p.v.[l K(s)f(z)ds.

We first see that

pv. /_11 K(s+06)f(x+ 6)ds — p.v. /11 K(s)f(z)ds
=[f(x+0) - (pv/ K(s )+f(33+6) (/1;+/11+5>K(s)ds

is bounded by

cldl® | epa
m”f“m,z-
Now consider s
IIy= | K(s+0)f(z—s)— flz+06)lds
—25
then we have
— _Clfllgs [° |s+a)* 1 N fIIR 2
11| < J ds =ca™ " (14+2%)——==
11| < T2 /_26 PR (142%) T2

and a similar estimate holds for
5

K(s)[f(x —s) — f(x)]ds.

—20

Finally, the rest of ﬁo can be written as

7, - (/ : /) (s +6) ~ K(s)] [ (2 — 5) — f()]ds
(/ ” /) (s +6) [f(z) — f(z +8)] ds

= I13+ Iy,
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where the last integral ﬁ4 may be estimated in using the fact that, for ¢ small

enough
1+6
ds—pv/ K(s)ds
(L)

since | K (s)| < Cp|s|™! for |s| < 1; hence

<eg,

. 6@ [e3
Ty < DI
1+

22
Now consider
. —25
s = [ (K +8) - KO~ s) - f)ds,
—1
and use the assumption on K'(z) giving (6 > 0)
|K (s +6) — K(s)| < Cod|s + 6|72,

for s € (—1,—26), then IT; satisfies

—~ ONflIgs (72 |s|*
Il < . d
| < e 2/_1 s +oP"”

o SlSIIE 2 /1 P50
=t T a2 5 52
SR 2
SC——5—
1+ a2

ds

)

and the same holds for the part |, 61 of IT,. All these estimates, for |0] small enough
lead to the required property in the lemma.
Part (b) of the lemma may be proved in the same way.

Corollary 12.2. Let u € By, then H(u') € Bg , and

1,
IHW)IIR2 < cllullgs

Proof. We can write

pv—/K "(z — s)ds

with K(s) = 1/s. We introduce ¢ € C*°(R) such that ¢(s) = 1 for |s] < 1, and
@(s) =0 for |s| > 2, then we have

=pu.— / (s (x — s)ds+
2 [ (0= oK), ule = s)as.

We now observe that both ¢/ and ([1 — ¢(s)]K(s))’, satisfy the hypothesis on the
kernel K in the above lemma, hence the result of the corollary follows.
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Corollary 12.3. The functions a1 and (31 defined in lemma 8.3, satisfy
||041||B; < C”“f)”]}%,z,
1811 < elluollg5-

Moreover (31 (z,-) is integrable in y on (—o00,0).

Proof. First consider

and, use the identity

/ ds _ a(it D)
r(L+s2)[(@—9)+y? |yl + A+ )2

(12.1)

It results that

T4y
I(x, < ———|ugl|® 9,
| ( y)| = $2+(1+|y|)2|| O||]R,2
hence ) )
14+2°+y o
sup ——————|I(z,y)| < 7lug|§ »-

z€Ry<0 1+ |y|

It remains to proceed similarly for the Holder estimate

o+ 6) = 1(0.9) = [ fuhla+ ) = (o) =T s

in using
lug(s + 6) — ug(s)| < ||U6||§,21+—82-
We finally obtain the desired result for a;(z,y) = —%I(g, Y)

lleallg, < ellugllz2

For 31 we first observe that

alp 0

= gy e gyt +)
R I
- Ox {QWUO* Ox In(@” +y7)
_ P
- ﬂ_‘](zay)

holds, with
, S
J(x,y) = UO(.Z'—S) 2 +y2
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s /
<
|<82+y2)s -

and in using the above method, we already have the required estimate for |y| > 1,
i.e. more precisely

Since
1

82+y2’

1+9:2+y2

C
Jﬂf,y +570‘J1'+57y7‘]x7y < —llu R.2-
T+ Ty] (17 v)] | 7( ) = J(z,)l) 1ol

Now, for |y| <1, we can write

o= ([ i (A5

+ /_2 ug(x — s)mds

52 + y2
!
and the kernels (5[1_7‘1’(2)]) and S20) satisfy the conditions of the lemma above,

52+y s 52+y2
uniformly in |y| < 1, hence

1,
TG 9)IR 2 < clluollgSs

where ¢ is independent of y such that |y| < 1. This estimate with the preceding one
ends the proof of

L,
181l 55 < elluollg)3-

Moreover we observe that (i(x,y) is integrable in y on (—o00,0), which may be
used for justifying the convergence of integrals in the Bernoulli first integral.

13. Appendix Resolvent oo

In this appendix we prove estimates (8.18) and (8.17).

First, let us introduce some notations. We denote by a(x) a function of z € R,
fi(z,y) a function with z € R,y € (—00,0], fa(z,y) a function with z € R,y €
[0,1]. For proving (8.18) and (8.17) we work on the Fourier transform (in z) of
(a1(z,y), B1(z,y), as(x,y), B2(x,y)) given by the formulas of subsections 5.(a) and
5.(b). These formulas give the components of (ikI — £.)"1V, and here we need to
take
V= 5901?1/7
where

Ty € By (n Fe)y- + By (n.Fe),

and where functions a, f1, fo are typical components of 1% (which cancel for k near

0). What we denote by 301;9181)(1/_\'3/) is the component (a1, i.e. f2|y=1, and we have
by construction

(¢kI — EE)_lamfy = 901551)(?1/)50 + 59015}(/1)(?1/)'
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Now looking at formulas of section 5.(a) giving o; and (1 we claim that they are
sums of typical terms as

Kl O(k )E (Ek) kya

Kok, y;e)fr = sgn -7 f1(k T)e —Iklly=7lgr,
Kl 11 k ,Ys € J/c\ :/ Sgn fl k/: 7—) _‘kHy—T‘dT’
Ki2(k,y;e / L (b, 7)e” Ryl gy,
o~ O ~
Kias(k,y;e) fi :/ sgn(k) f1(k, r)e~*llvt7lqr

0
K1,14(k5 Y3 €)f1 = EkA(Ek) / fl(kv T)e_|k||y+7‘dTa
~ 1 ) o~
Kol yi)fo =<V [ Blek,r) Falh. s
0
where A and B are analytic functions, except at 0 for the first argument lying in
a sector of the complex plane centered on the real axis, and of angle O(1), either
even or odd and such that for |k| large we have the estimates
~ C ~
A(k) = = + Ao(k),
k

Bk, 7) =6 e—er(Mk 4 l: e—ea(Mk 4 Bo(k, ),
with ¢1(-) and c2(-) > 0 linear functions of their argument, and

|Ao| + | Bo| < c|k|~2, uniformly in 7 € (0,1).
We can also see for as and (3 that they are sums of typical terms as

KQ,O (Ek/’, Y; E)a = EE(‘Sk» y)aa

0
Kaa(kio)fy = Cleky) [ Fitkime*rar,
o~ 1 B ~
Kaan(ekyie)fo =< [ Dolekyy = 7i2)falhridr
0

1
Ky 21(ek,y;¢) f2a = 6/ Dy (ek,y,7;€) fa(k, T)dT
0

where C, D and FE are analytic in k=ck except at 0 for the first argument lying in
a sector of the complex plane centered on the real axis, and of angle O(1), either
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even or odd, and satisfy the estimates for |k| large

E(k,y) = %e‘c"(y”E‘ + Eo(k,y),

C2

C(k,y) = e M 4 Ze 2 WIF 4 Gy (F, y),

Dy(k,y —T5¢) = cef‘yf'r‘m + Doo(k,y — 1;5¢),

Dy (k,y, 732) = Gre~ Ferwin) 4 %6_@'02(“7) + Dio(k,y,75¢),

where ¢, ¢; are generic constants, and co(-), c1(+), c2(-) > 0 are linear functions of
their argument, and
| Eo| + [Col + [Doo| + [D1o| < clk| 2, (13.1)
10y Eol + 0y Col + 10, Dool + [0y D1o| < clk[ 2, (13.2)
holds uniformly in (y,7) € (0,1)?. We should notice in these estimates that we
took account of the elimination of the poles at ¢k = £\, thanks to the projection
e
Let us denote by
1) =~ N
Ki(d*)f = Kijf
W _ =117z 7 _ (D)
‘Ci,jf =F [sz ] = Ici,j * f

where * means convolution in x and ICg}j) =F ’1Ki(71j), then we have the following
lemma

Lemma 13.1. For any given a € B$(R), fi € B$(C2*P), and f» € B}, the
following holds

(i) £)a € By and ||C5)all - < cellallg .

(ii) L) f1 € By and ||L5) fill p= < cel| fill pg (coeneys 5 = 10,11,12,13,14,
(iii) L3} f2 € By and [|L) fol 5= < cellfol e

(iv) L5)a € By and [|1L5al 5y + |12 L8 all 5y < cellallg ,,

(v) L 1 € BL* and [|L8) fill s + [12L50 Fill ps < cellfill pg ooy,

(vi) L5 f> € BY* and [|L3) foll g + 12 L5 fal | g < cellfall g, 5= 20,21,

Proof of estimates (8.17), (8.18). This lemma, for V = e¢; Ty, gives directly the
estimate (8.17), by construction of

T (Ty) = F |1SP(Ty).
Moreover, we have the following estimate in B (R) of F~1 [(pl S&l)(fy)} = Bo1 :

_ - o D« 2) |«
177 [P @)] 12 < U NS 52 + IT N 5. )
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which, with the relationship
ikBa + e~ lal = 9o,
leads to
-1 [ a 1y 9 1n a a
l@/dz) 7 [0 (T)] 82 < 715 F Balymillfa + lonllia
Dia 2) |1«
< (I 12 o+ ITP 12 5 ).

Hence the estimate (8.18) holds.
1) p) H1)

Proof of lemma 13.1. We only prove the lemma for £ 4, L5 5, L5 59- The rest of
the proof would be similar.

Step 1. Let first consider Eﬂofl, and introduce, for y — 7 # 0

I(x,y—71) = / sgn(y — 7)1 (Ek)e”kf‘kuy”r‘dk.
R

Then we have

(o) @) = o= [ [ 160 su - oo mysar

We can work on I and obtain first (since ¢} = 0 outside (6/2¢,4/¢))

é/e

I(z,y —7) = —2Re < sgn(y — 1)} (Ek)eizk—k|y—7—|dk> 7

i — |y - T| 6/2e

which (after several integrations by parts for the second and last estimates), leads
to

C —(8/2 —T
R (22 + Iy—r|2)1/2e e,

n
I(z,y —7)| < | Cli“ e—(6/29)ly=7]
X

C C
gy ) < &~y <« £ ~(5/2)ly~7]

where c only depends on n > 0. Moreover, we have

1 %) .
k
/ 2,y — 7)dz = e—(é/zeny—ﬂ/ 4512 sgn(y — 7)p1 (ek)e~ k- 0/2Nu=rl gp
-1 5/2e

hence )
|/ I(z,y — 7)dx| < ce” /2wl
~1

holds. We can then apply lemma 12.1 for any fixed 7, and obtain
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Let us choose § = A, then we have the identity

0
/ e~ (\/20)ly=7l o —(A/29)I7] g — 2_; (26*0\/26)\?4\ _ efzwzs)\y\)

< cee~ M2yl
and thanks to the inequality (valid for e < e)/2)

o 1+ Jyl
1 a2)-lg=(v2o)lyl « L1l
(14+2z%)""e ST E s

we can deduce the required estimate in B :
(1)
HELlOﬁHB* < cellfill pg (coemr)-

Step 2. Let consider now Egg) and introduce

1 .
Ké%g(z,y) = %/RemsE(sk,y)cpl(sk)dk,

such that
(ﬁgéa) (x,y) = /RIC%(:C —s,y)a(s)ds.

We intend to use the lemma 12.1 again, uniformly in y. Splitting the kernel
1 1 1)—
Ksio(.y) = Kot (@,y) + K507 (,9)

in separating the integral on R™ and R™, one integration by parts leads to (¢1 (k) =
0 for |k| < d§/2¢)

1 € : c !
O+ _ _ & lizk—eco(y)|kl] (_ k) dk
2,0 (ZL',y) o - i$—500(y)e Eksﬁl(f ) K +
1 g ik I
—— | =&k (By(ek k), dk
o (Eo(ek,y)p1(ek)),, dk,

which gives the estimate

<
|’

and a second integration by parts gives

|IC$())(:L', Y| <ec uniformly in y,

52

EE uniformly in y.

1
K (@, )] <

We can also write

1 1 ink
/ K (2, y)de = = / SUP Bk, y)pr (ek)dk = O(e)
—1 ’ s R k
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where the integral is absolutely convergent. Now, after one integration by parts for
half of the terms, we have

a (1)+ Z / I o c ,
—K = — s liz—eco(y)lk ( = k e
20 (z,9) o s [iz—eco(y)]Qe (Ek(pl(g ))k n
. /
L L [iz*ECU(’y)]k ’ k _ M dk
" 27 Jr+ [ix—sco(y)Pe ¢i(ek) ), +

1 € ik )

o Jus 2 C (Eo(ek,y)p1(ek))y, dk+

1 €

ikx !
2 | —e k [k (Eo([ik,y)@l(sk));c]k dk

and a similar formula holds for é%lcgg_(z,y). Since ;T;EO(E, y) = O(1/k*) uni-

formly in y (thanks to analyticity in k, to the uniformity of (13.1), and to the
Cauchy formula), all terms give the estimate

0 € . .
|£K§}3(1‘, y)| < CW, uniformly in y.

Then using lemma 12.1, we have directly
1
12550l 55 < cellallg
We proceed in the same way with

9 1)+ 1 ecc, .
—K = =0 lim—ecok o (ck)dk
Dy 20 (2,9) o Jos iz — 600@)6 e (ek)dk+

1 €
— etk (OyEo(ek,y)p1 (Ekz));€ dk,

B % R T
where we observe that ¢f is constant, and we obtain easily, uniformly in y :

9 (1) €
K €, <c—,
| 8y 2,0( y)| | |

0 (1) g
— K55z, y)| <c ,
|ay 2,0( )| | |2
[ 5o ks s = 0)
-1 8y AN ’
82

By lemma 12.1, it then results that
9 .a
55 £200lls; < cellallg
hence this part of the lemma is proved.
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Step 3. Let consider now Légo and introduce

1 )
Kol y) = 5= / e/ 2 Dy (ek, y)ipr (k) d,

such that

1
(Eé%%OfQ) (xv y) = / / ’Cégo(z — S,y — 7—)f2(57 T)deS.
RJoO
We intend to use the lemma 12.1 again, uniformly in y. We notice that we have

1 )
K30 (@ y — 1) = Py /R ece™Felv=TlIF o, (ek)dk+

1 .
+— / €ZkIED00(Ek,y — 7)1 (ek)dk,
27T R

81

hence the second integral may be treated exactly as above with the integral in Ej.

Let us split the first integral on RT and R~ :
1 1 1)—
K on @,y —7) = K330 (@,y —7) + Koo (. — 7).
1)— 1
’Cg,%m (:L', Y- T) = ’Cg,%a—l(fxv Y- T)a

it then remains to study

1 o .
/CS%SE (r,y —7) = By ” Ece(”%‘yfﬂ)ksﬁl(ek)dk
15

é/e )
_ _i/ € la—ly=rDheyt (ck)dk,
21 Js52 1w — ely — 7|

where these integrals are convergent for |y — 7| # 0. It is then clear that we have,

with an integration by parts for the second estimate
1)+ €
Kb @y =TI < e

2
1)+ €
Ko (zy — )] < T

and

1 00 .
k
/ Kyt @y —r)de = = [ TZemelvrlkg, (k) dk
-1 ’ T J§/2¢ k

o : tk—ely—T|k k !
— 2 [ Re <Z,e ><‘P1(5 )) dk = O(?)
27 Js e i—ely -] ko /g

uniformly in |y — 7| € (0,1). In addition we have

9 (D)+ ) /‘5/5 cc o
7. K - = 5= == elm—ely=TDko ) (ck)dE
81' 27201($)y T) 27_[_ 6/26 (Z[L'76|y—7")26 6801(5 ) +
; d/e
iec 1 .
== = lm—ely=TDE k! (e dE
" 2m /6/25 (i$*€|y—fr\)2€ [eky](e )]k
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hence

0 1+ g

%’Cg,gm (z,y —7)| < TP

holds uniformly in |y — 7| € (0,1). These estimates allow to use lemma 12.1 for
obtaining the estimate

1
12530 2115 < ecllfoll g
We need to do the same with -2 IC;%& Integrating by parts and splitting the

resulting integral into f 572 T f 57e We have the following decomposition for |y — 7| #
0,
0 1 [~

_K:(l)JF _ - =
ay 2,201(3579 7) o 52

= 8/C21%§1 (,y —7)+ ’C2 ,201 (5’3 y—T),

1 eZelsgnly — )] iga—s)y- 7).
27 (iw —ely — 7))2

~ 1 [/ eclsgn(y — 7)]
oK+ ) = _/ SCPIPNI — T] Gia—ely=TDE (ko (ek)). dk
2,201($7y T) o 52 i(E—Ely—T| € (5 901(5 ))k
1 [oe eclsgn(y — 1)
= —— SRRITNT T T (iw—ely—T|)k k k " dk
_ e ekpi(e ,
27 Jsjae Tia —ely— 7)) (eherCED

[sgn(y — 7))e2ce@=W="Dkko) (ck)dk

(1
Ké,%gl (.Z‘, Y- T)

hence 5
|8K51%3_1($,y )| < ¢min <|€| |;|2>

and we treat the kernel I%élga_l (z,y — 7) later. In addition we have

1 2 _ 0
/ 0 ’Célg(—)&-l(x’y _ 'r)dx — 7%/ sin kefs\yfr\kcpl(sk)dk
-1 a 5/2e

T
2 _ d/e o(i—ely—Tk
_ W/ Re (wi) e (k) dk
27 5/2¢ i—ely -7l

= 0(£?)
uniformly in |y — 7| # 0, and

~ 8le _; - .
SoOKS ) = o [ I Dl el (e o), dit
5

21 J5j2e (iw —ely — 7))

1 (%% dec|sgn(y — 7)] /
e Sl S BN € [T DL § A 8 N1 dk

27 Jogae (o —ely— 712 [ (ehor (e . dk

which gives
9
ox

uniformly in |y — 7| # 0. Now we can check that

~ 1 £
alcé,%gl (ma Y= T) < CW’

/ OKS s (x,y — T)dx = O(?),
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uniformly in |y — 7| # 0. Indeed we have

2 1
1)+ _ __ce [sgn(y — 7)] (iz—ely—7])8/e
/ IC2201 x,y —7)dx = o /_1 —(izf€|y77\)26 dx
He [Sgn(y )} (ll ly— Tl)édm
C2m oy (i —Jy — 7))?

_ ¢ < [sgn(y —1)] (iz—|y—7])8 2
B 2w/m<ixf|y—7|>2e o

ce

uniformly in |y — 7| # 0, since we have uniformly

/ < dx -
— <,
1/e r? + y2
and by the residue formula, the last integral on R is zero, hence the estimate follows.
It results that we can apply the lemma 12.1(a) for the part 8IC§1201 of the kernel,

and it remains to study the action of the explicit kernel ICg %3_1

In fact we want to control the function

/ / ICS%S_I (s,y — 7)falx — s, 7)drds = / IE(S)fQ(Z' —s,)ds

R

in B = B$[C°(0,1)], where the kernel K is defined for g € C°(0,1), by
: )+
(Rtwla) ) = [ RSy - niatriar
0

The idea is to use lemma 12.1(b), in noticing that z — K(z) is C* in £[C°(0,1)]
for x # 0. Thanks to the explicit expression

1 e%e[sgnly — )] (isa—sly- D),

K(1)+
S or (ix —ely — 7'|)2

2201(3j y—7)=

we already have
2

¢ sup |g(7)l,
|ZE|276(0,1)

1 2
5
<c /—dr) sup |g(T
( o r2+e?y—T)]? re(0,1)| Sl

€ Tal 1
< 2c— / ———du | sup |g(T
|9U| < o 1+u? >76(0,1)| Sl

<= sup |g(r)l-
| |r€(0 1)

21331 (z,y —7)g(r)dr| <

;%31 (2, y — 7)g(T)dr
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Moreover, the calculation made above, shows that, for ¢ > 0 (Fubini’s theorem
applies)

/ / IC;%& (x,y — 7)g(T)drdx
(=1,—p)U(p,1)

/ d’r/ Kélgg_l( ,y — 1)g(r)dx
(=1,—p)U(p,1)
O(e?) sup |g(7)],

T€(0,1)

with a uniform limit for 4 — 0. It remains to check the x— derivative

0
2 [ By oty

l /1 iEQC[Sgn(y - T)} e(ingé\yf'r\)
mJo (ix—ely—7|)°

1 Liedelsgn
L L [sgn(y —

2 (ix —ely — 7|)?

g(T)dr+
O it e=slu=rl) )y

and by the same type of estimate as above, we obtain

— IE(I)JF x,y —7)g(T)dT Sci sup |g(7)],
55 | Rty =riatryin| < e s jo(r)

and lemma 12.1(b) applies for getting the required estimate

0
||8y 220f2||B+ < C<5||f2||B+

14. Appendix Resolvent 0

In this appendix we prove estimates (8.11) and (8.15). First let us give a more

detailed form for the operators Sﬁo) and Sl(/o). If we denote fy = (a, E, fAl, g1, ]?2, J2)
then a straightforward computation from lemma 5.4 leads to

. sgn (k)
SON(Ty) = — ’Sg"f T Su(Ty)(k),
. (Ty) 51+p|k|775( v) + Su(Ty) (k)
S@(ﬁf) =7 +Eﬁ|k|77:(fY)Xk +e®(f2,G2) + D(f1,31) + Sy (Ty) (),

where

Iz (Ty)| < e[ Ty |lr..,

.50 =0 (T v, )
(T =0 (11T e )

1+ |k
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the O(..) terms are now continuous in k, and for fa, go € C°(0,1) the term &)(fg, g2)

is independent of k, defined in lemma 5.4, and for fi, g1 € Cj’F the term (f1,91)
is continuous in k, and is defined by

@ﬁﬂmm=(§MﬁyM@&ﬁﬂﬁth@

f(l(fl,m)(kvg)a§2(f1,91)(k?ay)70> ;

~ 0
Hy[f1,91](k,y) = Hilf1, g1](k,y) + %ﬁlkl [m 91(7)e*IL(1 + plk|el*T)dr+

o~ 0
ipk / Fi()eM T+ g7,

1+ plk|
= 1 (9 1—7lk
Kilfi,gil(k,y) = =5 /_Oo fi(7) [Tg:k:elkl(TW) + sgn(y — T)6_|k||7_3:| dr+
”Wﬂkx/o L= PIE] ki) 4 ety _ 26"
_ BomE) el LG L [ [l 74
e L P ¢ el
I:\é L 0 €|k|'r ] L €|k|‘r -1 J
w0lf1, 91](k) = —/_OO [fl(T)Tﬁw +isgn(k)g1(T) (m)] T,
77 ik(y—p) (1 ) k 1 0
H k,y) = [kl :
2[f1, 91](k,y) T+ 2k] _gﬂﬂ*wwmmMNﬂk dTJr1+5|,CI ﬁgﬂm

We notice that the terms with 1} (fy) only occur for Tl(/Q) since Tl(/l) € kern?.
Now, Tl(f) € BS(x_F.) is antireversible, hence n?(Ty) is odd and [ _n?(Ty)ds €

B¢ (R) is even. We can then apply lemma 8.3 to [*_ nZ(Ty)ds € By*(R) which
shows that

F (@077:(fy)xk) € BS .,
F (isgn(k)eon: (Ty)) € B3 (R),
with
177 (om (B )3 ) 118,00 < elITE IS .

177 (isgn(k)eon: (1)) 8.2 < el 12 5. s

Now, we observe that the function
f71 (EQOO (Ek))
1+ plk|

satisfies the conditions of lemma 12.1(a) (we denoted here (3(ck) the function
previously noted ¢g(ek) which does not change its properties). It results by lemma

12.1(a) that .
F (L ea(cbh () ) € B3 (R)
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with ") N
_ isgn(k HPEN 2)
o (P ke () )| < elir?le
H 1+ plk| ) R,2 efe3
Moreover, we have %ﬁnkl = % — 5(1Jrlﬁlk|) so we can apply lemma 8.2 and lemma

12.1(a) to show that

F-1 (51 lkg]mgoo(ek)ng(fy)) € BS(R)

and finally
La

fres

_1 ( isgn(k) PPN 2)
T < T 14.1
H}' (€1+ﬁ|k|<ﬁo(€k)%( Y)) ce| | Ty [z r. 3 (14.1)

R,2

It now results directly from lemma 12.1(b) for components (810, a2, 32) and for
the components a; and [ restricted to y € (—1,0), that these components of

F-1 (ﬁwwo(sk)né (fy)x;c) may be estimated in B of the corresponding spaces.

It remains to study the a; and 1 components for y € (—oo, —1) (i.e. the decay
rate in y) for finally showing that

—1 € * [e%
—_ k T B
F (1+ﬁ|k|(p0(5 nz( Y)Xk) € Bj s

with
«

_ 9 * /1 2) |1
Hf Hspeen@on )| <eltPlze, 042
D,w

This last part is proved as soon as we show that

sao<sk>e“f<k>>

< d|fllBg )
By

I (o
for any f € B%(R), where it is only needed to show the estimate for |y| > 1. We
may introduce

~ k|
T _ -1 | k |kly

Y 1 o/ k (ck) / k(y+iz)
= — — Re 7/ (—NQO Ek ) e v dk
m(z? 4 y?) wly+ix) Jo \1+pk"" k

where the first part is treated at Corollary 12.3 for «;. The second part may be
split in two, where the part

1 o ek :
. / Ul ©h (k)P +iz) gk
m(y +ix) Js/oe 1+ ok

may be treated exactly as I(z,y) at step 1 of the proof of lemma 13.1. It then still
remains to estimate for |y| > 1 the convolution by the kernel

1 e 1 k(y-ic)
_ k i) g
T(y + iz) /O 1 +pk)2‘p0(€ Je

= _ 1 — 1 /6/6 (M)l eFy+ic) g1
my +ix)?  wly+ix)? Jo o \(1+pk)? )y
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This kernel is no longer singular (since |y| > 1), moreover it is regular in (z,y) and
O[1/(x? + y?)] near infinity. Then, the identity (12.1) gives

/ ds < c
2 (@ - 497 = 1T+

for |y| > 1,

and we obtain the required estimate (14.2).
For the term ey (ek)®(f2,G2) we have easily by lemma 8.2 (see the form of
®(f2,02) in lemma 5.4)

||‘7:71 (E@O(Ek)&)(}l\?a?j?)) ||ﬁyw < C€||TY||EE]FE,2' (14.3)

The three estimates (14.1), (14.2) and (14.3) are parts of (8.11) and (8.15).

Now looking at formulas of section 5.(d) giving i, 1, a9, B2 and CT)(fAl,gl),
Su(Ty), Sy (Ty) defined above, we claim that it remains to study sums of typical
terms as

Kio(kie)a = elk|(1 + |k|) "1 A(ck)eFva,

)

0
Kio(k, y;e)fi = / Frk, m)e 7l

0
Kias(k,yse)fi = / sgn(k) f1(k, 7) (e~ el — e~ IHllet7l g,
o~ B O o~
Ky a(k,yie)fi =1+ |k|)_1/ sgn(k) f1(k, ) (e*2 — eFI @t g7

0
Kok, i)y = bI(L+ 1) AGeh) [ Rtk r)eMirlar,

1
Kk, ) = b1+ 1)~ [ ol ryB(eh. ckrar
0

Kso(ek, y;e)a = elk|(1 + |k|) ™' Co(ek, eky)a,

0
Koa(k,yie)fr = [k|(1+ |k]) ' C1(ck, y) / fi(k,7)eMmdr,
1
Koa(ek,y:2)fa = elk|(L+ k)" / Falk, 7)D(ek, y, 5 €)dr,
0

where A, B, Cy,C1, D are uniformly bounded, as well as their derivatives in their
arguments, for (1 + |k|) < 4, analytic for k # 0, continuous for k£ = 0.
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Let us denote by

KO f=poKi;f

L0 f=F KD =K« f

]

where * means convolution in z and ICZ(,Oj) =F *1Ki(’0j), then we have the following
lemma

Lemma 14.1. For any gwen a € B$(R), fi € B$(C>*P), and f, € B =
Bg[C(0, 1)] the following holds

(i) £%a € By, and ||£al| 5- < czllallg .

(ii) El,jfl € B; and ||£§?;f1||B; < cel| fill pg coesey, 4 =10,11,12,13,14,15

(iii) L3} f> € B, and ||c<°>f2||37 < e=lfellns.

(iv) L%a € BLT and ||1LSall g1 + || L50al 5y < cellallg 5,

(v) £<0> € BL* and||z2,1f1||B$+||ay £ Al < cel| fill g (o)

(vi) L85> € B and 1180 ll g + 12 £80 el s < oIl fall s

Proof of lemma 14.1. To prove this lemma we only consider Eé?()) and Eﬂm the

rest of the proof being similar. For Eg?()), Egg, Egg we use lemma 12.1(b). Let us
take for example the case when Ks o(ek,y;€) is even in k, then

1 é/e
K5 (x,y€) = ;/ po(ek) K2,0(ek, y; ) cos(kx)dk.
0
It is straightforward to show (by simple integration by parts) that
1 1
|IC§03(x,y; ¢)| < cemin (| "] |2) ,
' x

3/C§?3 (z,y5¢)
oz

ce
< $—|27

/ IC20 x,y;e)de = O(g)

. . o e oK) (2, .
uniformly in y € [0, 1]. Similarly, the derivative with respect to y, % satisfies

the same estimates. Hence by lemma 12.1(b), part (iv) of lemma 14.1 is proved.
Exactly the same argument applies for parts (vi), and (v) just noticing for the last
case that the factor & comes from the fact that the integral in 7 for K51 is O(e)
because fi(z,-) € C2*P (space E in lemma 12.1(b)).

Let consider now the operator 51010, which can be written as
( 110f1 (z,9) / /’Cuosy_T)fl(x_svT)deT
where f; € B§(C%°*P) and with

Kg?%o(x,y) == /Rtpo(sk:)elkl—lkllyldk.

2T
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After one integration by parts we obtain

’Eg?io(xvy) = - +’C1,10(3579)

(z% +y?)

with

~(0) e é/e , "
’C1,10($ay) = 27%7/5 o (ek)e Gz =1yD) Jf+

lyl —ix) Js 2
é/e
£ .
b / o (ek)e— R+ g
27 (lyl +ix) Jyjoe "

Now the first part with % may be treated as we did for oy in Corollary 12.3
m(x2+y?)
in Appendix A. The estimate in B, is straightforward, once we replace uj(s) by

f1(s,7) and we notice that

||f1('a T)”]]%Q < e)\T/QEHleBg(Cg'exF’)a

0 2, .2 _
/ Lta+y L+ ]y =] N2 dr < ce (14.4)
—o \ 1yl L a?+y -7

with ¢ independent of (x,y) € R x R™. The inequality (14.4) can be obtained simply
in splitting the integral into the part where |y — 7| > |y|/2, and the complementary
part, noticing that

and

0
/ (1+ [r])e¥/%dr = Ofe),

— 00

(1 +42)eM/s = O(1) uniformly in y.

=(0)
The second part K; 14(z,y) of the kernel is of the same form as I(z,y) at step 1 of

the proof of lemma 13.1, hence the estimate (ii) of lemma 14.1 holds for Eg?{ofl.
This ends the proof of lemma 14.1, hence estimate (8.15) is proved, as well as the
part in BS of (8.11).

It remains to estimate in By'® the function f‘l(@ogu(fy)) (in particular the
x—derivative). The principal part of this term is such that

Su(Ty)(k) = _%ﬁIkI[ [ 7)el¥I™ -+ isgn(e) (€17 — 1) (k, 7)dr+

€ 1 ~
+ 1 | =) = ARtk ryar

where f; and g1 € B (C2®*P), fy € B$[C°(0,1)] are components of Ty . It can be
checked that the kernels

— ¥0 -1 ko
Fl — , F &
<1+MM> <1+MM)
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satisfy the conditions of lemma 12.1, with constants of order O(1), hence, by lemma
12.1(b), the part of F~1(ppS,(Ty)) depending on fo has the good estimate in
By*(R) bounded by cel| fa| | g+ Now we observe that

|k|T
7 _ -1 [ $oe
T =F (1+ﬁ|k|>

6/ /
S (1 BN SN S / "kt (PER) L
m(x? + 72) (T +ix) J 14 pk ),

and the first part leads to an estimate in B$(R) of the integral over (—oo, 0) of its
convolution product with f1, thanks to the identity (12.1), and due to the fact that

0
/ (1 + |7])e*/?¢dr < ce (¢ independent of ¢).

— 00

The second part of the kernel satisfies all assumptions of lemma 12.1, with constants
of order 1, uniformly in 7 € R™, hence thanks to lemma 12.1(b), this leads to

[e3%

H/OOO To7) % fuo7)dr

< cell f1ll Bg (o).
R,2

Now we also have

2j(:z:, 7) =Re <l /6/6 7”{:('00(5]{) ek(THm)dk:)
Ox T Jo 1+ pk

which satisfies all assumptions of lemma 12.1, with constants of order 1, uniformly
in 7 € R™, so in using lemma 12.1(b), the part of F~1(¢0S,(Ty)) depending on
f1 has the good estimate in By®(R) bounded by cel| fillBg (cz-e»y. For the part
depending on g; the method is the same. Higher order terms have the same form,
multiplied by extra ek (k) where (k) is smooth and bounded for e(1 + |k|) < 6,
hence the same method applies, and (8.11) is proved.
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