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Abstract

A key tool in the study of the dynamics of vector fields near an equilibrium point is
the theory of normal forms, invented by Poincaré, which gives simple forms to which
a vector field can be reduced close to the equilibrium. In the class of formal vector
valued vector fields the problem can be easily solved, whereas in the class of analytic
vector fields divergence of the power series giving the normalizing transformation
generally occurs. Nevertheless the study of the dynamics in a neighborhood of the
origin, can very often be carried out via a normalization up to finite order. This
paper is devoted to the problem of optimal truncation of normal forms for analytic
vector fields in R

m. More precisely we prove that for any vector field in R
m admitting

the origin as a fixed point with a semi-simple linearization, the order of the normal
form can be optimized so that the remainder is exponentially small.We also give
several examples of non semi-simple linearization for which this result is still true.
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1 Introduction

1.1 Position of the problem

A key tool in the study of the dynamics of vector fields near an equilibrium
point is the theory of normal forms, invented by Poincaré, which gives simple
forms to which a vector field can be reduced close to the equilibrium [1],[3]. In
the class of formal vector valued vector fields the problem can be easily solved
[1], whereas in the class of analytic vector fields divergence of the power series
giving the normalizing transformation generally occurs [3], [21],[22]. Neverthe-
less the study of the dynamics in a neighborhood of the origin, can very often
be carried out via a normalization up to finite order (see for instance [4], [11],
[15], [16], [19],[23]). Normal forms are not unique and various characterization
exist in the literature [2],[5],[8],[13],[23]. In this paper we will consider the
version given in [13]:

Theorem 1.1 (Unperturbed NF-Theorem) Let V be a smooth (resp. an-
alytic) vector field defined on a neighborhood of the origin in Rm (resp. in
Cm) such that V (0) = 0. Then, for any integer p ≥ 2, there are polynomials
Qp,Np : Rm → Rm (resp. Cm → Cm) , of degree ≤ p, satisfying

Qp(0) = Np(0) = 0, DQp(0) = DNp(0) = 0

such that under the near identity change of variable X = Y + Qp(Y ), the
vector field

dX

dt
= V (X) (1)

becomes
dY

dt
= LY + Np(Y ) + Rp(Y ) (2)

where DV (0) = L, where the remainder Rp is a smooth (resp. analytic) func-
tion satisfying Rp(X) = O(‖X‖p+1) and where the normal form polynomial
Np of degree p satisfies

Np(e
tL∗

Y ) = etL∗Np(Y )

for all Y ∈ Rm (resp. in Cm) and t ∈ R or equivalently

DNp(Y )L∗Y = L∗Np(Y )

where L∗ is the adjoint of L. Moreover, if T is a unitary linear map which
commutes with V , then for every Y ,

Qp(TY ) = TQp(Y ) Np(TY ) = TNp(Y ).
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Similarly, if V is reversible with respect to some linear unitary symmetry S
(S = S−1 = S∗), i.e. if V anticommutes with this symmetry, then for every
Y ,

Qp(SY ) = SQp(Y ) Np(SY ) = −SNp(Y ).

This version of the Normal Form Theorem up to any finite order has the
following advantages : its proof is elementary and the characterization given
is global in terms of a unique commutation property. Moreover it uses a simple
hermitian structure of the space of homogeneous polynomials of given degree.

Since a usual way to study the dynamics of vector fields close to an equilibrium
is to see the full vector field as a perturbation of its normal form L + Np by
higher order terms, it happens to be of great interest to obtain sharp upper
bounds of the remainders Rp. A similar theory of resonant normal forms was
developed for Hamiltonians systems written in action-angle coordinates (see
for instance [6], [9], [20]). A sticking result obtained by Nekhoroshev [17], [18],
in order to study the stability of the action variables over exponentially large
interval of time, is that up to an optimal choice of the order p of the normal
form , the remainder can be made exponentially small. For more details of such
Normal Form Theorems with exponentially small remainder for Hamiltonian
systems written in action angle variables, we refer to the work of Pöschel
in [20]. A similar result of exponential smallness of the remainder was also
obtained by Giorgilli and Posilicano in [10] for a reversible system with a
linear part composed of harmonic oscillators.

So a natural question is to determine for which class of analytic vector fields,
such results of normalization up to exponentially small remainder can be ob-
tained?

Since in the previously mentioned works dealing with particular hamiltonian
or reversible systems, the normalization procedure is based on diagonalizable
homological operators, a first natural class to consider, is the class Cs of an-
alytic vector fields, fixing the origin, and such that their linearization at the
origin is semi-simple (i.e. is diagonalizable). This is indeed the largest class
for which the homological operators involved in the normalization procedure
are diagonalizable (see Lemma 2.5-(a)). More precisely, we prove in this paper
that such results of normalization up to exponentially small remainder can be
obtained for any analytic vector fields in Cs provided that the spectrum of the
linearization at the origin satisfies some ”nonresonance assumptions” which
enable to control the small divisor effects.

The question of the validity of such results for analytic vector fields with
non semi-simple linearization is far more intricate : we give two examples of
non semi-simple linearizations for which the result is still true. However, the
question remains totally open for other non semi simple linearizations. We
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perform some estimates which suggest that the results should not be true
in general for non semi-simple linearizations, but theses estimates are not
sufficient to build a counter example (see Remark 2.9).

1.2 Statement of the results

To state our results we need to specify some ”nonresonance assumptions”
which enable to control the small divisor effects. In many problems, one uses
one of the two following classical ”nonresonance assumptions” : for a subset
Z of Zm, for K ∈ N, and for γ > 0, a vector λ = (λ1, · · · , λm) ∈ Cm, is said
to be γ, K-nonresonant modulo Z if for every k ∈ Zm with |k| ≤ K,

| 〈λ, k〉 | ≥ γ when k /∈ Z. (3)

Similarly, for γ > 0, τ > m− 1, λ is said to be γ, τ -Diophantine modulo Z if
for every k ∈ Zm,

| 〈λ, k〉 | ≥ γ

|k|τ when k /∈ Z, (4)

where for k = (k1, · · · , km) ∈ Zm, |k| := |k1| + · · · + |km|. However, in the
problem of normal forms, the small divisors appear as eigenvalues of the ho-
mological operator giving the normal forms by induction (see Subsection 2.1
and Lemma 2.5). To control these small divisors let us introduce two slightly
different definitions :

Definition 1.2 Let us define λ = (λ1, · · · , λm) ∈ Cm, K ∈ N, γ > 0 and
τ > m− 1.

(a) The vector λ is said to be γ, K-homologically without small divisors
if for every α ∈ Nm with 2 ≤ |α| ≤ K, and every j ∈ N, 1 ≤ j ≤ m,

| 〈λ, α〉 − λj | ≥ γ when 〈λ, α〉 − λj 6= 0.

(b) The vector λ is said to be γ, τ -homologically Diophantine if for every
α ∈ N

m, |α| ≥ 2,

| 〈λ, α〉 − λj| ≥
γ

|α|τ when 〈λ, α〉 − λj 6= 0.

(c) For a linear operator L in Rm, let us denote by λ1, · · · , λm its eigenval-
ues and λL := (λ1, · · · , λm). Then L is said to be γ, K-homologically
without small divisors ( resp. γ, τ -homologically Diophantine) if
λL is so.

Remark 1.3 Observe that in the above definitions, the components of α are
nonnegative integers whereas in (3) and (4), k lies in Zm.
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In what follows we use Arnold’s notations [1] for denoting matrices under
complex Jordan normal forms : λ2 denotes the 2 × 2 complex Jordan block
corresponding to λ ∈ C whereas λ.λ represents 2×2 complex diagonal matrix
diag(λ, λ), i.e.

λ2 :=



λ 1

0 λ


 whereas λ.λ :=



λ 0

0 λ


 .

A matrix under complex Jordan normal form is then denoted by the products
of the name of its Jordan blocs. Moreover since for real matrices the Jordan
blocks corresponding to non zero matrices occur by pairs λr and λ

r
we shorten

their name as follows : for λ1, λ2 ∈ C\R, 02.λr1

1 .λr2

2 .λ
r1

1 .λ
r2

2 is simply denoted
by 02.λr1

1 .λr2

2 |
C
. Moreover, when one works with vector fields in Rm, one

may want to remain in Rm and thus to use real Jordan normal forms for the
linearization of the vector field. So, for µ ∈ R and λ = x + iy ∈ C \ R, we
denote by µ2λ2|

R
the real Jordan matrix




(
µ 1
0 µ

)
0 0
0 0

0 0
0 0

0 0
0 0

(
x−y
y x

)(
1 0
0 1

)

0 0
0 0

0 0
0 0

(
x−y
y x

)




.

Finally, we equip R
m and C

m with the canonical inner product and norm, i.e.

for X = (X1, · · · , Xm) ∈ Cm, ‖X‖2 := 〈X,X〉 =
m∑

j=1
XjXj . We are now

ready to state our main result:

Theorem 1.4 (NF-Theorem with exponentially small remainder)

Let V be an analytic vector field in a neighborhood of 0 in Rm (resp. in Cm)
such that V (0) = 0, i.e.

V (X) = LX +
∑

k≥2

Vk[X
(k)] (5)

where L is a linear operator in Rm (resp. in Cm) and where Vk is bounded
k-linear symmetric and

‖Vk[X1, · · · , Xk]‖ ≤ c
‖X1‖ · · · ‖Xk‖

ρk
(6)

with c, ρ > 0 independent of k.
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(a) If L is semi-simple and under real (resp. complex) Jordan normal form,
then
(i) if L is γ, τ -homologically Diophantine, then for every δ > 0 such that

popt ≥ 2, the remainder Rp, given by the Normal Form Theorem 1.1
for p = popt, satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤Mτδ
2e−

w
δb (7)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb

and

Mτ =
10

9
cC2






m

√
27

8e




1+τ

+ (2e)2+2τ





where

C =

√
m

ρ2

{(
5

2
m+ 2

)
ac+ 3ρ

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

, a = γ−1.

(ii) if L is γ,K-homologically without small divisors, then for every δ > 0
such that K ≥ popt ≥ 2 then the remainder Rp given by the Normal
Form Theorem 1.1 for p = popt satisfies (7) with τ = 0, i.e. b = 1.

(b) For L = 02 0 · · ·0︸ ︷︷ ︸
q times

and L = 03 0 · · ·0︸ ︷︷ ︸
q times

, estimate (7) still holds with τ = 0,

i.e b = 1, and with a = 1.

The proof of this theorem is given in section 2.

Remark 1.5 Stirling’s formula ensures that m is finite.

Remark 1.6 Theorem 1.1 gives a polynomial upper bound of the remainder
Rp of the form sup

‖Y ‖≤δ

‖Rp(Y )‖ ≤ C(p)δp+1 whereas the above theorem ensures

that with an optimal choice of p we have sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤ Mδ2e−
w
δb . The

proof heavily relies on a precise control of the divergence of C(p) with p.

Remark 1.7 A semi simple matrix under complex Jordan normal form is
simply a diagonal matrix whereas a real semi simple matrix under real Jordan
normal form is the direct sum of a diagonal matrix with 2 × 2 blocks of the

form

(
x −y
y x

)
with x, y ∈ R.

Remark 1.8 The characterization of the normal form and the exponentially
small estimates are invariant under unitary changes of coordinates. Indeed,
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if we perform in (2) a unitary change of coordinates Y = QỸ where Q is a
unitary linear operator (Q∗ = Q−1), then it becomes

dỸ

dt
= L̃Ỹ + Ñp(Ỹ ) + R̃p(Ỹ )

with L̃ = Q−1LQ, Ñp(Ỹ ) = Q−1Np(QỸ ), R̃p(Y ) = Q−1Rp(QY ), where Ñp

satisfies the same normal form criteria as Np, i.e. Ñ (etL̃∗
Ỹ ) = etL̃∗Ñ (Ỹ ) and

where R̃p admits the same exponentially small upper bound as Rp given by
(7).

However, when Q is not unitary then Ñp satisfies a slightly different normal
form criteria given by

Ñ (et
∨
LỸ ) = et

∨
LÑ (Ỹ )

where
∨

L = Q−1L∗Q which is not equal to L̃∗ when Q is not unitary. In this
case, R̃popt also admits a slightly different upper bound given by

sup
‖Ỹ ‖≤δ̃

‖R̃popt(Y )‖ ≤Mτ‖|Q−1‖| ‖|Q‖|2 δ̃2 e
− w

‖|Q‖|b δ̃b

where ‖|Q‖| = sup
‖Y ‖=1

‖Q(Y )‖.

The above remark enables to state a corollary without assuming that L is
under real or complex Jordan normal form

Corollary 1.9 Let V be an analytic vector field in a neighborhood of 0 in
Rm (resp. in Cm) such that V (0) = 0, i.e. satisfying (5) and (6). Denote
L = DV (0) and let Q be an invertible matrix such that J = QLQ−1 is under
real (resp. complex) Jordan normal form.

Then, there are polynomials Qpopt ,Npopt : Rm → Rm (resp. Cm → Cm) , of
degree ≤ popt, satisfying Qpopt(0) = Npopt(0) = 0, DQpopt(0) = DNpopt(0) = 0
such that under the near identity change of variable X = Y + Qpopt(Y ), the
vector field (1) becomes

dY

dt
= LY + Npopt(Y ) + Rpopt(Y )

where the remainder Rpopt = O(‖Y ‖popt+1) is analytic and where Npopt satisfies

the normal form criteria

Npopt(e
t
∨
LY ) = et

∨
LNpopt(Y ) with

∨

L = Q−1J∗Q

for all Y ∈ Rm (resp. in Cm) and t ∈ R. Moreover,
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(a) if L is semi-simple and γ, τ -homologically Diophantine, then for every
δ > 0 such that popt ≥ 2, the remainder Rpopt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤ Mτδ
2e−

w

δb (8)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb

and

Mτ =
10

9
c‖|Q‖| ‖|Q−1‖| C2






m

√
27

8e




1+τ

+ (2e)2+2τ





where

C =

√
m

ρ2

{(
5

2
m+ 2

)
ac‖|Q‖|2 ‖|Q−1‖|2 + 3ρ‖|Q‖| ‖|Q−1‖|

}
,

and m = sup
p∈N

e2 p!

pp+ 1
2 e−p

, a = γ−1;

(b) if L is semi-simple and γ,K-homologically without small divisors, then
for every δ > 0 such that K ≥ popt ≥ 2 then the remainder Rpopt satisfies
(8) with τ = 0, i.e. b = 1;

(c) for J = 02 0 · · ·0︸ ︷︷ ︸
q times

and J = 03 0 · · ·0︸ ︷︷ ︸
q times

, estimate (8) still holds with τ = 0,

i.e b = 1, and with a = 1.

Proof. Starting with (1), perform a first change of coordinates X = Q−1X̃
to obtain a vector field Ṽ such that DṼ (0) = J is under Jordan normal
form, then apply Theorem 1.4, i.e perform a second change of coordinates
X̃ = Q̃popt(Ỹ ) and finally perform a last change of coordinates Ỹ = QY to
get the desired result. 2

The previous corollary readily enables to state a second one which holds for
perturbed vector fields

du

dt
= V (u, µ), u ∈ R

m, µ ∈ R
s (9)

by setting U = (u, µ), V = (V, 0) and observing that (9) is equivalent to

dU

dt
= V(U).

Theorem 1.10 Let V : Rm × Rs → Rm be an analytic family of vector fields
defined in a neighborhood of 0 in Cm × Cs such that V (0, µ) = 0, i.e.

V (X,µ) = L0X +
∑

n+ℓ≥2
k≥1

Vk,ℓ[X
(k), µ(ℓ)] (10)
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where L0 = DuV (0, 0) is a linear operator in Rm (resp. in Cm) and where Vk,ℓ

is bounded k + ℓ-linear symmetric and

‖Vk,ℓ[X1, · · · , Xk, µ1, · · · , µℓ]‖ ≤ c
‖X1‖ · · · ‖Xn‖

ρk

‖µ1‖ · · · ‖µℓ‖
ρℓ

(11)

with c, ρ > 0 independent of n and ℓ.

Let Q be an invertible matrix such that J = QL0Q
−1 is under real (resp.

complex) Jordan normal form.

Then, there are polynomials Qpopt ,Npopt : Rm × Rs → Rm (resp. Cm × Cs →
Cm) , of degree ≤ popt, satisfying Qpopt(0, 0) = Npopt(0, 0) = 0, DQpopt(0, 0) =
DNpopt(0, 0) = 0 such that under the near identity change of variable X =
Y + Qpopt(Y ), the vector field (9) becomes

dY

dt
= L0Y + Npopt(Y, µ) + Rpopt(Y, µ)

where the remainder Rpopt = O
(
(‖Y ‖+‖µ‖)popt+1

)
is analytic and where Npopt

satisfies the normal form criteria

Npopt(e
t
∨
L0Y, µ) = et

∨
L0Npopt(Y, µ) with

∨

L0 = Q−1J∗Q

for all Y ∈ Rm (resp. in Cm) and t ∈ R. Moreover,

(a) if L0 is semi-simple and γ, τ -homologically Diophantine, then for every
δ > 0 such that popt ≥ 2, the remainder Rpopt satisfies

sup
‖Y ‖+‖µ‖≤δ

‖Rpopt(Y, µ)‖ ≤ Mτδ
2e−

w

δb (12)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb

and

Mτ =
10

9
c‖|Q‖| ‖|Q−1‖| C2






m

√
27

8e




1+τ

+ (2e)2+2τ





where

C =

√
m

ρ2

{(
5

2
m+ 2

)
ac‖|Q‖|2 ‖|Q−1‖|2 + 3ρ‖|Q‖| ‖|Q−1‖|

}
,

and m = sup
p∈N

e2 p!

pp+ 1
2 e−p

, a = γ−1;

(b) if L0 is semi-simple and γ,K-homologically without small divisors, then
for every δ > 0 such that K ≥ popt ≥ 2 then the remainder Rpopt satisfies
(12) with τ = 0, i.e. b = 1;
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(c) for J = 02 0 · · ·0︸ ︷︷ ︸
q times

and J = 03 0 · · ·0︸ ︷︷ ︸
q times

, estimate (12) still holds with τ = 0,

i.e b = 1, and with a = 1.

The proof of this theorem is given in section 3.

Remark 1.11 In the non semi-simple case, we get the exponential smallness
of the remainder only in two special nilpotent cases. For the other cases the
problem remains open. Nevertheless, in [14], we study analytic reversible fami-
lies of vector fields V (X,µ) in R4 admitting a 02iω resonance ( i.e.DXV (X, 0) =
02iω|

R
) and we show how the above theorem can be used to get an exponen-

tially small upper bound of the remainder of the form

sup
Y ∈B(µ)

‖Rpopt(Y, µ)‖ ≤ Mτe
− w√

|µ| (13)

where B(µ) is some appropriate neighborhood of the origin of size of order
|µ|. We then deduce from (13), the existence of homoclinic connections to
exponentially small periodic orbits.

2 Exponential estimates for unperturbed vector fields

This section is devoted to the proof of Theorem 1.4. We first recall in few
words the proof of Theorem 1.1.

2.1 Normalization and Homological equations

Let V be an analytic vector field in a neighborhood of 0 in Rm (resp. in Cm)
such that V (0) = 0, i.e. a vector field satisfying (5) and (6). Let H be the
space of the polynomial Φ : R

m 7→ R
m (resp. C

m 7→ C
m) and let Hk be the

space of the homogeneous ones of degree k. We are interested in polynomial
changes of variables, of the form X = Y + Qp(Y ) with

Qp(Y ) =
∑

2≤k≤p

Φk(Y ), Φk ∈ Hk

such that by the change of variable, equation (1) becomes of the form (2) with

Np(Y ) =
∑

2≤k≤p

Nk(Y ), Nk ∈ Hk,

10



where Np is as simple as possible. A basic identification of powers of Y leads
to

{Id +
∑

2≤k≤p
DΦk(Y )}{LY +

∑
2≤k≤p

Nk(Y ) + Rp(Y )}

= L{ ∑
1≤k≤p

Φk(Y )} +
∑
q≥2

Vq

[
{ ∑

1≤k≤p
Φk(Y )}(q)

]
.

(14)

where Φ1(Y ) = Y . This leads to the following hierarchy of homological equa-
tions in Hn for 2 ≤ n ≤ p,

A
L
Φn +Nn = Fn, (15)

with

Fn = −
∑

2≤k≤n−1

DΦk.Nn−k+1 +
∑

2≤q≤n

∑

p1+···+pq=n

Vq[Φp1, · · · ,Φpq ], (16)

where A
L

is the homological operator given by

(A
L
Φ)(Y ) = DΦ(Y ).LY − LΦ(Y ).

In (16), by convention, the sums corresponding to an empty index set are equal
to 0. Observe that A

L
induces on each Hn a linear endomorphism denoted by

A
L
|
Hn

: Hn → Hn. Generally A
L
|
Hn

is not invertible. So when Fn lies in the
range ran(A

L
|
Hn

) of A
L
|
Hn

, one can take Nn = 0 and for Φn any preimage of
Fn. When Fn does not lie in ran(A

L
|
Hn

), one has to chooseNn in an appropriate
supplementary space of ran(A

L
|
Hn

) so that Fn −Nn belongs to ran(A
L
|
Hn

).

The key idea of the proof of Theorem 1.1 contained in [13] is to introduce an
appropriate inner product on H such that the adjoint A∗

L
of A

L
is given by

A
L∗ . Hence,

Hn = kerA
L
|
Hn

⊥⊕ ranA
L∗ |Hn

, Hn = ranA
L
|
Hn

⊥⊕ kerA
L∗ |Hn

.

Then for solving (15), we use the orthogonal projection πn on kerA
L∗ |Hn

for

obtaining Nn and the pseudo-inverse Ã
L
|−1
Hn

of A
L
|
Hn

defined in (kerA
L∗ )

⊥ =

ranA
L
|
Hn

taking values in (kerA
L
|
Hn

)⊥ for Φn, i.e.

Nn = πn(Fn) and Φn = Ã
L
|−1
Hn

((Id − πn)(Fn)). (17)

This completes the proof of theorem 1.1 and ensures that Nn belongs to
kerA

L∗ |Hn
and thus that Np lies in kerA

L∗ := {N /DN (Y )L∗Y − L∗N (Y ) =
0}.

To conclude this subsection, the appropriate inner product in H introduced
in [13] is given by

〈Φ|Φ′〉
H

=
m∑

j=1

〈
Φj |Φ′

j

〉

11



with Φ = (Φ1, · · · ,Φm), Φ′ = (Φ′
1, · · · ,Φ′

m), where for any pair of polynomial
P, P ′ : Rm → R (resp. Cm → C) ,

〈P |P ′〉 = P (∂Y )P ′(Y )|
Y =0

.

where by definition P (Y ) := P
(
Y
)
. E.g, for all positive integers α1, · · · , αm,

β1, · · · , βm

〈
Y α1

1 . · · · .Y αm

m |Y β1
1 . · · · .Y βm

m

〉
= α1!. · · · .αm! δα1,β1. · · · .δαm,βm

where δα,β = 1 if α = β, and 0 otherwise. It what follows we norm Hn with

the associated euclidian norm |Φ|
2

:=
√
〈Φ|Φ〉

H

2.2 Exponential upper bounds for the remainder: main results

2.2.1 Main result.

We want to give an estimate on Rp(Y ) depending on p and on the size of the
ball where Y lies. Given the size of this ball, the aim is to optimize the degree
p of the normal form, and show that Rp(Y ) can be made exponentially small
with respect to δ. For unperturbed vector fields, all follows from the following
proposition which ensures that the exponentially estimates of the remainder
follows from the estimates of the growth with respect to k of the euclidian
norm of the pseudo inverse of A

L
|
Hk

.

Remark 2.1 A priori the pseudo inverse of the homological operator Ã
L
|−1
Hk

is only defined from (kerA
L∗ )

⊥ = ranA
L
|
Hk

onto (kerA
L
|
Hk

)⊥. From now on,
we extend it on the whole space Hk as follows

A
L
|
Hk
Ã

L
|−1
Hk

Φ = Φ for Φ ∈ (kerA
L∗ )

⊥, Ã
L
|−1
Hk

Φ = 0, for Φ ∈ kerA
L∗ .

Proposition 2.2 (Exponential estimates of the remainder) Let V be
an analytic vector field in a neighborhood of 0 in Rm (resp. in Cm) such that
V (0) = 0, i.e. a vector field satisfying (5) and (6). Denote

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
= sup

|Φ|
2
=1

∣∣∣Ã
L
|−1
Hk
.Φ
∣∣∣
2
.

Then, if there exits K ≥ 2, a ≥ 0 and τ ≥ 0 such that ak(L) ≤ akτ for every
k with 2 ≤ k ≤ K ≤ +∞, then for every δ > 0 such that K ≥ popt ≥ 2 the
remainder Rp given by the Normal Form Theorem 1.1 for p = popt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤M δ2e−
w
δb

12



with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb
, M = 10

9
cC2

{(
m
√

27
8e

)1+τ

+ (2e)2+2τ

}

where C =
√

m

ρ2

{(
5
2
m+ 2

)
ac+ 3ρ

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

and where for a real

number x, we denote by [x] its integer part.

Remark 2.3 Stirling’s formula ensures that m is finite.

The proof of this proposition is performed in two main steps. We first prove
that roughly speaking, Rp admits an upper bound of the form

sup
‖Y ‖≤δ

‖Rp(Y )‖ ≤M(Cδ)p+1(p!)1+τ .

where M depends on τ but not on δ nor p. Then we optimize p (see Lemma
2.19), so that (Cδ)p+1(p!)τ+1 is exponentially small for p = popt. In fact, the
upper bound for Rp is a little bit more complicated (see Lemma 2.17) and we

obtain it only for (Cδ)
1

1+τ p ≤ e−1, which is just enough to obtain the desired
exponentially small upper bound of the remainder. The detailed proof of this
proposition is postponed to subsection 2.3.

Remark 2.4 The euclidian norms ak(L) of the homological operator are in-
variant under unitary changes of coordinates. Indeed, if Q is a unitary linear
operator, let us denote L′ = Q−1LQ and ak(L

′) = ‖|Ã
L′ |−1

Hk
‖|

2
. Then, since

A
L′ |Hk

= T
Q
A

L
|
Hk
T −1

Q
where (T

Q
Φ)(Y ) = Q−1Φ(QY ) and since T

Q
is unitary

when Q is unitary (see Appendix A.3), we get that ak(L
′) = ak(L) for every

k ≥ 1.

2.2.2 The semi-simple case: proof of Theorem 1.4-(a)

Theorem 1.4-(a) directly follows from proposition 2.2 and from the following
lemma

Lemma 2.5 Let L be a linear operator in R
m or C

m.

(a) Denote by σ(L) := {λ1, · · · , λm} the spectrum of L. Then, for every k ≥ 2
the spectrum σ(A

L
|
Hk

) of A
L
|
Hk

is given by

σ(A
L
|
Hk

) := {Λj,α := 〈λL, α〉 − λj , 1 ≤ j ≤ m, α ∈ N
m, |α| = k}. (18)

Moreover, A
L
|
Hk

is semi simple if an only if L is so.

13



(b) If L is semi-simple and is under real or complex Jordan normal form,
then for every k ≥ 2,

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ max

1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−1.

Remark 2.6 When L is semi simple, under Jordan normal form, and γ,K-
homologically without small divisors, the above lemma ensures that ak(L) ≤
γ−1 for 2 ≤ k ≤ K and if L is γ, τ -homologically Diophantine, then ak(L) ≤
γ−1 kτ for k ≥ 2.

Proof of Lemma 2.5. (a): Although this result is classical (see [7]), we
give its short proof for self-containedness of the paper. Let Q be an invertible
matrix such that J = Q−1LQ is under complex Jordan normal form and
observe that A

L
|
Hk

= T −1
Q

A
J
|
Hk
T

Q
where (T

Q
Φ)(Y ) = Q−1Φ(QY ). Hence the

spectrum of A
L
|
Hk

is equal to the spectrum of A
J
|
Hk

. Let {cj}1≤j≤m
be the

canonical basis of Cm. Then, since J is under Jordan normal form, we have
Jcj = λjcj + δj−1cj−1 with δ0 = 0 and where δj−1 = 0 if λj 6= λj−1 and
δj−1 = 0 or 1 otherwise. Let {Pj,α}1≤j≤m,α∈Nm,|α|=k

be the basis of Hk given by

Pj,α(Y ) := Y α1
1 . · · · .Y αm

m cj

we order this basis with the lexicographical order, i.e. Pj,α < Pℓ,β if the first
non zero integer ℓ− j, β1 −α1. · · · .βm −αm is positive. Within this order, A

J

is upper triangular and

A
J
Pj,α = (〈λL, α〉 − λj)Pj,α +

m∑

ℓ=1

αℓδℓPj,α−σℓ+σℓ+1
− δj−1Pj−1,α (19)

with σℓ = (0, · · · , 0, 1, · · · , 0) where the coefficient 1 is at the ℓ-th position.
Hence the spectrum of A

J
|
Hk

and thus the spectrum of A
L
|
Hk

is given by (18).
Formula (19) also ensures that A

J
is semi simple if and only if J is so.

(b) : We proceed in two steps.

Step 1. First assume that L is semi-simple and is under complex Jordan
normal form i.e. assume that L = J is diagonal. Then δj = 0 for 1 ≤ j ≤ m.
Thus, by (19), A

L
|
Hk

is also semi simple and {Pj,α}1≤j≤m,α∈Nm,|α|=k
is a basis of

eigenvectors of A
L
|
Hk

. For Φ ∈ Hk, let us denote

Φ = Φ̂ +
∨

Φ,
∨

Φ = πkΦ ∈ ker(A
L∗ |Hk

), Φ̂ =
∑

1≤j≤m,|α|=k

Λj,α 6=0

Φ̂j,αPj,α ∈ ran(A
L
|
Hk

),

14



and M = max
1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−1. Then since Ã
L
|−1
Hk

∨

Φ = 0 and 〈Pj,α|Pℓ,β〉
H

= 0 for

(j, α) 6= (ℓ, β) we have

∣∣∣Ã
L
|−1
Hk

Φ
∣∣∣
2

2
=

∑

1≤j≤m,|α|=k

Λj,α 6=0

|Λj,α|−2 |Φ̂j,α|2 |Pj,α|2
2
,

≤ M2
∑

1≤j≤m,|α|=k

Λj,α 6=0

|Φ̂j,α|2 |Pj,α|2
2
,

= M2
∣∣∣Φ̂
∣∣∣
2

2
.

Finally, since 〈 ∨

Φ|Φ̂〉H = 0,

∣∣∣Ã
L
|−1
Hk

Φ
∣∣∣
2
≤ M |Φ|

2
. (20)

Step 2. If L is real semi simple and is under real Jordan normal form then it
is conjugated to its complex Jordan normal form by a unitary matrix since




x + iy 0

0 x − iy


 = Q−1




x −y

y x


Q, with Q =




1√
2

1√
2

1
i
√

2
−1
i
√

2


 .

Then, remark 2.4 and the previous step ensures that (20) still holds when L
is real, semi simple and under real Jordan normal form. 2

2.2.3 The non semi-simple case: proof of Theorem 1.4-(b)

Theorem 1.4-(b) directly follows from proposition 2.2 and from the following
lemma

Lemma 2.7 For L = 02 0 · · ·0︸ ︷︷ ︸
q times

, L = 03 0 · · ·0︸ ︷︷ ︸
q times

, ak(L) satisfies

ak(L) ≤ a, for every k ≥ 1

with a = 1.

The detailed proof of this lemma is postponed to subsection 2.4. (see Lemmas
2.22 and 2.24). For non semi-simple operators L the direct computation of
the norm of Ã

L
|−1
Hk

is in general quite intricate. So, in subsection 2.4, the

computation of ak(L) for L = 0j 0 · · ·0︸ ︷︷ ︸
q times

, j = 2, 3 is performed via the following

lemma which gives this norm in terms of the spectrum of the self adjoint
operator (A

L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

which appears easier to handle.
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Lemma 2.8 For every linear operator L in Rm or Cm and every k ≥ 1, let
us denote by Σk(L) ⊂ R+ the spectrum of the positive self adjoint operator
(A

L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

. Then,

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
=

(
min

σ∈Σk(L)\{0}
|σ|
)− 1

2

.

Proof. Observe that

ak = sup
Φ∈Hk\{0}

∣∣∣ÃL
|−1
Hk

Φ

∣∣∣
2

|Φ|
2

= sup
Ψ∈(kerA

L
|
Hk

)⊥

|Ψ|
2∣∣∣AL

|
Hk

Ψ

∣∣∣
2

=


 inf

Ψ∈(kerA
L
|
Hk

)⊥

〈
A

L∗ |Hk
A

L
|
Hk

Ψ|Ψ
〉

|Ψ|2
2




− 1
2

.

Then, since kerA
L
|
Hk

= kerA
L∗ |Hk

A
L
|
Hk

and since A
L∗ |Hk

A
L
|
Hk

is a positive

self adjoint operator, we get ak(L) :=
(

min
σ∈Σk(L)\{0}

|σ|
)− 1

2

.

2

Remark 2.9 For L = 02iω|
Ror C

, the above strategy leads to an estimate of
ak(L) of the form

ak(L) ≤ a(Ck)k−1

which is far too large to get an exponential estimate of the remainder. So, at
the present time, we do not know whether an estimate of the form (7) is still
true for L = 02iω|

Ror C
.

2.3 Exponentially small estimates of the remainder for polynomially bounded
pseudo inverse of the homological operator.

This subsection is devoted to the proof of proposition 2.2. To fix the notations
we make the proof for vector fields in R

m. The proof is the same for C
m. So, let

V be an analytic vector field in a neighborhood of 0 in Rm such that V (0) = 0,
i.e. a vector field satisfying (5) and (6). We assume that the pseudo inverse
of the homological operator is polynomially bounded on Hk for 2 ≤ k ≤ K ≤
+∞, i.e we assume that there exists a > 0 and τ ≥ 0 such that

ak =
∣∣∣Ã

L
|−1
Hk
.Φ
∣∣∣
2
≤ akτ for 2 ≤ k ≤ K.

Our aim is to find an exponential upper bound of the remainder Rp(Y ) for
Y in a ball of radius δ. Since the remainder Rp(Y ) is given by equation (14),
for estimating it, we successively compute upper bounds for Φn(Y ), Nn(Y ),
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∑
2≤k≤p

DΦk(Y ),
∑

1≤k≤p
Φk(Y ) and finally for Rp(Y ). For the polynomials Nn and

Φn the natural norm to finally compute an upper bound of sup
‖Y ‖≤δ

‖Rp(Y )‖ is

the ”sup-norm” defined for any Φ ∈ Hn by

|Φ|
0,n

= sup
Y ∈Cm

‖Φ(Y )‖
‖Y ‖n

.

However, Nn and Φn are the solutions of the Homological Equation (15) given
by (17), i.e. defined via the orthogonal projector πn which has nice properties
for the euclidian norm and not for the sup norm. These two norm can be
compared has follows :

Lemma 2.10 (Comparison of the euclidian and the sup norm)

For every Φ ∈ Hk,

|Φ|
0,k

≤ 1√
k!

|Φ|
2
≤
√
Cm−1

k+m−1 |Φ|
0,k

≤ √
m k

m−1
2 |Φ|

0,k
.

where Cr
n =

n!

r!(n− r)!
.

The proof of this Lemma is given in Appendix A (see Lemmas A.3 and A.5).
Moreover if we normalize the euclidian norm on Hn by defining

|Φ|
2,n

:=
1√
n!

|Φ|
2
, for every Φ ∈ Hn,

then the normalized euclidian norm has very nice properties with respect to
multiplication and derivation :

Lemma 2.11 (Multiplicativity of the normalized euclidian norm)

(a) Let q and {pℓ}1≤ℓ≤q be positive integers and let Rq ∈ Lq(R
m) be q-linear.

Then for every Φpℓ
∈ Hpℓ

, 1 ≤ ℓ ≤ q, the polynomial Rq[Φp1 , · · · ,Φpq ]
lies in Hn with n = p1 + · · ·+ pq and

∣∣∣Rq[Φp1, · · · ,Φpq ]
∣∣∣
2,n

≤ ‖|Rq‖|Lq(Rm)
|Φp1 |2,p1

· · ·
∣∣∣Φpq

∣∣∣
2,pq

.

(b) Let k > 0 and p ≥ 0 be two integers and let Φk, Np lie respectively in Hk

and Hp. Then DΦk.Np lies in Hn with n = k − 1 + p and

|DΦk.Np|
2,n

≤
√
k2 + (m− 1)k |Φk|

2,k
|Np|

2,p

This Lemma is also proved in Appendix A (see lemmas A.8 and A.9).
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Hence to compute by induction upper bounds of Φn, Nn defined via πn, we
use the normalized euclidian norms

νn = |Nn|
2,n
, for n ≥ 2,

φn = |Φn|
2,n
, for n ≥ 1,

with the convention Φ1(Y ) = Y and thus φ1 = |Y |
2,1

=
√
m. Lemma 2.10

ensures that the same upper bounds will also hold for the sup norms of Nn,Φn.
Since πn is orthogonal, we deduce from (17) that

νn = |Nn|
2,n

= |πn(Fn)|
2,n

= 1√
n!
|πn(Fn)|

2
≤ 1√

n!
|Fn|

2
= |Fn|

2,n

and similarly
φn ≤ ‖|Ã

L
|−1
Hn

‖|
2
|Fn|

2,n
≤ anτ |Fn|

2,n
.

Hence using the multipicativity and the derivation properties of the normalized
euclidian norms, we get that

νn ≤
∑

2≤k≤n−1

(
k2 + (m− 1)k

) 1
2 φkνn−k+1 +

∑

2≤q≤n

∑

p1+···+pq=n

c
φp1 · · ·φpq

ρq
, (21)

φn ≤anτ
∑

2≤k≤n−1

(
k2+(m−1)k

) 1
2 φkνn−k+1+an

τ
∑

2≤q≤n

∑

p1+···+pq=n

c
φp1 · · ·φpq

ρq
(22)

for 2 ≤ n ≤ K with the convention φ1 = |Φ1|
2,1

= |Y |
2,1

=
√
m. Hence using

that (k2 + (m− 1)k)
1
2 ≤ √

mk, we check by induction that

Lemma 2.12 Let {βn}n≥1 be the sequence defined by induction

βn = m
∑

2≤k≤n−1

kβkβn−k+1 +
∑

2≤q≤n

∑

p1+···+pq=n

(
ρ

ac

)q−2

βp1 · · ·βpq , n ≥ 2, (23)

β1 = 1.

Then we have the estimates

νn ≤
√
m

a

(
ac
√
m

ρ2

)n−1 (
(n− 1)!

)τ
βn, for 2 ≤ n ≤ K, (24)

φn ≤ √
m

(
ac
√
m

ρ2

)n−1

(n!)τβn, for 1 ≤ n ≤ K. (25)

Proof. We proceed by induction. For n = 1, the above inequality is true since
φ1 =

√
m. For n = 2, equation (23) ensures that β2 = 1 and (21), (22) ensure

that ν2 ≤ cmρ−2 and φ2 ≤ acm2τρ−2, and thus (25), (24) are true for n = 2.
Assume now that (24), (25) holds for k < n with n ≥ 3. Then (21) ensures
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that

νn ≤
√
m

a

(
ac
√
m

ρ2

)n−1 (
(n− 1)!

)τ


m

∑

2≤k≤n−1

kβkβn−k+1 (D′
n,k)

τ

+
∑

2≤q≤n

∑

p1+···+pq=n

(
ρ

ac

)q−2

βp1 · · ·βpq(Dn,p1,··· ,pq)
τ




where

D′
n,k =

k!(n− k)!

(n− 1)!
and Dn,p1,··· ,pq =

p1! · · ·pq!

(n− 1)!
.

It remains to prove that D′
n,k ≤ 1 for 2 ≤ k ≤ n − 1 and that Dn,p1,··· ,pq ≤ 1

for 2 ≤ q ≤ n, p1 + · · ·+ pq = n, pj ≥ 1, to ensures that (24) holds for n and
similarly that (25) holds also for n.

Denoting Ck
n = n!

k!(n−k)!
and observing that Ck

n ≥ n for 1 ≤ k ≤ n− 1, we get

D′
n,k =

n

Ck
n

≤ 1.

Finally to prove that Dn,p1,··· ,pq ≤ 1 we proceed by induction on q. For q = 2,
we have

Dn,p1,p2 =
p1!(n− p1)!

(n− 1)!
= D′

n,p1
≤ 1

since 1 ≤ p1 ≤ n − 1. Assume now that Dn,p1,··· ,pq ≤ 1 for q ≥ 2 and every
n ≥ q, then

Dn,p1,··· ,pq+1 = Dp1+···+pq,p1,··· ,pq (p1 + · · ·+ pq − 1)!
pq+1!

(n− 1)!
,

= Dp1+···+pq,p1,··· ,pq

1

C
pq+1

n−1

≤ 1,

since for every r ∈ N and j with 0 ≤ j ≤ r, we have Cj
r ≥ 1. This completes

the proof of Lemma 2.12. 2

The study of the sequence {βn}n≥1 enables to obtain Gevrey estimates for
φn, νn.

Lemma 2.13 In choosing α1 = 1 and

αn = Θn−2(n− 2)!, for n ≥ 2,

and Θ large enough such that
acΘ > ρ, (26)

and
5
2
m+ 2

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ 1, (27)
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then βn in (23) satisfies βn ≤ αn for n ≥ 1 and thus

φn ≤ acm

ρ2

(
ac
√
m Θ

ρ2

)n−2

(n!)τ (n− 2)!, for 2 ≤ n ≤ K, and φ1 =
√
m,

νn ≤ cm

ρ2

(
ac
√
m Θ

ρ2

)n−2 (
(n− 1)!

)τ
(n− 2)!, for 2 ≤ n ≤ K.

Proof. We proceed by induction. We have β1 = 1 = α1 ≤ α1 and β2 = 1 =
α2 ≤ α2. Assume now that βk ≤ αk for k < n and n ≥ 3.

Step 1. Splitting of the bounds. Then by induction hypothesis,

βn ≤ ∆1
n + ∆2

n (28)

with

∆1
n = m

∑

2≤k≤n−1

k αk αn−k+1 +
∑

1≤k≤n−1

αk αn−k,

∆2
n =

∑

3≤q≤n

∑

p1+...+pq=n

(
ρ

ac

)q−2

αp1 .....αpq .

Step 2. Two auxiliary sums for ∆1
n
.

Step 2.1 Upper bound for Sn. Let us we define

Sn =
∑

2≤k≤n−1

k(k − 2)!(n− k − 1)!

(n− 2)!
.

Explicit computations show that S3 = 2, S4 = S5 = 5
2
. Hence, Sn ≤ 5/2 for

3 ≤ n ≤ 5. To prove that it also holds for n ≥ 5, observe that for n ≥ 5,

Sn+1 − Sn =
∑

2≤k≤n

k(k − 2)!(n− k)!

(n− 1)!
−

∑

2≤k≤n−1

k(k − 2)!(n− k − 1)!

(n− 2)!
,

=
∑

3≤k≤n−2

k(k−2)!

(
(n− k)!

(n− 1)!
−(n− k − 1)!

(n− 2)!

)
+
n+ 2

n− 1
+

1

n− 2
−n + 1

n− 2
,

=
∑

3≤k≤n−2

k(k−2)!

(
1

(n−1)...(n−k+1)
− 1

(n−2)...(n−k)

)
+

n−4

(n−1)(n−2)
,

= −
∑

3≤k≤n−2

k!

(n− 1)...(n− k)
+

n− 4

(n− 1)(n− 2)
,

= −
∑

3≤k≤n−3

k!

(n− 1)...(n− k)
− (n− 2)!

(n− 1)!
+

n− 4

(n− 1)(n− 2)
,

= −
∑

3≤k≤n−3

k!

(n− 1)...(n− k)
− 2

(n− 1)(n− 2)
≤ 0
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where, here again, by convention, the sums corresponding to an empty index
set are equal to 0.

Hence Sn+1 ≤ Sn for n ≥ 5, and we can conclude

Sn ≤ 5/2, for n ≥ 3. (29)

Step 2.2 Upper bound for Pn. We now define

Pn =
∑

2≤k≤n−2

(k − 2)!(n− k − 2)!

(n− 2)!
.

Observe that P4 = 1
2

and that for n ≥ 4,

Pn+1 − Pn =
∑

2≤k≤n−1

(k − 2)!(n− k − 1)!

(n− 1)!
−

∑

2≤k≤n−2

k(k − 2)!(n− k − 2)!

(n− 2)!
,

=
∑

2≤k≤n−2

(k−2)!

(
1

(n−1)...(n−k)−
1

(n−2)...(n−k−1)

)
+

1

(n−1)(n−2)
,

= −
∑

2≤k≤n−2

k(k − 2)!

(n− 1)...(n− k − 1)
+

1

(n− 1)(n− 2)
,

= −
∑

2≤k≤n−3

k(k − 2)!

(n− 1)...(n− k − 1)
− (n−2)(n−4)!

(n− 1)!
+

1

(n−1)(n−2)
,

= −
∑

2≤k≤n−3

k(k − 2)!

(n− 1)...(n− k − 1)
− 1

(n− 1)(n− 2)(n− 3)
≤ 0.

Hence, Pn+1 ≤ Pn, for n ≥ 4 and we can conclude

Pn ≤ 1/2, for n ≥ 4. (30)

Step 3. Upper bound for ∆1
n
. It results from (29) and (30) that for Θ ≥ 1,

∆1
n ≤

5
2
m+ 2

Θ
αn, n ≥ 3, (31)

where the proof of this inequality is direct for n = 3.

Step 4. Auxiliary sums for ∆2
n
. Now, we define for n ≥ q ≥ 2 :

Πq,n =
∑

p1+...+pq=n

αp1 .....αpq ,
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then we already have

Πn,n = 1 ≤ 1

Θn−2
αn, n ≥ 3,

Π2,2 = 1,

Π2,n ≤ 2

Θ
αn, n ≥ 3,

where the last inequality comes easily from the inequality for Pn. For estimat-
ing Πq,n with n ≥ q + 1, we proceed as follows

Πq,n =
∑

1≤k≤n−q+1

αkΠq−1,n−k = Πq−1,n−1 + αn−q+1 +
∑

2≤k≤n−q

αkΠq−1,n−k

and prove by induction that

Πq,n ≤ 2

Θq−1
αn, n ≥ q + 1 ≥ 3.

Finally, gathering all our results, we get

Πq,n ≤ 2

Θq−2
αn, n ≥ q ≥ 3, (32)

Step 5. Upper bound for ∆2
n
. We deduce from (32) that

∆n
2 =

∑

3≤q≤n

(
ρ

ac

)q−2

Πq,n ≤
∑

3≤q≤n

2
(

ρ

acΘ

)q−2

αn ≤ αn

{
2 ρ

acΘ

1 − ρ

acΘ

}
, (33)

provided that ρ

acΘ
< 1.

Step 6. Upper bound for βn. Hence, (31) and (33) ensure that

βn ≤
{

5
2
m+ 2

Θ
+

2 ρ
acΘ

1 − ρ

acΘ

}
αn ≤ αn

provided that
ρ

acΘ
< 1 and (5

2
m+ 2)

1

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ 1.

2

In all what follows we choose

Θ =
5

2
m+ 2 +

3ρ

ac
(34)
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which ensures that (26) and (27) are simultaneously satisfied since with this
choice

ρ

acΘ
<

1

3
, and (

5

2
m+ 2)

1

Θ
+

2 ρ
acΘ

1 − ρ
acΘ

≤ (5
2
m+ 2) 1

Θ

1 − ρ
acΘ

+
2 ρ

acΘ

1 − ρ
acΘ

= 1.

We can now compute an upper bound for the change of coordinates and for
its differential.

Lemma 2.14 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp1+τ ≤ ρ2

2ac
√
m Θ

. (35)

we have

‖
∑

1≤k≤p

Φk(Y )‖ ≤ 10

9

√
m δ, (36)

‖|
∑

2≤k≤p

DΦk(Y )‖|L(Rm)
≤ 2/5. (37)

for every Y ∈ Rm with ||Y || ≤ δ.

Remark 2.15 Observe that the size δ of the ball where Y lies and the degree
p of the normal form, i.e. the degree of the polynomial change of variable are
now mutually constrained by (35).

Proof. We proceed in three steps.

Step 1. Upper bound for ‖
∑

1≤k≤p

Φk(Y )‖. Lemmas 2.10, 2.13 ensure that

‖
∑

1≤k≤p

Φk(Y )‖ ≤
∑

1≤k≤p

|Φk|
0,k

‖Y ‖k,

≤
∑

1≤k≤p

|Φk|
2,k

‖Y ‖k,

≤
∑

1≤k≤p

φkδ
k,

≤ δ
√
m +

∑

2≤k≤p

acm δ2

ρ2

(
ac
√
mΘ δ

ρ2

)k−2

(k!)τ (k − 2)!

≤ δ
√
m



1 +

1

Θ

∑

2≤k≤p

(
1

2p1+τ

)k−1

(k!)τ (k − 2)!



 ,

≤ δ
√
m



1 +

1

Θ p

∑

2≤k≤p

(
1

2

)k−1


 ,
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since for 2 ≤ k ≤ p,

(k − 2)!

pk−1
≤ 1

p
, and

k!

pk−1
=

2

p
. · · · .k

p
≤ 1. (38)

Hence,

‖
∑

1≤k≤p

Φk(Y )‖ ≤ δ
√
m

{
1 +

1

pΘ

}
≤ 10

9

√
m δ,

since Θ ≥ 5
2
m+ 2 ≥ 9

2
and p ≥ 2.

Step 2. Upper bound for ‖|DΦk(Y )‖|
L(Rm)

. For Y, Z ∈ Rm seeing Z as

an homogeneous polynomial of degree 0, Lemmas 2.10, 2.11 ensure that

‖DΦk(Y ).Z‖
‖Y ‖k−1

≤ |DΦk(Y ).Z|
0,k
,

≤ |DΦk(Y ).Z|
2,k
,

≤
√
k2 + (m− 1)k |Φk|

2,k
|Z|

2,0
,

=
√
k2 + (m− 1)k φk ‖Z‖.

Hence using that
√
k2 + (m− 1)k ≤ √

mk we obtain

‖|DΦk(Y )‖|L(Rm)
≤ √

mkφk‖Y ‖k−1.

Step 3. Upper bound for ‖|
∑

2≤k≤p

DΦk(Y )‖|
L(Rm)

. Lemma 2.13, the pre-

vious step and estimate (38) ensure that for ‖Y ‖ ≤ δ, with δ, p satisfying (35)
we have

‖|
∑

2≤k≤p

DΦk(Y )‖|L(Rm)
≤ m

Θ

∑

2≤k≤p

(
ac
√
mΘδ

ρ2

)k−1

k (k!)τ (k − 2)!,

≤ m

Θ

∑

2≤k≤p

(
1

2p1+τ

)k−1

k (k!)τ (k − 2)!,

≤ m

Θ

∑

2≤k≤p

(
1

2

)k−1

,

≤ m

Θ
,

≤ 2

5
,

since Θ ≥ 5
2
m. 2
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We have now enough material to compute an upper bound of the remainder.We
first prove

Lemma 2.16 For every δ > 0, every p, 2 ≤ p ≤ K satisfying (35) and for
every Y ∈ Rm with ‖Y ‖ ≤ δ, we have

‖Rp(Y )‖ ≤ 5

3

(
∆1

p + ∆2
p + ∆3

p

)
(39)

where

∆1
p =

∑

2≤k≤p
p+1≤n≤p+k−1

√
m kφkνn−k+1δ

n,

∆2
p =

∑

2≤q≤p
p+1≤n=p1+···+pq,

1≤pj≤p

cδn

ρq
φp1 · · ·φpq ,

∆3
p =

∑

p+1≤q

c

ρq
(
10

9

√
m δ)q.

(40)

Proof. The remainder Rp(Y ) is given by equation (14) where it gathers all
the terms of order larger than p. To bound it, we proceed in several steps.

Step 1. Explicit formula for the remainder Rp. Identifying the powers
of Y in (14), we get that the remainder Rp is explicitely given by

Lp Rp(Y ) = N1
p + N2

p + N3
p (41)

with

Lp = Id +
∑

2≤k≤p
DΦk(Y ),

N1
p(Y ) =

∑

2≤k≤p,2≤k′≤p
k−1+k′≥p+1

DΦk(Y ).Nk′(Y ),

N2
p(Y ) =

∑
2≤q≤p, 1≤pj≤p
p1+···+pq≥p+1

Vq

[
Φp1(Y ), · · · ,Φpq(Y )

]
,

N3
p(Y ) =

∑
q≥p+1

Vq

[
{ ∑

1≤k≤p
Φk(Y )}(q)

]
.

Step 2. Upper bound for ‖|L−1
p ‖|

L(Rm)
. Since lemma 2.14 ensures that

‖|
∑

2≤k≤p

DΦk(Y )‖|L(Rm)
≤ 2/5 < 1
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we get that Lp is invertible and for every δ > 0, every Y ∈ Rm with ||Y || ≤ δ
and every p, 2 ≤ p ≤ K satisfying (35),

‖|L−1
p ‖|L(Rm)

≤ 1

1 − 2
5

=
5

3
. (42)

Step 3. Upper bound for ‖N
1
p
(Y )‖. Setting n = k − 1 + k′ in the sum

defining N1
p(Y ) we obtain

N1
p(Y ) =

∑

2≤k≤p,
p+1≤n≤p+k−1

DΦk(Y ).Nn−k+1(Y ).

Thus, using lemmas 2.10, 2.11 we get

‖N1
p(Y )‖ ≤ ∑

2≤k≤p,
p+1≤n≤p+k−1

‖DΦk(Y ).Nn−k+1(Y )‖,

≤ ∑
2≤k≤p,

p+1≤n≤p+k−1

|DΦk.Nn−k+1|
0,n

‖Y ‖n,

≤ ∑
2≤k≤p,

p+1≤n≤p+k−1

|DΦk.Nn−k+1|
2,n
δn,

≤ ∑
2≤k≤p,

p+1≤n≤p+k−1

√
k2 + (m− 1)k |Φk|

2,k
. |Nn−k+1|

2,n−k+1
δn.

Hence, for every δ > 0, every Y ∈ R
m with ||Y || ≤ δ and every p, 2 ≤ p ≤ K

satisfying (35),

‖N1
p(Y )‖ ≤

∑

2≤k≤p
p+1≤n≤p+k−1

√
m kφkνn−k+1δ

n. (43)

Step 4. Upper bound for ‖N
2
p
(Y )‖. Here again, using lemmas 2.10, 2.11

we obtain

‖N2
p(Y )‖ ≤ ∑

2≤q≤p, 1≤pj≤p
p1+···+pq≥p+1

‖Vq

[
Φp1(Y ), · · · ,Φpq(Y )

]
‖,

≤ ∑
2≤q≤p, 1≤pj≤p

p1+···+pq=n, n≥p+1

∣∣∣Vq

[
Φp1, · · · ,Φpq

]∣∣∣
0,n

‖Y ‖n,

≤ ∑
2≤q≤p, 1≤pj≤p

p1+···+pq=n, n≥p+1

∣∣∣Vq

[
Φp1, · · · ,Φpq

]∣∣∣
2,n
δn,

≤ ∑
2≤q≤p, 1≤pj≤p

p1+···+pq=n, n≥p+1

c

ρq
|Φp1 |2,n

. · · · .
∣∣∣Φpq

∣∣∣
2,n
δn.
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So, in conclusion, for every δ > 0, every Y ∈ Rm with ||Y || ≤ δ and every p,
2 ≤ p ≤ K satisfying (35),

‖N2
p(Y )‖ ≤

∑

2≤q≤p
p+1≤n=p1+···+pq,

1≤pj≤p

cδn

ρq
φp1 · · ·φpq . (44)

Step 5. Upper bound for ‖N
3
p
(Y )‖. First, observe that

‖N3
p(Y )‖ ≤

∑

q≥p+1

‖Vq

[
{
∑

1≤k≤p

Φk(Y )}(q)
]
‖ ≤

∑

q≥p+1

c

ρq
‖
∑

1≤k≤p

Φk(Y )‖q.

Then, using lemma 2.14, we get that for every δ > 0 and every p, 2 ≤ p ≤ K
satisfying (35),

‖N3
p(Y )‖ ≤

∑

p+1≤q

c

ρq
(
10

9

√
m δ)q. (45)

Finally, gathering (41), (43), (44), (45), we get the desired upper bound for
‖Rp(Y )‖.

2

Lemma 2.17 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp1+τ ≤ ρ2

e1+τac
√
m Θ

. (46)

we have

‖Rp(Y )‖ ≤ 10

9
c

(
(Cδ)p+1(p!)1+τ +

1

p2+2τ

(
1

e1+τ

)p+1
)

for every Y ∈ Rm with ||Y || ≤ δ where

C =
ac
√
mΘ

ρ2
=

√
m

ρ2

{(
5

2
m+ 2

)
ac+ 3ρ

}
.

Remark 2.18 Observe that the constraint (46) imposed on δ and p is slightly
stronger than the one (35) imposed in Lemma 2.14 since 1

e1+τ ≤ 1
2
. The con-

straint (46) has been chosen to get the optimal exponential decay rate for the

upper bound of Rp obtained by an optimal choice of popt =

[
1

e(Cδ)
1

1+τ

]
, i.e

δ(popt)
1+τ ≈ 1

e1+τ C
(for details see below lemmas 2.19 and 2.21).

27



Proof. Lemma 2.16, we get that for every δ > 0, every p, 2 ≤ p ≤ K satisfying
(35) and for every Y ∈ Rm with ‖Y ‖ ≤ δ,

3

5
‖Rp(Y )‖ ≤ ∆1

p + ∆2
p + ∆3

p

where ∆1,∆2,∆3 are given by (40). The sums ∆1
p and ∆3

p can be optimally
bounded with constraint (35) whereas for ∆2

p we use the stronger constraint
(46).

Step 1. Upper bound for ∆1
p
. Defining C = ac

√
m Θ

ρ2 and using lemma 2.13
we get

∆1
p ≤ m

5
2
ac2

ρ4

∑

2≤k≤p
p+1≤n≤p+k−1

(
ac
√
m Θ

ρ2

)n−3

δn k(k!)τ (k−2)!
(
(n−k)!

)τ
(n−k−1)!,

≤ mρ2

a2c Θ3

∑

2≤k≤p

k(k!)τ (k−2)!(Cδ)p+1
∑

p+1≤n≤p+k−1

(Cδ)n−p−1(n−k−1)!
(
(n−k)!

)τ
,

≤ mρ2

a2c Θ3

∑

2≤k≤p

k(k!)τ (k − 2)! (Cδ)p+1
∑

p+1≤n≤p+k−1

(
1
2

)n−p−1 (n−k−1)!
pn−p−1

(
(n−k)!
pn−p−1

)τ
,

since Cδ ≤ 1
(ep)1+τ ≤ 1

2 p1+τ (here we do not need the strongest constraint).
Then, observe that for p+ 1 ≤ n ≤ p + k − 1,

(n− k − 1)!

(p− 2)n−p−1
≤ (p− k)! and

(n− k)!

pn−p−1
≤ (p− k + 1)!.

Thus, we obtain

∆1
p ≤

mρ2

a2c Θ3

∑

2≤k≤p

k(k!)τ (k − 2)! (Cδ)p+1 2(p− k)!
(
(p− k + 1)!

)τ
,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

Ck
p (k − 1)

(
p+ 1

Ck
p+1

)τ

,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

Ck
p (k − 1)

,

≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ

∑

2≤k≤p

1

p− 1
.

Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35),

∆1
p ≤ 2mρ2

a2c Θ3
(Cδ)p+1(p!)1+τ (47)
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Step 2. Upper bound for ∆2
p
. Observing that αn ≤ (n− 2)! Θn−1 for any

n ≥ 1 where (−1)! = 0! = 1 and using Lemma 2.13 we get

∆2
p =

∑
2≤q≤p

∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

c(
√

m)q

ρq

(
ac

√
m

ρ2

)n−q
δn
(
(p1!)

ταp1

)
· · ·

(
(pq!)

ταpq

)
,

≤ ∑
2≤q≤p

∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

c(
√

m)q

ρq

(
ac

√
mΘ

ρ2

)n−q
δn (p1!)

τ (p1−2)! · · · (pq!)
τ (pq−2)!

≤ ∑
2≤q≤p

∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

c
(

ac
√

mδΘ
ρ2

)n (
ρ

acΘ

)q
(p1!)

τ (p1−2)! · · · (pq!)
τ (pq−2)!,

≤ c
∑

2≤q≤p
rq

∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

(Cδ)n (p1!)
τ (p1 − 2)! · · · (pq!)

τ (pq − 2)!,

since C = ac
√

m Θ
ρ2 and where r := ρ

acΘ
≤ 1

3
with our choice of Θ given by

(34). Moreover, for δ > 0 and p ≥ 2 satisfying (46) (here we use the stronger
constraint), i.e. for Cδ ≤ 1

(ep)1+τ , we obtain

∆2
p ≤ c

∑
2≤q≤p

rq ∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

(
1
ep

)n(1+τ)
(p1!)

τ (p1−2)! · · · (pq!)
τ (pq−2)!,

≤ c
(

1
e1+τ

)p+1∑
2≤q≤p

rq ∑
n≥p+1

∑
p1+···+pq=n

1≤pj≤p

(
1
p

)n(1+τ)
(p1!)

τ (p1−2)! · · · (pq!)
τ (pq−2)!.

Then, recalling that n ≤ pq, we get that

∆2
p ≤ c

(
1

e1+τ

)p+1 ∑

2≤q≤p

rq




p∑

j=1

(
1

p1+τ

)j

(j!)τ (j − 2)!




q

,

≤ c
(

1

e1+τ

)p+1 ∑

2≤q≤p

rq

(
1

p1+τ
+
p− 1

pτ+2

)q

,

≤ c
(

1

e1+τ

)p+1 ∑

2≤q≤p

(
2r

p1+τ

)q

,

≤ c
(

1

e1+τ

)p+1 4r2

p2+2τ

1

1 − 2r
p1+τ

,

since 2
p1+τ ≤ 1. Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (46),

∆2
p ≤ 4c

(
ρ

acΘ

)2 1

1 − ρ
acΘ

1

p2+2τ

(
1

e1+τ

)p+1

. (48)
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Step 3. Upper bound for ∆3
p
. Observing that with our choice of Θ given

by (34), for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35), we obtain

√
m δ

ρ
≤ ρ

2acΘp1+τ
≤ 1

12

and thus,

∆3
p = c

∑

p+1≤q

(
10

9

√
m δ

ρ

)q

≤ c

(
10

9

√
m δ

ρ

)p+1∑

q≥0

(
5

54

)q

.

Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35),

∆3
p ≤

54

49
c

(
10

9

√
m δ

ρ

)p+1

. (49)

Step 4. Upper bound for ‖Rp(Y )‖. Gathering the upper bounds for
∆1

p, ∆2
p, ∆3

p given by (47), (48), (49), that with our choice of Θ given by (34),

ρ

acΘ
≤ 1

3
,

m

Θ
≤ 2

5

we obtain that for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (46)

‖Rp(Y )‖ ≤ 5
3

(
∆1

p + ∆2
p + ∆3

p

)
,

≤ 4c
27

(Cδ)p+1(p!)1+τ + 10c
9

1

p2+2τ

(
1

e1+τ

)p+1

+ 90c
49

(
10
9

√
m δ

ρ

)p+1

,

≤
(

4
27

+ 90
49

(
10
27

)3
)
c (Cδ)p+1(p!)1+τ + 10c

9

1

p2+2τ

(
1

e1+τ

)p+1

since with our choice of Θ given by (34),

10
√
m

9ρ
=

10

9

ρ

acΘ
C ≤ 10

27
C.

Hence, since
(

4
27

+ 90
49

(
10
27

)3
)
≤ 10

9
, for every δ > 0 and every p, 2 ≤ p ≤ K

satisfying (46) we have

‖Rp(Y )‖ ≤ 10

9
c

(
(Cδ)p+1(p!)1+τ +

1

p2+2τ

(
1

e1+τ

)p+1
)

for every Y ∈ Rm with ||Y || ≤ δ. 2

The upper bound of the norm of the remainder ‖Rp(Y )‖ contains two terms.

The second one, 1
p2+2τ

(
1

e1+τ

)p+1
tends to 0 as p tends to infinity whereas the
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first one (Cδ)p+1(p!)1+τ tends to infinity. The key idea is to choose an optimal

p for which (Cδ)p+1(p!)1+τ =
(
(Cδ)

p+1
1+τ p!

)1+τ

is minimal and prove that this
minimal value is exponentially small with respect to δ. This results from the
following lemma :

Lemma 2.19 Choose ε > 0 and let us define fε(p) := εp+1p! for p ∈ N.
Moreover, for x ∈ R, denote by [x] its integer part.

Then, for popt :=
[

1
εe

]
, fε(popt) is exponentially small with respect to ε. Indeed,

fε

([
1

εe

])
≤ m

√
ε

e
e−

2
εe

where m = sup
p∈N

e2 p!

pp+ 1
2 e−p

.

Remark 2.20 Stirling’s formula ensure that m is finite.

Proof.

fε

([
1

εe

])
≤ mε

e2
exp

{([
1

εe

]
+

1

2

)
ln
[

1

εe

]
+
[

1

εe

]
ln
ε

e

}
,

≤ mε

e2
exp

{([
1

εe

]
+

1

2

)
ln

1

εe
+
[

1

εe

]
ln
ε

e

}
,

=
mε√
εe

exp
{
−2

([
1

εe

]
+ 1

)}
≤ m

√
ε

e
e−

2
εe .

2

Using this lemma we finally obtain the desired exponentially small upper
bound for Rp(Y ).

Lemma 2.21 If there exits K ≥ 2, a > 0 and τ ≥ 0 such that ak :=
‖|Ã

L
|−1
Hk
‖|

2
≤ akτ for every k with 2 ≤ k ≤ K, then for every δ > 0 such

that K ≥ popt ≥ 2, the remainder Rp given by the Normal Form Theorem 1.1
for p = popt satisfies

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤Mδ2 exp
(
− w

δb

)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb
, M = 10

9
cC2

{(
m
√

27
8e

)1+τ

+ (2e)2+2τ

}

where C =
√

m

ρ2

{(
5
2
m+ 2

)
ac+ 3ρ

}
and m = sup

p∈N

e2 p!

pp+ 1
2 e−p

.
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Proof. Let δ > 0 be such that popt =
[

1
e(Cδ)b

]
satisfies K ≥ popt ≥ 2. Observe

that condition (46) reads δbp ≤ 1
eCb and thus that popt satisfies it. Then since,

popt + 1 ≥ 1

e(Cδ)b
≥ popt ≥ 2 and

1

popt

≤ 2 e(Cδ)b

lemmas 2.17 and 2.19 with ε = (Cδ)b ensure that

sup
‖Y ‖≤δ

‖Rpopt(Y )‖ ≤ 10
9
c





(
m
√

(Cδ)b

e
e
− 2

e(Cδ)b

)1+τ

+
(
2e(Cδ)b

)2+2τ
e
− 1+τ

e(Cδ)b



 ,

≤ 10
9
c(e1+τCδ)2 e

− 1+τ
e(Cδ)b





(
m
e
(e(Cδ)b)−

3
2 e

− 1
e(Cδ)b

)1+τ

+41+τ



 ,

≤ 10
9
c(e1+τCδ)2 e

− 1+τ
e(Cδ)b

{(
m
e

√
27
8
e−

3
2

)1+τ

+ 41+τ

}
,

= 10
9
cC2

{(
m
√

27
8e

)1+τ

+ (2e)2+2τ

}
δ2 e

− 1+τ
e(Cδ)b ,

since x
3
2 e−x ≤

√
27
8
e−

3
2 for any x ≥ 0. 2

2.4 Computations of the norm of the pseudo inverse of the homological op-
erator for non semi simple-operators.

This subsection is devoted to the computation of the norm of Ã
L
|−1
Hk

for two

examples of non semi simple operator L. We begin with the 02 singularity.
In both cases, the computations of the norm of the pseudo inverse of the ho-
mological operator are performed via lemma 2.8. Hence, in all this subsection
we denote by Σk(L) ⊂ R+ the spectrum of the positive self adjoint operator
(A

L
|
Hk

)∗A
L
|
Hk

= A
L∗ |Hk

A
L
|
Hk

.

Lemma 2.22 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 02)

For L = 02 and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

Proof. We are in dimension 2, with Y = (x, y) and L =

(
0 1
0 0

)
. We intend

to give a lower bound of the non zero eigenvalues of A
L∗AL

in the subspace
Hk of homogeneous polynomials of degree k. We recall that

A
L
Φ(Y ) = DΦ(Y )LY − LΦ(Y ).
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Thus, denoting Φ = (φ1, φ2) in Hk, we have

A
L
Φ = (y

∂φ1

∂x
− φ2, y

∂φ2

∂x
) and kerA

L
= span{(yk, 0), (xyk−1, yk)}.

Now we look for the eigenvalues λ (λ ≥ 0) of A
L∗AL

in the subspace Hk. They
are given by

xy
∂2φ1

∂x∂y
+ x

∂φ1

∂x
− x

∂φ2

∂y
= λφ1,

xy
∂2φ2

∂x∂y
+ x

∂φ2

∂x
− y

∂φ1

∂x
+ φ2 = λφ2.

(50)

We check that

i) Φ = (0, xk) gives λ = k + 1;

ii) Φ = (yk, 0) gives λ = 0;

iii) Φ = (xαyβ, xα−1yβ+1) gives λ = (α− 1)(β + 1) with α+ β = k, α = 1, ...k;

iv) Φ = ((β + 1)xαyβ,−αxα−1yβ+1) gives λ = α(β + 2) with α + β = k,
α = 1, ...k.

These are the 2(k + 1) eigenvalues of the operator A∗A in the subspace
Hk, corresponding to a family of orthogonal eigenvectors. It is clear that

min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus,

ak := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

2

Lemma 2.23 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 02. 0 · · ·0︸ ︷︷ ︸
q times

)

For L = 02. 0 · · ·0︸ ︷︷ ︸
q times

and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

Proof. We are in dimension 2 + q, with Y = (x, y, x̃1, · · · , x̃q), Φ =

(φ1, φ2, φ̃1, · · · , φ̃q) and

L =




0 1
0 0

0
. . .

0



.
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Here again, we intend to give a lower bound of the non zero eigenvalues of
A

L∗AL
in the subspace Hk. We have

A
L
Φ = (y

∂φ1

∂x
− φ2, y

∂φ2

∂x
, y
∂φ̃1

∂x
, · · · , y ∂φ̃q

∂x
),

A
L∗Φ = (x

∂φ1

∂y
, x
∂φ2

∂y
− φ1, x

∂φ̃1

∂y
, · · · , x∂φ̃q

∂y
).

Hence, for δ = (δ1, · · · , δq) ∈ Nq and 1 ≤ ℓ ≤ q, the spaces

Hδ
k,12 = Hk ∩

{
Φ/Φ(Y ) = x̃δ1

1 · · · x̃δq
q (φ1(x, y), φ2(x, y), 0, · · · , 0),

φ1, φ2 polynomials
}
,

H̃α,β,δ
k,ℓ = Hk ∩

{
Φ/Φ(Y ) = xαyβx̃δ1

1 · · · x̃δq
q (0, 0, · · · , 0, φ̃ℓ, 0, · · · , 0), φ̃ℓ ∈ R

}

are stable under A
L∗AL

. Then, since Hk =
⊕

|δ|≤k

Hδ
k,12 ⊕

⊕
1≤ℓ≤q

α+β+|δ|=k

H̃α,β,δ
k,ℓ , we

have

spec(A
L∗AL

|
Hk

) =
⋃

|δ|≤k

spec(A
L∗AL

|
Hδ

k,12

) ∪
⋃

1≤ℓ≤q
α+β+|δ|=k

spec(A
L∗AL

|
H̃

α,β,δ
k,ℓ

).

On one hand, in Hδ
k,12 the spectral equation A

L∗AL
Φ = λΦ reads (50). So the

proof of Lemma 2.22 ensures that the spectrum of A
L∗AL

|
Hδ

k,12

is composed of

non-negative integers.

On the other hand, in H̃α,β,δ
k,ℓ the spectral equation A

L∗AL
Φ = λΦ reads

α(β + 1) φ̃ℓ = λφ̃ℓ.

Hence, spec(A
L∗AL

|
H̃

α,β,δ

k,ℓ

) = {α(β + 1)} and the spectrum of A
L∗AL

Hk is

composed of non-negative integers. So, min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus,

ak := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

2

Lemma 2.24 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 03)

For L = 03 and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.
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Proof. We are in dimension 3, with Y = (x, y, z), Φ = (φ1, φ2, φ3) and

L =




0 1 0
0 0 1
0 0 0


 .

Here again, we intend to give a lower bound of the non zero eigenvalues of
A

L∗AL
in Hk. This is performed in several steps.

Step 1. Splitting of the operators. We define differential operators D and
D∗ by

D = y
∂

∂x
+ z

∂

∂y
, D∗ = x

∂

∂y
+ y

∂

∂z
(51)

then
A

L
Φ = DΦ − LΦ, A

L∗Ψ = D∗Ψ − L∗Ψ

and

A
L∗AL

Φ =




D∗(Dφ1 − φ2)

D∗(Dφ2 − φ3) −Dφ1 + φ2

D∗Dφ3 −Dφ2 + φ3



.

Moreover, we check that kerA
L

is spanned by




zα(xz − y2

2
)β

0

0



,




yzα(xz − y2

2
)β

zα+1(xz − y2

2
)β

0



,




xzα(xz − y2

2
)β

yzα(xz − y2

2
)β

zα+1(xz − y2

2
)β



.

In what follows we use the properties

Dx = y, Dy = z, Dz = 0, D(xz − y2

2
) = 0,

D∗x = 0, D∗y = x, D∗z = y, D∗(xz − y2

2
) = 0.

Step 2. Splitting of Hk. Using the basis of monomials, for α, β, γ non
negative integers

φα,β,γ = xαzβ(xz − y2

2
)γ , and ψα,β,γ = xαyzβ(xz − y2

2
)γ. (52)

we split Hk into the direct sum

Hk = H′
k ⊕H′′

k
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where

H′
k =

{
Φ = (φ1, φ2, φ3)/φ1, φ3 ∈ span

α+β+2γ=k

{φα,β,γ}, φ2 ∈ span
α+β+2γ+1=k

{ψα,β,γ}
}
,

H′′
k =

{
Φ = (φ1, φ2, φ3)/φ1, φ3 ∈ span

α+β+2γ+1=k

{ψα,β,γ}, φ2 ∈ span
α+β+2γ=k

{φα,β,γ}
}
.

Then, using the identities

Dφα,β,γ = αψα−1,β,γ,

Dψα,β,γ = (1 + 2α)φα,β+1,γ − 2αφα−1,β,γ+1

D∗φα,β,γ = βψα,β−1,γ,

D∗ψα,β,γ = (1 + 2β)φα+1,β,γ − 2βφα,β−1,γ+1,

D∗Dφα,β,γ = α(1 + 2β)φα,β,γ − 2αβφα−1,β−1,γ+1, (53)

D∗Dψα,β,γ = (2α+ 1)(β + 1)ψα,β,γ − 2αβψα−1,β−1,γ+1, (54)

we observe that H′
k and H′′

k are both invariant under A
L∗AL

. Hence, the
spectrum of the operator A

L∗AL
in Hk is the union of its spectrum when

restricted to H′
k and to H′′

k.

Step 3. Spectrum of A
L∗AL

in H′
k. We also split H′

k into subspaces in-
variant under A

L∗AL
.

Step 3.1. Splitting of H′
k

. First observe that for α + β + 2γ = k, the
subspace E ′

α,β,γ of H′
k gathering the polynomials Φ of the form

φ1 =
∑

p

apφα−p,β−p,γ+p,

φ2 =
∑

p

bpψα−p−1,β−p,γ+p,

φ3 =
∑

p

cpφα−p−1,β−p+1,γ+p

where

for α ≤ β, 0 ≤ p ≤ α, bα = cα = 0,

for β + 1 ≤ α, 0 ≤ p ≤ β + 1, aβ+1 = bβ+1 = 0 and cβ+1 = 0 if α = β + 1.
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is invariant under the operator A
L∗AL

. Indeed, we have

Dφ1 − φ2 =
∑

{(α− p)ap − bp}ψα−p−1,β−p,γ+p,

Dφ2 − φ3 =
∑

{(2α− 2p− 1)bp − cp}φα−p−1,β−p+1,γ+p

− 2(α− p− 1)bpφα−p−2,β−p,γ+p+1,

D∗(Dφ1 − φ2) =
∑

(2β − 2p+ 1){(α− p)ap − bp}φα−p,β−p,γ+p

− 2(β − p){(α− p)ap − bp}φα−p−1,β−p−1,γ+p+1,

D∗(Dφ2 − φ3) =
∑

(β − p+ 1){(2α− 2p− 1)bp − cp}ψα−p−1,β−p,γ+p

− 2(β − p)(α− p− 1)bpψα−p−2,β−p−1,γ+p+1,

D∗Dφ3 =
∑

(α− p− 1)(2β − 2p+ 3)cpφα−p−1,β−p+1,γ+p

− 2(α− p− 1)(β − p+ 1)cpφα−p−2,β−p,γ+p+1.

Moreover, Φ′
k = (0, 0, φk,0,0) is an eigenvector of A

L∗AL
in Hk belonging to

the eigenvalue λ = k + 1.

Then, since Φ = (φα,β,γ, 0, 0), Φ = (0, ψα−1,β,γ, 0), Φ = (0, 0, φα−1,β+1,γ) and
Φ = (0, 0, φα−2,β,γ+1) belong to E ′

α,β,γ respectively for α ≥ 0 , α ≥ 1 , α ≥ 1
and α ≥ 2, we have the splitting of H′

k into the non direct sum

H′
k = CΦ′

k +
∑

α+β+2γ=k

E ′
α,β,γ.

Hence, the spectrum spec(A
L∗AL

|
H′

k

) of the operator A
L∗AL

in H′
k is given by

the union with possibly many overlaps

spec(A
L∗AL

|
H′

k

) = {k + 1} ∪
⋃

α+β+2γ=k

spec(A
L∗AL

|
E′
α,β,γ

).

Step 3.2. Spectrum of A
L∗AL

in E ′
α,β,γ

. The spectral equation A
L∗AL

Φ =
λΦ, for Φ ∈ E ′

α,β,γ can be written as a hierarchy of systems of equation (55)p

where for p = 0 we have

(2β + 1)(αa0 − b0) = λa0,

(β + 1){(2α− 1)b0 − c0} + b0 − αa0 = λb0,

(α− 1)(2β + 3)c0 + c0 − (2α− 1)b0 = λc0

(55)0
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and for 1 ≤ p ≤ min{α, β + 1},

λap = (2β − 2p+ 1){(α− p)ap − bp}
−2(β − p + 1){(α− p + 1)ap−1 − bp−1},

λbp = (β − p+ 1){(2α− 2p− 1)bp − cp} − (α− p)ap + bp

−2(β − p + 1)(α− p)bp−1,

λcp = (α− p− 1)(2β − 2p+ 3)cp − (2α− 2p− 1)bp + cp

−2(α− p)(β − p+ 2)cp−1 + 2(α− p)bp−1.

(55)p

In particular, when α ≤ β the last system of the hierarchy is obtained for
p = α (bα = cα = 0) and it reads

λaα = −2(β − α + 1)(aα−1 − bα−1),

0 = 0,
(55)α

while for β ≤ α−1 the last system is obtained for p = β+1 (aβ+1 = bβ+1 = 0,
and cβ+1 = 0 if α = β + 1) and it reads

λcβ+1 = (α− β − 1)cβ+1 − 2(α− β − 1){cβ − bβ},
0 = 0.

(55)β+1

The system with p = 0 gives the eigenvalues:

λ1 = (α−1)(2β+1), a0 = b0 = c0 = 1,

λ2 = α(2β+3), a0 = (β+1)(2β+1), b0 = −2α(β+1), c0 = α(2α−1),

λ3 = (2α−1)(β+1), a0 = −(2β + 1), b0 = α− β − 1, c0 = 2α− 1.

We check that for for α = 0 or 1, we recover known eigenvectors belonging to
the 0 eigenvalue, all other eigenvalues are positive integers.

For proving that they indeed give eigenvalues of A
L∗AL

it is needed to check
that for 1 ≤ p < min{α, β+1} the determinant ∆p does not cancel for λ = λ1

or λ2 or λ3 where

∆p =

∣∣∣∣∣∣∣∣∣∣∣

(2β ′ + 1)α′ − λ −(2β ′ + 1) 0

−α′ (β ′ + 1)(2α′ − 1) + 1 − λ −(β ′ + 1)

0 −2α′ + 1 (α′ − 1)(2β ′ + 3) + 1 − λ

∣∣∣∣∣∣∣∣∣∣∣
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with α′ = α− p, β ′ = β − p. It results that

∆p = (λ′1 − λ)(λ′2 − λ)(λ′3 − λ)

with

λ′1 = (α′ − 1)(2β ′ + 1) = λ1 − p(2α+ 2β − 2p− 1),

λ′2 = α′(2β ′ + 3) = λ2 − p(2α + 2β − 2p+ 3),

λ′3 = (2α′ − 1)(β ′ + 1) = λ3 − p(2α+ 2β − 2p+ 1).

It is then easy to see (using the fact that 1 ≤ p ≤ min{α − 1, β}) that the
only case when ∆p(λj) = 0 is when p = 1 and λ′2 = λ1 :

λ′2 − λ1 = (1 − p)(2α + 2β − 2p+ 1).

The case p = 1, λ = λ1 = (α− 1)(2β + 1) leads to

−2(α− 1)a1 − (2β − 1)b1 = 2β(α− 1),

−(α− 1)a1 − (α+ β − 2)b1 − βc1 = 2β(α− 1),

−(2α− 3)b1 − 2βc1 = 2β(α− 1)

where the compatibility condition is satisfied, hence giving a one parameter
family of eigenvectors.

Finally, it remains to study the cases when the limiting equations cannot be
solved, i.e. the two cases

i) when α ≤ β, λ = 0 (i.e. α = 0, or 1), p = α; the case α = 0, p = 0, λ = 0
gives a known eigenvector, while α = p = 1, λ = 0 gives a0 = b0 = c0 = 1
and the equation for a1 gives 0.a1 = −2(a0 − b0) = 0, hence the compatibility
condition is satisfied.

ii) When β ≤ α − 2, λ = α − β − 1, p = β + 1. The only possibility is
λ1 = α − β − 1 which happens if β = 0. Then p = 1, and we need to solve
c1 = c1−2(c0 − b0) where a0 = b0 = c0 = 1. Hence the compatibility condition
is satisfied. This ends the study in the first invariant subspace.

In conclusion, all the eigenvalues of A
L∗AL

in E ′
α,β,γ and thus in H′

k are non
negative integers.

Step 4. Spectrum of A
L∗AL

in H′′
k
. We also split H′′

k into subspaces in-
variant by A

L∗AL
.
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Step 4.1. Splitting of H′′
k

. For α+ β + 2γ + 1 = k, let us denote E ′′
α,β,γ the

subspace of H′′
k gathering the polynomials Φ of the form

φ1 =
∑

p

apψα−p,β−p,γ+p,

φ2 =
∑

p

bpφα−p,β−p+1,γ+p,

φ3 =
∑

p

cpψα−p−1,β−p+1,γ+p

where

for α ≤ β, 0 ≤ p ≤ α, cα = 0

for β ≤ α− 1, 0 ≤ p ≤ β + 1, aβ+1 = 0, and cβ+1 = 0 if α = β + 1.

The following identities

Dφ1 − φ2 =
∑

{(2α− 2p+ 1)ap − bp}φα−p,β−p+1,γ+p

− 2(α− p)apφα−p−1,β−p,γ+p+1,

Dφ2 − φ3 =
∑

{(α− p)bp − cp}ψα−p−1,β−p+1,γ+p,

D∗(Dφ1 − φ2) =
∑

(β − p+ 1){(2α− 2p+ 1)ap − bp}ψα−p,β−p,γ+p

− 2(α− p)(β − p)apψα−p−1,β−p−1,γ+p+1,

D∗(Dφ2 − φ3) =
∑

(2β − 2p+ 3){(α− p)bp − cp}φα−p,β−p+1,γ+p

− 2(β − p+ 1){(α− p)bp − cp}φα−p−1,β−p,γ+p+1,

D∗Dφ3 =
∑

(2α− 2p− 1)(β − p+ 2)cpψα−p−1,β−p+1,γ+p

− 2(α− p− 1)(β − p+ 1)cpψα−p−2,β−p,γ+p+1

ensure that subspace E ′′
α,β,γ is invariant under A

L∗AL
.

Moreover, the two dimensional subspace P ′′
k = span{Φ′′

k,Ψ
′′
k} where Φ′′

k =
(0, φk,0,0, 0) and Ψ′′

k = (0, 0, ψk−1,0,0) is stable by A
L∗AL

since

A
L∗AL

Φ′′
k = (k + 1)Φ′′

k − kΨ′′
k, and A

L∗AL
Ψ′′

k = −Φ′′
k + 2kΨ′′

k.

Then, since Φ = (ψα,β,γ, 0, 0), Φ = (0, φα,β+1,γ, 0), Φ = (0, φα−1,β,γ+1, 0), Φ =
(0, 0, ψα−1,β+1,γ) and Φ = (0, 0, ψα−2,β,γ+1) belong to E ′′

α,β,γ respectively for
α ≥ 0 , α ≥ 0, α ≥ 1 , α ≥ 1 and α ≥ 2, we have the splitting of H′′

k into the
non direct sum

H′′
k = P ′′

k +
∑

α+β+2γ=k

E ′′
α,β,γ with P ′′

k = span{Φ′′
k,Ψ

′′
k}.
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Hence, the spectrum spec(A
L∗AL

|
H′′

k

) of the operator A
L∗AL

in H′′
k is given by

the union with possibly many overlaps

spec(A
L∗AL

|
H′′

k

) = spec(A
L∗AL

|
P′′

k

) ∪
⋃

α+β+2γ=k

spec(A
L∗AL

|
E′′
α,β,γ

).

Step 4.2. Spectrum of A
L∗AL

in P ′′
k
. In the basis {Φ′′

k,Ψ
′′
k} the matrix of

A
L∗AL

|
P′′

k

reads


k + 1 −k
−1 2k


 .

Hence, the spectrum of A
L∗AL

in P ′′
k is given by

spec(A
L∗AL

|
P′′

k

) = {2k + 1, k}.

Step 4.3. Spectrum of A
L∗AL

in E ′′
α,β,γ

. The spectral equation A
L∗AL

Φ =
λΦ, for Φ ∈ E ′′

α,β,γ can be written as a hierarchy of systems of equation (56)p

where for p = 0 we have

(β + 1){(2α+ 1)a0 − b0} = λa0,

(2β + 3)(αb0 − c0) + b0 − (2α+ 1)a0 = λb0,

(2α− 1)(β + 2)c0 + c0 − αb0 = λc0

(56)0

for 1 ≤ p ≤ min{α, β + 1}

λap = (β − p+ 1){(2α− 2p+ 1)ap − bp} − 2(α− p+ 1)(β − p+ 1)ap−1,

λbp = (2β − 2p+ 3){(α− p)bp − cp} − (2α− 2p+ 1)ap + bp+

−2(β − p+ 2){(α− p+ 1)bp−1 − cp−1} + 2(α− p+ 1)ap−1,

λcp = (2α− 2p− 1)(β − p + 2)cp − (α− p)bp + cp+

−2(α− p)(β − p+ 2)cp−1.

(56)p

In particular, when α ≤ β the last system of the hierarchy is reached for p = α
(cα = 0) and it reads

λaα = (β − α+ 1)(aα − bα) − 2(β − α + 1)aα−1,

λbα = −aα + bα − 2(β − α + 2)(bα−1 − cα−1) + 2aα−1,

0 = 0.
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This last system enables to compute aα, bα if λ 6= 0 and λ 6= β − α + 2.

When β ≤ α − 1, the last system of the hierarchy is reached for p = β + 1
(aβ+1 = 0 and cβ+1 = 0 if β = α− 1) and it reads

0 = 0,

λbβ+1 = (α− β)bβ+1 − cβ+1 + 2{(α− β)(aβ − bβ) + cβ},
λcβ+1 = (α− β − 1){2cβ+1 − bβ+1 − 2cβ}.

This last system enables to compute bα, cα if λ 6= 1, when β = α − 1 and if
λ 6= α− β − 1 and λ 6= 2α− 2β − 1 when β ≤ α− 2.

The system for p = 0 gives the eigenvalues λ1, λ2, λ3 where

λ1 = α(2β + 3) a0 = β + 1, b0 = β − α + 1, c0 = −α,
λ2 = (β + 1)(2α− 1) a0 = 1, b0 = 2, c0 = 1,

λ3 = (β+2)(2α+1) a0=(β+1)(2β+3), b0 =−(2α+1)(2β+3), c0=α(2α+1).

Notice that λ1 = 0 for α = 0, which corresponds to a already known eigenvec-
tor in the kernel of A

L
. The coefficients ap, bp, cp can be computed by induction

provided that for λ = λ1 or λ2 or λ3 the determinant

∆p(λ) = (λ′1 − λ)(λ′2 − λ)(λ′3 − λ)

does not cancel, where

λ′1 = λ1 − p(2α + 2β − 2p+ 3),

λ′2 = λ2 − p(2α + 2β − 2p+ 1),

λ′3 = λ3 − p(2α + 2β − 2p+ 5).

Using the fact that 1 ≤ p ≤ min{α, β + 1}, we can see that the only problem
comes when λ′3 = λ2 :

λ′3 − λ2 = (1 − p)(2α+ 2β + 3 − 2p)

which occurs when p = 1. This case p = 1, λ = (β + 1)(2α − 1) gives the
system

0 = −(2α− 1)a1 − βb1 − 2αβa0,

0 = −(2α− 1)a1 + (1 − α− β)b1 − (2β + 1)c1 − 2(β + 1)(αb0 − c0) + 2αa0,

0 = (1 − α)b1 − (2β + 1)c1 − 2(α− 1)(β + 1)c0
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where the compatibility condition is satisfied with the values we found for
a0, b0, c0 (a0 − b0 + c0 = 0).

Finally, it then remains to study the last equation of the hierarchy:

i) when α ≤ β, p = α, λ = 0 (i.e. α = p = 0 leading to the know eigenvector
in the kernel) or λ = β−α+2, i.e. λ = λ2, α = 1 = p where the compatibility
condition is satisfied due to a0 − b0 + c0 = 0.

ii) When β ≤ α− 1, p = β + 1. Then for β = α− 1, λ2 = 1 (the bad case) for
α = 1 and this is again the case seen above. For β ≤ α− 2, the bad cases are
when λj = α− β − 1 or 2α− 2β − 1, i.e. λ2 = 2α− 2β − 1 for β = 0. We are
again in the case p = 1 (notice that a1 = 0) :

0 = (1 − α)b1 − c1 − 2(αb0 − c0) + 2αa0,

0 = (1 − α)b1 − c1 − 2(α− 1)c0

which admits solutions since a0 − b0 + c0 = 0.

In conclusion, all the eigenvalues of A
L∗AL

in E ′′
α,β,γ and thus in H′′

k are non
negative integers. Gathering the results of step 3 and 4 we finally conclude that
for every k ≥ 2 all non zero eigenvalues of A

L∗AL
in Hk are positive integers.

Hence, for every k ≥ 2,

ak := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

2

Remark 2.25 For L = 04, the computation of eigenvalues of A
L∗AL

is more
complicated and we could not find a lower estimate as in the 03 case. In par-
ticular, the kernel of this operator, which is also the kernel of A

L
may be

obtained as in the work [12], where it is observed for example that the poly-
nomials invariant under D (same notation as for 03) are generated by 4 non
independent polynomials of degree 1,2,3,4 with a non trivial relation between
them. The same holds with D∗. Moreover there are no common invariant poly-
nomial under D and D∗, contrary to the case 03. This does not allow to find
a family of monomials giving a basis leading to a simple (triangular) matrix
for the operator A

L∗AL
in suitables subspaces (it seems necessary to obtain

a not too complicated D∗D operator applied to a suitable basis, for such a
computation, as in the 03 case).
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Lemma 2.26 (Norm of the pseudo inverse Ã
L
|−1
Hk

for L = 03. 0 · · ·0︸ ︷︷ ︸
q times

)

For L = 03. 0 · · ·0︸ ︷︷ ︸
q times

and for every k ≥ 2, we have min
λ∈Σk(L)\{0}

{λ} ≥ 1 and thus

ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

Proof. We are in dimension 3 + q, with Y = (x, y, z, x̃1, · · · , x̃q), Φ =

(φ1, φ2, φ3, φ̃1, · · · , φ̃q) and

L =




0 1 0
0 0 1
0 0 0

0
. . .

0




.

Here again, we intend to give a lower bound of the non zero eigenvalues of
A

L∗AL
in the subspace Hk. We have

A
L∗AL

Φ =




D∗(Dφ1 − φ2)

D∗(Dφ2 − φ3) −Dφ1 + φ2

D∗Dφ3 −Dφ2 + φ3

D∗Dφ̃1

...

D∗Dφ̃q




.

Hence, for δ = (δ1, · · · , δq) ∈ Nq and 1 ≤ ℓ ≤ q, the spaces

Hδ
k,123 = Hk ∩

{
Φ/Φ(Y ) = x̃δ1

1 · · · x̃δq
q (φ̂(x, y, z), 0, · · · , 0),

φ̂ : R3 → R3 polynomial
}
,

H̃δ
k,ℓ = Hk ∩

{
Φ/Φ(Y ) = x̃δ1

1 · · · x̃δq
q (0, 0, · · · , 0, φ̃ℓ(x, y, z), 0, · · · , 0),

φ̃ℓ : R3 → R polynomial
}
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are stable under A
L∗AL

. Then, since Hk =
⊕

|δ|≤k

Hδ
k,123 ⊕

⊕
1≤ℓ≤q
|δ|≤k

H̃δ
k,ℓ, we have

spec(A
L∗AL

|
Hk

) =
⋃

|δ|≤k

spec(A
L∗AL

|
Hδ

k,123

) ∪
⋃

1≤ℓ≤q
|δ|≤k

spec(A
L∗AL

|
H̃δ

k,ℓ

).

On one hand, in Hδ
k,123 the spectral equation A

L∗AL
Φ = λΦ reads A∗

03A03φ̂ =

λφ̂. So the proof of Lemma 2.24 ensures that the spectrum of A
L∗AL

|
Hδ

k,123

is

composed of non-negative integers.

On the other hand, in H̃δ
k,ℓ the spectral equation A

L∗AL
Φ = λΦ reads

D∗Dφ̃ℓ = λφ̃ℓ.

Let us decompose H̃δ
k,ℓ

H̃δ
k,ℓ = H̃δ ′

k,ℓ ⊕ H̃δ ′′
k,ℓ

with

H̃δ ′
k,ℓ =

{
Φ ∈ H̃δ

k,ℓ/φ̃ℓ ∈ span
α+β+2γ=k−|δ|

{φα,β,γ}
}
,

H̃δ ′′
k,ℓ =

{
Φ ∈ H̃δ

k,ℓ/φ̃ℓ ∈ span
α+β+2γ+1=k−|δ|

{ψα,β,γ}
}

where φα,β,γ, ψα,β,γ are defined in (52). Formulas (53)-(54) ensures that H̃δ ′
k,ℓ

and H̃δ ′′
k,ℓ are both stable under D∗D. Moreover, ordering the basis φα,β,γ (resp.

ψα,β,γ) by lexicographical order for (α, β, γ), formulas (53)-(54) also ensures
that the matrix of D∗D|

H̃δ ′

k,ℓ

(resp. of D∗D|
H̃δ ′′

k,ℓ

) in this basis is upper triangular

with diagonal coefficient given by α(1 + 2β) (resp. by (2α + 1)(β + 1)). Thus

specA
L∗AL

|
H̃δ

k,ℓ

=
⋃

α+β+2γ=k−|δ|
{α(1 + 2β)} ∪

⋃

α+β+2γ+1=k−|δ|
{(2α+ 1)(β + 1)}.

Hence the spectrum of A
L∗AL

|
Hk

is composed of non-negative integers. So,
min

λ∈Σk(L)\{0}
{λ} ≥ 1 and thus,

ak := ‖|Ã
L
|−1
Hk
‖|

2
≤ 1.

2
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3 Exponential estimates for perturbed vector fields

This section is devoted to the proof of Theorem 1.10. So, let V : Rm×Rs → Rm

be an analytic family of vector fields in a neighborhood of 0 in Cm × Cs

du

dt
= V (u, µ) (57)

admitting the origin as a fixed point, i.e. satisfying V (0, µ) = 0, (10) and
(11). To deduce Theorem 1.10 from Theorem 1.4 which deals with the non
perturbed case, we set U = (u, µ), V(U) = (V (u, µ), 0) and we observe that
(57) is equivalent to

dU

dt
= V(U). (58)

Let us denote by L = DUV(0) the linear operator corresponding to the (m+
s) × (m+ s) square matrix

L =



L0 0

0 0


 .

Proposition 2.2 ensures that when ak(L) := ‖|Ã
L
|−1
Hk
‖|

2
≤ akτ , an optimal

choice of the order p = popt of the change of coordinates U = Y + Qpopt(Y)
leads to a normal form equation

dY
dt

= LY + Npopt(Y) + Rpopt(Y)

where Rp given by the Normal Form Theorem 1.1 for p = popt satisfies

sup
‖Y‖≤δ

‖Rpopt(Y)‖ ≤M δ2e−
w
δb (59)

with

b =
1

1 + τ
, popt =

[
1

e(Cδ)b

]
, w =

1

eCb
, M = 10

9
cC2

{(
m
√

27
8e

)1+τ

+ (2e)2+2τ

}

where C =
√

m

ρ2

{(
5
2
m+ 2

)
ac+ 3ρ

}
, m = sup

p∈N

e2 p!

pp+ 1
2 e−p

and where for a real

number x, we denote by [x] its integer part. Here, the situation is particular,
since V(U) = (V (U), 0). So, let us decompose Hk as follows

Hk = Hk,m ⊕Hk,s

where Hk,m (resp. Hk,s) is the space of the homogeneous polynomial Q of
degree k from Rm × Rs to Rm × Rs such that ps(Q) = 0 (resp. pm(Q) = 0)
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where ps (resp. pm) is the canonical projection from Rm × Rs onto Rs (resp.
onto Rm). Thus, since Vn,ℓ ∈ Hn+ℓ,m for every n, ℓ and since Hk,m and Hk,s

are both stable under A
L
, we can choose Qp and Np of the form

Qp(Y) = (Qp(Y), 0) =
p∑

k=2

Φk(Y), Np(Y) = (Np(Y), 0) =
p∑

k=2

Nk(Y)

where Φk, Nk lie in Hk,m. With this choice

Y = (Y, µ), with Y ∈ R
m, µ ∈ R

s and ps(Rp(Y)) = 0.

Moreover with this choice, the homological equation (15) which is the center
of this analysis reads




A

L
Φk = Nk + Fk in Hk,m,

0 = 0 in Hk,s.

So with this particular form of the homological equation, we only need to have

ak,m(L0) := ‖|Ã
L
|−1
Hk,m

‖|
2
≤ akτ

to get the exponential estimate (59) given by Proposition 2.2. Then, Theorem
1.10 follows directly from the following lemma which gives ak,m(L0) when
either L0 is semi simple or L0 = 02. 0. · · · .0︸ ︷︷ ︸

q times

or L0 = 03. 0. · · · .0︸ ︷︷ ︸
q times

.

Lemma 3.1

(a) Let L0 be a semi simple matrix under real or complex Jordan normal
form. Then,

ak,m(L0) ≤ max
1≤j≤m,|α|≤k

Λj,α 6=0

|Λj,α|−1,

where Λj,α = 〈λL0, α〉 − λj where λL0 = {λ1, · · · , λm} is the spectrum of
L0.

(b) For L0 = 02. 0. · · · .0︸ ︷︷ ︸
q times

and L0 = 03. 0. · · · .0︸ ︷︷ ︸
q times

, ak,m(L0) ≤ 1.

Remark 3.2 When L0 is semi-simple, under real or complex Jordan normal
form and γ,K-homologically non-resonant we deduce from this lemma that

ak,m(L0) ≤ γ−1

and when L0 is semi-simple, under real or complex Jordan normal form and
γ, τ -homologically diophantine we get that

ak,m(L0) ≤ γ−1 max
1≤j≤m,|α|≤k

Λj,α 6=0

|α|τ = γ−1kτ .
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Proof of Lemma 3.1. (a): Let L0 be a semi simple matrix under real or
complex Jordan normal form.

Step 1. We first assume that L0 is under complex Jordan normal form, i.e.
that L0 is diagonal. Then, L is also diagonal and we deduce from (19) that
the spectrum of A

L
|
Hk,m

is given by

spec(A
L
|
Hk,m

) =
{
〈λL0, αm〉+〈0, αs〉−λj , 1 ≤ j ≤ m, |αm| + |αs| = k,

αm ∈ Nm, αs ∈ Ns

}
,

=
{
〈λL0, αm〉 − λj , 1 ≤ j ≤ m, |αm| ≤ k, αm ∈ Nm

}
.

Hence, as in the proof of Lemma 2.5, we deduce from the above formula that

ak,m(L0) ≤ max
1≤j≤m,|α|≤k

Λj,α 6=0

|Λj,α|−1. (60)

Step 2. When L0 is semi-simple and under real Jordan normal form, but not
diagonal, then it is conjugated to a complex diagonal matrix J0 via a unitary
map Q. So, L is conjugated to the complex (m+ s)× (m+ s) diagonal matrix
J0 ⊕ 0 by the unitary map Q⊕ Is. Hence, Remark 2.4 and step 1 ensure that
ak,m(L0) still satisfies (60) in this case.

(b):For L0 = 0j . 0. · · · .0︸ ︷︷ ︸
q times

with j=2,3, Lemmas 2.23, 2.26 ensure that

ak,m(L0) := ‖|Ã
L
|−1
Hk,m

‖|
2
≤ ‖|Ã

L
|−1
Hk
‖|

2
= ak

(
0j. 0. · · · .0︸ ︷︷ ︸

q+s times

)
≤ 1.

2

A Properties of the normalized euclidian norm

A.1 Comparison of the euclidian and the sup norm

We begin with two technical lemmas which are used several times

Lemma A.1 Let k,m be two positive integers and {uj}1≤j≤m
be m complex

numbers. Then
(u1 + · · · + um)k

k!
=

∑

|α|=k

uα1
1

α1!
· · · u

αm
m

αm!
.
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Proof. We proceed by induction. For m = 1 this is trivial and for m = 2 this
is true because of the binomial formula. Assume now that it is true for m ≥ 2,
then

∑

|α|=k

uα1
1

α1!
· · · u

αm+1

m+1

αm+1!
=

k∑

αm+1=0

u
αm+1

m+1

αm+1!

∑

α1+···+αm=k−αm+1

uα1
1

α1!
· · · u

αm
m

αm!
,

=
k∑

αm+1=0

u
αm+1

m+1

αm+1!

(u1 + · · ·+ um)k−αm+1

(k − αm+1)!
,

=
(u1 + · · ·+ um+1)

k

k!
.

2

Lemma A.2 Let k,m be two positive integers and

E1
k,m = {β = (β1, · · · , βm) ∈ Nm, βj ≥ 1, |β| = k},

E0
k,m = {α = (α1, · · · , αm) ∈ Nm, αj ≥ 0, |α| = k}.

Then, the cardinals dj
k,m of E j

k,m, j = 0, 1, are given by

d1
k,m = Cm−1

k−1 , d0
k,m = Cm−1

k+m−1.

where Cr
n =

n!

r!(n− r)!
.

Proof. The cardinal of d1
k,m is equal to the number of ways for placing (m−1)

distinct separators among k− 1 possible locations, the order of the separators
being meaningless. For instance, the cardinal of d1

k,3, is equal to the number
of ways for placing 2 distinct separators among k − 1 possible locations, the
order of the separators being meaningless.

k︷ ︸︸ ︷
[ · | · | ·︸ ︷︷ ︸

α1

| · | ·︸ ︷︷ ︸
α2

| · | · | · | · ]︸ ︷︷ ︸
α3

Hence, d1
k,3 = C2

k−1 and more generally, d1
k,m = Cm−1

k−1 .

Finally, the map E0
k,m → E1

k+m,m : (α1, · · · , αm) 7→ (β1 := α1 + 1, · · · , βm :=
αm + 1) is one to one. Hence

d0
k,m = d1

m+k = Cm−1
m+k−1.

2
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Lemma A.3 For every Φ ∈ Hk, |Φ|
0,k

≤ |Φ|
2,k

= 1√
k!
|Φ|

2
.

Proof. For Φ ∈ Hk with Φ =
∑

1≤j≤m

|α|=n

Φj,αY
α1
1 · · ·Y αm

m cj where {cj}1≤j≤m is the

canonical basis of Rm we have

|Φ|
2,k

=
1√
k!

√√√√√
∑

1≤j≤m

|α|=k

|Φj,α|2α1!. · · · .αm!

and

‖Φ(Y )‖2

‖Y ‖2k
=

m∑
j=1

∣∣∣∣
∑

|α|=k

Φj,α

Y α1
1

‖Y ‖α1
· · · Y αm

m

‖Y ‖αm

∣∣∣∣
2

≤
m∑

j=1

( ∑
|α|=k

|Φj,α|2 α1! · · ·αm!
)( ∑

|α|=k

Y 2α1
1

α1!‖Y ‖2α1
· · · Y 2αm

m

αm!‖Y ‖2αm

)

by the Cauchy Schwarz formula. Then using Lemma A.1 we get

∑

|α|=k

Y 2α1
1

α1!‖Y ‖2α1
· · · Y 2αm

m

αm!‖Y ‖2αm
=

1

k!

(
Y 2

1

‖Y ‖2
+ · · ·+ Y 2

m

‖Y ‖2

)k

=
1

k!
.

Hence,

|Φ|
0,k

= sup
Y ∈Ck\{0}

‖Φ(Y )‖
‖Y ‖k

≤
√√√√ 1

k!

m∑

j=1

( ∑

|α|=k

|Φj,α|2 α1! · · ·αm!
)

=
|Φ|

2√
k!

= |φ|
2,k
.

2

We now prove a Parseval like formula :

Lemma A.4 For every Φ ∈ Hk,

|Φ|2
2
= 1

(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm‖Φ(

√
r1e

iθ1 ,· · ·,√rmeiθm)‖2e−r1· · · e−rm .

Proof. We have

‖Φ(
√
r1e

iθ1 , · · · ,√rmeiθm)‖2 =
m∑

j=1

∑

|α|=k

|β|=k

Φj,αΦj,β r
α1+β1

2
1 · · · r

αm+βm
2

m eiθ1(α1−β1) · · · eiθm(αm−βm).
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Hence,

1

(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm‖Φ(

√
r1e

iθ1 , · · · ,√rmeiθm)‖2 e−r1 · · · e−rm ,

=
m∑

j=1

∑

|α|=k

|Φj,α|2
∫ +∞

0
dr1 · · ·

∫ +∞

0
drm rα1

1 · · · rαm
m e−r1 · · · e−rm ,

=
m∑

j=1

∑

|α|=k

|Φj,α|2α1! · · ·αm! = |Φ|2
2
.

2

Finally, we ready to prove the opposite comparison of the two norms in Hk.

Lemma A.5 For every Φ ∈ Hk, |Φ|
2,k

≤
√
Cm−1

k+m−1 |Φ|
0,k
.

Proof. Using the Lemmas A.1, A.4 we get

|Φ|2
2,k

≤ |Φ|2
0,k

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm

(r1 + · · · + rm)k

k!
e−r1 · · · e−rm,

= |Φ|2
0,k

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm

∑

|α|=k

rα1
1

α1!
· · · r

αm
m

αm!
e−r1 · · · e−rm ,

= |Φ|2
0,k

∑

|α|=k

1,

= |Φ|2
0,k

Cm−1
m+k−1.

2

A.2 Multiplicativity of the normalized Euclidian Norm

To handle the computations, we need in this subsection more compact nota-
tions. For Y = (Y1, · · · , Ym) ∈ Cm and α = (α1, · · · , αm) ∈ Nm let us denote

α! = α1! · · ·αm! and Y α = Y α1
1 · · ·Y αm

m .

With these notations, for Φ ∈ Hn with Φ(Y ) =
∑

|α|=n

ΦαY
α where Φα ∈ Rm,

we have

|Φ|
2,n

=
1√
n!

√ ∑

|α|=n

‖Φα‖2 α!.

We start with two technical lemmas which are used several times.

Lemma A.6 For α ∈ Nm and n ∈ N let us denote

Bα
n =

n!

α!
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Then for every positive integers q and {pℓ}1≤ℓ≤q and every γ ∈ Nm with
|γ| = p1 + · · · + pq, we have

B
γ
p1+···+pq

=
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Bα(1)

p1
· · ·Bα(q)

pq
.

Proof. Using Lemma A.1 we get that for every u = (u1, · · · , um) ∈ Cm,

(u1 + · · ·+ um)p1+···+pq =
∑

|γ|=p1+···+pq

B
γ
p1+···+pq

uγ,

= (u1 + · · · + um)p1 · · · (u1 + · · · + um)pq ,

=
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

Bα(1)

p1
· · ·Bα(q)

pq
uα(1)+···+α(q)

.

Identifying the powers of u we get the desired result. 2

Lemma A.7 Let k > 0, p ≥ 0 be two integers. Then for every γ ∈ N
m with

|γ| = n with n := k − 1 + p

(k2 + (m− 1)k) Bγ
n =

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

(αj)
2 Bα

k Bβ
p .

where σj = (0, · · · , 0, 1, 0, · · · , 0) ∈ Nm with the coefficient 1 placed at the j-th
position.

Proof. Observe that for every u = (u1, · · · , um) ∈ Cm,

(u1 + · · ·+ um)p
m∑

j=1

(
uj

∂2

∂u2
j

+
∂

∂uj

)(
(u1 + · · ·+ um)k

)

= (k2 + (m− 1)k)(u1 + · · ·+ um)n.

Hence, since
(
uj

∂2

∂u2
j

+ ∂
∂uj

)
uα = (αj)2uα−σj , we get

(k2 + (m− 1)k)
∑

|γ|=n

Bγ
q u

γ =
m∑

j=1

∑

|α|=k,
|β|=p

(αj)
2 Bα

k Bβ
p u

α+β−σj .

Identifying the powers of u we immediately get the desired result. 2

We are now ready to prove the multiplicativity of the normalized euclidian
norm in Hn.
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Lemma A.8 Let q and {pℓ}1≤ℓ≤q be positive integers and let Rq ∈ Lq(R
m) be

q-linear. Then for every Φpℓ
∈ Hpℓ

, 1 ≤ ℓ ≤ q, the polynomial Rq[Φp1 , · · · ,Φpq ]
lies in Hn with n = p1 + · · ·+ pq and

∣∣∣Rq[Φp1 , · · · ,Φpq ]
∣∣∣
2,n

≤ ‖|Rq‖|Lq(Rm)
|Φp1 |2,p1

· · ·
∣∣∣Φpq

∣∣∣
2,pq

.

Proof. For 1 ≤ ℓ ≤ q, let us denote

Φpℓ
(Y ) =

∑

|α|=pℓ

Φ(pℓ)
α Y α.

Since Rq is q-linear we get

Rq[Φp1 , · · · ,Φpq ] =
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

Y α(1)+···+α(q)

Rq[Φ
(p1)

α(1) , · · · ,Φ(pq)

α(q) ],

=
∑

|γ|=n

Y γ
∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Rq[Φ
(p1)

α(1) , · · · ,Φ(pq)

α(q) ].

Hence,

∣∣∣Rq[Φp1 , · · · ,Φpq ]
∣∣∣
2

2,n
=

1

n!

∑

|γ|=n

γ!
∥∥∥∥

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Rq[Φ
(p1)

α(1) , · · · ,Φ(pq)

α(q) ]
∥∥∥∥
2

,

≤
∑

|γ|=n

1

B
γ
n

( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

‖|Rq‖|Lq(Rm)
‖Φ(p1)

α(1)‖ · · · ‖Φ(pq)

α(q)‖
)2

,

≤ ‖|Rq‖|2Lq(Rm)

∑

|γ|=n

[
1

B
γ
n

( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2)
)

×
( ∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

1

α(1)!
· · · 1

α(q)!

)]
,

by the Cauchy-Schwarz formula. Then since Lemma A.6 ensures that

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

1

α(1)!
· · · 1

α(q)!
=

1

p1! · · · pq!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

Bα(1)

p1
· · ·Bα(q)

pq
=

1

p1! · · ·pq!
Bγ

n,
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we obtain

∣∣∣Rq[Φp1 , · · · ,Φpq ]
∣∣∣
2

2,n
≤

‖|Rq‖|2Lq(Rm)
p1!···pq!

∑

|γ|=n

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(1)+···+α(q)=γ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2),

=
‖|Rq‖|2Lq(Rm)

p1! · · ·pq!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

(α(1)!‖Φ(p1)

α(1)‖2) · · · (α(q)!‖Φ(pq)

α(q)‖2),

= ‖|Rq‖|2Lq(Rm)

q∏
ℓ=1

(
1

pℓ!

∑

α(ℓ)∈Nm,|α(ℓ)|=pℓ

α(ℓ)!‖Φ(pℓ)

α(ℓ)‖2

)
,

= ‖|Rq‖|2Lq(Rm)
|Φp1|22,p1

· · ·
∣∣∣Φpq

∣∣∣
2

2,pq

. 2

Lemma A.9 Let k > 0, p ≥ 0 be two integers and let Φk, Np lie respectively
in Hk and Hp. Then DΦk.Np lies in Hn with n = k − 1 + p and

|DΦk.Np|
2,n

≤
√
k2 + (m− 1)k |Φp|

2,k
|Np|

2,p
.

Proof. Let us denote

Φk(Y ) =
∑

|α|=k

Y αΦα, Np(Y ) =
∑

|β|=p

Y βNβ

where Φα, Nβ ∈ Cm, and Nβ = (Nβ,1, · · · , Nβ,m). Then,

DΦk.Np =
m∑

j=1

∑

|α|=k
|β|=p

αj Y
α−σj+βNβ,jΦα =

∑

|γ|=n

Y γ
m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

αjNβ,jΦα.

where σj = (0, · · · , 0, 1, 0, · · · , 0) with the coefficient 1 placed at the j-th
position. Hence,

|DΦk.Np|2
2,n

≤
∑

|γ|=n

1

B
γ
n

( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

αj |Nβ,j|‖Φα‖
)2

≤
∑

|γ|=n

1

B
γ
n

[( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α!β!|Nβ,j|2‖Φα‖2
)
,

×
( m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

(αj)
2 1

α!

1

β!

)]

by the Cauchy-Schwarz formula. Then, since Lemma A.7 ensures that
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m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α2
j

1

α!

1

β!
=

1

k!p!

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α2
j Bα

kBβ
p =

1

k!p!
(k2 + (m− 1)k)Bγ

n,

we finally obtain

|DΦk.Np|2
2,n

≤ 1

k!p!
(k2 + (m− 1)k)

∑

|γ|=n

m∑

j=1

∑

|α|=k,|β|=p
α−σj+β=γ

α!β!|Nβ,j|2‖Φα‖2,

=
1

k!p!
(k2 + (m− 1)k)

∑

|α|=k,
|β|=p

m∑

j=1

α!β!‖Φα‖2|Nβ,j|2,

=
1

k!p!
(k2 + (m− 1)k)

∑

|α|=k,
|β|=p

α!β!‖Φα‖2‖Nβ‖2,

= (k2 + (m− 1)k) |Φk|2
2,k

|Np|2
2,p
.

2

A.3 Invariance of the euclidian norm under unitary linear change of coordi-
nates

Lemma A.10 Let Q be a unitary linear map in R
m or C

m and denote T
Q

:
H → H,Φ 7→ Q−1 ◦Φ ◦Q. Then T

Q
is a unitary linear operator in H, i.e. for

every Φ ∈ H, ∣∣∣T
Q
Φ
∣∣∣
2

= |Φ|
2
.

Proof. Using lemma A.4 we get that

∣∣∣T
Q
Φ
∣∣∣
2

2
=

1
(2π)m

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθm

∫ +∞

0
dr1 · · ·

∫ +∞

0
drm ‖Φ(Q(

√
r1e

iθ1 ,· · ·,√rmeiθm))‖2e−r1 · · · e−rm .

Then performing the change of coordinates

(r1, · · · , rm, θ1, · · · , θm) 7→ (r′1, · · · , r′m, θ′1, · · · , θ′m)

with
(
√
r′1e

iθ′1 , · · · ,
√
r′meiθ′m) = Q(

√
r1e

iθ1 , · · · ,√rmeiθm)

the Jacobian of which is equal to 1 and observing that

r′1 + · · · + r′m = ‖Q(
√
r1e

iθ1 , · · · ,√rmeiθm)‖2 = r1 + · · · + rm
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we get the desired result. 2
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