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Abstract

The mathematical study of travelling waves, in the context of two
dimensional potential flows in one or several layers of perfect fluid(s) and
in the presence of free surface and interfaces, can be formulated as an
ill-posed evolution problem, where the horizontal space variable plays the
role of “time”. In the finite depth case, the study of near equilibria waves
reduces to a low dimensional reversible ordinary differential equation. In
most cases, it appears that the problem is a perturbation of an integrable

system, where all types of solutions are known. We describe the method
of study and review typical results. In addition, we study the infinite
depth limit, which is indeed a case of physical interest. In such a case, the
above reduction technique fails because the linearized operator possesses
an essential spectrum filling the whole real axis, and new adapted tools are
necessary. We also discuss the latest results on the existence of travelling
waves in stratified fluids and on three dimensional travelling waves, in the
same spirit of reversible dynamical systems. Finally, we review the recent
results on the classical two-dimensional standing wave problem.
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1 Introduction

The present article focuses on classical problems in the theory of water waves.
The topic of water waves is an old one and one can say that the theory of water
waves was initiated by Stokes [108] in 1847. What do we mean by the classical
problem of water waves? We mean the problem consisting in solving the in-
compressible Euler equations in a domain bounded above by a free surface (the
interface between air and water) and below by a solid boundary (the bottom).
The bottom can be at any depth (even infinite). The driving force is due to
gravity. The effects of surface tension might be equally important and can be
included in the analysis. There may be several superposed layers of immiscible
fluids, with free interfaces between them, and with or without interfacial ten-
sion there. What makes the water-wave problem so difficult is not its governing
equation which is linear (Laplace’s equation), but its two nonlinear boundary
conditions on each free surface and interface. For a lot of coastal engineering
applications, solutions given by the linearized water-wave problem are accurate
enough (see [105]), but for a number of practical applications the fully nonlin-
ear problem must be solved. Moreover, the water-wave problem has attracted
mathematicians for almost a century because of its extremely rich structure.

It is important to emphasize here that the present review is restricted to a
mathematical point of view. The most recent reviews on water waves, which are
less mathematical, are those of Hammack & Henderson [49] on resonant inter-
actions among surface water waves, Banner & Peregrine [12] on wave breaking
in deep water, Dias & Kharif [36] on the bifurcation, stability and evolution of
water waves, Perlin & Schultz [98] on capillary effects on surface waves, Duncan
[39] on spilling breakers. Recent reviews on numerical aspects are those of Tsai
& Yue [117] and Scardovelli & Zaleski [102] on the direct numerical simulation of
free-surface and interfacial flows. For a complete bibliography on the numerical
computation of three-dimensional water waves, one can refer to the paper [44].

Our review is more in the spirit of the section entitled “Existence theo-
rems” in Wehausen & Laitone’s contribution to the Encyclopedia of Physics
[120]. Since the water-wave problem is a difficult nonlinear problem to solve,
approximate theories have been developed. Most of these approximate theories
are based on perturbation expansions and today perturbation expansions are
still commonly used. When such approximate theories are used, it is tacitly
assumed that there is an exact solution which is being approximated. Therefore
existence and uniqueness proofs are an essential part of exact water-wave theory.
But such proofs have generally been difficult to establish, and have usually been
obtained for only rather restricted, although physically important, situations.
No attempt will be made to give an exposition of all mathematical methods
which have been used in establishing the various existing theorems.

Instead the purpose of the present review is to show how dynamical systems
methods can be used to obtain results on the spatial behavior of travelling waves
near the basic undisturbed free surface state. The water-wave problem can be
viewed as a bifurcation problem which overlaps several important subjects: i)
elliptic partial differential equations in unbounded domains like strips, ii) the
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theory of reversible systems in infinite dimensions, iii) the normal form technique
and iv) the methods of analysis available for systems close to integrable ones.
The idea to use “dynamical” arguments for solving nonlinear elliptic problems
in a strip was developed in the 1980s, pioneered by K.Kirchgassner [73] (see [74]
for a review on the water-wave problem).

We said above that our point of view is mathematical. But even within this
point of view, our review is rather restricted. Indeed only dynamical systems as-
pects of the “small solutions” of the steady water-wave problem are considered,
except for the section on standing waves, where the flow is unsteady. When
dealing with progressive waves, we do not review the following aspects:

• Existence proofs based on methods of local analysis of the type of implicit
functions theorem, including conformal mappings for reducing the problem
to one of existence of a harmonic function satisfying nonlinear boundary
conditions (see for example [81] and [94]), integral equation formulation
(see for example [43]), Lyapunov-Schmidt method (see for example [29]);

• Existence proofs based on variational formulations (see for example [6],[48]);

• Mathematical results on approximate models or amplitude equations for
water waves (see for example [18] for a review on model equations);

• Results on large-amplitude waves (see for example [7]), and results which
rely on numerical arguments;

• Global results (see for example [77], [116],[5]);

• Stability results (see for example [88], [21]);

• Existence (or non-existence) of solutions to the Cauchy problem for water
waves (see the work of Wu [122],[123]). This is a still widely open problem.
Existing results are valid on a finite (small) time interval and impose
restrictions either on the size or on the smoothness of the initial data;

• Fully rigorous derivations of nonlinear amplitude equations (see for exam-
ple [103]).

Finally we deliberately present the problem in the framework of reversible
vector fields, thus not taking advantage of the Hamiltonian structure of the
spatial water-wave problem. This Hamiltonian structure has been fully justified
and is more and more used in the mathematical theory of water waves (see for
example [47], [48] and their bibliography). Our point of view allows a simpler
presentation and the mathematical arguments we provide can be used in more
general settings than just the Hamiltonian ones.
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Figure 1: Sketch of a wave travelling along the free surface of a fluid layer of
thickness h

2 Two-dimensional travelling water waves as a

reversible dynamical system

2.1 Case of one layer with or without surface tension act-
ing on the free surface

Consider first the case of one layer (thickness h) of an inviscid fluid of density
ρ under the influence of gravity g, with or without surface tension T acting
on the free surface (see figure 1). The flow is assumed to be potential. We are
interested in steady waves of permanent form, i.e. travelling waves with constant
velocity c. In a reference frame moving with the wave, these solutions are steady
in time, and we intend to consider the unbounded horizontal coordinate ξ as
“time”. Natural scales are c for the velocity, h for the length and ρc2 for the
pressure. Once the equations are written in dimensionless form, two important
parameters, one based on gravity and the other one on surface tension occur in
the equations:

λ =
gh

c2
(inverse of (Froude number)2) and b =

T

ρhc2
(Weber number).

The choice of scales is not unique. For example one could have chosen the
capillary length T/(ρc2) or the gravity length c2/g as length scale. What is
important is that the equation depend only on two dimensionless parameters.
In dimensionless form, the complex potential is denoted by w(ξ + iη) and the

complex velocity by w′(ξ+ iη) =u−iv. The free surface is denoted by η = Z̃(ξ).
The Euler equations are expressed here by the fact that w is analytic in ζ = ξ+iη
and by the boundary condition

v = 0 at η = −1 (flat bottom),

the kinematic condition on the free surface

uZ̃ ′(ξ)− v = 0 at η = Z̃(ξ) (free surface),
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and the Bernoulli first integral on the free surface, expressing the condition that
the pressure jump is proportional to the curvature:

1

2
(u2 + v2) + λZ̃ − bZ̃ ′′

(1 + Z̃ ′2)3/2
= C at η = Z̃(ξ) (free surface)

where C is a constant, and b = 0 in the case of no surface tension. In order to
formulate the problem as a dynamical system, we first transform the unknown
domain into a strip. There are different ways for performing such a change of
coordinates. We choose the one used by Levi-Civita [81].

Remark: We could have chosen another one, for instance the two-dimensional
version of the change of coordinates used in section 7.1 for the three-dimensional
case or the intermediate choice made in [74]. The main advantage of the Levi-
Civita variables is that they lead to a weakly nonlinear problem, instead of a
true quasi-linear partial differential equation (PDE) problem. Moreover a big
part of the system stays linear, which is helpful.

The new unknown is α+ iβ as an analytic function of w = x+ iy, where x
and y are the potential and the stream function respectively, and

w′(ξ + iη) = eβ−iα.

The free surface is given by y = 0 and the rigid bottom by y = −1. The function
α represents the angle of the streamline with the horizontal, while β represents
the logarithm of the velocity modulus. Observe that fixing y = 0 along the
upper surface means that we impose the volume flux to be 1 in the moving
frame, while we leave free the Bernoulli constant C.

Our formulation uses an unknown vector function denoted by U, which sat-
isfies a differential equation of the form

dU

dx
= F (µ,U), (1)

where µ represents the set of parameters.

2.1.1 Case without surface tension (b = 0)

In such a case, U in (1) is defined by

[U(x)] (y) = (β0(x), α(x, y), β(x, y))t

where β0(x) = β(x, 0), while µ = λ and

F (λ, U) =





−λe−3β0 sinα0
∂β
∂y

−∂α
∂y

}
− 1 < y < 0

(2)

where α0 = α|y=0 and α|y=−1 = 0. The first component of the system (1) is
obtained after taking the derivative of the Bernoulli first integral with respect to
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x. It leads to an apparent loss of information, which in fact explains the arbitrary
constant which appears in the analysis, corresponding to the Bernoulli constant.
We observe that the free surface may be deduced from U by the formula (which
defines Z(x))

η = Z̃(ξ) = Z(x) =

∫ 0

−1

(e−β cosα− 1)dy, (3)

and
dξ

dx
= e−β0 cosα0.

Equation (1) has to be understood in the Hilbert space H = R× {L2(−1, 0)}2,
and U(x) lies in D = R × {H1(−1, 0)}2 ∩ {β0 = β|y=0, α|y=−1 = 0}, where
H1(−1, 0) denotes the Sobolev space of square integrable functions with a square
integrable first derivative on the interval (−1, 0). So, for a fixed x the right
hand side of (2) is a function of y and U(x) is required to satisfy the boundary
conditions indicated in D. A solution of the water-wave problem is any U ∈
C0(D) ∩ C1(H) which is solution of (1), where (e.g.) C0 means continuous and
bounded for x ∈ R.

It is clear that U = 0 is a particular solution of (1), which corresponds to the
flat free surface state. Notice that we have a one parameter family of constant
solutions U = (β0, 0, β0)

t with arbitrary β0. They give a flat free boundary
Z = e−β0−1 (6= 0 in general), and correspond to varying the Bernoulli constant
C.

An important property of (1) is its reversibility. Indeed let us define the
symmetry:

SU = (β0,−α, β)t.

It is easy to see that the linear operator S anticommutes with F (λ, ·). This
reflects the invariance under reflexion symmetry x→ −x of the problem.

2.1.2 Case with surface tension (b 6= 0)

In such a case, the variable U in (1) is defined by

[U(x)] (y) = (α0(x), α(x, y), β(x, y))t

and

F (µ,U) =





b−1 sinhβ0 + λb−1e−β0

∫ 0

−1(e
−β cosα− 1)dy − c1e

−β0

∂β
∂y

−∂α
∂y

}
− 1 < y < 0

(4)

where µ = (λ, b, c1), bc1 = C − 1/2 and β0 = β(x, 0). Equation (1) has to
be understood in the Hilbert space H = R × {L2(−1, 0)}2, and U(x) lies in
D = R × {H1(−1, 0)}2 ∩ {α0 = α|y=0, α|y=−1 = 0}. The free surface is given
by formula (3). Here again U = 0 is a particular solution of (1) for c1 = 0,
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which corresponds to the flat free surface state and (1) is reversible under the
symmetry defined by:

SU = (−α0,−α, β)t.

Notice that for c1 > − 1
2b (1 + 2λ− 3λ2/3), there are two families of “conjugate”

constant solutions Uc1 = (0, 0, β0)
t, where

(1− eβ0)[λe−β0 − 1/2(1 + eβ0)] = bc1.

These constant solutions are such that the free surface is flat and Z = e−β0 − 1
(6= 0 in general). Fixing c1 = 0 would mean that the velocity scale c we chose a
priori corresponds to β0 = 0, i.e. U = 0, while the conjugate flow has a different
velocity given by eβ0 = 2−1[(1 + 8λ)1/2 − 1]. Since we only study solutions
of equation (1) near U = 0, the occurence of this conjugate flow would then
only matter when λ is close to 1. This means that for λ close to 1, λ is not
well defined, since we arbitrarily choose one of the two conjugate flows for the
choice of the velocity scale. This is why we prefer to keep c1 as an additional
parameter.

2.2 Case of a fluid layer below an elastic ice plate

This case takes place in particular when a relatively thin layer of ice covers
a large lake. The equations are the same as in the case with surface tension,
except for the dynamic condition on the free surface. Assuming that the terms
involving the ice thickness can be neglected, using Bernoulli’s equation and
following the approach of Forbes [42] and Il’ichev & Kirchgässner [55], who
model the ice sheet as a Kirchhoff-Love plate, one finds the following dynamic
condition

1

2
(u2 + v2) + λZ̃ +D

(
Z̃ ′′

(1 + Z̃ ′2)3/2

)′′
= C at η = Z̃(ξ) (interface) (5)

where C is a constant and D is a dimensionless parameter. It is given by

D = (ρc2h3)−1 Eh3
i

12(1− ν2)

where E is the Young’s modulus of the ice, hi the ice thickness and ν the
Poisson’s ratio for ice. The scales for length, pressure and velocity are the same
as before.

Again one can introduce the change of coordinates used by Levi-Civita

w′(ξ + iη) = eβ−iα.

The interface is given by y = 0 and the rigid bottom by y = −1. The variable
U in (1) is defined by

[U(x)](y) = (α0(x), V (x),W (x), α(x, y), β(x, y))t
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Figure 2: Two superposed fluid layers of finite depth

and

F (µ,U) =





V e−β0

We−β0 cosα0

cosα0

[
−D−1 sinhβ0 − λD−1e−β0

∫ 0

−1(e
−β cosα− 1)dy + c1e

−β0

]

∂β
∂y

−∂α
∂y

}
− 1 < y < 0

(6)
where µ = (λ,D, c1), Dc1 = C−1/2 and β0 = β(x, 0). The boundary conditions
for U are α(x,−1) = 0 and α(x, 0) = α0(x). The interface is given by formula
(3). Here againU = 0 is a particular solution of (1) for c1 = 0, which corresponds
to the flat ice sheet and (1) is reversible under the symmetry defined by:

SU = (−α0, V,−W,−α, β)t.

The system (1,6) has to be understood in H = R3 × [L2(−1, 0)]2, and U(x) lies
in

D = R
3 × [H1(−1, 0)]2 ∩ {α0 = α|y=0, α|y=−1 = 0}.

2.3 Case of two layers without surface tension

Let us now consider the two-layer case (densities ρ1, ρ2), assuming that there is
no surface tension, neither at the free surface nor at the interface. At rest, the
thickness of the upper layer is h2 while it is h1 for the bottom one (see figure 2).
The dimensionless parameters we find convenient are ρ = ρ2/ρ1 < 1, e = h1/h2,
and λ = gh2

c2 . The domain can be transformed into two superposed horizontal
strips and we may use the same type of variables as above, except that now the
length scale is h2. We use h2 as length scale in order to be able to take the
limit h1 →∞ below. One difficulty is that the x coordinate is not the same in
each strip! We choose as the basic x coordinate the one given by the bottom
layer. This choice introduces a factor in the Cauchy-Riemann equations of the
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upper layer since dx2

dx1
= eβ20−β10 , where βj0 is the trace of βj at y = 0. In such

a formulation, the unknown is defined by

[U(x)] (y) = (β10(x), β21(x), α1(x, y), β1(x, y), α2(x, y), β2(x, y))
t

and the system has the form (1) with µ = (ρ, e, λ) and

F (µ,U) =





−λ(1− ρ) sinα10e
−3β10 − ρe3(β20−β10) ∂α2

∂y |y=0

−λ sinα21e
−3β21+β20−β10

∂β1

∂y

−∂α1

∂y

}
− e < y < 0

∂β2

∂y e
β20−β10

−∂α2

∂y e
β20−β10

}
0 < y < 1

(7)

where we denote by α10 the trace of α1 at y = 0, and by α21, β21 the traces of
α2 and β2 at y = 1. Let W p,1(I) be the Sobolev space of integrable functions
on the interval I , having integrable derivatives up to pth order on this interval.
The basic Banach space H = R

2×{W 1,1(−e, 0)}2×{W 1,1(0, 1)}2 requires more
regularity than in the previous case, in order to be able to define the term
∂α2

∂y |y=0 in the first component and the domain of the vector field F is now:

D = R
2 × {W 2,1(−e, 0)}2 × {W 2,1(0, 1)}2∩

∩{α10 = α20, β10 = β1|y=0, β21 = β2|y=1, α1|y=−e = 0},

while the reversibility symmetry reads:

SU = (β10, β21,−α1, β1,−α2, β2)
t.

Notice that we do not use here Hilbert spaces: this is precisely due to the “bad”
trace term ∂α2

∂y |y=0 in the first component of the vector field (7). Another choice

of space, such as H1 instead of W 1,1, would not lead to a good estimate of the
resolvent operator (see below). The new system (1,7) must be completed by the
following two Bernoulli first integrals (interface and free surface):

λ(1− ρ)

∫ 0

−e

(e−β1 cosα1 − 1)dy + 1/2(e2β10 − 1)− ρ/2(e2β20 − 1) = C1,

∫ 0

−e

(e−β1 cosα1 − 1)dy +

∫ 1

0

(e−β2 cosα2 − 1)dy + 1/2λ(e2β21 − 1) = C2,

which give the first two components of (1,7) after differentiation. In principle
we might choose to treat this problem on a codimension-2 manifold, instead of
expressing these first two components. It appears that it is easier to work as we
do if we keep in mind that there are two known first integrals. This freedom on
the choice of the two Bernoulli constants is due to the fact that the system (1,7)
has a two-parameter family of constant solutions U = (β10, β21, 0, β10, 0, β21)

t

corresponding to uniform flows in each layer, with different velocities.
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Figure 3: One layer of infinite depth

2.4 Case of one layer of infinite depth, with surface ten-
sion

Let us now consider the case of one infinitely thick layer of an inviscid fluid.
The flow is still assumed to be potential (see figure 3). The notation is the same
as for the finite depth case, except that we choose a new length scale l = T/ρc2.
The dimensionless parameter occuring in the equations now is

µ1 =
gT

ρc4
. (8)

The free surface is denoted by η = Z̃(ξ), and we have the boundary conditions

(u, v) → (1, 0) as η → −∞,

and the same conditions (kinematic and dynamic) on the free surface as for the
one-layer case treated above.

Using again the coordinates of Levi-Civita [81], the free surface is given by
y = 0, and the flow region by y < 0. In our formulation, the variable U is
defined by

[U(x)] (y) = (Z(x), α0(x), α(x, y), β(x, y))t

and it is straightforward to obtain the system under the form (1), with

F (µ,U) =





e−β0 sinα0

sinhβ0 + µ1e
−β0Z − c1e

−β0

∂β
∂y

−∂α
∂y

}
−∞ < y < 0,

(9)

where µ = (µ1, c1) and c1 is the Bernoulli constant. The system (1,9) has
to be understood in the space H = R2 × {L1(R−)}2, and U(x) lies in D =
R2 × {W 1,1(R−)}2 ∩ {α0 = α|y=0}. As above, a solution of the water-wave
problem is any U ∈ C0(D) ∩ C1(H) which is solution of (1,9).

It is clear that U = 0 is a particular solution of (1,9) for c1 = 0, which
corresponds to the flat free surface state, and the system (1,9) is again reversible,
under the symmetry

SU = (Z,−α0,−α, β)t.
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Note that in the unbounded strip y < 0 the system (1,9) is linear: This is very
helpful for the study of solitary waves (see below and [65]) because it makes the
choice of function space easier when the behavior at infinity in the x-coordinate
has to be mixed with the behavior at infinity in the y-coordinate. Another
remark for the one-layer case is that the problem can be reformulated into
an integro-differential equation (after solving the linear problem in the region
y < 0). However, one needs to specify from the beginning what type of solution
is studied, and the choice of solutions is then restricted a priori. For instance,
for periodic solutions one might use Fourier series spaces (see for instance [71]),
and for solitary waves one might use a Hilbert transform in the half space (see a
remark in [65]). This possible reduction is not used here, since we want to apply
our method to more general problems and solutions, especially to problems with
several layers.

Remark: We can consider the above case as the limit of the case of one
layer as the depth tends to infinity. For that it is necessary to write the system
(1,4) with the length scale l (instead of h). The parameters now are µ1 and b.
This modifies the vector field (4); in particular the strip (−1, 0) is replaced by
(−1/b, 0), and b→ 0 as h→∞.

2.5 Case of two layers, one being infinitely deep, without
surface nor interfacial tension

We go back to the case with two superposed immiscible fluid layers, without
surface nor interfacial tension, but we assume now that the bottom layer is
infinitely deep, i.e. e = ∞ (see figure 4). The formulation is then identical to
the one above with µ = (ρ, λ) and the interval (−e, 0) replaced by R−. The
domain of the vector field is now defined by

D = R
2 × {W 2,1(R−)}2 × {W 2,1(0, 1)}2∩

∩{α10 = α20, β10 = β|y=0, β21 = β|y=1},

and the new vector field is denoted by (7∞). However, even though there
are two arbitrary Bernoulli constants, there is only a one-parameter family
U = (0, β21, 0, 0, 0, β21)

t of constant solutions. This is due to the fact that
we implicitly impose the boundary conditions α1 and β1 → 0 as y → −∞.

Remark: The case of more than two superposed fluid layers, with or without
surface and interfacial tensions, may be easily formulated in the same way (see
for instance [58] for two layers and various surface and interfacial conditions).

Finally, it has to be understood that problem (1) is not a usual evolution
problem: the initial value problem is ill-posed! This is in fact an elliptic problem
in the strip R× (−1, 0) for problems (1,2), (1,4), (1,6), R× (−e, 1) for problem
(1,7), R× R− for problem (1,9), R× (−∞, 1) for problem (1,7∞). However we
treat this problem by local techniques of dynamical systems theory, following the
idea introduced by Kirchgässner in [73]. In the finite depth case, the key feature
is the possibility to apply a center manifold reduction into a reversible ordinary
differential equation for the study of solutions staying close to 0. In the infinite
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Figure 4: Two layers, one being infinitely deep

depth case, we are still able to isolate a finite dimensional-like family of solutions,
whose behavior as |x| → ∞ is different from the corresponding behavior in
the finite depth case. Moreover, this introduces new types of bifurcations, not
governed by a reduced finite dimensional reversible ordinary differential equation
(ODE).

The aim of the next section is to show the properties of the linearized op-
erator near 0, which clarify the study of local solutions in all cases and, in
particular, allow the use of such a center manifold reduction in the finite depth
case.

3 The linearized problem

3.1 Spectrum of the linearized operator

Since we are interested in solutions near 0, it is natural to study the linearized
problem near 0. This linearized system reads

dU

dx
= LµU (10)

in H. In all problems with finite-depth layers, it can be shown that the spectrum
of the unbounded (closed) linear operator Lµ which is symmetric with respect
to both axes of the complex plane because of reversibility, is only composed of
isolated eigenvalues of finite multiplicities, only accumulating at infinity. More
precisely, denoting by ik these eigenvalues (not necessarily purely imaginary),
then one has the classical “dispersion relation” satisfied by the eigenvalues,
under the form of a complex equation ∆(µ, k) = 0, analytic in (µ, k). The lin-
earization of the vector fields (2,4,6,7) leads to the following dispersion relations,
respectively:

k − λ tanh k = 0, (11)

k − (λ+ bk2) tanh k = 0, for k 6= 0, (12)

k − (λ+Dk4) tanh k = 0, for k 6= 0, (13)

ρ(λ2 − k2) tanh(ke) tanh k − (k − λ tanh k)[k − λ tanh(ke)] = 0. (14)
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Figure 5: Position of the four “critical” eigenvalues ik, close to the imaginary
axis, for the vector field linearized from (4), depending on the parameter val-
ues (b, λ). Dashed curves correspond to the existence of double nonzero real
eigenvalues.

Note that we take c1 = 0 for linearizing (4) and (6) since c1 plays the role of an
additional parameter to be considered later. Any real solution k of ∆(µ, k) = 0
gives a pure imaginary eigenvalue ik of the linear operator Lµ.

For a reason that we explain later, we are especially interested in eigenvalues
which lie near or on the imaginary axis. Indeed, there is only a small number of
eigenvalues on (or close to) the imaginary axis, the rest of them being located
in a sector (ik ∈ C; |kr| < p|ki|+ r) of the complex plane.

For the system (1,2) ∆(µ, k) = 0 is given by (11) and we have the following
situation: for λ < 1, 0 is the only eigenvalue (simple) on the imaginary axis, for
λ > 1, we have 0 and a pair of simple eigenvalues lying on the imaginary axis,
and for λ = 1, 0 is a triple eigenvalue. All other eigenvalues are not close to
the imaginary axis, except for λ near 1− where two symmetric real eigenvalues
tend towards 0 as λ→ 1.

For the system (1,4) ∆(µ, k) = 0 is given by (12) and the eigenvalues close
to the imaginary axis are described in figure 5 (see [74]). The left side of the
curve Γ and the line ∆ (λ = 1) in the parameter plane (b, λ) correspond to
the occurence of double eigenvalues on the imaginary axis or at the origin,
while the point (b, λ) = (1/3, 1) corresponds to the occurence of a quadruple
eigenvalue 0. The dashed curves correspond to the occurence of pairs of double
real eigenvalues, the most important being the curve the closest to ∆ (see section
4.2.4).

For the system (1,6) ∆(µ, k) = 0 is given by (13) and the positions of the
“critical” eigenvalues are described in figure 6. The curve Γ in the parame-
ter plane (D,λ) (D is defined in section 2.2) corresponds to a pair of double
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eigenvalues on the imaginary axis (this pair tends towards 0, when D → ∞),
while the line ∆ (λ = 1) corresponds to a double eigenvalue at the origin, in
addition to a pair of simple eigenvalues on the imaginary axis, tending towards
0 as D →∞.

Figure 6: Position of the four critical eigenvalues ik, close to the imaginary axis,
for the system linearized from (6), depending on the parameter values (D,λ).

For the system (1,7) ∆(µ, k) = 0 is given by (14) and 0 is always a double
eigenvalue, except on the set given by

λ = λ±0 (e, ρ)
def
= [2e(1− ρ)]−1

[
1 + e±

√
(e− 1)2 + 4eρ

]
,

where 0 is a quadruple eigenvalue. The positions of the critical eigenvalues are
shown in figure 7.

We observe that 0 is always an eigenvalue for the linearized vector fields
(2) and (7). This is due to the freedom in the choice of the Bernoulli constant,
while for the fields (4) and (6) this happens only if λ = 1 (we fixed the constant
c1 = 0).

The roots k of the dispersion equations ∆(µ, k) = 0 give the poles σ = ik of
the resolvent operator (σI − Lµ)

−1.
In the case of an infinitely deep layer, for vector fields LµU linearized from

(9) and (7∞) where c1 = 0 in (9), the spectrum of Lµ is as follows (see the
proofs in [65] and [58]):

i) there is a discrete set of isolated eigenvalues ik of finite multiplicities,
which are given by the roots of the dispersion relation ∆(µ,sgn(Re k)k) = 0;

ii) the entire real axis constitutes the “essential spectrum”. Moreover, 0 is
an eigenvalue embedded in this continuous part of the spectrum for (7∞).

More precisely, for (9) and (7∞), respectively, we have for Re k > 0

∆(µ, k) = k2 − k + µ1, (15)

∆(µ, k) = (λ− k){[ρ(λ+ k)− λ] tanh k + k}, (16)
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Figure 7: Position of the critical eigenvalues for the system linearized from (7),
depending on the parameters (e, λ) for a fixed value of ρ. The eigenvalue 0 is at
least double, it is quadruple on the curves λ±0 .

which should be completed for Re k < 0 by ∆(µ,−k) in order to obtain the
symmetric spectrum.

The roots k of the dispersion equations ∆(µ,sgn(Re k)k) = 0 which are not
purely imaginary or 0 give the poles σ = ik of the resolvent operator (σI−Lµ)−1.
The nature of the point 0 of the spectrum is more delicate. When 0 is not an
eigenvalue, the structure of the resolvent operator near 0 is the same as near the
rest of the real line; in particular, the linear operator (σI − Lµ) for σ real has
a non closed range, and the closure of the range has a codimension one for (9).
When 0 is a simple eigenvalue, as for (7∞), we are able to build a projection
operator (on the one dimensional kernel), commuting with Lµ and such that 0
is no longer an eigenvalue of Lµ in the complementary invariant subspace. We
are thus coming back to the previous case (9) (see details in [58]).

Some natural questions arise: what really happens in the spectrum for the
vector fields (4) and (7), when the bottom layer thickness grows towards infinity?
What are the physically realistic cases?

It is not difficult to see that as the depth is growing, there are more and more
real eigenvalues accumulating regularly on the whole real axis, the eigenvectors
being bounded, but not tending towards 0. In the limit, as we choose a basic
space such that (α, β) → 0 as y → −∞, all real eigenvalues disappear [except
0 for (7∞)] but the spectrum stays as an essential spectrum. Concerning the
physical relevance of studying the infinite depth case, we need to consider what
are the characteristic scales of the problems.

3.2 Physical situations

In this section we consider typical physical situations, in connection with the
theoretical results we mention in this paper. All waves are travelling in the ξ
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physical direction with a constant velocity c. We mention periodic waves, which
are indeed periodic in ξ, solitary waves which are waves localized in space, i.e.
tending to a flat pattern at infinity, and generalized solitary waves which are a
sort of superposition of a periodic wave at infinity, and of a localized wave at
finite distance.

In the following examples we take a typical value of surface tension for an
air-water interface: T/ρ = 74cm3/s2.

Cases in the frame of system (1,2).
i) Tsunami: h = 4000m (depth), L = 100km (wave length). Hence k = 0.25,

and the corresponding value of λ given by linear theory (11) is λ = k/ tanh k ' 1.
Note that (11) corresponds to b = 0, which is a good approximation since here
b = O(10−13). Solving for c gives c = 195 m/s and we are close to a solitary
wave generation.

ii) Solitary waves in a wave tank: in this case, h = 10cm, L = 250cm,
hence k = 0.25, λ ' 1 (as above), and this corresponds to c = 98cm/s, while
b = O(10−4).

iii) Wind waves, generated by a storm in the ocean: h = 1000m, L = 150m,
hence k = 42, and the dispersion relation gives λ ∼ k, corresponding to c =
15.2m/s, while b = O(10−10). We are then far from the solitary wave generation.

Cases in the frame of systems (1,4 or 1,9).
Here we note that fixing h fixes the ratio b/λ since b/λ = T/ρgh2. Then, once

k is known, the dispersion equation (12) gives λ and b, and the corresponding
velocity c of the waves.

The dispersion relation (12) can be rewritten in physical variables as

c2 =

(
gL

2π

)
tanh

(
2πh

L

)[
1 +

b

λ

(
2πh

L

)2
]
.

For realistic water depths, the plot c(L) exibits a minimum, say at L = L∗.
Waves with L < L∗ are usually referred to as capillary waves, while waves with
L > L∗ are referred to as gravity waves. For example, for h = 3 cm (and
consequently b/λ = 0.0084), one finds that L∗ ≈ 1.7 cm. Consequently, using
the superscript * to denote values at L = L∗, we have k∗ = 11, and λ∗ ∼ 5.5,
b∗ ∼ 0.046, c∗ = 23.2 cm/s. This point represents in fact the occurence of
double imaginary eigenvalues and belongs to the curve Γ in figure 5.

On the capillary side, a typical value is L = 1cm. Hence k = 19 and λ ∼ 4.7,
b ∼ 0.04, c = 25cm/s. The point in the parameter plane (b, λ) is below the
curve Γ.

On the gravity side, a typical value is L = 5 cm. Hence k = 3.8 and λ ∼ 3.4,
b ∼ 0.03, c = 29.5cm/s. The point in the parameter plane lies again below the
curve Γ.

Note that although a depth of 3 cm may appear relatively shallow, it is in fact
close to the deep water case introduced in Section 2.4 when one is interested in
the (iq)2 resonance (occurence of double imaginary eigenvalues)! In deep water,
the (iq)2 resonance occurs for a speed c = 23.2 cm/s and a wavelength L = 1.73
cm, that is essentially the same values as for h = 3 cm. This corresponds to the
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critical value µ1 = 1/4 of the parameter µ1 defined in (8). This is due to the
fact that the capillary length scale l = T/ρc2 is equal to 0.14 cm at the (iq)2

resonance, which is much smaller than 3 cm.
Experiments have been performed by Longuet-Higgins and Zhang [126],[86]

in deep water near the (iq)2 resonance. They show good agreement with the
theory developed below in section 4.

Cases in the frame of system (1,6).
Several experiments on waves in an ice plate are reported in the book by

Squire et al [106].
i) For the experiments of Takizawa [115], which took place in Lake Saroma

in Hokkaido, Japan, the water depth is h = 6.8 m, and other parameters are
E = 5.1 × 108 N/m2, ν = 1/3, hi = 0.17 m. Then λ/D is fixed. The speed c
was in the range [0−9] m/s. This range includes the speed c = 6.09 m/s, which
corresponds to the occurence of the (iq)2 resonance (point on the curve Γ in
figure 6) (k = 2.27, λ = 1.8, D = 0.02), as well as the speed c = 8.2.m/s, which
corresponds to the occurence of generalized solitary waves (point on the line ∆
in figure 6 (λ = 1, D ∼ 0.01). The wavelength of the (iq)2 resonance is 18.8 m.

ii) For the experiments of Squire et al [107], which took place in McMurdo
Sound in Antarctica, the average water depth is 350 m. The other parameters
are E = 4.2 × 109 N/m2, ν = 0.3, hi = 1.6 m. The speed c was in the range
[0− 28] m/s. This range includes the speed c = 18.5 m/s, which corresponds to
the occurence of the (iq)2 resonance (point on the curve Γ in figure 6) (k = 0.038,
λ ∼ 10, D ∼ 10−4). The wavelength of the (iq)2 resonance is 165 m. The
observations of Takizawa [115] and Squire et al [107] are in good agreement
with the theoretical results developed in section 4.

Case in the frame of (1,7).
A lot of experiments have been performed in the configuration of two super-

posed fluids. In the experiments of Michallet and Barthélemy [90], the fluids
are water and petrol. The density ratio is ρ = 0.78. The total depth is 10 cm
and the thickness ratio e = h1/h2 varies between 0.25 and 10. Depending on
the initial conditions, both types of solitary waves (see figure 7) (the ‘fast’ one
bifurcating along λ = λ−0 , and the ‘slow’ one bifurcating along λ = λ+

0 ) can be
observed experimentally. Taking e = 0.25 gives λ+

0 = 21.9 (that is c = 18.9
cm/s) and λ−0 = 0.83 (that is c = 97.2 cm/s). Taking e = 10 gives λ+

0 = 4.9
(that is c = 13.4 cm/s) and λ−0 = 0.093 (that is c = 98.1 cm/s). In the case
λ = λ+

0 , there is an additional imaginary eigenvalue ik. For e = 0.25, k = 21.9,
that is a wavelength of 2.3 cm. For e = 10, k = 4.9, that is a wavelength of 1.2
cm. Note that although Michallet and Barthélemy devoted their experiments to
the ‘slow’ waves, they did not observe the influence of the extra imaginary eigen-
value (see Dias and Il’ichev [33] for a discussion). Recent experiments by Mehta
and Sutherland [89] in a three-layer configuration clearly show the presence of
generalized solitary waves.

Case in the frame of (1,7∞).
The obvious example is the open ocean with a layer of warm water above

the cold one. Take for example ρ = 0.998 for the density ratio and h2 =
100m for the thickness of the upper (warm) layer. Then a critical value of λ
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is 1/(1 − ρ) = 500, which corresponds to c = 1.4m/s, and the wave length
of the ripples (corresponding to the pair of eigenvalues ±ik, with k = λ) is
1.3m. As far as we know, generalized solitary waves have not been observed in
the open ocean. However in the course of their investigation of internal-wave
disturbances, generated by stratified flow over a sill, Farmer and Smith [41]
observed waves resulting from the interaction between a long “internal” mode
and a short “external” mode with the same phase speed.

3.3 Center manifold reduction (finite depth case)

After having discussed the physical relevance of the waves studied in this paper,
we now focus on the reduction procedure. For all these problems one can obtain
an estimate on the resolvent operator, of the form

||(ikI− Lµ)
−1||L(H) ≤ c/|k| (17)

for large |k|, k ∈ R, where L(H) is the space of bounded linear operators in H

(see for example [64],[58]). It is fortunate that in all these problems the resolvent
(ikI − Lµ)

−1 can be obtained quasi-explicitly, especially in the problem (1,7),
because the “bad” trace term in the first component of Lµ makes it difficult to
obtain an estimate such as (17) with a choice of basic space other than the space
H we chose. This estimate appears to be essential in our method of reduction
to a (small dimensional) center manifold.

For the study of the nonlinear problem (1) the idea is now to use, for the
finite depth case, a center manifold reduction which leads to an ordinary dif-
ferential equation of small dimension. Let us assume that, for values of the
(multi)parameter µ near µ0, the eigenvalues of Lµ lie either in a small vertical
strip centered on the imaginary axis, of width tending towards 0 for µ→ µ0, or
at a distance of order 1 from the imaginary axis. Then the estimate (17) allows
us to find a center manifold (see [73], [92], [119], [76]). Indeed, the nonlinear
part N(µ, ·) of the vector field F (µ, ·) maps analytically D into D for the vector
fields (2) and (4). Hence, in such cases, the simple version of the result proved
in [119] applies. For the vector field (7), the operator N(µ, ·) maps analytically
D into H, which is not a Hilbert space (however still a Banach space (which
is not reflexive)) and is less “regular” than D; so in this case we need the im-
proved result of [76] where it is needed to replace for instance the space C0(D) by
C0,1/2(D), i.e. continuity in space D is replaced by Hölder continuity (exponent
1/2) in this space.

Roughly speaking, all “small” bounded continuous solutions taking values
in D of the system (1), for values of the (multi)parameter µ near µ0, lie on an
invariant manifold Mµ which is smooth (however we loose the C∞ regularity)
and which exists in a neighborhood of 0 independent of µ. The dimension of
Mµ is equal to the sum of dimensions of invariant subspaces belonging to pure
imaginary eigenvalues for the critical value µ0 of the (multi)parameter. In other
words, the modes corresponding to eigenvalues far from the imaginary axis
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are functions (“slaves”) of the modes belonging to eigenvalues near or on the
imaginary axis. In addition, the reversibility property leads to a manifold which
is invariant under the reversibility symmetry S. The trace of the system (1) on
Mµ is also reversible under the restriction S0 of the symmetry S.

At this point we should emphasize that the physical relevance of this re-
duction process is linked with the distance of the rest of eigenvalues to the
imaginary axis. So, this validity is going to 0 when the thickness of the bottom
layer increases, and in such a case we have to think of another technique.

4 Finite depth case via reversible normal forms

The aim of this section is to present a systematic method of study, valid in cases
with finite depth layers: for instance we may use this method for solving cases
with more than two superposed layers, with or without surface and interfacial
tension. We consider the finite depth cases (2), (4), (6), (7), in studying the
reduced ODE which gives all solutions staying near 0. These solutions lie on a
low dimensional center manifold, and this ODE is still reversible and its linear
part contains the “critical” eigenvalues. Then, we use the normal form technique
(see for instance the book [62], especially for reversible normal forms) to simplify
the form of the leading orders of the Taylor expansion of the reduced vector field.
We shall use a terminology of resonances due to Arnold [11] for describing the
form of the reduced linearized operator which corresponds to the eigenvalues
lying on the imaginary axis, at the critical value of the parameter.

4.1 Case of one layer without surface tension

Let us consider the system (1,2). When λ < 1, and λ not close to 1, the center
manifold is one-dimensional, and the only “small” solutions near 0 belong to
the one-parameter family of constant solutions U = (β0, 0, β0)

t = β0ξ0, where
ξ0 is the eigenvector belonging to the eigenvalue 0 of the linear operator Lµ.

When λ > 1, λ not close to 1, the center manifold is 3-dimensional. A
one-parameter family of periodic waves bifurcates from every constant solution.
Along this branch, the amplitude increases, starting with amplitude 0 (the con-
stant solution), and the wave length depends regularly on the square of the am-
plitude. This is a result analogous to the one given by the Lyapunov-Devaney
theorem (see [87] for Hamiltonian systems) for finite dimensional reversible sys-
tems, despite the occurence of the 0 eigenvalue. The analysis below gives all
“small” solutions for λ close to 1, with some details. In particular, for λ & 1, we
still obtain the above family of periodic solutions. The first rigorous results on
periodic solutions, the so-called Stokes waves (1847), are due to Levi-Civita [81]
and Nekrasov [94], and for the solitary wave (for λ < 1), they are due to Lavren-
tiev [80], Friedrichs and Hyers [43], Beale [14]. Below we leave free the Bernoulli
constant, which allows a better understanding of the family of solutions.

The linearized operator obtained for λ = 1 is denoted by Lµ0
. Recall that 0

is a triple eigenvalue and there is no other eigenvalue on the imaginary axis.
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Let us denote by ξ0, ξ1, ξ2 the vectors in D such that

Lµ0
ξ0 = 0, Lµ0

ξ1 = ξ0, Lµ0
ξ2 = ξ1,

Sξ0 = ξ0, Sξ1 = −ξ1, Sξ2 = ξ2;

we have

ξ0 = (1, 0, 1)t, ξ1 = (0,−(1 + y), 0)t, ξ2 = (0, 0,−y − y2/2)t.

In the terminology of Arnold [11], this is a 03+ resonance. The 3-dimensional
center manifold is denoted as follows:

U = Aξ0 +Bξ1 + Cξ2 + Ψν(A,B,C),

where Ψν |ν=0 is at least of second order in (A,B,C) and Ψν vanishes at 0. Here
ν(µ) is a scalar regular function of the parameter defined below, with the help
of the normal form, such that ν = 0 for λ = 1.

It then results from normal form theory (see for instance [62] p.25 and p.31)
that we can choose the coordinates A,B,C by finding a suitable form for Ψν

up to a certain order, such that for any fixed p, the system reads

dA

dx
= B, (18)

dB

dx
= C +Aφν(A,B

2 − 2AC) +RB(A,B2, C, ν), (19)

dC

dx
= Bφν(A,B

2 − 2AC) +BRC(A,B2, C, ν), (20)

where φν is a polynomial in its arguments, of degree p in (A,B,C), and RB ,
RC are even in B, due to reversibility (the vector field anticommutes with

(A,B,C) 7→ (A,−B,C).

Moreover
|RB |+ |BRC | = O

{
(|A| + |B|+ |C|)p+1

}

holds. We may compute the principal part of the polynomial φν (see for instance
a similar computation in the appendix of [61]):

φν(A,B
2 − 2AC) = ν + aA+ b(B2 − 2AC) + cA2 + · · · (21)

ν =
3

2
(1− λ) +O[(1− λ)2], (22)

a = 3[1 +O(ν)]. (23)

In φν we consider all coefficients (a, b, c, ...) as functions of ν instead of λ, for a
better comfort.

A nice property of (18,19,20) is that, if the higher order terms RB , RC which
are not in normal form are suppressed, then the “truncated” system is integrable.
Indeed, we have the two first integrals

B2 − 2AC = K,

C − Φ(A,K, ν) = H,
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where

Φ(A,K, ν) =

∫ A

0

φν(s,K)ds.

For (H,K) fixed, all trajectories in the (A,B,C) space are given by

B2 = fH,K(A),

C = H + Φ(A,K, ν),

where

fH,K(A)
def
= K + 2HA+ 2AΦ(A,K, ν).

The corresponding curves B2 = fH,K(A) are deduced from figure 8, depending
on the sign of ν and on the values of the first integrals (H,K). In all cases we
have a family of equilibria implicitly given by

B = 0, C +Aφν(A,−2AC) = 0, (i.e. ∂AfH,K(A) = 0),

which correspond to the curves in the (H,K) plane. These equilibria may be

Figure 8: Different graphs of A 7→ fH,K(A) for ν > 0 (left), and ν < 0 (right)

elliptic or hyperbolic depending on the branch Γe or Γh where (H,K) is sitting.
On the branch on the right, for ν > 0 and H = K = 0, there is one solution
homoclinic to 0. On the branches denoted by Γh in the (H,K) planes for ν > 0
or ν < 0, the equilibria are limit points of homoclinics corresponding to solitary
waves. Other small bounded solutions are periodic (cnoidal waves), correspond-
ing to the positive part of fH,K when the curve intersects transversally the axis
B = 0.

We can check that the solitary waves are of elevation: for ν > 0, H = K = 0,
we have indeed for the principal part

A(x) ∼ − 2ν

3 cosh2
(√

ν/2x
) ,
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Figure 9: Shape of the solitary wave in the case of one layer without surface
tension.

hence

η = Z(x) ∼ −
∫ 0

−1

β(x, y)dy ∼ −A(x) > 0,

x ∼ ξ, λ = 1− ν.

Now, we need to prove that what is true on the normal form of the reduced vec-
tor field is still true for the full vector field. In particular the curve of symmetric
equilibria persists (by implicit function theorem) and the two non zero eigenval-
ues of the linearized operator are either purely imaginary (elliptic case), or real
symmetric (hyperbolic case). There is one equilibrium for which 0 is a triple
eigenvalue. There is a homoclinic connection to every hyperbolic equilibrium, as
may be shown by taking the one-dimensional unstable manifold of each of these
hyperbolic equilibria, and showing that this curve intersects transversally the
plane of symmetric points B = 0, as for the normal form. Hence the trajectory
obtained by completing in a symmetric way is an homoclinic curve. A complete
proof of such a persistence in the three dimensional phase space may be found
for instance in [61]. We can sum up these results by the following theorem:

Theorem 1 Assume that a 3-dimensional reversible vector field having a fixed
point at 0 has a 03+ resonance. Then the phase portrait near 0, of the vector
field for a fixed value (near 0) of the bifurcation parameter, is generically the
same as for the normal form (18,19,20) truncated at quadratic order.

Corollary 2 The above theorem applies for describing the travelling wave so-
lutions in the space D of the water wave problem 2.1.1 (finite depth, no surface
tension) near the equilibrium, for λ near 1.

Remark: Note that U = 0 corresponds here to a uniform flow of velocity
c, and that other constant solutions near 0 correspond in fact to uniform flows
moving at a velocity slightly different than c. Since c was chosen arbitrarily
as the velocity scale, solitary waves corresponding to solutions homoclinic to
nonzero constant solutions are in fact homoclinic solutions to 0, with the right
choice of the velocity scale. Therefore, there is a unique form of solitary waves
(see figure 9), due to the arbitrariness of the definition of the parameter λ (with
an arbitrary c!).
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4.2 Case of one layer with surface tension

Let us consider the system (1,4). The eigenvalues of the linear operator Lµ (for
c1 = 0), are given by σ = ik, with k satisfying (12), and figure 5 gives the
position of the four closest eigenvalues to the imaginary axis. For the study of
solutions of (1) near 0, there are three main “interesting” cases to be considered:

(i) (b, λ) is near ∆+ = {λ = 1, b > 1/3}; in this case, Lµ0
has only a double

0 eigenvalue on the imaginary axis (02+ resonance),
(ii) (b, λ) is near ∆− = {λ = 1, 0 < b < 1/3}; in this case, Lµ0

has a double
0 eigenvalue, and a pair of simple imaginary eigenvalues ±iq on the imaginary
axis (02+(iq) resonance),

(iii) (b, λ) is near Γ (left part); in this case Lµ0
has only a pair of double

imaginary eigenvalues ±iq on the imaginary axis ((iq)2 resonance).
The system (1,6) leads to cases (ii) and (iii) as well, and can be treated

similarly. When (b, λ) is close to (1/3, 1) a specific study is needed, because at
this point the eigenvalue 0 is quadruple (see [56] for this case). There are other
interesting cases, for instance when one has two pairs of resonating eigenvalues
on the imaginary axis (the (iq)(2iq) resonance is the most special because of
the occurence of heteroclinics between periodic solutions, see [13]). However we
shall not detail their study here, since it is always in the same spirit, and we
restrict our presentation to the most typical cases.

4.2.1 Case (i): 02+ resonance

This case was first solved by Amick and Kirchgässner [4]. It is also studied in
particular in the papers [74],[101],[64]. The method used in [64] is the one we
present here (however without fixing the parameter c1 = 0). Here the center
manifold is two dimensional. Let us define by (A,B) the (real) coordinates (or
“amplitudes”), associated with the choice of eigenvectors

ξ0 = (0, 0, 1)t, ξ1 = (−1,−(y + 1), 0)t.

Then, we need to know how the reversiblity symmetry S0 acts on (A,B). There
are two theoretical possibilities: (A,B) → (A,−B) or (−A,B). Here, as in all
water-wave problems, the first case holds. This is the 02+ resonance. Then the
normal form (see for instance [62]), truncated at leading orders, reads

{
dA
dx = B
dB
dx = νA+ aA2 + δc1,

(24)

where one can compute explicitly the coefficients (see for instance [64]), as func-
tions of the parameters:

ν = (b− 1/3)−1(λ− 1) +O(|c1|+ |λ− 1|2),
a = −3/2(b− 1/3)−1[1 +O(|λ − 1|+ |c1|)],
δ = (b− 1/3)−1b[1 +O(|λ− 1|+ |c1|)].
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Figure 10: Phase portrait of the 2D vector field (24) [case(i)], for c1 > − (λ−1)2

6b .

We notice the blowing up of the coefficients when b tends towards 1/3, due
to the change of dimension of the central system at this point (it becomes 4-
dimensional). Here, the two conjugate equilibria (both corresponding to a flat

free surface) are denoted by A− < A+. They exist provided that c1 > − (λ−1)2

6b .
The equilibrium A− is hyperbolic while the equilibrium A+ is elliptic. The
vector field (24) is integrable, and its phase portrait is given in figure 10. For
any fixed c1, there is a one parameter family of periodic solutions, and a solution
homoclinic to the hyperbolic equilibrium. All these solutions disappear after

the saddle-node bifurcation when c1 < − (λ−1)2

6b . For c1 = 0 and λ > 1, the
homoclinic solution of the truncated system is given by

A(x) =
λ− 1

cosh2(ν1/2x/2)
. (25)

Because our system is two-dimensional and reversible, it is easy to show that
these phase portraits fully persist for the complete system. We sum up these
results in the following theorem:

Theorem 3 Assume that a two-dimensional reversible vector field has a fixed
point at the origin for the parameter value 0, and assume that it has a 02+

resonance for its linearized part. Then the phase portraits near 0 of the vector
field, for fixed values of the parameter ((ν, c1) here) near 0, are generically the
same as for the normal form (24).

Corollary 4 The above theorem applies for describing travelling waves solu-
tions of the water wave problem 2.1.2 (finite depth, large surface tension such
that b > 1/3) for λ near 1.

We observe that A(x) > A−, hence the homoclinic solution corresponds to
a “solitary wave” of depression (see figure 11) for the problem (1,4), whose
principal part follows directly from (25).

Remark: Fixing c1 = 0 leads to an artificial distinction between the cases
λ > 1 and λ < 1, since this is just a matter of choosing the suitable constant
flow for the velocity scaling (the one which is an hyperbolic equilibrium).
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Figure 11: Shape of the solitary wave of depression in the case of one layer with
strong surface tension

4.2.2 Case (ii): 02+(iq) resonance

This case was treated in the spirit of this review in the work [64]. Here the center
manifold is four dimensional. Let us denote by ±iq the pair of simple eigenvalues
depending on b, such that q = (1 + bq2) tanh q, and define by (A,B) the (real)
amplitudes and C the complex one, corresponding to the oscillating mode. Then
the reversiblity symmetry S0 acts on (A,B,C,C) as follows: (A,B,C,C) →
(A,−B,C,C). This is a 02+(iq) resonance. The normal form, truncated at
quadratic order, reads





dA
dx = B
dB
dx = νA+ aA2 + c|C|2 + δc1,
dC
dx = iC(q + ν1 + dA),

(26)

where the (real) coefficients ν, a, δ are the same as for case (i), and c, ν1, d may
also be explicitly computed in terms of the parameters (λ, b, c1) (see [64] where
they are computed for c1 = 0). We notice that a > 0 and we have

ν1 = O(|λ − 1|+ |c1|), d = O(1),

c = (1/3− b)−1

(
1 +

sinh 2q

q
+ h.o.t.

)
> 0

where (λ − 1, c1) is close to 0. This system is indeed integrable, with the two
first integrals

H = |C|2, (27)

K = B2 − (2/3)aA3 − νA2 − 2(cH + δc1)A.

Fixing c1 = 0 to simplify the discussion, we see again on figure 8 (after an
obvious scaling) the various graphs of the functions fH,K(A) = (2/3)aA3 +
νA2 + 2cHA+K depending on (K,H), for ν > 0 (left), and for ν < 0 (right)
(ν has the sign opposite of λ− 1, since b < 1/3).

In this case, for the normal form vector field, the curves Γh and Γe in the
(K,H) plane correspond to families of periodic solutions, where the C compo-
nent is not 0, except for H = 0, where this gives the conjugate constant flow
(as above). Now, we have other types of periodic solutions and quasi-periodic
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Figure 12: Phase portraits in the (A,B) plane of the vector field (26) for c1 =
0, ν > 0 (λ < 1); left side: 0 < cH < ν2/4a, right side: H = 0.

solutions corresponding to the interior of the triangular region in (K,H) plane.
The curves Γh correspond to the existence of homoclinic solutions, one homo-
clinic to 0 for λ < 1 (ν > 0, H = K = 0), and all others homoclinic to some
periodic solution. Figure 12 gives in the (A,B) plane the phase portrait of all
small bounded solutions (left side) for 0 < cH < ν2/4a, c1 = 0, and for H = 0
(right side). Notice that the homoclinic solution to A+ corresponds here to a
generalized solitary wave for the problem (1,4), tending at infinity towards a
periodic wave. Note that A+ ∼ −cH/ν when |H | is very small, meaning that
oscillations at infinity are then very small in this case. For H = 0 this corre-
sponds to a solitary wave of elevation for the problem (1,4). For λ > 1 we have
analogous phase portraits where, for instance for H = K = 0, we have a solution
homoclinic to A+ 6= 0. This limit equilibrium corresponds to the flow conjugate
to 0, and might be chosen a priori as the origin (instead of the previous origin)
if we change the scale c for velocities (see the discussion for case (i)). Then λ
would become λ′ with the new scaling, and λ > 1 would become λ′ < 1.

The natural mathematical problem consists now in proving persistence re-
sults when considering the full system, not only reduced to its normal form. In
summary, the persistence of periodic solutions of the normal form can in gen-
eral be performed, through an adaptation of the Lyapunov-Schmidt technique
[64],[82]. The persistence of quasi-periodic solutions is much more delicate, and
can only be performed in a subset of the 2 dimensional space of first integrals,
where these solutions exist for the normal form. For a fixed value of the bifur-
cation parameter ν, quasi-periodic solutions of the perturbed reversible vector
field exist for (H,K) lying in a region which is locally the product of a line by a
Cantor set (see [64]). The persistence of pairs of reversible solutions (invariant
under the reversibility symmetry) homoclinic to periodic solutions, provided
that they are not too small, is proved for instance in [109] and [64] (see figure
13). For the normal form, there is a family of orbits homoclinic to a family
of periodic solutions whose amplitude can be chosen arbitrarily small. Such
a case (ii) has been investigated by many authors (see for instance [15], [113]
and [82]). There are homoclinic solutions to oscillations at infinity whose size is
smaller than any power of the bifurcation parameter, corresponding to the fact
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that we cannot avoid such oscillations when we consider the full untruncated
system. The extremely delicate aspect of exponentially small and still existing
oscillations was proved by Sun and Shen [113] on the water wave problem (1,4),
and is thoroughly studied by Lombardi for a wide class of problems (including
the water-wave problem) in [82]. Moreover, despite the fact that a solution ho-
moclinic to 0 exists for the normal form (26), this is not true in general for the
full system (see [83]), even though one can compute an asymptotic expansion
up to any order of such an homoclinic (non existing) “solution”! (see [84] for
an extensive study of the phenomenon). The difficulty comes from the fact that
there is only one unstable direction and one symmetric stable direction for the
origin (ν > 0). Indeed, the two-dimensional unstable manifold of a periodic
orbit near 0 becomes one-dimensional when the amplitude of the oscillation
vanishes. In fact, this two-dimensional unstable manifold (identical to the two-
dimensional stable manifold for the normal form) intersects transversally the
two-dimensional subspace invariant under the symmetry reversibility (B = 0,
C real), (2 intersection points) for the 4-dimensional normal form vector field.
For a large enough size of the periodic orbit for the perturbed vector field, its
unstable manifold is shown to intersect transversally the plane (B = 0, C real),
in two points, as for the normal form. This shows the persistence, for the full
vector field, of two reversible solutions homoclinic to this closed orbit. Now, it
results from [84] that, as soon as the radius of the periodic orbit is smaller than a
critical value, there is a loss of transversality for the perturbed vector field, and
that the generic minimal size of the limiting oscillation is O(C(l) exp[−lq/ν1/2]),
with l < π (l = π would be the optimal result here, but not yet obtained, see
[84]). While the result on non existence of solitary waves is generic here, there
is a precise proof that there are no true solitary waves (of elevation here) near
b = 1/3 (see [110]), and the result for b < 1/3 (not near 1/3) is not known,
though a not completely rigorous analysis suggests that there are no such so-
lutions (see [124] and [27]). We summarize these results in the following rough
theorem:

Theorem 5 Assume that a 4-dimensional reversible vector field has a fixed
point at 0 and has a 02+(iq) resonance for its linear part. Then, in a neighbor-
hood of 0, near the critical value of the bifurcation parameter, the small periodic
solutions of frequencies close to q are generically given by the normal form (26),
and lie in a one-parameter family. There is in addition a two-parameter family
of periodic and quasi-periodic solutions. Moreover, each hyperbolic periodic so-
lution of frequency close to q has two reversible homoclinic connections, provided
that the diameter of this periodic solution is larger than an exponentially small
quantity.

More details may be found in [84].

Corollary 6 The above theorem applies for describing travelling waves of the
water wave problem 2.1.2 for λ near 1 and b < 1/3 (small surface tension). It
also applies to the problem of travelling waves 2.2 under an elastic plate (6) for
λ near 1 (see the line ∆ in figure 6 and see [97]).
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Figure 13: Shape of the generalized solitary waves in case (ii).

4.2.3 Case (iii): (iq)2 resonance

This case occurs for (b, λ) near the curve Γ of the parameter plane in figure
5, and was first treated in [63]. Here the center manifold is four dimensional.
Let us denote by ±iq the pair of double eigenvalues at criticality, and define
by (A,B) the complex amplitudes corresponding respectively to the eigenmode
and to the generalized eigenmode. This case is often denoted by “1:1 reversible
resonance”. We can always assume that the reversibility symmetry S0 acts as
(A,B) → (A,−B). The normal form (see for instance [62]) reads at any order
(making c1 = 0, which does not restrict the study, since λ is not close to 1):

dA

dx
= iqA+B + iAP [ν, |A|2, i/2(AB −AB)], (28)

dB

dx
= iqB + iBP [ν, |A|2, i/2(AB −AB)] + AQ[ν, |A|2, i/2(AB −AB)],

where P and Q are real polynomial of degree one in their arguments, for the
cubic normal form. Let us define more precisely the coefficients of Q:

Q(ν, u, v) = ν + q2u+ q3v, (29)

which means that for ν > 0 the eigenvalues are at a distance
√
ν from the

imaginary axis, while, for ν < 0, they sit on the imaginary axis. Values ν > 0
correspond to points in the plane (b, λ) above the curve Γ, and ν is of the order of
the distance to this curve (the precise expression of ν in terms of the parameters
is given in [34]). The vector field (28) is integrable, with the two following first
integrals:

K = i/2(AB −AB), (30)

H = |B|2 −
∫ |A|2

0

Q(ν, u,K)du.

It is then possible to describe all small bounded solutions of (28). Indeed, we
obtain (

d|A|2
dx

)2

= fK,H(|A|2),

where
fK,H(|A|2) = 2q2|A|6 + 4(ν + q3K)|A|4 + 4H |A|2 − 4K2. (31)
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Figure 14: Different graphs of u 7→ fK,H(u) depending on the parameters H
and K

We show in figure 14 various graphs for the functions fK,H depending on
(K,H), for ν > 0, q2 < 0 (right), and for ν < 0 q2 > 0 (left), which are the
most interesting cases. The change (q2, H, u) 7→ (−q2,−H,−u) leaves fK,H(u)
unchanged. It results that the relevant graph (we need |A|2 > 0) of fK,H for
ν < 0, and q2 > 0 corresponds to the side H > 0 of the left part of figure 14,
while for ν < 0, q2 < 0 we need to consider the side H < 0 of the left part of
figure 14. Notice that for q2 > 0, ν > 0 there is no small bounded solution other
than 0.

Looking at these graphs, where in particular any tangency to the u axis, on
the positive side, corresponds to a periodic solution of frequency close to q, it is
clear that we obtain for a fixed ν, two-parameter families of periodic and quasi-
periodic solutions and, for q2 < 0, ν > 0 a circle of solutions homoclinic to 0 with
exponentially damped oscillations at infinity, while for q2 > 0, ν < 0 we have
a one-parameter family of circles of solutions homoclinic to periodic solutions
(as in case (ii)) where the amplitude is minimum at x = 0. The computation
of the coefficients of the normal form (28) corresponding to the system (4) is
performed by Dias & Iooss in [34]; it is shown that q2 < 0 holds all along Γ.
For the ice problem (6), the present case (iii) occurs along the curve Γ of figure
6, and the coefficient q2 can have either sign (see [97]), depending on the water
depth. The mathematical problem of persistence of the above solutions of the
normal form system, for the full vector field, is done in an analogous way as
for case (ii). This means in particular that we have a one-parameter family
of pairs of reversible homoclinics to periodic orbits. For the homoclinic to 0,
it is in fact simpler than case (ii). This is due to the fact that the unstable
manifold of 0 (identical to the stable manifold, for the normal form) is two-
dimensional, and intersects transversally in two points the plane of symmetric
points (A real, B pure imaginary). It gives the persistence of two reversible
homoclinic orbits, corresponding to two different “bright” solitary waves, with
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Figure 15: Depression wave for case (iii)

exponentially damped oscillations at infinity: one has a crest in the middle
(elevation wave), and the other has a through in the middle (depression wave)
(see figure 15 for the depression wave). Note that this type of solutions has
been experimentally observed [86],[126],[107],[115] at least when some forcing is
present. The forcing can be an obstacle at the bottom, wind on the surface, a
moving load on the surface in the case of ice experiments.

The complete proofs on persistence for periodic and homoclinics can be found
in [68], and for quasi-periodic solutions, it is shown in [67] (the method applies
directly here with very slight modifications), that persistence holds true in a
subset, locally looking like the product of a curve by a Cantor set, of the region
of the (K,H) plane where these quasi-periodic solutions exist for the normal
form. We sum up these results in a rough theorem:

Theorem 7 Assume that a 4-dimensional reversible vector field has a fixed
point at the origin, and has a (iq)2 resonance for its linear part. Then, in a
neighborhood of 0, and near the critical value of the bifurcation parameter (pos-
sibly only on one side of criticality), there is a one-parameter family of periodic
solutions of frequency near q and a two-parameter family of other periodic and
quasi-periodic solutions. Moreover, we have generically one of the two cases,
depending on the sign of a certain nonlinear coefficient (q2 in (29)):

case 1: for bifurcation parameter values which lead to four non purely imag-
inary eigenvalues for the linearized operator, and for q2 < 0, there are two
reversible orbits homoclinic to 0;

case 2: for bifurcation parameter values which lead to four purely imagi-
nary eigenvalues for the linearized operator, and for q2 > 0, there are two one-
parameter families of reversible orbits homoclinic to the “hyperbolic” periodic
solutions of frequencies near q.

Corollary 8 The above theorem applies for describing travelling waves of the
water wave problem 2.1.2 for (b, λ) near the curve Γ of figure 5 (case 1) (see
[34]). This theorem also applies to the problem of travelling waves under an
elastic plate 2.2 for (D,λ) near the curve Γof figure 6 (cases 1 and 2) (see [97]).

Remarks: For these results on homoclinics, it should be mentioned that
the decay at infinity is exponential. There are degenerate cases (codimension
two situations) where this is no longer true. For example when the coefficient
q2 is close to 0 (see [57]) there exists in general (for ν = 0) an homoclinic to
0, with a polynomial decay at infinity. This case may occur in examples having
more parameters, such as with several superposed layers. It should be noticed
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Figure 16: multibump solitary wave resulting from the superposition of two
depression waves near the (iq)2 resonance

that this phenomenon is in fact different from the similar property of polynomial
decay that we shall meet for cases with an infinitely deep layer. Both phenomena
are due to different causes.

For problems with several bounded superposed layers, with surface and (or)
interfacial tension, there are always values of the parameters where cases (i), (ii),
(iii) occur. They can be treated in the same way. More complex bifurcations
may occur, for example in case (iii) when q2 changes sign. Such a case is a
codimension-2 singularity and is partly studied in [35], and completed in [121].

4.2.4 Bifurcation of plethora of solitary waves

So far, we have discussed the solitary waves that one can obtain via the normal
form technique. In fact this technique provides only a small portion of the
existing solitary waves, in particular in cases (ii) and (iii) above. What happens
is that it is possible to combine several solitary wave solutions together and
still obtain a solution of the problem, a so-called multibump solitary wave (see
figure 16 for the profile of such a wave - this type of profile has been obtained
numerically in [37] on the full water-wave equations). This can be done as soon
as one is sufficiently far from the bifurcation curve. In practice, this distance
can be exponentially small. The formation of multibump solutions has been
studied in [26], [23], [25], [24] (the first three works deal with a model differential
equation), they all use a hamiltonian formulation. We do not intend to describe
this process in detail here (it would make the paper much longer!). Rather,
we follow the formal approach used in [125], and we concentrate on case (iii).
Similar results occur for case (ii).

In the last subsection, we showed that at each order the (iq)2 resonance
normal form admits two reversible homoclinic solutions provided certain coef-
ficients have the correct sign. The corresponding solutions of the water-wave
problem are modulated wavepackets whose envelopes are symmetric and decay
exponentially to zero at infinity. In the middle, one wave has a central crest
(elevation wave), while the other wave has a central trough (depression wave).
As is well known, the normal form (28) yields the nonlinear Schrödinger (NLS)
equation to leading order, and of course the NLS equation admits two symmetric
envelope-soliton solutions. But one can also construct small-amplitude asym-
metric solitary waves, by translating the crests of a symmetric solitary wave
relative to its wave envelope. The problem is that such asymmetric waves do
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not persist when considering the full system. Exponentially small terms come
into play! Shifting the carrier oscillations relative to the envelope leads to the
appearance of growing oscillations of exponentially small amplitude on one side
of the wave packet. However, due to nonlinearity, this growing tail evolves into
a new wavepacket and it can be shown that, for certain values of the phase of
the carrier oscillations, the whole disturbance terminates, resulting in a solitary
wave with two wavepackets. Otherwise, a third wavepacket is generated and the
process continues. The main result is that there exists a countable infinity of
symmetric and asymmetric multibump solutions. But, unlike the solitary waves
obtained in the previous subsection, each of these multibump solitary waves
bifurcates at a certain finite amplitude.

When the parameters b and λ are close to the critical point (b, λ) = (1/3, 1),
which corresponds to the occurence of a quadruple eigenvalue 0, it can be shown,
via center manifold reduction and a normal form argument (see [56]), that the
problem essentially reduces to the fourth-order differential equation

yxxxx + Pyxx + y − y2 = 0, (32)

where y is directly related to the elevation of the free surface and x to the hor-
izontal coordinate. When the parameter P is equal to 2, one is along the curve
Γ in figure 5. When the parameter P is equal to −2, one is along the dashed
line in figure 5. Equation (32) has been studied a lot in [23] and [26]. Using the
fact that (32) is a hamiltonian system, these authors proved the existence of
an infinity of homoclinic orbits and the presence of spatial chaos. They showed
rigorously that (32) admits a unique (up to translations) homoclinic orbit for
P ≤ −2, (i.e. in between the dashed curve and the half line ∆ of figure 5),
while for P in (−2 + ε, 2) it has at least two small-amplitude homoclinic orbits.
What happens at P = −2 is that the unique orbit can bifurcate into a countable
infinity of multimodal homoclinic orbits. As P is increased towards 2 (i.e. one
goes from the dashed curve towards the curve Γ in figure 5), the domain of
existence of each orbit reaches a limit (turning) point before the value P = 2,
except for one orbit which can be followed all the way towards P = 2. This orbit
is nothing else than the depression wave found earlier (near the half line ∆)!
Some of these multimodal homoclinic orbits have been computed numerically
for the full water-wave problem in [37]. As said above it was found in [23] that,
close to each turning point of a branch of homoclinic, for P ∼ 2 (i.e. next to
the curve Γ in our context), there is a bifurcation into a branch of asymmetric
homoclinic orbits.

4.3 Case of two layers without surface tension

In this case [see system (1,7), and the dispersion relation (14)], 0 is always an
at least double eigenvalue of Lµ, with the two independent eigenvectors

ξ0 = (1− λ, eλ, 0, 1− λ, eλ)t,

ξ′0 = (0, 1, 0, 0, 0, 1)t,
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which satisfy Sξ0 = ξ0, Sξ
′
0 = ξ′0.

When there is no other eigenvalue on the imaginary axis, this just gives near
0 the two-parameter family of stationary solutions of (1,7): U = αξ0 + βξ′0,
corresponding to the freedom on the horizontal velocity in each layer.

When there is a pair of simple eigenvalues on the imaginary axis, in addition
to the double 0 eigenvalue, we have near 0, a family of periodic waves, bifurcating
from any of the above equilibria. This situation is similar to system (1,2), for
λ > 1 (not close to 1), and to system (1,4), for λ < 1, (b, λ) not close to ∆.

When λ = λ±0 (e, ρ), 0 is a quadruple eigenvalue with two additional (gener-
alized) eigenvectors: ξ1 and ξ2 such that

Lµ0
ξ1 = ξ0, Sξ1 = −ξ1,

Lµ0
ξ2 = ξ1, Sξ2 = ξ2.

If there is no other eigenvalue on the imaginary axis, which is the case for λ = λ−0
(see figure 7), this is a 003+ resonance. This case leads to a four-dimensional
center manifold

U = Aξ0 +Bξ1 + Cξ2 +Dξ′0 + Ψν(A,B,C,D),

where the dynamics is ruled by an ODE of the form (see [62])

dA

dx
= B, (33)

dB

dx
= C +Aφν(A,B

2 − 2AC,D) +RB(A,B2, C,D, ν), (34)

dC

dx
= Bφν(A,B

2 − 2AC,D) +BRC(A,B2, C,D, ν), (35)

dD

dx
= BRD(A,B2, C,D, ν), (36)

where φν is a polynomial in its arguments, of degree p in (A,B,C,D), and RB ,
RC , RD are even in B, due to reversibility. Moreover

|RB |+ |BRC |+ |BRD| = O
{
(|A|+ |B|+ |C|+ |D|)p+1

}

holds. The normal form here is analogous to the system (18,19,20), except that
there is the additional first integral D. We recover easily the two-parameter
family of reversible equilibria: B = 0, C = C0(A,D), where A and D are arbi-
trary. The study of the normal form is the same as for (18,19,20) (see figure
8), after a small change in the parameter ν (at leading orders). The persistence
of the phase portraits in the four-dimensional space, for the full vector field,
may be proved with the same argument as in §4.1, because the linear subspace
of symmetric points is now three-dimensional (B = 0). For example, periodic
and homoclinic orbits cross transversally the space B = 0 for the normal form.
Then it can be proved that they persist for the full vector field.

Now, we have the other possible situation λ = λ+
0 (see figure 7) which is

analogous to case (ii) of §4.2, with a pair of simple eigenvalues on the imaginary
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axis, in addition to the quadruple eigenvalue at 0. This is a 003+(iq) resonance.
The values of the coefficients of system (33 - 36) are computed in [33]. The
discussion of various solutions on the normal forms is nearly identical to the
case (ii) above, except for the two additional first integrals, occurring as new
constants in the discussion. The proofs for persistence are the same as before,
due to a sufficiently large dimension of the space of symmetric points. So,
here again, we have solutions homoclinic to exponentially small periodic waves.
Let us notice that the above case was first treated in [114]. The shape of the
generalized solitary waves corresponding to these homoclinics is shown in figure
17. See [91] for a numerical computation of such waves.

Remark: If we add surface and/or interfacial tension, we have additional
parameters. Bernoulli constants may appear as in system (4), and the sum of
the number of these Bernoulli constants plus the dimension of the kernel of the
linearized operator, is equal to the number of layers.

This allows more complicated bifurcations, with more eigenvalues appearing
near the imaginary axis (in addition to the multiple 0 eigenvalue, or (and) to
the corresponding freedom on Bernoulli constants). For example, in cases when
a pair of double eigenvalues appears with a pair of simple eigenvalues on the
imaginary axis, we cannot avoid, here again, exponentially small periodic oscil-
lations at infinity for a class of generic situations (see [84]). Moreover, in cases
analogous to case (iii) (00(iq)2 resonance), for q2 < 0, we have a large family
of solutions homoclinic to each member of the family of reversible equilibria.
In such a case there are solitary waves with exponentially damped oscillations
at infinity, tending to constant flows, with the freedom on the velocity in each
layer.

5 Case of infinite depth

The aim of this section is to present typical results for two-dimensional travelling
waves in fluid layers when one layer (the bottom one) is infinitely deep. We
consider in more detail the systems (1,9), (1,7∞). We observed in §3 that the
spectrum of the linear operator Lµ contains the full real line, and that, on it,
the only possible eigenvalue is 0. There are other eigenvalues ik in the complex
plane, solutions of the dispersion relation ∆[µ,sgn(Re k)k] = 0.

In the case of system (1,9), we note an interesting situation where we have
a pair of double eigenvalues ik = ±i/2 on the imaginary axis for µ1 = 1/4 [see
(15)]. This is again a 1:1 resonance, but the rest of the spectrum is the full
real line, which indeed crosses the imaginary axis, so we cannot use a center
manifold reduction into an ODE (no gap between the imaginary axis and the
rest of the spectrum). Notice that the point 0 in the spectrum is “resonant”
with the purely imaginary eigenvalues, which may lead to problems even for the
existence of periodic solutions.

In the case of system (1,7∞), we note that 0 is always an eigenvalue with
eigenvector ξ′0 [see (16) and §4.3], and we have a pair of simple eigenvalues
ik = ±iλ on the imaginary axis, and for (1 − ρ)λ ≤ 1 there are no other
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eigenvalues on the imaginary axis. For (1 − ρ)λ > 1 we have another pair
±ik1 of simple eigenvalues appearing on the imaginary axis, emerging from the
continuous spectrum, and this new pair does not meet the other pair. For this
system, interesting cases are the strong resonances when k1/λ = 1/2 or 1/3,
and a particularly interesting one is when (1− ρ)λ is near 1, when one pair of
eigenvalues disappears (is melting) in the continuous spectrum.

5.1 Periodic waves

For periodic solutions, we follow the Lyapunov-Schmidt method, except that the
presence of 0 in the spectrum gives some trouble (resonant terms). It appears
that we can formulate all these problems, in such a way that there is no such
resonant term. As a result, there are as many periodic solutions (with period
near 2π/k0) as in the truncated normal form (see [58]).

In this section, we consider the case of system (1,7∞) when there is a pair
of simple imaginary eigenvalues ±ik0 of the operator Lµ, such that other pairs
±ik1 which might be on this axis satisfy k1 6= nk0 for n = 1, 2, · · · . This
condition is satisfied in our case for k0 = λ, and is in general (for other similar
problems) satisfied because there is only a finite number of eigenvalues on the
imaginary axis, whose positions depend on the parameter set µ. The method
developed below assumes that the basic pair ±ik0 is not close to 0, because this
would imply that other pairs of eigenvalues would be close to some multiples of
this pair.

It results that in general the only point in the spectrum of Lµ in resonance
with our pair is 0. The “exotic” character of this point of the spectrum leads
to a specific difficulty we are dealing with below, by adapting the classical
Lyapunov-Schmidt method for periodic orbits.

Let s = (k0 + γ)x, where γ is close to 0, and k0 + γ is the wave number
of the periodic solution we are looking for. We denote by Hp

] (E) the space of
(2π−periodic) functions of s, such that their derivatives up to order p are in
L2(R/2πZ), taking values in the Banach space E. For such a space we use the
norm defined by

||u||2Hp
]

=
∑

n∈Z

(1 + n2p)||un||2E

which gives a Banach space structure. Let us define, in the space H] = H1
] (H),

the linear operator Tµ = k0
d
ds − Lµ, with domain D] = H2

] (H) ∩ H1
] (D). The

basic tool is the inversion of
TµU = V, (37)

where V is given in H], and where we look for U ∈ D]. Now expanding in
Fourier series V and U we have for n 6= 0, 1,−1

Un = (inλI− Lµ)
−1Vn,

which, with the resolvent estimate (17), insures that if we define

U ′ =
∑

n∈Z\{0,1,−1}

Une
nis ∈ D], then ||U ′||D]

≤ C1||V ||H]
holds. (38)
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It then remains to study the equations (ink0I−Lµ)Un = Vn for n = 0, 1,−1. For
n = 0, the compatibility condition on V0 and the additional condition for being
in the range of Lµ are automatically satisfied by the 0th Fourier component
of the nonlinear term, for reversible solutions (in particular the nonlinear term
has 0 components on −∞ < y < 0). Then the 0th Fourier component U0 of the
solution U in (37) is uniquely determined in D, up to an arbitrary multiple of
the eigenvector ξ′0. For n = 1,−1 this is a classical Fredholm alternative (one
compatibility condition for V1 and for V−1).

Let us now consider the system (1,7∞) rewitten as follows

TµU = G(µ, γ, U) (39)

where we look for solutions in D], and

G(µ, γ, U) = −γ dU
ds

+ F (µ,U)− LµU. (40)

We observe that G(·, ·, ·) is analytic: R2 × D] → H] in the neighborhood of 0,
and is such that

G(µ, γ, 0) = 0, D(γ,U)G(µ, 0, 0) = 0.

Now, let us define the symmetry Ŝ in L(H]) ∩ L(D]) by

(ŜU)(s) = SU(−s).

It is then easy to check that ŜTµ = −TµŜ, ŜG(µ, γ, U) = −G(µ, γ, ŜU) holds.
For solving (39,40) we use a classical Lyapunov-Schmidt method. We are

then able to prove the following (see proofs in [58]), where we denote by ζµ the
eigenvector of Lµ belonging to ik0 :

Theorem 9 For (u0, |A|) lying in a neighborhood of 0, there is a family of
periodic solutions of (1,7∞), bifurcating from 0, which possess the following
converging power series in u0,A,A :

U(s) = u0ξ
′
0 +Aeisζµ +Ae−isζµ +

∑

n+p+q≥2

un0A
pA

q
ei(p−q)sUnpq ∈ D]

γ =
∑

n+r≥1

γnru
n
0 |A|2r ∈ R,

s = [k0 + γ]x.

These solutions are reversible for A real, and we have SUnpq = Unqp = Unpq .
Moreover, we can find a unique analytic function u0 = h(µ, |A|2) = O(|A|2)
such that at the interface, the averages of the velocities in the two fluids are
equal (we can as well fix a Bernoulli first integral).
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For other similar problems, the proofs are analogous, the number of arbitrary
constants u0 depending on the dimension of the kernel of Lµ.

For cases of strong resonances, the additional difficulty is the same as in finite
dimensional reversible systems. See for instance [71] for the study of periodic
solutions for 1:2 resonance, and [58] for the 1:1 resonance. Roughly speaking,
there are as many periodic solutions as would be given by the analysis of the
corresponding generic reversible bifurcation in finite dimension.

A new difficulty occurs when one considers solutions with very large periods,
for example in the case when the basic frequency is given by a pair of eigenvalues
of Lµ close to 0. The difficulty is that 0 also belongs to the spectrum (since
it is on the real line), and that any other pair of imaginary eigenvalues is also
quasi-resonant with the basic pair. This problem needs further investigations.

5.2 Normal forms in infinite dimensions

Since we cannot reduce our infinite depth problems to finite dimensional ODE’s,
we still would like to believe that eigenvalues near the imaginary axis are ruling
the bounded solutions. This is a motivation for developing a theory of nor-
mal forms in separating the finite dimensional critical space from the rest (the
“hyperbolic” part of the spectrum, including 0). This leads to “partial normal
forms”, where there are coupling terms, especially “bad” in the infinite dimen-
sional part of the system (see [35], [65]). Indeed, there are some additional
difficulties: i) when 0 is an eigenvalue embedded in the essential spectrum, we
need the explicit form of the resolvent operator near the real axis, to extract
the corresponding eigenmode from the rest of space, by a suitable projection
(see [58],[66]), ii) in space H the linear operator does not have an “easy” (even
formal) adjoint. This adjoint and some of its eigenvectors are usually necessary
for expressing projections on the critical finite dimensional space. In our prob-
lems, we use again the explicit form of the resolvent operator near the (double)
eigenvalues, to make the projections explicit (see [72]). Let us give below some
details on these infinite dimensional normal forms.

Consider our system under the form

dU

dx
= F (µ,U), (41)

where F (µ, 0) = 0 and LµU denotes its linear part. Assume that for µ = 0,
one has a spectral decomposition of the form H = E0 ⊕ Eh where E0 is finite
dimensional, and is spanned by all eigenvectors and generalized eigenvectors
belonging to eigenvalues of L0 lying on the imaginary axis. Then E0 ⊂ D.
The space Eh is a complementary subspace invariant under L0 which, in this
subspace, has no eigenvalue on the imaginary axis, and is such that its spectrum
contains the full real line (with no eigenvalue in 0, and close to 0), and is
bounded by a double sector in C centered on the real axis. In all the water-
wave problems, with an infinitely deep bottom layer, we also have the estimate
(17) for the resolvent of L0 on the imaginary axis, far from 0 (this indeed implies
the sectorial bound of the spectrum of Lµ for µ near 0). The above spectral
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decomposition of H implies that the 0 eigenvalue which occurs for instance in
problem (1,7∞) is extracted from the continuous spectrum, by using a suitable
projection for being incorporated into E0 (this is done explicitly in [58] and [66]).
The result (see [65],[35]) is that one can find a polynomial change of variables
in H such that

U = V +W + Φ(µ, V,W ), V ∈ E0,W ∈ Eh,
where Φ(µ, ·, ·) is a polynomial with values in D, of degree 1 in W and degree
m in V, with regular coefficients in µ, such that (41) reads

dV

dx
= L0V +N(µ, V ) +R0(µ, V,W ) in E0, (42)

dW

dx
= LhW +Rh(µ, V,W ), in H, (43)

where L0 = L0|E0
, Lh = L0|Eh

, and N(µ, V ) corresponds to the usual finite
dimensional polynomial (degree m) normal form, i.e. satisfies the following
additional symmetry (see [62])

eL
0∗xN(µ, V ) = N(µ, eL

0∗xV ), ∀x ∈ R, ∀V ∈ E0.

Now the remaining coupling terms satisfy the following estimates

||R0(µ, V,W )||E0
= O(||V ||m+1 + ||V ||||W ||D + ||W ||2

D
),

||Rh(µ, V,W )||H = O
[
(||V ||+ ||W ||D)2 + |µ|||W ||D

]
,

which means in particular that we have no linear term inW in (42), and no linear
term in V in (43). Moreover, we observe that in general, there are quadratic
terms in V in (43), which determine the size of W in this method. These
quadratic terms are due to the resonance of the pure imaginary eigenvalues of
L0 with the point 0 in the continuous spectrum. Notice now that we simplify
the system (42,43) in using Bernoulli first integrals which allow to eliminate
the coordinates belonging to the 0 eigenvalue. Indeed, this elimination is in
general not singular with respect to µ, however it becomes singular in the case
of problem (1,7∞) when (1 − ρ)λ is close to 1. Section §5.4 dealing with a
new reversible bifurcation describes below what happens in such a case. It then
appears that the above belief that eigenvalues on the imaginary axis govern
bounded solutions, becomes wrong at least in this case. In fact our system
(42,43) still contains all small bounded solutions of (41), but a scaling based
on solutions corresponding to a truncated normal form in V implies a “slaving”
for W which may not be satisfied for other types of solutions, such as the ones
which occur in §5.4.

5.3 Results for the (iq)2 resonance with continuous spec-
trum

With the method we use now, we need to give a priori the type of solution
we are looking for. This is a major difference with the case where a (center
manifold) reduction to an ODE is possible.
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For periodic waves, with periods close to the basic one, one may use a method
similar to the one given for the non resonant case, as it is done in [58]. We may
also use the formulation (42,43), which is more transparent for such solutions,
easily found on the reduced normal form in the variable V. The result is roughly
that there are as many periodic solutions as in the finite depth case.

For solutions homoclinic to 0 (solitary waves), we first invert the infinite
dimensional part (43) in W , using Fourier transform. Indeed, the linearized
Fourier transform uses the resolvent operator of Lh. The fact that the resolvent
operator is not analytic near 0 (0 is not a pole, since we eliminated it, but
there is still a jump of the resolvent in crossing the real axis [65]) leads to
the fact that this “hyperbolic part” of the solution cannot decay exponentially,
but instead decays polynomially at infinity. The finite dimensional part (42)
where W is replaced by its expression in terms of V , is an integro-differential
equation, because of the non local term coming from W . The principal part of
this equation comes from the usual normal form. In the case of 1:1 resonance
(for instance as in problem (1,9) for µ1 = 1/4, with double eigenvalues ik =
±i/2), the normal form is given by (28) and in case of problem (1,9), q2 < 0
holds (see [65]). In other problems, with several layers, the 1:1 resonance may
occur [except in problem (1,7∞)] with q2 > 0 or < 0 or even cancels (see [35]),
leading to solutions similar to the ones given by the finite depth case, except
that the convergence at infinity towards 0 or to a periodic wave is no longer
exponential. For problem (1,9), and µ1 & 1/4, a fixed point argument in a
space of polynomially decaying functions leads to the existence of two reversible
homoclinics like in the finite dimensional case, except for the decay rate which
is indeed proved to be in 1/x2 in [111]. See also [1] where this decay is checked
numerically.

The principal part of the solution at finite distance still comes from the
finite dimensional truncated normal form, but it decays faster at infinity than
the other part of the solution, which makes this tail part predominant at infinity.
This is the main difference with the finite depth case, where the principal part
coming from the normal form is valid for all values of x [see [65] for the proofs
related with problem (1,9)].

5.4 A new reversible bifurcation: pair of eigenvalues div-
ing in the essential spectrum through the origin

It appears that the technique described above may miss important solutions.
This occurs precisely for the problem (1,7∞) when the parameter ε = 1−(1−ρ)λ
is close to 0. In such a case the singularity of the resolvent operator (iqI−Lµ)−1

is a little worse when ε→ 0. Indeed the projection operator on the eigenvector
belonging to the 0 eigenvalue becomes singular, having ε in its denominator!
One may then suspect that this changes relative orders of magnitudes for various
components of the variable U. The dispersion relation (16) in this case shows
a first factor giving two isolated eigenvalues ik = ±iλ, and for k real near 0,
a second factor such that |k|[ε + ρ|k| + O(|k|3)] giving the 0 eigenvalue, and a
pair of imaginary eigenvalues near 0 only for ε < 0. For ε > 0, the factor of
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Figure 17: Shape of the generalized solitary waves for a two-layer system.

|k| corresponds to the linear part of the dispersion relation for the Benjamin-
Ono model (see [16],[31],[95]). Indeed, a suitable scaling here allows to find an
asymptotic expansion in powers of ε of a formal solitary wave, with a decay in
1/x2 at infinity [66], with the same principal part as the solitary wave solution
of the Benjamin-Ono equation. In addition, as shown above, we also obtain a
two parameter family of bifurcating periodic waves (their amplitude is one of
the parameters) with periods close to 2π/λ. We can use the form of the family of
periodic solutions (given in theorem 1) to construct Φ in the change of variables
leading to the normal form (42,43). It then appears that the manifold W = 0
contains all the family of periodic solutions, and that the W part of the system
possesses an approximate homoclinic to 0, close to the Benjamin-Ono solitary
wave. Finally, the formal solitary wave is not a solution of (1,7∞), because of the
additional frequency λ. It is shown in [66] that there are two reversible solutions
homoclinic to each of the above periodic wave, provided that their amplitude
is not too small (exponentially small in ε as it is proved in [85]). The principal
part at finite distance of all these “generalized solitary waves” is given by the
approximate homoclinic described above (see figure 17). One difficulty here is
that it is not possible to “morally” reduce the problem to a finite dimensional
one, as in [82],[84],[109],[113], because of the essential spectrum filling the real
axis (especially near 0). Another difficulty, not appearing in previous work, is
that the decay at infinity, towards the periodic solution (with a shift opposite
at both infinities), is only polynomial, instead of exponential. This implies the
use of refinement techniques for being able to use a fixed point technique in a
good function space. See [96] for a numerical computation of periodic as well
as generalized solitary waves.

Notice that if we consider the problem of two superposed layers, the bottom
one being, as here, infinitely deep, but the top layer being bounded by a rigid
horizontal wall, we may formulate the problem as a dynamical system, in a
simpler way than here, and the spectrum of the linearized operator is simplified,
in the sense that we do not have the pair of eigenvalues ±iλ on the imaginary
axis. This avoids the problems above provoked by the additional frequency, and
one finds a solution homoclinic to 0, close to the Benjamin-Ono solitary wave
(see [3],[112] for proofs, not relying on a dynamical system formulation).
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6 Stratified fluids

A large class of 2D travelling waves in perfect fluids appears as internal waves
in a stratified medium. A simplified model of a stratified layer consists in con-
sidering two (or more) superposed immiscible fluids of different densities. The
interface between two fluids is then an unknown and an analysis in the form of
a reversible dynamical system may be performed as we indicated in section 2.3,
where we replace the upper free surface by a rigid boundary (same boundary
condition as at the bottom, see for instance Amick and Turner [9],[10], and see
Mielke [93] for a formulation as a dynamical system). In fact, a more realistic
version of the problem is when the density ρ increases continuously from top to
bottom, as a known function of the stream function Ψ (dρ/dt = 0 and incom-
pressibility i.e. divU = 0). Basic papers in this respect are [2],[118],[17]. There
are various ways of formulating this problem as a dynamical system. For in-
stance, a popular one consists in considering the equation satisfied by Ψ, named
the Dubreil-Jacotin-Long equation (DJL) [38]

∆Ψ +

(
λz +

|∇Ψ|2
2

)
ρ′(Ψ)

ρ(Ψ)
=

(
λΨ +

1

2

)
ρ′(Ψ)

ρ(Ψ)
,

Ψ|z=0,1 = 0,

in the strip {0 < z < 1}, which may be written easily in a dynamical system
form, and in which a bifurcation similar to case (i) of section 4.2.1 occurs (see
[75]), and a bifurcation to fronts (see [70]) connecting two uniform states, result-
ing from the cancellation of the quadratic coefficient a in (24). There are results
on periodic internal waves and large amplitude solutions in [78], and a study of
3D internal flows, with a derivation of the K-P model (see [18]), and a dimen-
sion breaking bifurcation in [79], in the spirit mentioned in section 7.4 below.
An interesting problem arises as one tends towards the limiting case when the
density stratification becomes discontinuous, i.e. when ρ has a large gradient
in a small region near a certain height h, and tends to a piecewise constant ρ0,
having a discontinuity in h. We see on the DJL equation that the factor ρ′/ρ
becomes singular, and the limit is to be understood in the distribution sense. A
unified formulation, including the discontinuous case (a free interface separates
two fluids with different constant densities) as well as the continuous stratifica-
tion case, is proposed by G.James [69]. He studies the limit ρ(Ψ) → ρ0, where
ρ0(z) = 1 for z ∈ (0, h), and ρ0(z) = q < 1 for z ∈ (h, 1), and ρ(Ψ) is a de-
creasing function such that ρ(0) = 1, ρ(1) = q, with |ρ′(ψ)| becoming very large
in (h − ε, h+ ε). His formulation uses the coordinates (x, ψ) and the unknown
function Y = Z(x, ψ) − ψ, where by definition Ψ[x, Z(x, ψ)] ≡ ψ. The system
becomes

∂Y

∂x
=
U

ρ

(
1 +

∂Y

∂ψ

)
, (44)

∂U

∂x
= λρ′Y +

1

2

∂

∂ψ

{
ρ

[(
1 +

∂Y

∂ψ

)−2

− 1

]
+
U2

ρ

}
,
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with boundary conditions Y |ψ=0,1 = 0. In (44), U = ρv (v is the vertical
component of the velocity), and ∂Y

∂x = v/u is the slope of a streamline. This
system is reversible under the symmetry (Y, U) 7→ (Y,−U). In the case ρ = ρ0,
we have ρ′0 = −(1− q)δh where δh is the Dirac distribution in ψ = h. Here the
basic spaces are

H = W 1,1
h × L1

h,

D = {(Y, U) ∈W 2,1
h ×W 1,1

h ;Y (0) = Y (1) = 0},

where

L1
h = L1(0, 1)⊕ Cδh,

Wn,1
h = {u ∈Wn−1,1(0, 1);u|(0,h) ∈Wn,1(0, h), u|(h,1) ∈Wn,1(h, 1)},

and where we notice that D is not dense in H. James shows that a solution
in C0(R,D) ∩ C1(R,H) of this system leads to a classical solution in the con-
tinuous stratification case, and leads to the standard discontinuous case (no
interfacial tension) in the ρ0 case. This formulation is weak in the sense that
the dependency in ρ of operators is weakly continuous, despite the fact that∫ 1

0 |ρ′(ψ)|dψ = 1 − q is a finite constant. The author is able to prove an esti-
mate like (17) on the resolvent of the linearized operator, uniformly in ρ. This
allows the existence of a family of center manifolds in a ball of D centered at
0, this ball being independent of ρ close to ρ0. Here the result of Kirrmann for
finding center manifolds is needed [76], because one works in Banach spaces.
The dependency in ρ on these center manifolds is only continuous in H (not in
D). However, if one considers a typical bifurcation problem like the one studied
in case (i) of section 4.2.1, one obtains a two-dimensional amplitude equation,
whose coefficients are functions of the stratification ρ. James shows that the
vector field as well as these coefficients, at any order, are continuous functions
of ρ, as ρ→ ρ0 (topology of L2). These technical results are proved in [69].

7 Three-dimensional travelling water waves

We first consider 3D water waves that bifurcate from the state of rest, and for
the sake of brevity, we only expose here in detail the case of waves which are
periodic in the direction y orthogonal to the direction x of propagation, which
is the reversible version of the paper of Groves & Mielke [47] based on a hamil-
tonian formulation (see also Bridges [19]). In the cases where the waves are
periodic along the direction of propagation ([45],[53]), the technique is similar.
We assume that surface tension is present, which seems to be fundamental in
the present formulation for allowing a finite dimensional reduction process. We
thank Mariana Hărăguş for giving us the 3D formulation indicated below. Most
papers which present a dynamical system approach use a hamiltonian formu-
lation of the problem ( [45], [46],[47]). Notice that no rigorous mathematical
results exist so far on the Euler equations in the case of travelling water waves
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which are localized in all horizontal directions. Notice also that for the study
of travelling waves which are periodic in both horizontal directions, there is
no need for a dynamical system formulation (see [100],[29]). In section 7.4 we
give some results on the “dimension breaking” bifurcations, which consist in the
bifurcation of 3D waves from 2D waves of finite amplitude.

7.1 Formulation as a dynamical system

One of the difficulties is that, even for one-layer systems (one rigid bottom,
one free surface), there are no simple variables providing a flattening of the
free surface, as it is the case for the 2D case. Formulating the problem in the
moving frame, with velocity −c along the x direction, we are interested in steady
solutions close to the uniform flow of speed c (1 in dimensionless variables) in the
x direction. Let us use the velocity potential x+φ, where φ is the perturbation
potential. We define as before for system (4), the dimensionless parameters λ
and b. We denote by z the vertical direction. Then the rigid bottom is located
at z = 0, while we denote by z = 1+η(x, y) the equation of the free surface (the
depth h is the length scale), where η is close to 0. Then the problem satisfies
the following system

0 = φxx + φyy + φzz , 0 < z < 1 + η(x, y),

0 = φz on z = 0,

0 = ηx + ηxφx + ηyφy − φz , on z = 1 + η(x, y),

C = φx + 1
2

(
φ2
x + φ2

y + φ2
z

)
+ λη+

−b
[

ηx

(1+η2
x+η2

y)
1/2

]

x

− b

[
ηy

(1+η2
x+η2

y)
1/2

]

y

,
on z = 1 + η(x, y),

where C is the Bernoulli constant on the free surface, and we notice that the
factor of −b is twice the mean curvature of the free surface. Let

u = φx, ξ =
ηx(

1 + η2
x + η2

y

)1/2 .

Hence our system may be rewritten as follows (where ∆ denotes the Laplace
operator in the (y, z) plane)

φx = u,
ux = −∆φ,

}
for 0 < z < 1 + η(x, y),

ηx = ξ

(
1 + η2

y

1− ξ2

)1/2

,

ξx =
1

b
u+

λ

b
η+

1

2b

(
u2 + φ2

y + φ2
z

)
−
[
ηy

(
1− ξ2

1 + η2
y

)1/2
]

y

+c1, on z = 1+η(x, y)
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where c1 = −C/b, and with the boundary conditions

φz = 0 on z = 0,

φz = ξ(1 + u)

(
1 + η2

y

1− ξ2

)1/2

+ ηyφy on z = 1 + η(x, y).

We now flatten the upper boundary in making the change of coordinates

z′ =
z

1 + η(x, y)
.

It follows that z′ ∈ (0, 1). In the new coordinate system (x, y, z′), we find after
dropping the primes

φx = u+
zφzξ

1 + η

(
1 + η2

y

1− ξ2

)1/2

,

ux = −
(
φy −

zηy
1 + η

φz

)

y

+
zηy

1 + η

(
φy −

zηy
1 + η

φz

)

z

− φzz
(1 + η)2

+
zuzξ

1 + η

(
1 + η2

y

1− ξ2

)1/2

,

ηx = ξ

(
1 + η2

y

1− ξ2

)1/2

,

ξx =
1

b
(u|z=1 + λη) +

1

2b

[
u2 +

(
φy −

zηy
1 + η

φz

)2

+
φ2
z

(1 + η)2

]

z=1

+

−
[
ηy

(
1− ξ2

1 + η2
y

)1/2
]

y

+ c1,

with boundary conditions

φz |z=0 = 0,

φz |z=1 =

(
1 + η

1 + η2
y

)
ξ(1 + u|z=1)

(
1 + η2

y

1− ξ2

)1/2

+ ηyφy|z=1


 .

We need to define suitable function spaces for the dynamical system formulation,
and then we shall need to modify the boundary condition, to put it into a linear
form. Define

Hs
],P = {f ∈ Hs

loc(R); f(y + P ) = f(y), for almost all y ∈ R},
Hs
] (Σ) = {f ∈ Hs

loc[R× (0, 1)]; f(y + P, z) = f(y, z), for almost all (y, z) ∈ R× (0, 1)},

where Hs is the classical Sobolev space, and in which P > 0 is the period of the
waves in y, Σ = (0, P )× (0, 1) and we assume 0 < s < 1/2. Now set

Hs = Hs+1
] (Σ)×Hs

] (Σ)×Hs+1
],P ×Hs

],P .
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The system above is of the form

dW

dx
= F̃ (W ), (45)

with
W = (φ, u, η, ξ),

and F̃ : Hs+1 → Hs is a smooth function with domain (codimension-two mani-
fold in a neighborhood of 0)

D(F̃ ) = {(φ, u, η, ξ) ∈ Hs+1; |ξ| < 1, η > −1, φz|z=0 = 0,

φz |z=1 =

(
1 + η

1 + η2
y

)
ξ(1 + u|z=1)

(
1 + η2

y

1− ξ2

)1/2

+ ηyφy|z=1





 .

Remark that Hs
],P and Ht

](Σ) are Banach algebras for s > 1/2, t > 1, and that

Hs+1
],P ·Hs

],P ⊂ Hs
],P , and Hs+1

] (Σ) ·Hs
] (Σ) ⊂ Hs

] (Σ) if s > 0.
One of the difficulties here is the incorporation of a nonlinear boundary

condition in the function space! Let us now transform the boundary conditions
into linear ones. To do this, we define in a neighborhood of 0 a smooth function
H : Hs+1 → Hs+1

] (Σ) by

H(φ, u, η, ξ) = z

(
1 + η

1 + η2
y

)
ξ(1 + u)

(
1 + η2

y

1− ξ2

)1/2

+ ηyφy


 .

Then the boundary conditions become

φz = H(φ, u, η, ξ) on z = 0, 1.

We make the change of variables near 0, using G : Hs+1 → Hs+1 given by

G(φ, u, η, ξ) = (φ − ϕz, u, η, ξ),

where ϕ ∈ Hs+3
] (Σ) is the unique solution of the linear boundary value problem

∆ϕ = H(φ, u, η, ξ)− zξ, (y, z) ∈ Σ,

ϕ = 0 on z = 0, 1.

We now define
ψ = φ− ϕz .

Hence the boundary conditions become

ψz = 0 on z = 0, 1.

It can be shown that G defines a change of variables near 0, by checking that
its (bounded) inverse at the origin is [dG(0)]−1 = I. It can be shown (as in [47])
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that the operator dG(U) : Hs+1 → Hs+1 extends to an isomorphism d̃G(U) :
Hs → Hs for every U near 0 in Hs+1.

Now set W = G−1(U) in (45), and find the new system for U = G(W ) which
reads

dU

dx
= dG[G−1(U)]

{
F̃ [G−1(U)]

}
, (46)

where U = G(φ, u, η, ξ) = (ψ, u, η, ξ) as defined above satisfies the boundary
conditions ψz = 0 on z = 0, 1. Finally, our system may be written as

dU

dx
= F (µ,U)

as before, where µ = (λ, b, c1, P ) and F is smooth acting from Ds = {(ψ, u, η, ξ) ∈
Hs+1;ψz|z=0,1 = 0} into Hs. Notice that Ds is dense in Hs since s < 1/2 (this
density is useful to avoid “technical complications” in the reduction procedure).

7.2 Spectrum of the linearized operator

Let us proceed as in [47]. The linearized operator at the origin (solution for
c1 = 0) reads

Lµ = dF̃ (0),

and acts in Hs with domain Ds. The linear operator Lµ is then defined by

dF̃ (0)(φ, u, η, ξ) =
(
u,−∆φ, ξ, b−1(u|z=1 + λη)− ηyy

)
,

with boundary conditions

φz|z=0 = 0, φz |z=1 = ξ.

The eigenvalues σ of Lµ satisfy the dispersion relation

(
λ− bτ2

n

)
τn sin τn − σ2 cos τn = 0,

where

τ2
n = σ2 − 4π2n2

P 2
, n ∈ N.

For n = 0 and σ = ik we naturally recover the 2D dispersion relation (12).
We may observe that σ = 0 is a double eigenvalue with the eigenmode (1, 0, 0, 0),
and the generalized eigenmode (0, 1,−1/λ, 0) due to the invariance of the system
under the shift φ → φ+ const and to the freedom on the Bernoulli constant,
which leads to a two-parameter family of trivial solutions. The eigenmode may
be eliminated by fixing an additional linear condition on φ, and we may fix the
Bernoulli constant for eliminating completely the eigenvalue 0. Moreover, the
system has an O(2) symmetry invariance, due to translational invariance in y,
added to periodicity, and to the reflection symmetry y → −y. It results that
for n 6= 0, all eigenvalues are at least double (with a factor e±2iπny/P in the
eigenmode). Moreover, as shown in [47], the spectrum of Lµ consists entirely
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Figure 18: The dots and circles represent respectively 2D and 3D eigenvalues.
Crosses are double (2D) eigenvalues, double circles are quadruple (3D) eigen-
values. Compare with figure 5 (2D case).

of isolated eigenvalues of finite multiplicities (the above ones), and we also have
the estimate (17) on the resolvent (the proof in H0 is simpler than in [47]).
The location of “critical” eigenvalues is summerized in figure 18 (see [50], [47]).
A center manifold reduction is possible as indicated in section 3.3, using the
method of [92] or [76]. The study of the solutions given by the normal form
and of their persistence under remaining high order terms is made in [47]. In
addition to waves periodic in x and y, waves periodic in y and quasi-periodic
in x, and generalized solitary waves, periodic and even in y, tending at infinity
to periodic waves in the propagation direction x, can be found. We refer to this
paper for getting the detailed form of these solutions, whose study is analogous
to the two-dimensional case, except for the high dimension of the center manifold
(restricted to even solutions in y in [47]) which leads to discussions on high
dimensional reversible ODEs. A typical study of the normal form (in a ten-
dimensional reduced space) without restrictions on the symmetry of solutions is
made by Hărăguş & Il’ichev in [50]. It corresponds to the bifurcation occuring
near the curve Γ−1 of figure 18 where a simple pair of eigenvalues and a pair of
quadruple eigenvalues (2× 2 Jordan blocks) sit on the imaginary axis.

7.3 Three-dimensional travelling waves periodic in the di-
rection of propagation

For waves periodic in the direction of propagation x, with an arbitrary profile
in y, the formulation may follow the same method as above. This was done
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by Groves in [45], who used a hamiltonian formulation. It can also be done
in the framework of reversible vector fields like in [53]. Here again we have an
O(2) symmetry, due to x→ −x invariance of the problem, and 0 is still at least
a double eigenvalue, for the same reasons as above. The picture for critical
eigenvalues near the imaginary axis depends on the same set of parameters
(λ, b, P, c1), but it looks quite different from the one given in figure 18, see [45]
for details (case c1 = 0). In [45] and [53], the authors study the first non trivial
3D bifurcation, where the reduced space is 6-dimensional due to a pair of real
double (3D) eigenvalues meeting at 0 (already double). The full normal form is
studied in [53]. In [45] the author obtains large families of periodic and quasi-
periodic solutions. Restricting the study to even solutions in x, [45] and [53]
reduce the dimension to 2. This leads to an analysis similar to the one made in
section 4.1 (the shift invariance φ→ φ+const may be eliminated easily), with a
parity symmetry in addition which cancels quadratic terms in the normal form.
They can then prove the existence of an homoclinic solution corresponding to
a wave periodic in x, and localized (and even) in y. We refer to [45] and [53]
for details of the proof. In addition, there is in [53] a discussion on the next
bifurcation (eight dimensional reduction), which reduces, for even solutions, to
the same case (ii) as in section 4.2.2.

7.4 Dimension breaking bifurcation

This topic first appeared in Hărăguş-Kirchgässner [51]. The idea is to look for
bifurcations of 3D travelling waves from a non trivial 2D travelling wave. The
difficulty is to determine the spectrum of the linearization about the 2D wave,
since the linear operator has x− dependent coefficients, so that the spectrum
cannot be calculated explicitly - except in some very special cases involving
model equations (see [32],[52],[54],[20]).

The only existing work at this time on the “real” water-wave problem, is
by Groves, Hărăguş & Sun [46]. The authors start with the 2D solitary waves
occuring when b > 1/3 (see section 4.2.1), and consider bifurcating waves, pe-
riodic in the transverse direction y. They study the linearized operator (this
part is technical and more complicated than in model equations), and show the
existence of a pair of pure imaginary eigenvalues close to 0, 0 itself belonging to
the essential spectrum. It is then possible to show the bifurcation of a family
of solutions periodic in y, in a way analogous to the one mentioned in section
5.1. The family of solutions they obtain cannot be obtained via the analysis of
section 7.2, in starting directly from the 0 solution. We should notice that the
above method does not give any fully localized solutions.

8 Two-dimensional standing wave problem

In contrast with the other sections, we consider in this section the standing
wave problem, i.e. non travelling waves, which are supposed to be periodic in
the horizontal direction and in time, with a vertical mirror symmetry. This
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old problem, which goes back to Stokes [108], has received considerable interest
recently. The aim of this section is to indicate the most recent results. The
notations here are selfconsistent.

Let us denote by −h < y < η(x, t) the region occupied by the liquid, where
η is the height of the free surface (0 when the fluid is at rest) and h the average
depth; we assume that the flow is potential, and we denote the potential by
φ(x, y, t). We look for time periodic (period T ), and x-periodic flows (wave
length λ). Choosing respectively T/2π, λ/2π, λ/T, λ2/2πT as scales of time,
length, velocity and potential, we obtain the dimensionless system of equations
(below h= hλ/2π)

∆φ = 0, in − h < y < η(x, t), (47)

∂η
∂t + u ∂η∂x − v = 0

∂φ
∂t + 1

2 (u2 + v2) + µη = 0

}
on y = η(x, t), (48)

∂φ

∂y
= 0 on y = −h, (49)

where the velocity components (u, v) satisfy u = ∂φ/∂x, v = ∂φ/∂y, and where
µ = gT 2/2πλ, g being the acceleration due to gravity. Restricting the study to
solutions with η even in t and in x, the linearization of (47,48,49) near 0 (a flat
free surface) gives solutions of the form

η(x, t) = cos qt cos px,

φ(x, y, t) = − q

p sinh(ph)
sin qt cos px cosh p(y + h),

provided that the dispersion relation

µp tanh(ph) = q2 (50)

is satisfied. Assume that we choose µ0 and h0 such that (50) has a unique
positive solution (p, q) = (p0, q0) ∈ N2. Then, we observe that even though
|µp tanh(ph) − q2| 6= 0 for (p, q) 6= (p0, q0), this quantity may be arbitrarily
small (leading to a small divisor problem, mentioned below). The structure of
the nonlinear problem may be set into the form

F(X,µ, h) = 0 (51)

where X lies in a suitable function space (2π− periodic in t and in x), and
where F is analytic in its arguments, taking values in another suitable function
space. The first step is to transform the original problem into such a formula-
tion (especially fixing the domain). This was done in [99] by using Lagrangian
coordinates, while in the infinite depth case it is done via a conformal mapping
in [104],[8]. The known solution X = 0 corresponds to the fluid at rest, and we
have a linearized operator

L0 = DXF(0, µ0, h0)
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having a one dimensional kernel. If the problem was an ordinary bifurcation
problem, there would be a non trivial continuous branch {X(ε), µ(ε), h(ε)}
of solutions of (51), where µ(0) = µ0, h(0) = h0. In fact, the pseudo-inverse

L̃−1
0 of L0 (inverse on its range) is not bounded, because of the small divisor

problem. We then need to restrict the parameter set to values where suitable
diophantine conditions are realized, for having a bound for L̃−1

0 (controling the
loss of regularity). Moreover, since we need to use the Nash-Moser implicit
function theorem, we also need to be able to invert (with a uniform bound
for the inverse) the linearized operator at a non zero X , which is much more
difficult, and in particular, again requires diophantine conditions to be realized.
All this is done in the work of Plotnikov and Toland [99]. Their result is valid
for (µ, h) near (µ0, h0) satisfying conditions which are described below.

First, one defines for ν ∈ (1, 2),

N (ν) = {µ > 0; ∃c(µ, ν) |q2 − µ|p||−1 ≤ c(µ, ν)(1 + |q|)ν , ∀(p, q) ∈ Z
2\{0}}

and one defines for any fixed µ the set

Σ(µ) = {h > 0; q2 − µp tanh(ph) = 0 has at least one solution (p, q) ∈ N
2}.

Then it is shown that N (ν) has full measure, and that for µ0 ∈ N (ν), the set
Σ(µ0) is countable with only one limit point, namely 0. Now we define the
subset N0(ν) ⊂ N (ν) such that the equation q2 − µp tanh(ph) = 0 has at most
one positive integer solution for any µ0 ∈ N0(ν) and any h0. It is shown that
the complement of N0(ν) in (0,∞) has zero measure. The result is the following
(see [99] for a more precise statement):

Theorem 10 (Plotnikov-Toland) Choose ν ∈ (1, 24/23), µ0 ∈ N0(ν), h0 ∈
Σ(µ0), and denote by (p, q) the unique solution of q2−µ0p tanh(ph0) = 0. Then
there exists an infinite set E ⊂ R

+ with 0 as a limit point, such that, for any
ε ∈ E ∩ (0, ε0), the system (51) has a solution X,µ, h, with a regular X, and
estimates ||X || = O(ε2), |µ− µ0|+ |h− h0| < cε.

Notice that the existence of standing waves is shown on a set of points in the
two-dimensional parameter plane, which might be considered as distributed on a
curve passing through the point (µ0, h0), and that there are infinitely many such
points accumulating near (µ0, h0). Moreover there are infinitely many points like
(µ0, h0) in the parameter plane.

For the infinite depth problem, the dispersion relation is

q2 = µp

which leads to solutions of the linearized problem under the form

η(x, t) = cos qt cos px,

φ(x, y, t) = − q
p
epy sin qt cos px, y < 0.
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This gives solutions as soon as µ is a positive rational number r/s. Then q = kr,
p = k2rs, k = 1, 2, .... give infinitely many solutions. We shall consider in what
follows, the case where µ is near 1, since all other cases reduce to this case after
a suitable rescaling: dividing the scale of time by r, and the length scale by rs,
multiplies µ by s/r.

The fact that at any rational value of µ, there is an infinite dimensional ker-
nel for the linearized operator L0 creates great difficulties, known as “infinitely
many resonances”. In the paper [8], Amick & Toland justified the algorith-
mic approach conjectured by Schwartz & Whitney [104]. Looking for solutions
symmetric under reflexion x → −x and even in time t, they proved that if
one chooses the dominant mode as η(x, t) = ε cos t cosx, the resonances do not
arise at any stage of the computation of the expansion in powers of ε, where
ε = 2

√
µ− 1. The system (51) (without h) is expressed in the form of an infi-

nite system of coupled ordinary differential equations in the time-periodic spatial
Fourier series components of the standing wave. Another way to look at this
problem is to use a hamiltonian formulation adapted for spatially periodic so-
lutions, introduced by Zakharov in [127]. Dyachenko and Zakharov [40] have
indicated that not only the quadratic terms of the vector field can be removed
by a canonical change of variable, but also the resonant cubic terms of the nor-
mal form, are such that the truncated system is integrable. This was verified in
detail by Craig and Wolfork [30], who showed that the integrability is lost at the
next order. Moreover Craig [28] studied the two-mode standing wave solutions
of the vector field truncated at order 4. In principle, one can find the formal
expansion of all possible standing waves, as they are described below, also by
starting with their results.

The infinitely many resonances problem is solved in showing that there are
infinitely many formal solutions which may be obtained in expanding in powers
of ε = 2

√
µ− 1, with no difficulty at any order, and where the leading order is

given by

η(x, t) ∼ ε
∑

q∈I

(±1)q
q2

cos q2x cos qt. (52)

The number of basic modes given by I ⊂ N may be infinite, and (±1)q = ±1
(free choice for any q), so the result of [8] is recovered for I = {1}. This result
justifies previous numerical computations (with hundreds of terms) made with
I = {1, 2} and I = {1, 2, 3} by Bryant and Stiassnie [22]. The method of
Iooss in [59] uses the formulation of [104], [8], while in [60], the problem is
directly formulated in the framework of analytic functions. A suitable near
identity explicit change of variable allows to modify the system in cancelling
the quadratic part, which simplifies greatly the analysis for a Lyapunov-Schmidt
method (not using normal forms). The infinite dimensional bifurcation equation
has all uncoupled critical modes at leading orders (as might be also found with
the results of [30]), and allows to detect all solutions whose power series begins as
mentioned in (52). The problem of convergence of such series in a suitable space
is still open today. The problem due to infinitely many resonances, in addition
to the loss of regularity already present in the finite depth case, leads to serious
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complications in applying the Nash-Moser theorem. We might however expect
that these solutions exist for a restricted set of ε ∈ (0, ε0), with positive measure.
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[54] M.Hărăguş-Courcelle, R.L.Pego. Travelling waves of the KP equations with
transverse modulations. C.R.Acad.Sci. Paris 328, I, 227-232, 1999.
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