
HAL Id: hal-01265188
https://hal.univ-cotedazur.fr/hal-01265188

Submitted on 31 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Existence of Multimodal Standing Gravity Waves
Gérard Iooss, Pavel Plotnikov

To cite this version:
Gérard Iooss, Pavel Plotnikov. Existence of Multimodal Standing Gravity Waves. Journal of Mathe-
matical Fluid Mechanics, 2005, 7 (S), pp.16. �10.1007/s00021-005-0164-8�. �hal-01265188�

https://hal.univ-cotedazur.fr/hal-01265188
https://hal.archives-ouvertes.fr


Existence of multimodal standing gravity waves

Gérard Iooss†, Pavel Plotnikov‡

† IUF, INLN UMR 6618 CNRS - UNSA, 1361 rte des Lucioles, 06560 Valbonne, France

gerard.iooss@inln.cnrs.fr

‡ Russian academy of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russia.

plotnikov@hydro.nsc.ru

Abstract

We consider two-dimensional standing gravity waves on the surface of an infinitely
deep perfect fluid, the flow being potential. It is known that the linearized problem
is completely resonant. Following the method described in [4], we prove the existence
of an infinity of multimodal standing gravity waves, corresponding to any choice of
asymptotic expansion in powers of the amplitude ε, indicated in [2] and [3]. Each one
of these solutions exist for a set of values of ε being dense in 0.

Key words: nonlinear water waves, standing gravity waves, bifurcation theory,
small divisors, complete resonance.
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1 Introduction

This paper follows the paper [3], considering the problem of existence of two-dimensional
standing gravity waves on an infinitely deep perfect fluid layer (called ”clapotis” in french),
periodic in time and in the horizontal coordinate, and symmetric with respect to the vertical
axis. In [4], Iooss, Plotnikov and Toland proved the existence of unimodal standing waves
(only one dominant mode at the main order ε), for a set of amplitudes ε which is dense at
0. The complete resonance of the linearized problem allows to think about the existence
of multimodal standing waves, which means that at order ε it might be possible to have
a suitable combination of several modes (necessarily solutions of the linearized problem).
The paper [3] uses the present formulation of the problem, and gives in particular another
complete proof of the possibility to find a large family of approximate solutions for our
problem, in the form of asymptotic expansions in powers of the amplitude ε, (same result as
in [2]). The present paper adapts the lines of [4] , used for proving the existence of unimodal
standing waves, and shows the existence of (nearly) all multimodal solutions which possess
the asymptotic expansions found in [3], for a set of amplitudes dense at 0 (see the precise
statement in Theorem 1 below).

In the present formulation, there is one dimensionless parameter 1+µ = gT 2/2πλ where
g is the acceleration of gravity, T is the time period, λ is the horizontal wave length, µ being
close to 0. We indeed look for non trivial doubly 2π− periodic solutions of the following
second order nonlocal PDE, as deduced from the formulation introduced by Dyachenko et
al [1]:

∂t(Lw′ẇ) − (1 + µ)Hw′ + H∂x{
1

D
H((Lw′ẇ)HLw′ẇ) + (HLw′ẇ)H(

Lw′ẇ

D
)} = 0, (1)

where w is an unknown function of (x, t) ∈ R2, the free surface of the waves being given in
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the physical plane by

(ξ, η) = (x+ Hw(x, t),−w(x, t)), (x, t) ∈ R2.

In (1) the operator H denotes the periodic Hilbert transform with respect to x: H(einx) =
isgn(n)einx, and we denote by a dot or ∂t the time t partial derivative and by a prime or
∂x the space x partial derivative. The function D and the linear operator Lw′ are defined
as follows, for w doubly periodic and smooth enough and any f ∈ L2

♮ = L2(R/2πZ)

Lw′f = (1 + Hw′)f − w′Hf

D = (1 + Hw′)2 + w′2.

For eliminating solutions deduced by shifting time and x origins, we look for solutions of
(1) which are even in x and in t. Moreover, we restrict our study to solutions w with 0
average, since adding a constant to w gives a solution of the problem corresponding to the
same physical solution. Equation (1) may be written as

F(w, µ) = 0, (2)

where F is a analytic mapping Hm,ee
♮♮ × R → Hm−2,ee

♮♮ , m ≥ 3, where Hm,ee
♮♮ is by definition

the subspace of functions even in x and in t of the Sobolev space Hm
♮♮ = Hm{(R/2πZ)2}.

Defining the nonlinear terms N≥2, we can write

F(w, µ) = L0w − µHw′ + N≥2(w)

where
L0w = ẅ −Hw′.

The complete resonance in our problem means that the kernel of L0 is infinite dimensional,
here spanned by

{cos q2x cos qt; q ∈ N},

which leads to an infinite dimensional bifurcation equation. We gave in [3] an infinite set of
asymptotic expansions (where I is any finite subset of N)

w(N)
ε =

∑

1≤p≤N

εpw(p), µ =
ε2

4
(3)

w(1) =
∑

q∈I

εq

q2
cos q2x cos qt, εq = ±1

which are approximate solutions of (2):

F(w(N)
ε ,

ε2

4
) = O(εN+1) ∈ Hm,ee

♮♮ , for any N and m.

Let us state our main result:

Theorem 1 For any finite subset I of N, satisfying the following hypothesis
H(I): For any fixed p ∈ I, the following inequality holds

∑

q∈I, q>p

p2(q2 − p2)

q4
6=

1

2
, (4)

there exists a measurable set EI ⊂ [0, ε0] which is dense at 0 (0 is a Lebesgue point) such
that, for any ε ∈ EI , there exists a solution w ∈ H17,ee

♮♮ with 0 average, of equation (1), with

µ = ε2/4. The function ε 7→ w satisfies w = w
(N)
ε +O(εN ), for N ≥ 4, where w

(N)
ε is given

by (3).
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Remark: This theorem completes the main theorem of [4] where only the case I =
{1} was considered. We may notice that when I contains one, or two, or three elements,
hypothesis H(I) is satisfied for any choice of numbers.

The method of proof rests on the use of the Nash-Moser implicit function theorem to

seek solutions as perturbations of the approximate solutions w
(N)
ε . As shown in [4], the

existence question can be reduced to one of estimating the inverses of linearized operators
at non-zero points. Then, there are two difficulties for this inversion. First, the linearized
operator restricted to the infinite-dimensional kernel of the linearization at 0, expressed with
the explicit formula of an arbitrary approximate solution, gives an operator (see M0 below)
we need to invert and for which we need to show the same properties as in [4]. Second, we
need to control the small divisor problem which arises on the complement of this kernel. This
proof follows the same path as in [4], which was largely inspired by the proof in [5] (problem
with a fluid layer of finite depth), so we recall some essential steps and check precisely in
the general case whether the proof made in [4] is still valid, modulo some adaptation and
painful computations.

Acknowledgements The authors deeply acknowledge John Toland for many fruitful
discussions.

2 Linearized operator

Let us define the perturbation u by

w = w(N)
ε + εNu, N ≥ 4, µ = ε2/4

and decompose as in [4] the linearized operator at such non zero point w

∂wF(w(N)
ε + εNu, ε2/4) = Λ(u, ε) + Γ(F(w, ε2/4), Lw′(·)) (5)

where Γ cancels when F = 0, and satisfies suitable estimates (see [4]). Now the structure of
the linear operator Λ is detailed in [4], and this is the approximate linearized operator, we
need to invert. Indeed, the linear equation for δu(x, t)

Λ(u, ε)δu = f (6)

takes, after a number of transformations (see Theorem 7.5 of [4]), the form of a new equation
for ϑ(ξ, τ)

A(0)ϑ = h (7)

where

δu = L−1
w′ {(1 + d′)(Pϑ ◦ Q̂)} (8)

h = P−1{p1(f ◦ Q̂−1)}

and
A(0)ϑ ≡ ∂ττϑ− (1 + β(0))H∂ξϑ− κ(0)ϑ−W(ϑ). (9)

The definitions of the coefficients β(0) = O(ε2), κ(0) = O(ε4), the functions d′, p1, the change

of coordinates Q̂ and the change of variables P are recalled below. The operator W is the
sum of smoothing operators and quasi-one-dimensional operators, all of order O(ε), and the
above coefficients, functions and operators depend on u in a ”tame” way (see [4]), which
is necessary for applying the Nash-Moser implicit function theorem. More precisely, we
decompose (7) as follows

MεΘ + A(0)
ε Ψ = ε−2P0h,

(Λ(0)
ε + εΛ(1)

ε )Ψ + (K−1 + εKε)Θ = ε−1(I − P0)Ph
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where P0 and P are orthogonal projections in L2
♮♮, resp. on kerL0, and on the set of functions

of 0 average
ϑ = Θ + εΨ, Θ = P0ϑ ∈ kerL0,

and operators Mε,A
(0)
ε ,Λ

(0)
ε ,Λ

(1)
ε ,K−1,Kε are defined by

ε2Mε = P0A
(0)P0, (10)

εA(0)
ε = P0A

(0)P(I − P0), (11)

Λ(0)
ε + εΛ(1)

ε = (I − P0)PA
(0)P(I − P0),

εK−1 + ε2Kε = (I − P0)PA
(0)P0, (12)

Λ(0)
ε Ψ = ∂ττΨ − (1 + β(0))H∂ξΨ − κ(0)Ψ.

It is shown in [4] that the operator W is sufficiently smoothing in ξ or in τ, first for allowing

to bound M−1
ε A

(0)
ε provided M−1

0 is good enough (as in [4], see Lemma 6 below), and
second to be able to invert

Λ(0)
ε + εΛ(1)

ε − (K−1 + εKε)M
−1
ε A(0)

ε

provided some diophantine conditions are realized by the coefficients β(0), κ(0) for insuring

a suitable inverse for Λ
(0)
ε . The aim of all what follows is to give the principal parts of

coefficients β(0) and κ(0), which appear to have the same form as in [4], and to compute M0

(and its inverse, see Lemma 6), and to show that the occurence of the new operator K−1,
which is 0 in [4], does not perturb the invertibility of the operator

Λ(0)
ε −K−1M

−1
0 A

(0)
0 , (13)

(see Lemma 7 and Theorem 8). The computation of M0 and the study of its invertibility
and the invertibility of operator (13) are the main difficulties here.

2.1 Definition of coefficients and changes of coordinates

We first need, for any w ∈ Hm,ee
♮♮ , to compute the functions a ∈ Hm−1,oo

♮♮ , b ∈ Hm−2,ee
♮♮

occuring in lemma 5.1 of [4], defined by

a = H(
1

D
Lw′ẇ) +

1

D
H(Lw′ẇ) (14)

b = D−1{a2Lw′w′′ − 2aLw′ẇ′ + Lw′ẅ + µ(D − 1 −Hw′)} +
Lw′w′′

D3
(π0Lw′ẇ)2. (15)

Then we introduce the function d(x, t) ∈ Cm−3,oe
♮♮ defined by the linear PDE

∂td = a(1 + ∂xd), d|t=0 = 0. (16)

This defines the following change of coordinates

y = x+ d(x, t)

ũ(y, t) = u(x, t), v̂(x, t) = v(y, t),

and allows to introduce two important functions q(y, t) and p(y, t)

q = {[(1 + ε2/4) − b̃] ˜(1 + d′)}, (17)

p = 1 − ∂yd̃ = ˜{(1 + d′)−1}. (18)

4



Then we define the coefficient β(0) and two useful functions d0(y) and e0(y, t) by:

(1 + ∂te0(y, t))
2 =

q(y, t)(1 + d′0(y))

1 + β(0)
(19)

where

1

2π

∫ π

−π

{q(y, t)}1/2dt =

(
1 + β(0)

1 + d′0(y)

)1/2

, (20)

and where we take the positive root in (19), and we use the fact that the average of the

derivative of a periodic function is 0. The changes of coordinates Q and Q̂ are the following

(ξ, τ) = Q(y, t) = (y + d0(y), t+ e0(y, t)) (21)

(ξ, τ) = Q̂(x, t) = (x+ d(x, t) + d0(x+ d(x, t)), t + e0(x+ d(x, t), t)),

and the coefficient κ(0) and function p1(ξ, τ) are defined by

κ(0) =
(1 + β(0))2

16π2

∫ π

−π

∫ π

−π

(1 + ė0)

(1 + d′0)

{(
ë0
q

)2

− (e′0)
2

}
dtdy,

p1 =

(
p

(1 + ė0)2

)
◦Q−1.

We shall make precise later the near identity change of variables P (see (30)), with the
computation of the main order of the operator W .

2.2 Calculation of coefficients in (9)

We can show the following

Lemma 2 When w
(N)
ε + εNu, N ≥ 4, µ = ε2/4 we obtain

a(x, t) = 2ε
∑

q∈I

εq

q
sin q2x sin qt+ ε2a(2)(x, t) +O(ε3), (22)

b(x, t) = −2ε
∑

q∈I

εq cos q2x cos qt+ ε2b(2)(x, t) +O(ε3), (23)

d(x, t) = 2ε
∑

q∈I

εq

q2
sin q2x(1 − cos qt) + ε2d(2)(x, t) +O(ε3), (24)

q(y, t) = 1 + 2ε
∑

q∈I

εq cos q2y + ε2q(2)(y, t) +O(ε3), (25)

p(y, t) = 1 − 2ε
∑

q∈I

εq cos q2y(1 − cos qt) +O(ε2), (26)

with

a(2)(x, t) = −
∑

r,s∈I

εrεs
2s

r2
sin(r2 + s2)x cos rt sin st+

+
∑

r,s∈I
r>s

εrεs
2r

s2
sin(r2 − s2)x sin rt cos st,
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b(2)(x, t) = −
∑

r∈I

1 +
∑

r,s

εrεs
2s2

r2
cos(r2 + s2)x cos rt cos st+

+
∑

r>s

2εrεs cos(r2 − s2)x

{
(1 −

r2

s2
) cos rt cos st−

r

s
sin rt sin st

}
,

d(2)(x, t) =
∑

r,s∈I

εrεs
2

r2
sin(r2 + s2)x cos rt(cos st− 1) +

+
∑

r,s∈I
r>s

εrεs2 sin(r2 − s2)x

{
−s2

r2(r2 − s2)
−

1

r2
cos rt+

+
1

s2
cos st+

(
1

r2 − s2
−

1

s2

)
cos rt cos st+

s

r(r2 − s2)
sin rt sin st

}
,

q(2)(y, t) =
1

4
+
∑

r∈I

(2 − cos 2rt) −
∑

r,s

2
s2

r2
εrεs cos(r2 + s2)y +

−
∑

r,s∈I
r>s

2εrεs cos(r2 − s2)y

{
cos rt cos st−

r2 + s2

rs
sin rt sin st−

r2

s2

}
.

Proof: The proof of this lemma is straightforward. Notice that for computing d(x, t)
we just need to identify powers of ε in the PDE (16).

We can then show the following

Lemma 3 When w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, we obtain

β(0) =
ε2

4
+O(ε3), κ(0) =

ε4

4
(card(I) − 1/2)

∑

q∈I

q2 +O(ε5). (27)

d0(y) = −2ε
∑

q∈I

εq

q2
sin q2y +O(ε2),

e0(y, t) = ε2
∑

r,s∈I
r>s

εrεs

rs(r2 − s2)
cos(r2 − s2)y{s3 sin rt cos st− r3 cos rt sin st} +

−ε2
∑

r∈I

1

4r
sin 2rt+O(ε3).

Proof: From the expression of q(y, t) and (20), we obtain

1 + d′0(y)

1 + β(0)
= 1 − 2ε

∑

q∈I

εq cos q2y −
1

4
ε2 +

+ε2
∑

r,s∈I

2(
s2

r2
+ 1)εrεs cos(r2 + s2)y +

+ε2
∑

r,s∈I
r>s

2εrεs(2 −
r2

s2
) cos(r2 − s2)y,
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which leads to the results of the lemma for β(0), d0(y) and e0(y, t). Now from the formula
for κ(0) we have

κ(0) =
1

16π2

∫ π

−π

∫ π

−π

{
ë20 − e′20

}
dydt+O(ε5),

and after a straightforward calculation

κ(0) =
ε4

4

(
∑

r

r2

2
+
∑

r>s

(r2 + s2)

)
+O(ε5) (28)

which leads to (27). We check that the formula fits with the case I = {1} where κ(0) =
ε4/8 +O(ε5) (see [4]).

2.3 Calculation of the principal part of W in (9)

As it is indicated in [4], the linear operator W is a sum of two parts as follows

W(ϑ) = (λ0 + λ1H)∂−2
τ Pϑ+ V(ϑ) (29)

where we shall give later precisions on the part V(ϑ). The near identity bounded operator
P−1 is written as

P−1 = 1 + α0 + β0H + (α1 + β1H)∂−1
τ + (α2 + β2H)∂−2

τ (30)

where ∂−1
τ is defined by

∂−1
τ cosnτ = (1/n) sinnτ, ∂−1

τ sinnτ = −(1/n) cosnτ, ∂−1
τ 1 = 0,

and functions αj , βj , λ0, λ1 are at most of order ε (see Lemma M.3 of [4]). More precisely,
let us show the following

Lemma 4 When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, the coefficients λ0 and λ1 in the

operator W (see (29)) are O(ε2).

Remark: This means that the order ε in W necessarily comes from the part V .Moreover,
the precisions we give below on the order of magnitude of coefficients αj , βj will be helpful
for finding the principal part of V .

Proof of the lemma: The computation of the above coefficients is based on the fol-
lowing 3 functions

γ =

{
ë0

(1 + ė0)2

}
◦Q−1, δ = −(1 + β(0))

(
e′0

1 + d′0

)
◦Q−1,

α =

(
−∂yq

(1 + ė0)2

)
◦Q−1,

and it is clear from the form of q and e0 that α only depends on τ at order ε2. Then
considering formulas given in Appendix M of [4], giving αj , βj, we obtain successively

α0(ξ, τ) = 2ε
∑

q∈I

εq(cos q2ξ − 1) +O(ε2) (31)

and β0 = O(ε2), b1, b2 = O(ε2), α1, β1 = O(ε2), b3, b4 = O(ε2), α2, β2 = O(ε2), λ1, λ2 =
O(ε2). Hence the lemma is proved.

Now we are ready to compute the principal part, which is of order ε in the operator V :
we have the following
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Lemma 5 when w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, the linear operator V satisfies

V(ϑ) = 2ε
∑

q∈I, n<q2, p∈N0

εq(q
2 − n)

q2
{−n cos qτ cos pτ+pq sin qτ sin pτ}ϑ(p)

n cos(q2−n)ξ+O(ε2).

In particular, we have P0VP0 = O(ε2).

Remark: All the above formulae fit with what we found in [4] in the case when I = {1},
where we notice that V(Θ) = O(ε2) (instead of O(ε)), this order O(ε2) was very helpful in
[4], since such a case implies K−1 = 0 (see (12) and (13)).

Proof: see Appendix 1.

3 Inversion of the approximate linearized operator

In this section we compute the operators M0 (Mε is defined in (10)), A
(0)
0 and K−1 (defined

in (12)). These operators are fundamental in the study of the inversion of the approximate
linearized operator A(0). Our aim is to prove the same type of estimates as in [4] , despite
of the occurence of the new operator K−1. Moreover we shall see that the form of M0 is
more complicated than in the unimodal case, and that this leads to the need of the extra
assumption H(I) of the subset I ⊂ N occuring in the asymptotic expansions of our standing
waves.

Let us first observe that for Θ =
∑

r∈N
Ar cos r2ξ cos rτ ∈ kerL0 we already have from

Lemma 5, two operators occuring in (13)

K−1Θ = 2
∑

q∈I, r<q

rεq

q2
∂τ∂ξ{cos qτ sin rτ sin(q2 − r2)ξ}Ar,

and

{A
(0)
0 Ψ}q = −

∑

r∈I, r≥q

εrq
3

r2
{(r + q)ψ

(r+q)
r2−q2 − (r − q)ψ

(r−q)
r2−q2},

hence it remains to compute M0. Indeed, we can show the following

Lemma 6 When w = w
(N)
ε +εNu, N ≥ 4, µ = ε2/4, we have for Θ =

∑
p∈N

Ap cos p2ξ cos pτ

{M0Θ}p =





Ap

{
− p2

2 +
∑

q∈I, q>p
p4(q2−p2)

q4

}
if p ∈ I

Ap

{
p2

4 +
∑

q∈I, q>p
p4(q2−p2)

q4

}
if p /∈ I

.

If Hypothesis H(I) (see (4)) holds, operator M0 has a bounded inverse from P0H
s,ee
♮♮ onto

P0H
s+1,ee
♮♮ .

Remark: The above smoothing property of M−1
0 is precisely the one which is required

in [4].
Proof: For computing M0 we might compute the coefficient W(2) of ε2 in the operator

W . This is awful and we prefer to use a way which uses the calculations made in [3]. This
lemma 6 is proved in Appendix 2.

Once M0 has a nice inverse as in [4], this leads to the need to invert the operator (13)

(instead of Λ
(0)
ε ). We observe that A

(0)
0 and K−1 have finite dimensional matrices, since the

subset of integers I is finite, and since M−1
0 is diagonal the operator K−1M

−1
0 A

(0)
0 has a

finite dimensional matrix. More precisely, we have the following
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Lemma 7 When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, we have

−{K−1M
−1
0 A

(0)
0 Ψ}(l)

n = 0 if (n, l) 6= (q2 − p2, q ± p), q ∈ I, 1 ≤ p < q,

and for q ∈ I, 1 ≤ p < q

−{K−1M
−1
0 A

(0)
0 Ψ}

(q−p)
p2−q2 = −

∑

r∈I, r≥p

εqεrp
2(q2 − p2)(q − p)

q2r2mp
{(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2}

−{K−1M
−1
0 A

(0)
0 Ψ}

(q+p)
p2−q2 =

∑

r∈I, r≥p

εqεrp
2(q2 − p2)(q + p)

q2r2mp
{(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2}

where

mp =

{
− 1

2 +
∑

q∈I, q>p
p2(q2−p2)

q4 if p ∈ I,
1
4 +

∑
q∈I, q>p

p2(q2−p2)
q4 if p /∈ I.

Proof: The proof of this lemma follows immediately from

{M−1
0 A

(0)
0 Ψ}p = −

∑

r∈I, r≥p

εrp

r2mp
{(r + p)ψ

(r+p)
r2−p2 − (r − p)ψ

(r−p)
r2−p2}

and from the form of K−1, noticing that (r2 − p2, r± p) = (r′2 − p′2, r′ ± p′) leads to r = r′,
p = p′.

Now we can show the following

Theorem 8 Assume that β(0) and κ(0) satisfy the diophantine condition

| − q2 + (1 + β(0))p− κ(0)| ≥ c/q2, for p 6= q2,

then, provided that assumption H(I) holds (mp 6= 0 for p ∈ I) the linear operator

Λ(0)
ε −K−1M

−1
0 A

(0)
0

has an inverse which satisfies the estimate

||{Λ(0)
ε −K−1M

−1
0 A

(0)
0 }−1Ψ||Hs ≤ c(s)||Ψ||Hs+2 ,

i.e. as for the inverse of Λ
(0)
ε (see [4]).

Proof: For l2 + n > 2(max{I})2, {−K−1M
−1
0 A

(0)
0 Ψ}

(l)
n = 0, hence for large n and l the

operator reduces to Λ
(0)
ε . Hence, to prove the above theorem, it is sufficient to prove that

for components Ψ
(l)
n with l2 + n ≤ 2(max{I})2, the linear operator Λ

(0)
ε − K−1M

−1
0 A

(0)
0 is

invertible. Indeed, it is sufficient to consider components of the form Ψ
(q±p)
q2−p2 where q ∈ I, and

p ≤ q, since these components are uncoupled from the rest where the operator is diagonal.

We then need to invert the following linear operator acting on components Ψ
(q±p)
q2−p2

Ψ
(q−p)
q2−p2 −

∑

r∈I, r≥p

εqεrp(q
2 − p2)

2q2r2mp
{(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2}

Ψ
(q+p)
q2−p2 −

∑

r∈I, r≥p

εqεrp(q
2 − p2)

2q2r2mp
{(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2}

which has a simple structure with respect to Dq2−p2 = Ψ
(q+p)
q2−p2 − Ψ

(q−p)
q2−p2 and Sq2−p2 =

Ψ
(q+p)
q2−p2 + Ψ

(q−p)
q2−p2 . Since, the operator reduces to the identity for Dq2−p2 , we just need to
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invert with respect to Sq2−p2 the linear operator with components (for fixed p ≥ 1 and all
q > p, since we already have D0 = S0)

mp
εq

q2
Sq2−p2 −

p2(q2 − p2)

q4

∑

r∈I, r>p

εr

r2
Sr2−p2 .

Taking the sum of all lines we obtain



mp −
∑

q∈I, q>p

p2(q2 − p2)

q4




∑

r∈I, r>p

εr

r2
Sr2−p2

and since the factor in front is −1/2 or 1/4 we can solve with respect to the sum
∑

r∈I, r>p
εr

r2Sr2−p2 ,
hence solve with respect to all unknowns, and theorem 8 is proved. It results from Lemma
6 and Theorem 8 that the method of [4] applies exactly.

3.1 Kernel of A(0)

To complete the proof of theorem 1, we just need to specify kerA(0). Indeed in [4] we use
the precise structure of W(1) at order ε2, which we have not in this general case. In fact
the kernel also satisfies ϑ(0) = 1 +O(ε) in the general case, which is precisely what we need
to show.

Since constants lie in ker ∂wF(w, µ), this implies that the function ϑ(1) defined by (see(8))

ϑ(1) = P−1{(p ˜(1 + Hw′)) ◦Q−1}

satisfies
A(0)ϑ(1) = h1 = O(εN+1)

due to the fact that A(0) is a reformulation of operator Λ, and that the ”error” term Γ =
O(εN+1) in (5). Let us proceed as in [4] and define the kernel ϑ(0) in fixing its component
on constants equal to 1: ϑ(0) = 1 +̟0, P̟0 = 0. Let us also decompose ϑ(1) = γ11 +̟1,
P̟1 = 0, then γ1 = 1 +O(ε) and ̟1 = O(ε) by construction, and since ϑ(1) and ϑ(0) are as
smooth as we wish, we can now use the inverse of A(0) restricted to the space of 0-average
functions, which is O(ε−2) as soon as diophantine conditions are satisfied by β(0) and κ(0) :

A(0)(̟1 − γ1̟0) = h1

hence, since N ≥ 4
̟0 = γ−1

1 {̟1 − (PA(0)P)−1Ph1} = O(ε).

All required properties which are used in [4] are satisfied, the proof of theorem 1 is then
completed.

4 Appendix 1

We want now to give the principal part of the operator V in theorem 7.5 of [4]. For this
calculation, we first need to compute the main order of the operator G in theorem 6.9 of [4],
where

G(ϕ) = −∂y{S(qϕ) + Sqϕ+ (HSa(∂̂tϕ/p))˜},
where by definition, for any smooth enough function f

Sf(y, t) = (Hf̂)˜(y, t) − (Hf)(y, t), Saf = H(af) − aHf.
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Since p = 1 + O(ε), a = O(ε), and the change of coordinates (x, t) 7→ (y, t) is ε− close to
the identity, we obtain thanks to (22)

(HSa(∂̂tϕ/p))˜ = 2ε
∑

q∈I

εq

q
sin qtHSsin q2y∂tϕ(y, t) +O(ε2).

We also have from (I.2) in Appendix I of [4]

S(qϕ) = Sed(qϕ)′ +O(ε2),

it then results (using (24) and (25)), that

G(ϕ) = −2ε∂y

∑

q∈I

εq

q2
{
∂y(Ssin q2yϕ) − cos qtSsin q2yϕ

′
}

+

−2ε∂y

∑

q∈I

εq

q
sin qtHSsin q2y∂tϕ+O(ε2).

Now comes the computation of the main order of the operator G0 in lemma 7.2 of [4]. Since
β(0) and δ are O(ε2) and using again (I.2) in [4]

S(0)θ = (H(θ ◦Q)) ◦Q−1 −Hθ = Sfd0
θ′ +O(ε2) = O(ε)

where d̃0(ξ) is d0(y) expressed with ξ = y + d0(y), and since the mapping Q is ε− close to
the identity (see (21)), we have

G0(θ) = −∂ξSfd0
θ′ + G(θ) +O(ε2)

Now, from the formula giving V in Appendix M of [4], we have

V(ϑ) = −G0(ϑ) − ∂ξSα0ϑ+O(ε2)

and thanks to the forms of d0 (see Lemma 3) and α0 (see (31)) at order ε, we obtain

V(ϑ) = 2ε
∑

q∈I

εq

q2
∂ξ{− cos qτSsin q2ξθ

′ + q sin qτHSsin q2ξ∂τθ} +O(ε2).

Now using the identities

HSsin q2ξ cosnξ = − sin(q2 − n)ξ , − nSsin q2ξ sinnξ = n sin(q2 − n)ξ for n < q2

HSsin q2ξ cosnξ = 0, − nSsin q2ξ sinnξ = 0 for n ≥ q2

we obtain the result of Lemma 5.

5 Appendix 2

In this appendix, we prove Lemma 6. To reach the operator M0 let us use the calculations
made in [3]. In Lemma 1 of [3] we show that the map w 7→ v = F (w) defined by

v = F (w) = w +B(w,w′)

B(w1, w2) = H(w1w2) − w1Hw2 − 2w2Hw1

transforms equation (2) into a new one E(v, µ) = 0 for v , where there is no longer any
quadratic term in v. Moreover

F(w, µ) = Γ̃wE(v, µ),
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where Γ̃w is the inverse linear map of f 7→ f + ∂xB(w, f). Hence defining v
(N)
ε = F (w

(N)
ε ),

we have E(v
(N)
ε , ε2

4 ) = O(εN+1) and from Lemma 1 of [3], the above definitions and from
the definition of operator Λ in (5) (N ≥ 4), we obtain

Λ(u, ε) = L0 + ε{Γ̃(1)L0 + L0f
(1)} + ε2{Γ̃(2)L0 + Γ̃(1)L0f

(1) + L0f
(2) + B2} +O(ε3),

with

Γ̃
w

(N)
ε

= I + εΓ̃(1) + ε2Γ̃(2) +O(ε3), Γ̃(1) = −∂xB(w(1), ·),

∂wF (w(N)
ε ) = I + εf (1) + ε2f (2) +O(ε3), f (1) = B(·, w(1)′) +B(w(1), ∂x·)

∂vE(v(N)
ε ,

ε2

4
) = L0 + ε2B2 +O(ε3),

and B2 satisfies (see the proof of Theorem 4 of [3]) for Θ =
∑

r∈N
Ar cos r2ξ cos rτ ∈ kerL0

{P0B2Θ}p =

{
− p2

2 Ap, for p ∈ I,
p2

4 Ap, for p /∈ I.
(32)

Coming back to the relationship between operators Λ and A(0) (see (6), (7) and (8)), we
can check that for Θ = P0ϑ, that

A(0)Θ = εL0(Q
(1) + f (1))Θ + ε2{(Γ̃(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1)) + B2 +

+L0(f
(2) + f (1)Q(1) + Q(2))}Θ +O(ε3),

where

p
(1)
1 = −2

∑

q∈I

εq cos q2ξ(1 − cos qτ), P(1) = 2
∑

q∈I

εq(1 − cos q2ξ),

Q(1)ϑ =
∑

q∈I

εq{(2 − cos q2x cos qt)ϑ− (Hϑ+
2∂xϑ

q2
) sin q2x cos qt},

Q̃(1)g = 2
∑

q∈I

εq∂ξg

q2
sin q2ξ cos qτ.

Since P0L0 = 0, we finally have

M0Θ = P0{(Γ̃
(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1)) + B2}Θ. (33)

Let us first consider L0(f
(1) + Q(1))Θ : we have

f (1)Θ = B(Θ, w(1)′) +B(w(1),Θ′)

hence
(f (1) + Q(1))Θ = ∂ξSw(1)Θ + 2Θ

∑

q∈I

εq

and since L0Θ = 0, and

Scos q2ξ cosnξ =

{
− sin(q2 − n)ξ, for n < q2

= 0 for n ≥ q2

then we obtain

L0(f
(1) + Q(1))Θ

=
∑

q∈I, 1≤r<q

εqr(q
2 − r2)

q2
Ar cos(q2 − r2)ξ{(q + r) cos(q + r)τ − (q − r) cos(q − r)τ}.
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Now, we can check that

{P0(Γ̃
(1) + Q̃(1) + p

(1)
1 − P(1))φ}p = −2φ

(p)
p2

∑

s∈I

εs +
∑

s∈I, 1≤p<s

εsp
2

2s2
{φ

(s−p)
s2−p2 + φ

(s+p)
s2−p2},

and observing that φ
(p)
p2 = 0, and collecting the above results, we obtain

{P0(Γ̃
(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1))Θ}p = Ap

∑

q∈I, 1≤p<q

p4(q2 − p2)

q4
.

Now thanks to (32), we have completely M0 as given in Lemma 6. We notice that the
operator M0 is diagonal, and that the factor of Ap is > 0 for p /∈ I, in particular for large
p. We then need to assume that assumption H(I) holds for p ∈ I. This assumption H(I)
insures that for p ≥ 1, one has

|{M0Θ}p| ≥ cp2|Ap|

i.e. the inverse M−1
0 has the same smoothing properties as in [4], and lemma 6 is proved.
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