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Water waves as a spatial dynamical system; infinite depth case

Matthieu Barrandon, Gérard Iooss
INLN, UMR CNRS-UNSA 6618

1361 route des Lucioles, 06560 Valbonne, France

We review the mathematical results on travelling waves in one or several superposed layers of
potential flow, subject to gravity, with or without surface and interfacial tension, where the bottom

layer in infinitely deep. The problem is formulated as a ”spatial dynamical system” and it is shown
that the linearized operator of the resulting reversible system, has an essential spectrum filling the

real line. We consider 3 examples where bifurcation occurs. i) The first example is when in moving
a parameter, two pairs of imaginary eigenvalues merge into one pair of double eigenvalues, and then
split into 4 symmetric complex conjugate eigenvalues. ii) The second example is when one pair
of imaginary eigenvalues meet in 0, and disappear; iii) the third example is when the phenomenon
described at ii) is superposed to the presence of another pair of imaginary eigenvalues sitting at finite
distance from 0. We give a physical example for each case and more specially study the solitary
waves and generalized solitary waves, emphasizing the differences, in the methods and in the results,
between these cases and the finite depth case.

Keywords: reversible bifurcations theory, nonlinear water waves, travelling waves, solitary waves, infinite-

dimensional reversible dynamical systems, essential spectrum.

The mathematical study of travelling waves, in
the context of two dimensional potential flows in
one or several layers of perfect fluid(s), in the
presence of free surface and interfaces can be set
as an ill-posed evolution problem, where the hor-

izontal space variable plays the role of a ”time”.

A case of great physical interest is the infinite
depth limit. In such a case, the classical reduction
technique to a small-dimensional center manifold
fails because the linearized operator possesses an
essential spectrum filling the whole real axis, and
adapted tools are necessary. We give a method
and the results for different types of systems. A
first example is with a single infinitely deep layer,
with surface tension at the free surface, where the
bifurcation occurs when two pairs of imaginary
eigenvalues meet and split into 2 pairs of complex
eigenvalues. This case leads to solitary waves with
polynomially (instead of exponentially) damped
oscillations at infinity [1]. Another example is
with two superposed layers, the bottom one be-
ing infinitely deep, with no surface tension at the
interface. In case of a strong enough surface ten-
sion at the free surface, the bifurcation occurs
when a pair of imaginary eigenvalues merge at
0, which is part of the essential spectrum, and
disappear when a parameter is varying. In case
of no surface tension at the free surface, there
is in addition an oscillating mode. In both cases
the bifurcating solutions are ruled at main order
by the Benjamin-Ono nonlocal differential equa-
tion, coupled, in the latter case with an oscillatory
mode. The first case leads to a one-parameter
family of solitary waves [2], and a two-parameters
family of periodic waves [3], forming a phase por-
trait analogous to the one for the corresponding
3-dimensional reversible bifurcation case, except
the asymptotics at infinity which is now polyno-

mial for the solitary waves. In the second case this
spatial dynamics is coupled with a nonlinear os-
cillator, and leads to the bifurcation of a family of
generalized solitary waves, tending at infinity to-
wards periodic waves [4]. The amplitude of these
limiting periodic waves cannot vanish in general,
and their minimal size is exponentially small [5].

I. INTRODUCTION

The search for travelling waves in a system of super-
posed perfect fluid layers, having a potential flow in each
layer, and being subjected to gravity, with possibly sur-
face tension at the free surface and interfaces, may be for-
mulated as a ”spatial dynamical system”. Such ”spatial
dynamics” was introduced in the 80’s by K. Kirchgässner
[6]. Writing the system in the frame moving with the ve-
locity of the travelling wave, we look for steady solutions.
Then choosing the spatial coordinate x as a “time” co-
ordinate, the initial value problem in x is ill-posed, but
since we are looking for solutions bounded on all the real
line, this leads to a sort of ”boundary value” problem.
Due to Galilean invariance of the physical system, our
problem have still a reflection symmetry x → −x, which
leads to a reversible dynamical system meaning that the
vector field anticommutes with a symmetry S. An easy
consequence is that if U(x) is a solution then SU(−x)
is also a solution. The spatial dynamics consideration
allows in particular to study the asymptotics at infinity.
For example, a periodic solution or a homoclinic orbit
correspond respectively to periodic travelling waves or to
a solitary wave. A review of results concerning problems
where all layers have a finite thickness and treated as a
spatial dynamical system, is made in the paper [7]. In
the present paper we review the results where one layer
is infinitely deep.



2

We show that the system may be formulated as

dU

dx
= LεU + Nε(U), (1)

where U(x) lies in a function space and U = 0 is an
equilibrium solution for all parameter values ε ∈ R cor-
responding to the rest state for all fluid layers, with a flat
free surface and flat interfaces. The linear operator Lε

depends on ε, and the nonlinear operator Nε is at least
quadratic in U. The operator Lε has an essential spec-

trum filling the entire real line, being the limit of a set of
accumulating eigenvalues on the real axis. In addition of
this essential spectrum, there are isolated eigenvalues of
finite multiplicities given by the dispersion equation.

The first example consists in a single infinitely deep
layer, with surface tension at the free surface, where the
bifurcation occurs when two pairs of imaginary eigen-
values meet and split into 2 pairs of complex eigenval-
ues (1:1 reversible resonance). This case leads to soli-
tary waves with polynomially (instead of exponentially)
damped oscillations at infinity [1]. Another example is
with two superposed layers, the bottom one being in-
finitely deep, with no surface tension at the interface and
strong enough surface tension at the free surface. The
bifurcation occurs when a pair of imaginary eigenvalues
merge at 0, which is part of the essential spectrum, and
disappears when the parameter is varied. In case of no
surface tension at the free surface, there is in addition
a pair of simple imaginary eigenvalues. In both cases
the bifurcating solutions are ruled at main order by the
Benjamin-Ono nonlocal differential equation, coupled, in
the latter case with an oscillatory mode. The first case
leads to a one-parameter family of solitary waves [2], and
a two-parameters family of periodic waves [3] forming a
phase portrait analogous to the one of the 3-dimensional
reversible bifurcation case, except the asymptotics at in-
finity which is now polynomial for the solitary waves. In
the second case this spatial dynamics is coupled with a
nonlinear oscillator, and leads to the bifurcation of a fam-
ily of periodic travelling waves [8] with in addition two
families of generalized symmetric solitary waves, tending
at infinity towards periodic waves [4]. The amplitude of
these limiting periodic waves is non zero in general, but
their minimal size is exponentially small [5].

It should be noticed that local results (U near 0) rely
in general on the structure of the spectrum of the linear
operator Lε. In the case where all layers have a finite
thickness, the spectrum is discrete, and it is possible to
use the method of reduction to a small-dimensional cen-
ter manifold, and then be able to study all small bounded
solutions of a reversible differential equation, which is in-
tegrable at lowest orders (see a review of the results us-
ing such a reduction method in [7]). For applying this
method, the linear operator Lε must have a spectral gap

near the imaginary axis. In such a case the description of
the finite spectrum near the imaginary axis is sufficient
to understand the dynamics of small reversible solutions
of (1).

However, many physical situations are such that for ob-
taining a quantitatively significant result, we have inter-
est to consider the bottom layer as infinitely deep. This
is often related with the ratio between the depth and
the capillary length scale. This ratio is large in general,
which implies that a set of eigenvalues of Lε are accu-
mulating on the whole real line, hence in particular near
0. This prevents to obtain a significant domain of valid-
ity for the parameter range of values, since the distance
of critical eigenvalues (the ones provocating bifurcation)
should be small with respect to remaining eigenvalues for
applying center manifold reduction. When the depth be-
comes infinite, the real line lies entirely in the spectrum
of Lε (with no real eigenvalue except 0). Since the entire
real axis belongs to the spectrum, there is no spectral gap

in our problem and we cannot use a center manifold re-
duction theorem. The absence of spectral gap does not
add a big problem when one looks for periodic solutions,
since quite simple properties of the nonlinear term still
lead to the same result as in finite dimensions (in this
later case, given by Lyapunov - Devaney theorem) (see
[8] for typical results for travelling water waves). The
object of this paper is to review results in such cases for
other types of solutions.

We shall observe that most qualitative results obtained
in the finite depth case remain valid for the infinite depth
case, except that the asymptotic limits at infinity are
polynomial instead of exponential. The method strongly
relies on a precise knowledge of the resolvent operator
(ik−Lε)

−1 near k = 0, for k real. The Fourier transform
of (1) is used for catching solutions tending towards 0
at infinity, while Fourier expansion of (1) is used for the
search of periodic solutions, and an adaptation of these
tools is used for generalized solitary waves. In the two
last examples, 0 is an eigenvalue of Lε, which corresponds
to the existence of a family of flows where the upper layer
slides with a constant velocity over the bottom one. The
corresponding eigenvector is used for the splitting of the
system into a scalar equation for some real amplitude
coupled with a complementary part which is shown to be
a nonlocal function of this real amplitude. When there
are oscillating modes, we use them also for the splitting of
the system, and the complementary part is shown to be
a nonlocal function as well of the corresponding complex
amplitude of the oscillating mode, as of the amplitude of
the 0 mode. In the first example, the 0-mode does not
exist, and it remains a fouth order differential equation,
similar to the one obtained in the classical 1:1 reversibble
resonance bifurcation, except that this system is non lo-
cally coupled with the complementary part, leading to a
polynomial decay (instead of exponential) at infinity [1].
It is remarkable that the singularity corresponding to the
merging of a pair of imaginary eigenvalues in the contin-
uous spectrum at 0, leads to a mode which satisfies the
Benjamin-Ono ([9], [10], [11]) non local differential equa-
tion, giving in particular a polynomial decay of localized
solutions at infinity [12], [13], [4], [2].
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II. EXAMPLE 1. A SINGLE FLUID LAYER

WITH SURFACE TENSION AT THE FREE

SURFACE

We consider in this section the travelling waves oc-
curing in a perfect infinitely deep fluid layer of constant
density ρ, driven by gravity g, with surface tension T at
the free surface. The flow is assumed to be potential, and
we write the equations in the frame moving at the veloc-
ity c of the waves. In this example, the (dimensionless)
bifurcation parameter is

ε =
gT

ρc4
− 1

4
,

and we use the Levi-Civita variables α and β defined in
the complex plane by

u − iv = eβ−iα

where (u, v) are the components of the fluid velocity (α is
the slope of the stream lines while exp(β) is the modulus
of the velocity). The coordinates are the velocity poten-
tial, denoted by x and the stream function denoted by y.
The transformation from the physical plane to the (x, y)
plane is a conformal map from the unknown domain of
the flow, into the lower half plane, and the variable U in
equation (1) is defined by

[U(x)](y) = (Z(x), α0(x), α(x, y), β(x, y))t, (2)

where (1/4+ε)−1Z(x) is the elevation of the free surface
expressed in the new coordinates, and α0(x) = α(x, 0).
The equation (1) may be written under the form

dU

dx
= F (ε, U),

where

F (ε, U) =





(1
4 + ε)e−β

0 sin α0

sinhβ0 + e−β
0Z

∂β
∂y

−∂α
∂y

}
−∞ < y < 0,

(3)

where we denote by β0 the function β(x, 0). Notice the
Cauchy-Riemann system in the two last components of
(1). The vector field F (ε, U)(x) takes its values in a space
H here defined by (various choices are possible)

H = R2 × {C0
1 (R−)}2

provided we take U(x) in a smaller space D defined by

D = R2 × {C1
1 (R−)}2 ∩ {α0 = α(x, 0)}

where C0
1 (R−) is the space of continuous functions on

R−, tending towards 0 as 1/y at infinity, this being also
true for their first derivatives for functions in C1

1 (R−).
The solution U = 0 represents the rest state, with a
flat free surface. The invariance of the system under the

FIG. 1: Example 1 - Spectrum of Lε (left), and solitary wave
for ε > 0 (right)

symmetry x 7→ −x, leads to a reversibility symmetry
given by the linear operator S such that

SU = (Z,−α0,−α, β)t

which anticomutes with F (ε, ·). The differential of F (ε, ·)
at the origin gives the linear operator Lε defined by

LεU = ((
1

4
+ ε)α0, β0 + Z,

∂β

∂y
,−∂α

∂y
)t.

The eigenvalues ik of this operator are such that the fol-
lowing dispersion equation is satisfied

k2 − k(sgn(Re k)) +
1

4
+ ε = 0 (4)

which only gives at most 4 eigenvalues, and it can be
easily shown (see [8]) that the whole real line constitutes
the essential spectrum, with no real eigenvalue, and a non
closed ranged for the operator σI−Lε when σ is real, its
closure being of codimension 1.We see that for ε = 0, we
have a pair of double eigenvalues ±i/2, which split into
two pairs of imaginary eigenvalues for ε < 0, and two
pairs of complex eigenvalues for ε > 0 with

ik± =
i

2
±√

ε, and − ik±,

as shown on figure 1 (left side). The resolvent operator
(ikI − Lε)

−1 for k real, is such that

||(ikI − Lε)
−1||L(H) < c/|k|, |k| → ∞ (5)

and near k = 0 we have for V = (a, b, f, g)t ∈ H

(ikI − Lε)
−1V = η∗

ε(V )θk + Sε,k(V ) (6)

where the linear operator Sε,k is bounded for V in a sub-
space dense in H, and depends continuously on k near 0.
The linear form η∗

ε and the vector θk ∈ D (for k 6= 0) are
defined by

η∗
ε(V ) = (1/4 + ε)−1a +

∫ 0

−∞

g(y)dy

θk = (isgn(k),−1,−e|k|y,−isgn(k)e|k|y)t.

The first term of the right hand side of (6) concentrates
the singularity in k = 0, due to the presence of the essen-
tial spectrum on the real axis. The range of Lε is such
that η∗

ε(V ) = 0 where it is necessary that g be integrable
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FIG. 2: Existence of ”basic” periodic waves in the comple-
ment of the hatched region

on R−, which means that this range is not closed in H

and the linear form η∗
ε is continuous only on a subspace

of H.

Let us denote by ζ0 and ζ1 the eigenvector and gener-
alized eigenvector such that

(L0 − i/2)ζ0 = 0, Sζ0 = ζ0,

(L0 − i/2)ζ1 = ζ0, Sζ1 = −ζ1,

then it is shown in [8] that there is a family of bifurcating

periodic waves, with wave numbers 1/2+γ (close to 1/2),
under the form of a power series convergent in D, of the
form

U(x) = Aeisζ0 + Āe−isζ0 + iγ{Aeisζ1 − Āe−isζ1} +

+
∑

p+q≥1,r≥0,p+q+r≥3

ApĀqγrei(p−q)sUpqr,

ε =
∑

2p+r≥2

δprγ
r|A|2p, s = (1/2 + γ)x, (7)

where |γ| and |A| are small, δ02 = −1, δ10 > 0
(= −q2 defined below in (10)). When A is real one has
SU(x) = U(−x), i.e. the solution is reversible. Moreover
a phase shift on A is equivalent to a shift of the x origin.
The method for proving this result mimics the proof
of Lyapunov-Devaney theorem for finite-dimensional re-
versible systems (adaptation of the Lyapunov-Schmidt
method). An easy adaptation in the infinite-dimensional
case, as here, can be provided in using the estimate (5) at
infinity. One additionnal difficulty here comes from the
resonance at the origin which belongs to the essential
spectrum. This difficulty is overcome thanks to the fact
that for a periodic reversible U(x) the range of the aver-
age of the nonlinear operator in (1) is included into the
range of Lε. This comes essentially from the fact that
there is no nonlinear term in the two last components
of the vector field (3). In the 4-dimensional reversible
corresponding situation, we obtain additionnal families
periodic with small wave number, and quasi-periodic so-
lutions (see the corresponding proof in [14]). Their exis-
tence here is an open problem. The domain of existence
of periodic waves (7) is described at figure 2, in the re-
gion of the parameter plane (γ, ε) complementary to the
hatched region.

For the study of solitary waves, let us decompose

U = V + W,

V = Aζ0 + Āζ0 + Bζ1 + B̄ζ1 ∈ E0

according to the natural decomposition comuting with
L0. In a way analogous to the finite depth case (see [7]),
a normal form technique may be used (see [1]) to simplify
up to the cubic order the equation projected on the 4-
dimensional subspace E0 :

V = X + Φ0(ε, X) ∈ E0, W = Y + Φ1(X)

where Φ0 is cubic, and Φ1 quadratic in X. The system
takes the new form

Xx = L0X + G(ε, X) + R0(ε, X, Y ) (8)

Yx = L̃0Y + H(X) + R1(ε, X, Y ) (9)

where L̃0 is the restriction of L0 to the codimension 4
subspace complementary to E0, the rests satisfy the es-
timates

R0 = O{||X ||(ε2 + |ε|||X || + ||X ||3) +

+||Y ||(|ε| + ||X || + ||Y ||)}
R1 = O{||X ||(ε + ||X ||2) + ||Y ||(|ε| + ||X || + ||Y ||)},

and H is a quadratic function of X only with resonant
monomials, and the 4-dimensional vector field L0X +
G(ε, X) is the classical normal form for the reversible 1:1
resonance bifurcation, given by (denoting again by A and
B the complex coordinates along ζ0 and ζ1)

Ax = (i/2)A + B + iA{p2|A|2 + (ip3/2)(AB̄ − ĀB)}
Bx = (i/2)B + iB{p2|A|2 + (ip3/2)(AB̄ − ĀB)} +

+A{ε + q2|A|2 + (iq3/2)(AB̄ − ĀB)} (10)

where q2 < 0. We see on the system above that X and
Y are coupled in particular due to the rest R0 which de-
pends non locally on Y. Taking the Fourier transform of
(9) allows to solve with respect to Y by an implicit func-
tion argument, in a function space where Y decays poly-
nomially at infinity, provided that X decays as 1/x2. This
resolution is possible here thanks to the estimate (5) on
the resolvent and to the fact that for reversible solutions
the discontinuous part of the resolvent (6) cancels when
it is applied on the Fourier transform of the nonlinear
terms. It then remains to solve (8), where Y is replaced
by its nonlocal expression in function of X. It is proved
in [1] that this nonlocal ODE for (A, B) ∈ C2 has two
reversible homoclinics, decaying as 1/x2 at infinity (in-
stead of an exponential decay as in the finite depth case)
because of the polynomial decay of R0. These solitary
waves have, for finite |x| a principal part identical to the
one in the 4-dimensional case. The behavior at infinity is
different, since the oscillations now decay polynomially,
instead of exponentially (see figure 1 right side, for the
shape of one of these solitary waves).
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III. EXAMPLE 2. TWO SUPERPOSED LAYERS

WITH NO INTERFACIAL TENSION AND

STRONG SURFACE TENSION

Let now consider a system of two superposed layers of
perfect immiscible fluids (densities ρ1 (upper layer) and
ρ2 (bottom layer)), assuming the flow to be potential in
each layer and subject to gravity. We also assume that
there is no surface tension at the interface and that there
is indeed a strong enough surface tension at the free sur-
face (for having the required property on the eigenvalues
of the linearized operator Lε). This case is treated in [2]
and [3], as an example illustrating more general systems.
The thickness at rest of the upper layer is h while the
bottom one has infinite thickness. We are interested in
travelling waves of horizontal velocity c. The dimension-
less parameters are ρ = ρ1/ρ2 ∈ (0, 1) and

λ =
gh

c2
(inverse of (Froude number)

2
),

b =
T

ρ1hc2
(Weber number),

where T is the surface tension at the free surface. We
derive the equations in the frame moving with horizontal
velocity c, and we use Levi-Civita variables and coor-
dinates as in Example 1. The only difficulty is that we
choose the x− coordinate as the velocity potential in fluid
2 (bottom layer), which introduces a factor function of
x in the Cauchy-Riemann equations for the upper layer
(fluid 1). The variable U in equation (1) is defined by

[U(x)](y) = (β20(x), Z(x), α11(x), α1(x, y), β1(x, y),

α2(x, y), β2(x, y))t,

where 1 + 1
2λ (1 − e−2λZ(x)) is the free surface, ε is a

distinguished parameter defined by ε = 1−λ(1− ρ) and,
for example, α1j j = 0, 1 means the trace of α1 in y =
0, 1, and the same convention holds for βij . The right
hand side of (1) is given by F (ρ, λ, b; U) =





−λ(1 − ρ)e−3β
20 sin α20 − ρ∂α1

∂y |y=0
e3(β

10
−β

20
),

e2λZ−β
11

+β
10

−β
20 sin α11,

eβ11

2b {1 − e−2(λZ+β
11

)}eβ
10

−β
20

∂β
1

∂y eβ
10

−β
20

−∂α1

∂y eβ
10

−β
20

}
y ∈ (0, 1),

∂β
2

∂y

−∂α2

∂y

}
y ∈ (−∞, 0).

(11)

The Galilean invariance of the physical problem induces
a reflection symmetry (through the y axis) of the system
even in the moving frame. This invariance leads to the
reversibility of system (1) under the reversibility symme-

try S defined by

SU = (β20, Z,−α11,−α1, β1,−α2, β2)
t,

FIG. 3: Example 2 - Spectrum of Lε (left), solitary wave for
ε > 0 (right)

which anticommutes with the vector field F (ρ, λ, b; .).
The vector field (11) takes its values in H where

H = R3 ×
{
C0(0, 1)

}2 ×
{
C0
1(R−)

}2
,

provided that U(x) lies in D where

D = R3 ×
{
C1(0, 1)

}2 ×
{
C1
1(R−)

}2

∩{α1(0) = α2(0), α11 = α1(1), β20 = β2(0)} ,

and where we gave the definitions of spaces
C0
1(R−), C1

1(R−) at Example 1. The system (1) has
the same fundamental structure as (3), with the Cauchy-
Riemann system in the lower half plane. This is the fact
which implies the occurence of the essential spectrum of
Lε on the entire real line. In this new example we have
a one parameter family of solutions

(0,−u/λ, 0, 0, u, 0, 0)t, u ∈ R,

of the nonlinear system (1). This family of equilibria
corresponds physically to a sliding with a non zero uni-
form velocity u of the upper layer over the bottom one.
This leads (in differentiating with respect to u) to the
following eigenvector

ξ0 = (0, λ−1, 0, 0,−1, 0, 0)t

belonging to the zero eigenvalue of the linear operator Lε.
In addition to the essential spectrum on the real line and
the 0 eigenvalue, other eigenvalues ik of Lε are isolated,
with finite multiplicities, and given by the roots of the
dispersion equation, defined for Rek > 0 by

k(ρbk2+λ−k) = tanh(k)
{
(λ + bk2)[λ(1 − ρ) − k] + ρk2

}
,

(12)
which should be completed by the symmetric relationship
(change k into −k) for Rek < 0. It can be shown on (12)
that for ε > 0 small enough, b large enough and 1 − ρ =
(q/b)1/3 with 0 < q < 4, then 0 is the only real solution of
the dispersion equation (12). This implies that for ε < 0
there is only one pair of eigenvalues (close to 0) on the
imaginary axis in addition to the 0 eigenvalue, and for
ε > 0 this pair disappears (see Figure 3, left side).

For studying the bifurcation occuring for ε > 0 close
to 0, we need to make the following rescaling

εx = x; εy = y, y ∈ (−∞, 0); y = y, y ∈ (0, 1)

U = εU, (13)
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which leaves invariant the domain of the flow, and modi-
fies the spectrum of the new linear operator Lε in unfold-
ing the singularity of the resolvent operator when ε → 0.
Equation (1) now reads

dU

dx
= LεU + Nε(U). (14)

Since we intend to use the Fourier transform of (14) we
need a careful study of the resolvent (ik − Lε)

−1 on the
imaginary axis. When |k| → ∞, the behavior is still
given by (5), the difficulty here is the behavior near 0.
Indeed, for V = (a1, a2, a 3, f1, g1, f2, g2) ∈ H, we have
for |k| < c/ε

(ikI−Lε)
−1V =

ξ∗ε,k(V )

ikε∆
ξ0+

η∗
ε,k(V )

∆
θk+εSε,k(V ), (15)

where the first term on the right hand side is the com-
ponent along the eigenvector ξ0, and the rest which has
the same form as (6), belongs to the kernel of the linear
form p∗0 satisfying p∗0(ξ0) = 1, and defined by

p∗0(V ) = g11.

In (15) the linear operator εSε,k(V ) is bounded for k 6= 0,
and continuous in k = 0 when operating on a subspace
dense in H. We define the linear forms ξ∗ε,k and η∗

ε,k uni-

formly bounded for (ε, k) near 0, when operating on a
subspace dense in H, and such that

ξ∗ε,k = ξ∗ε + ε|k|χ∗
ε + ζ∗ε,k,

η∗
ε,k = η∗

ε + β∗
ε,k,

where ζ∗ε,k and β∗
ε,k are O(k) and of class C1 near k = 0.

We also have

∆(ε, k) = 1 + a|k| + O(εk2), a = λ−1(λ − 1) > 0, (16)

which corresponds to the rescaling of the dispersion equa-

tion. The operator
ξ∗ε(·)

ε ξ0 is the projector on the eigen-
vector ξ0, comuting with Lε, and the forms ξ∗ε, η

∗
ε, χ

∗
ε are

linked by

aξ∗ε = εχ∗
ε − η∗

ε.

This implies that the closure of the range of Lε is of
codimension 2 (included in ker ξ∗ε ∩ker η∗

ε). Here we have
precisely

ξ∗ε(V ) = a1 − ρg10 + (1 − ε)a2 + (1 − ε)

∫ 1

0

g1(τ )dτ ,

η∗
ε(V ) = λ−1(1 − λ)(a1 − ρg10) − ρa2

−ρ

∫ 1

0

g1(τ )dτ +

∫ 0

−∞

g2(τ )dτ ,

θk = (isgn(k), 0,
−1

λ − 1
, 1− λ

λ − 1
y, 0, e|k|y, isgn(k)e|k|y)t,

(17)

and we observe that

ξ∗ε(θk) = isgn(k). (18)

For the study of solutions tending towards 0 at infinity,
we take the Fourier transform of (14), decomposed like
U as

U = wξ0 + εY, p∗0(Y ) = 0.

The equation for Y may be solved with respect to Y
(where we look for a reversible Y ) by an implicit func-
tion argument, as a nonlocal function of w, provided that
w is even and decays as 1/x2 at infinity. The form of the
resolvent at infinity (5) and near 0 (15) leads to a prin-
cipal part for Y of the form

Y = aT w + O(ε) (19)

where

T̂ (w) = −ikŵθk, (20)

ŵ representing the Fourier transform of w. This resolu-
tion with respect to Y is the technical part of the mathe-
matical study. The vector function T w lies in a space
where, for a fixed y, the decay is in 1/x2 at infinity.
However the decays in x and y in the lower half plane
are linked in such a way that the corresponding compo-
nents are bounded by c(1+ |y|)(1+ |x|2 + |y|2)−1. It then
remains a scalar equation for the function w, of the form

w + aH(w′) − 3

2
w2 = Bε(w), Bε = O(ε) (21)

where the Hilbert transform H(f) of a function f is de-
fined by

H(f)(x) = p.v.

∫

R

f(s)

x − s
ds. (22)

The left hand side of the above equation (21) is the
Benjamin-Ono equation (see [9],[10],[11]), which is ex-
tensively studied in [15]. This equation plays the role of
a ”normal form”, since it appears generically when, af-
ter moving a parameter, a pair of imaginary eigenvalues
merge at 0, disappearing in the continuous spectrum. In
particular, the same study may be made if one replaces
the upper free surface by a rigid plate (see [12], [13])
for the mathematical justification of the Benjamin-Ono
equation, and see [2] for the use of the present method).
The linear part of (21) may be found easily in apply-
ing the linear form ξ∗ε to equ. (14), in using (19), (18)
and (20), and its Fourier transform corresponds to the
multiplication by ikε∆(ε, k) (see (16)).

Using an implicit function argument it is then possible
to prove the existence of an even solution of (21) of the
form

w(x) = uh(x) + O(ε)
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which decays as 1/x2, and where

uh(x) =
4

3(1 + (x/a)2)
. (23)

The shape of the corresponding solitary wave is shown
on Figure 3 (right side). The above method may be used
(see [2]) for proving the existence of similar solitary waves
tending at infinity towards the non-zero steady solutions
νξ0, for |ν| small, leading to solutions of (14) of the form

U(x) = (ν + uh(x))ξ0 + Yε,ν(x),

p∗0(Yε,ν) = 0, Yε,ν = O(ε + |ν|),

where Yε,ν decays polynomially at infinity.
For the study of aT− periodic waves, let us rescale x

as

s =
2π

aT
x

then, we look for 2π− periodic solutions U(s) taking val-
ues in D, of

2π

aT

dU

ds
= LεU + Nε(U).

Here again we split the space as

U = uξ0 + εY, p∗0(Y ) = 0,

and it is shown in [3] that for reversible solutions, we can
solve the equation for Y, with respect to Y in function of
u, thanks to the estimate (5) and thanks to the form of
the resolvent near 0, given in (15). We obtain Y under
the form

Y = T♮,T (u) + O(ε)

where the kth Fourier component of T♮,T (u) is defined by

{T♮,T (u)}k = −i
2πk

T
ukθ 2πk

aT
.

Now replacing Y by its expression, the equation for u
takes the following form

u +
2π

T
H♮(u

′) − 3

2
u2 = c + B♮,ε(u), (24)

where B♮,ε = O(ε), c is an arbitrary constant, and H♮ is
the periodic Hilbert transform, such that H♮(cos) = sin,
H♮(sin) = − cos, H♮(const) = 0. Let us introduce the
2-parameters family of periodic even functions

uT,p(x) =
2pv0(p)

3T

{
cos2(x/2) +

(
pv0(p)

2π

)2

sin2(x/2)

} +

+
1

3
(1 − p

T
)

where v0(p) is defined for p ≥ 2π, and solution of

v2
0 − 2v0 + (2π/p)2 = 0.

Then uT,p is solution (see [15]) of (24), where B♮,ε = 0,
and c = 1

6{1 − ( p
T )2}. It is proved in [3] that there is a

family of ”elliptic equilibria” with u ∼ uT,2π constant,
limits of periodic solutions where p → 2π. An implicit
function argument allows to prove, for any fixed p >
2π except for some isolated values, the existence of a 2-
parameters family of bifurcating periodic solutions of the
form

U = uT,pξ0 + O(ε),

where we keep in mind that c should stay small, i.e. T
should stay close to p in the two parameters plane. This
means that the period of the bifucating solutions of (14)
runs from 2πa until infinity (there is not yet any asymp-
totic result on the behavior of periodic solutions for pe-
riods tending towards infinity). We might remark that
the results for the above Example 2, are very similar to
the results obtained in the study of the bifurcations of a
reversible 3-dimensional vector field, where the linear op-
erator has its 3 eigenvalues behaving in the neigborhood
of 0 as here (see a complete study of such a case in [16],
except that the homoclinics have a polynomial (instead
of exponential) decay at infinity.

IV. EXAMPLE 3. TWO SUPERPOSED LAYERS

WITH NO SURFACE TENSION

The third Example is a limit case of Example 2, when
b = 0, i.e. with no surface tension at the free surface.
Below, we give an idea of the method and results obtained
in [4], and [5]. The system is again written under the form
(1) with a vector field of the form (11), where U(x) has
only 6 components, since for b = 0, we have λZ + β11 =
0, so the components (Z, α11) are replaced by β11. The
linear operator Lε has again its essential spectrum filling
the entire real axis and 0 is still an eigenvalue associated
with the eigenvector

ξ0 = (0, 1, 0, 1, 0, 0)t,

which corresponds to the existence of a one parameter
family of flows where the upper layer slides with a con-
stant velocity over the bottom layer. The eigenvalues
ik are isolated, with finite multiplicities, and satisfy the
dispersion relation (12) where b = 0. Then, we see that
ik = ±iλ is a pair of imaginary eigenvalues, in addition
to the pair of eigenvalues near 0, occuring for ε < 0. This
last pair disappears for ε > 0, and it still remains one
pair of imaginary eigenvalues for ε > 0 (see figure 4) (left
side). Notice that if b > 0 is small, we would obtain an-
other pair of (large) imaginary eigenvalues. This would
lead to a more complicated problem not yet studied at
this moment.

In the present Example 3, the occurence of the ad-
ditional pair ±iλ already leads to an oscillatory mode
which interacts for ε > 0 with the ”critical” amplitude
w along ξ0, we already had in Example 2. Indeed, here
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FIG. 4: Example 3 - Spectrum of Lε (left), and generalized
solitary wave for ε > 0 (right)

we need to combine both the techniques developed in
Example 1 and in Example 2.

The first step is a rescaling (13) as in Example 2. This
modifies the imaginary eigenvalues now being ±iλ/ε cor-
responding to eigenvectors ζε and ζε. The second step
is the study of the resolvent operator (ik − Lε)

−1 which
satisfies (5) at infinity, and which is of the form (15) near
0, where in (16) the coefficient a is ρ (the density ratio).
The third step consists in looking for periodic waves in
using the same method as for obtaining the convergent
series in powers of (A0, A0, u0) (7) now of the form

U(x) = pA0,u0,ε(x) = A0e
isζε + A0e

−isζε + u0ξ0 +

+Φε(A0e
is, A0e

−is, u0),

s = (
λ

ε
+ γ)x, γ = γ(|A0|2, u0, ε).

The fourth step is a change of variables, using the form
of the family of periodic solutions

U = Aζε + Aζε + wξ0 + Φε(A, A, w) + Y

where Y lies in a complementary subspace of the 3-
dimensional space spanned by (ζε, ζε, ξ0). The system
satisfied by (A, w, Y ) takes the following form

dA

dx
= iA{λ

ε
+ γ(|A|2, w, ε)} + RA(A, A, w, Y ),

dw

dx
= p∗0LεY + Rw(A, A, w, Y ), (25)

dY

dx
= L̃εY + RY (A, A, w, Y ),

which is reversible under the symmetry S(A, A, w, Y ) =

(A, A, w, SY ) and where L̃ε is the restriction of Lε to the
codimension-3 subspace of Y, and the rests RA, Rw, RY

cancel for Y = 0, which corresponds to the family of peri-
odic solutions. Because of the coupling between the oscil-
latory mode and w, the idea is to look for solutions homo-
clinic to periodic solutions (generalized solitary waves).
Then there is a new mathematical difficulty, due to the
weak decay rate at infinity of the rest RY , with terms

linear in Y. This necessitates the following treatment at
step five: in [4] a normalization in presence of the con-
tinuous spectrum is provided with a change of variables
depending analytically on (A, A) which allows to change
RY (A, A, w, Y ) into ∆ε(A, A)Y + R′

Y (A, A, w, Y ) where
the new term R′

Y is decaying at infinity as a quadratic
term in (w, Y ), and ∆ε(A, A) is a linear operator de-
pending analytically on (A, A), taking its values in the
kernel of η∗

ε defined in (15). This last property allows
to compensate the weaker decay at infinity of this term,
with respect to R′

Y , and it is possible at step six, to solve
the last equation of system (25) with respect to Y, in a
space of functions decaying algebraically at infinity, like
in Examples 1 and 2, as a nonlocal function of (A, A, w)
provided that w decays as 1/x2 and ||A|−|A|∞| decays as
1/x. Replacing Y by its expression leads to a new system
of the form

dA

dx
− iA{λ

ε
+ γ(|A|2, w, ε)} = Rε(A, A, w), (26)

w + ρH(w′) − 3

2
w2 = Bε(A, A, w)

where the rests Rε and Bε are O(ε). Here again we see
Benjamin-Ono equation in the principal part of the sec-
ond equation of (26). Now, the step seven consists in
the study of system (26) for proving the existence of two
families of generalized reversible solitary waves, of the
form

UA0,ε(x) = pA0,0,ε{x +
φ

π
arctan(x/ρ)} +

+uh(x)ξ0 + O(
ε + |A0|
1 + |x| )

where there are two possible values of the phase shift φ
at infinity, between the two sides of the limiting periodic
wave for a given real amplitude A0. The function uh is
given in (23) where a = ρ, and the rest is small and de-
cays as 1/|x| at infinity. It is shown in [5], in using a
precise analysis of the singularities in a strip containing
the real axis in the complex x− plane, that the minimal
size of A0 is O(e−c/ε), even though one can build a power
series in ε with all coefficients tending towards 0 at infin-
ity (this is indeed a divergent series in general). It should
be noticed that the results in Example 3 are less complete
than in Example 2, and one conjectures the existence of
other families of periodic and quasi-periodic solutions,
and other generalized solitary waves asymptotic to peri-
odic solutions where u0 6= 0. Indeed, we think that the
methods developed above (plus a lot of energy) might be
the good tools for attacking such problems.
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