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Abstract

A key tool in the study of the dynamics of vector fields near an equilibrium point is
the theory of normal forms, invented by Poincaré, which gives simple forms to which
a vector field can be reduced close to the equilibrium. In the class of formal vector
valued vector fields the problem can be easily solved, whereas in the class of analytic
vector fields divergence of the power series giving the normalizing transformation
generally occurs. Nevertheless the study of the dynamics in a neighborhood of the
origin, can very often be carried out via a normalization up to finite order. This
paper is devoted to the problem of optimal truncation of normal forms for analytic
vector fields in R™. More precisely we prove that for any vector field in R™ admitting
the origin as a fixed point with a semi-simple linearization, the order of the normal
form can be optimized so that the remainder is exponentially small.We also give
several examples of non semi-simple linearization for which this result is still true.
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1 Introduction

1.1 Position of the problem

A key tool in the study of the dynamics of vector fields near an equilibrium
point is the theory of normal forms, invented by Poincaré, which gives simple
forms to which a vector field can be reduced close to the equilibrium [1],[3]. In
the class of formal vector valued vector fields the problem can be easily solved
[1], whereas in the class of analytic vector fields divergence of the power series
giving the normalizing transformation generally occurs [3], [21],[22]. Neverthe-
less the study of the dynamics in a neighborhood of the origin, can very often
be carried out via a normalization up to finite order (see for instance [4], [11],
[15], [16], [19],]23]). Normal forms are not unique and various characterization
exist in the literature [2],[5],[8],[13],[23]. In this paper we will consider the
version given in [13]:

Theorem 1.1 (Unperturbed NF-Theorem) LetV be a smooth (resp. an-
alytic) wvector field defined on a neighborhood of the origin in R™ (resp. in
C™) such that V(0) = 0. Then, for any integer p > 2, there are polynomials
Op, N, : R™ — R™ (resp. C™ — C™) , of degree < p, satisfying

Q,(0) = N, (0) = 0, DO, (0) = DA}, (0) = 0

such that under the near identity change of variable X =Y + Q,(Y), the
vector field

dX
~ —vix) (1)
becomes
% _ LY 4 NL(Y) + R, (Y) @)

where DV (0) = L, where the remainder R, is a smooth (resp. analytic) func-
tion satisfying R,(X) = O(||X|[P™) and where the normal form polynomial
N, of degree p satisfies

Np(eY) = e N, (Y)
for allY € R™ (resp. in C™) and t € R or equivalently
DN,(Y)L'Y = LNy (Y)

where L* is the adjoint of L. Moreover, if T is a unitary linear map which
commutes with V', then for every Y,

Q(TY) =TQp(Y)  Ny(TY) = TN, (Y).



Similarly, if V' is reversible with respect to some linear unitary symmetry S
(S =St =5%) ie if V anticommutes with this symmetry, then for every
Y

)

Q(SY) = 5Q,(Y)  Ny(SY) = =SN(Y).

This version of the Normal Form Theorem up to any finite order has the
following advantages : its proof is elementary and the characterization given
is global in terms of a unique commutation property. Moreover it uses a simple
hermitian structure of the space of homogeneous polynomials of given degree.

Since a usual way to study the dynamics of vector fields close to an equilibrium
is to see the full vector field as a perturbation of its normal form L + A, by
higher order terms, it happens to be of great interest to obtain sharp upper
bounds of the remainders R,. A similar theory of resonant normal forms was
developed for Hamiltonians systems written in action-angle coordinates (see
for instance [6], [9], [20]). A sticking result obtained by Nekhoroshev [17], [18],
in order to study the stability of the action variables over exponentially large
interval of time, is that up to an optimal choice of the order p of the normal
form , the remainder can be made exponentially small. For more details of such
Normal Form Theorems with exponentially small remainder for Hamiltonian
systems written in action angle variables, we refer to the work of Poschel
n [20]. A similar result of exponential smallness of the remainder was also
obtained by Giorgilli and Posilicano in [10] for a reversible system with a
linear part composed of harmonic oscillators.

So a natural question is to determine for which class of analytic vector fields,
such results of normalization up to exponentially small remainder can be ob-
tained?

Since in the previously mentioned works dealing with particular hamiltonian
or reversible systems, the normalization procedure is based on diagonalizable
homological operators, a first natural class to consider, is the class Cq of an-
alytic vector fields, fixing the origin, and such that their linearization at the
origin is semi-simple (i.e. is diagonalizable). This is indeed the largest class
for which the homological operators involved in the normalization procedure
are diagonalizable (see Lemma 2.5-(a)). More precisely, we prove in this paper
that such results of normalization up to exponentially small remainder can be
obtained for any analytic vector fields in Cs provided that the spectrum of the
linearization at the origin satisfies some ”"nonresonance assumptions” which
enable to control the small divisor effects.

The question of the validity of such results for analytic vector fields with
non semi-simple linearization is far more intricate : we give two examples of
non semi-simple linearizations for which the result is still true. However, the
question remains totally open for other non semi simple linearizations. We



perform some estimates which suggest that the results should not be true
in general for non semi-simple linearizations, but theses estimates are not
sufficient to build a counter example (see Remark 2.9).

1.2 Statement of the results

To state our results we need to specify some ”"nonresonance assumptions”
which enable to control the small divisor effects. In many problems, one uses
one of the two following classical "nonresonance assumptions” : for a subset
Z of Z™, for K € N, and for 7 > 0, a vector A = (A1, -+, \,) € C™, is said
to be v, K-nonresonant modulo Z if for every k € Z™ with |k| < K,

|(\E)Y| >~  when k¢ Z. (3)

Similarly, for v > 0,7 > m — 1, A is said to be v, 7-Diophantine modulo Z if
for every k € Z™,

|()\,k)|zﬁ when k¢ Z, (4)
where for k = (ky,--- ,kn) € Z7, |k| := |k1| + -+ + |km|. However, in the
problem of normal forms, the small divisors appear as eigenvalues of the ho-
mological operator giving the normal forms by induction (see Subsection 2.1
and Lemma 2.5). To control these small divisors let us introduce two slightly
different definitions :

Definition 1.2 Let us define A = (A,--- ,\p) € C™, K € N, v > 0 and
T>m— 1.

(a) The vector X is said to be v, K-homologically without small divisors
if for every a € N™ with 2 < |a| < K, and every j € N, 1 < j <m,

| (A a) =N > when (A, o) — \; #0.

(b) The vector A is said to be v, T-homologically Diophantine if for every
aeN™ |a] > 2,

[(hva) = N> ——  when  (Aa)— X #£0,

(¢) For a linear operator L in R™, let us denote by Ay, -, Ay, ils eigenval-
ues and A\ := (A1, -+, A\n). Then L is said to be v, K-homologically
without small divisors ( resp. 7, T-homologically Diophantine) if
AL, 18 S0.

Remark 1.3 Observe that in the above definitions, the components of o are
nonnegative integers whereas in (3) and (4), k lies in Z™.



In what follows we use Arnold’s notations [1] for denoting matrices under
complex Jordan normal forms : A% denotes the 2 x 2 complex Jordan block

corresponding to A € C whereas A represents 2 x 2 complex diagonal matrix
diag(\, M), i.e.

Al A0
A% = whereas A=

0 A 0A

A matrix under complex Jordan normal form is then denoted by the products
of the name of its Jordan blocs. Moreover since for real matrices the Jordan
blocks corresponding to non zero matrices occur by pairs A” and X" we shorten
their name as follows : for A;, As € C\R, 02.X72. 52 X" X, is simply denoted
by 0%.A71.A%2|.. Moreover, when one works with vector fields in R™, one
may want to remain in R™ and thus to use real Jordan normal forms for the
linearization of the vector field. So, for p € R and A = z + iy € C\ R, we
denote by p?A?|, the real Jordan matrix

o o O
o o O

Finally, we equip R™ and C™ with the canonical inner product and norm, i.e.
for X = (Xp,---,X,,) € C™, || X]|? = (X, X) = X X;X,. We are now
j=1

ready to state our main result:

Theorem 1.4 (NF-Theorem with exponentially small remainder)

Let V' be an analytic vector field in a neighborhood of 0 in R™ (resp. in C™)
such that V(0) =0, i.e.

V(X)=LX + > Vi[Xx®) (5)

k>2

where L is a linear operator in R™ (resp. in C™) and where Vi is bounded
k-linear symmetric and

[ X[ - - X

WValXe, -, Xl < c - (6)

with ¢, p > 0 independent of k.



(a) If L is semi-simple and under real (resp. complex) Jordan normal form,
then

(i) if L is v, T-homologically Diophantine, then for every 6 > 0 such that

Dopt = 2, the remainder R, given by the Normal Form Theorem 1.1

for p = popt, satisfies

SUD [ Ry (V)| < M, 8% 5 (7)
IY||<s
with
b 1 1 1
= — o g —— 7| w = —
1+ Dot oy eC?
and
10 AR
MT = ECCQ (m g) —+ (26)2+2T
where
vm {(5 e? p! .
C=-— —m—|—2)ac+3}, m=sup ———, a= .
p2 2 p peg pp+%e_p fy

(ii) if L is v, K-homologically without small divisors, then for every > 0
such that K > popy > 2 then the remainder R, given by the Normal
Form Theorem 1.1 for p = popy satisfies (7) with 7 =0, i.e. b= 1.
(b) For L=0%0---0 and L = 0%0---0, estimate (7) still holds with T = 0,
—— ——

q times q times
1.eb=1, and with a = 1.

The proof of this theorem is given in section 2.
Remark 1.5 Stirling’s formula ensures that m is finite.

Remark 1.6 Theorem 1.1 gives a polynomial upper bound of the remainder

R, of the form sup ||R,(Y)| < C(p)dP™ whereas the above theorem ensures
Y]l<é

that with an optimal choice of p we have sup [|R,,,.(Y)| < Mé*e™ 5. The
IYll<o

proof heavily relies on a precise control of the divergence of C'(p) with p.

Remark 1.7 A semi simple matrix under complex Jordan normal form is
simply a diagonal matrix whereas a real semi simple matrix under real Jordan
normal form is the direct sum of a diagonal matrix with 2 x 2 blocks of the

form (x —y) with z,y € R.
y T

Remark 1.8 The characterization of the normal form and the exponentially
small estimates are invariant under unitary changes of coordinates. Indeed,



if we perform in (2) a unitary change of coordinates ¥ = QY where Q is a
unitary linear operator (Q* = Q~'), then it becomes
Y o o~ o
= = LY + N,(Y) + R,(Y)
with L = Q7'LQ, N,(Y) = QTIN,(QY), R,(Y) = Q7'R,(QY), where N,

satisfies the same normal form criteria as N, i.e. N(eZ"Y) = e'X" A/(Y) and

where ﬁp admits the same exponentially small upper bound as R, given by

(7).

However, when () is not unitary then /\N/p satisfies a slightly different normal
form criteria given by

N(eEY) = LN (Y)
where Ni = Q~'L*Q which is not equal to L* when Q is not unitary. In this
case, R,, . also admits a slightly different upper bound given by

opt

w

Sup_|[ Ry, (V)| < McJQH| QU 6% e ell® &

Yll<o

where [[|Q|| = sup [|Q(Y)]].

Yll=1

The above remark enables to state a corollary without assuming that L is
under real or complex Jordan normal form

Corollary 1.9 Let V' be an analytic vector field in a neighborhood of 0 in
R™ (resp. in C™) such that V(0) = 0, i.e. satisfying (5) and (6). Denote
L = DV(0) and let Q be an invertible matriz such that J = QLQ™" is under
real (resp. complex) Jordan normal form.

Then, there are polynomials Qp, ., Np,,, : R™ — R™ (resp. C™ — C™) , of
degree < popt, satisfying Qp,,. (0) = Np,,,(0) = 0,DQp, ., (0) = DN, . (0) =0
such that under the near identity change of variable X =Y + Qp, . (Y), the
vector field (1) becomes

dY
E = LY + Npopt (Y> + Rpopt (Y>

where the remainder Ry, = O(||Y|[Pert™1) is analytic and where N, , satisfies

Popt
the normal form criteria

Npopt (etLY) = etLNPopt (Y) wlth z - Q_l‘]*Q

for allY € R™ (resp. in C™) and t € R. Moreover,



(a) if L is semi-simple and -, T-homologically Diophantine, then for every
0 > 0 such that pepy > 2, the remainder R, satisfies

SUD[Rp,,e (V)] < M%7 % (8)
Iyl<eé
with
S ! 1
=7, _ opt — | 7V~ | W= ———
T+7 Pt ™ e(Coy oC?
and
10 57\ 7
I\"TZQCHIQIII QI (m g) + (2e)%7"
where
Jm
€= 2 {(2m+2) ac|QIIP IQHII* + 3pll QI Q™ 1|||}
2 5l
andmzsupi’ CL:’)/_l;
peN pPtae—?

(b) if L is semi-simple and -y, K-homologically without small divisors, then
for every 6 > 0 such that K > popy > 2 then the remainder R, satisfies
(8) with T =0, i.e. b=1;

(c) for J =070 0---0andJ= 0%0 0-.-0, estimate (8) still holds with T =0,

q tzmes q tzmes

1.eb=1, and with a = 1.

Proof. Starting with (1), perform a first change of coordinates X = @~ 1X
to obtain a vector field V such that DV(O) J is under Jordan normal
form, then apply Theorem 1.4, i.e perform a second change of coordinates
X = onpt( ) and finally perform a last change of coordinates ¥ = QY to
get the desired result. O

The previous corollary readily enables to state a second one which holds for
perturbed vector fields

d
d—i‘:\/(u,ﬂ), uweR™ peR® (9)

by setting U = (u, i), V = (V,0) and observing that (9) is equivalent to
au
dt

Theorem 1.10 Let V : R™ x R®* — R™ be an analytic family of vector fields
defined in a neighborhood of 0 in C™ x C* such that V(0,u) =0, i.e.

= V().

n+0>2
E>1



where Ly = D,V (0,0) is a linear operator in R™ (resp. in C™) and where Vi,
1s bounded k + (-linear symmetric and

X Xl ] el
I p*

Hvkj[Xl;"' 7Xk7:u17"' 7/’65]” S c (11)

with ¢, p > 0 independent of n and ¢.

Let Q be an invertible matriz such that J = QLoQ™' is under real (resp.
complex) Jordan normal form.

Then, there are polynomials Qp,,,, Np,,, : R™ x R®* — R™ (resp. C™ x C* —
C™) , of degree < popt, satisfying Qp,,, (0,0) = N, (0,0) = 0, DQ,,,,(0,0) =
DN, (0,0) = 0 such that under the near identity change of variable X =
Y 4 Qp,,. (Y), the vector field (9) becomes

ay
E = LOY + Npopt <Y7 IU/> + Rpopt<Y7 IU/)
where the remainder Ry, = (9((||Y|| + ||u||)p0pt+1) is analytic and where N
satisfies the normal form criteria

Popt

Npope (¢0Y, 1) = 0N (Vi) with Ly = Q71 J*Q
for allY € R™ (resp. in C™) and t € R. Moreover,

(a) if Lo is semi-simple and -y, T-homologically Diophantine, then for every

0 > 0 such that popy > 2, the remainder R, satisfies
SUp Ry, (Y1) < M%7 (12)
IYIl+ <o
with
b 1 1 1
= — o g — | W —= ——
T IS TOE N
and
10 o7\
M. = SellQll Q) € (m 8—) + (2021
where

5
€= {(Gm+2) acll QU Q™11+ 3ellll Q™ Il}

e? pl

and m = sup -
peN pp+§€_p
(b) if Lo is semi-simple and vy, K-homologically without small divisors, then
for every 6 > 0 such that K > pope > 2 then the remainder Ry, satisfies

(12) with T =0, i.e. b=1;

_ ~—1.
7a—’7 )



(c) for J=0%0---0 and J=030---0 , estimate (12) still holds with T = 0,
~—— ~——
q times q times

1.e b=1, and with a = 1.
The proof of this theorem is given in section 3.

Remark 1.11 In the non semi-simple case, we get the exponential smallness
of the remainder only in two special nilpotent cases. For the other cases the
problem remains open. Nevertheless, in [14], we study analytic reversible fami-
lies of vector fields V (X, 1) in R* admitting a 0%iw resonance (i.e. DxV (X,0) =
0%iw|, ) and we show how the above theorem can be used to get an exponen-
tially small upper bound of the remainder of the form

w

(Y, )l < Mee VI (13)

Popt

sup |IR
YeB(u)

where B(u) is some appropriate neighborhood of the origin of size of order
|i|. We then deduce from (13), the existence of homoclinic connections to
exponentially small periodic orbits.

2 Exponential estimates for unperturbed vector fields

This section is devoted to the proof of Theorem 1.4. We first recall in few
words the proof of Theorem 1.1.

2.1 Normalization and Homological equations

Let V' be an analytic vector field in a neighborhood of 0 in R™ (resp. in C™)
such that V(0) = 0, i.e. a vector field satisfying (5) and (6). Let H be the
space of the polynomial ® : R™ +— R™ (resp. C™ — C™) and let Hy be the
space of the homogeneous ones of degree k. We are interested in polynomial
changes of variables, of the form X =Y + Q,(Y) with

Q,(Y)= > @(Y), P € Hy

2<k<p
such that by the change of variable, equation (1) becomes of the form (2) with

M(Y) = Z Nk<Y)7 Ny € Hkv

2<k<p

10



where N, is as simple as possible. A basic identification of powers of Y leads
to

{Id+ ¥ DOY)HLY + ¥ No(Y)+R,(Y)}

2<k<p 2<k<p

=L{ > @AY)}+£%&@{&3% édyijl.

1<k<p

(14)

where ®1(Y) =Y. This leads to the following hierarchy of homological equa-
tions in H,, for 2 < n < p,

A ®,+N, =F, (15)
with
F,=— Y D®.Nyju+ > S V@ @] (16)
2<k<n—1 2<q<n pi+--+pg=n

where A, is the homological operator given by
(A, 2)(Y)=Dd(Y).LY — LP(Y).

In (16), by convention, the sums corresponding to an empty index set are equal
to 0. Observe that A, induces on each H,, a linear endomorphism denoted by
Al : Hn — Hy. Generally A, |, is not invertible. So when F), lies in the
range ran(A, |, ) of A, [, , one can take NN, = 0 and for ®, any preimage of
F,. When F), does not lie in ran (A, |,, ), one has to choose IV,, in an appropriate
supplementary space of ran(A, |, ) so that F,, — N,, belongs to ran(A, |, ).

The key idea of the proof of Theorem 1.1 contained in [13] is to introduce an
appropriate inner product on H such that the adjoint A¥ of A, is given by
A, .. Hence,

1 1
Hn=ker A, |, @®ranA_|, , H, =ranA |, ©ker A ,

Hn ®

Then for solving (15), we use the orthogonal projection 7, on ker A, .|, ~for
obtaining N,, and the pseudo-inverse A, |-'of A, |, ~defined in (ker A,.)" =

ranA, |, taking values in (ker A, |, )* for @y, i.c.

N, =m(F,) and &, = A |1 ((1d - m,)(F,)). (17)

This completes the proof of theorem 1.1 and ensures that N, belongs to
ker A .|, and thus that N, lies in ker A , := {N/DN(Y)L*Y — L*N(Y) =
0}.

To conclude this subsection, the appropriate inner product in H introduced
in [13] is given by

Hn

(@le), = 3" (@,|))

Jj=1

11



with & = (®q,--- ,D,,), ' = (P, -+, P ), where for any pair of polynomial
P,P':R™ — R (resp. C" — C) ,

(P|P") = P(dy)P'(Y)l,_,-
where by definition P(Y) := P(_). E.g, for all positive integers aq, - -+ , oy,
ﬁlu e 7ﬁm

<Y1a1. Ce 'Ymam|1/161- ce Y£m> — 041!- Ce -am! 5041751' e '5am,,6’m

where 0,3 = 1 if @ = (3, and 0 otherwise. It what follows we norm H,, with
the associated euclidian norm |(I>|2 = ,/(2|P),,

2.2 Ezponential upper bounds for the remainder: main results

2.2.1 Main result.

We want to give an estimate on R,(Y") depending on p and on the size of the
ball where Y lies. Given the size of this ball, the aim is to optimize the degree
p of the normal form, and show that R,(Y) can be made exponentially small
with respect to §. For unperturbed vector fields, all follows from the following
proposition which ensures that the exponentially estimates of the remainder
follows from the estimates of the growth with respect to k of the euclidian
norm of the pseudo inverse of A, |, .

Remark 2.1 A priori the pseudo inverse of the homological operator Zl: \;i

is only defined from (ker A,.)" = ranA, |,, onto (ker A, [, ). From now on,
we extend it on the whole space Hy as follows

AL|Hk:4vL|;i(I> =0 for ® e (ker A, )", 7\:|;i<1> =0, for®eckerA,.

Proposition 2.2 (Exponential estimates of the remainder) Let V' be
an analytic vector field in a neighborhood of 0 in R™ (resp. in C™) such that
V(0) =0, i.e. a vector field satisfying (5) and (6). Denote

ax(L) = M, Ll = sup Aol

Then, if there exits K > 2, a > 0 and 7 > 0 such that ax(L) < ak™ for every
k with 2 < k < K < +o00, then for every 6 > 0 such that K > poy, > 2 the
remainder R, giwen by the Normal Form Theorem 1.1 for p = pop satisfies

SUp (| Ry (V)| < M 6%

opt
IYl<é

12



. 1 . 1 . 1 10 9 o7 1+7 oior
b= 147 Port = lw], W= oh M = GcC {(m\/g) + (2e)
2
where €' = g {(gm—|—2) CLC+3P}7 m = sup il _ and where for a real

peEN pp 2¢7P
number x, we denote by [x] its integer part.

Remark 2.3 Stirling’s formula ensures that m is finite.

The proof of this proposition is performed in two main steps. We first prove
that roughly speaking, R, admits an upper bound of the form

sup [[R,(Y)[| < M(COPH (ph) .

Yll<é

where M depends on 7 but not on ¢ nor p. Then we optimize p (see Lemma
2.19), so that (C8)P™(p!)™*! is exponentially small for p = pope. In fact, the
upper bound for R, is a little bit more complicated (see Lemma 2.17) and we

obtain it only for (05)1+% p < e~!, which is just enough to obtain the desired
exponentially small upper bound of the remainder. The detailed proof of this
proposition is postponed to subsection 2.3.

Remark 2.4 The euclidian norms ag(L) of the homological operator are in-
variant under unitary changes of coordinates. Indeed, if () is a unitary linear
operator, let us denote L' = Q7'LQ and a(L') = |||'AL’|7_111H|2 Then, since
Ay, = %AJHk,];l where (7,®)(Y) = Q'®(QY’) and since 7, is unitary
when @ is unitary (see Appendix A.3), we get that ax(L') = ax(L) for every
k>1.

2.2.2  The semi-simple case: proof of Theorem 1.4-(a)

Theorem 1.4-(a) directly follows from proposition 2.2 and from the following
lemma

Lemma 2.5 Let L be a linear operator in R™ or C™.

(a) Denote by o(L) :={A1, -, A} the spectrum of L. Then, for every k > 2
the spectrum o(A, |, ) of A,|,, 1s given by

o(Aly, ) = {Ajo = A, 0) = A;, 1<j<m, aeN"Jaf =k} (18)

Moreover, .AL|ch 1s semu simple if an only if L is so.

13



(b) If L is semi-simple and is under real or complex Jordan normal form,
then for every k > 2,

(L) = AL, < (A0l
Aja?0
Remark 2.6 When L is semi simple, under Jordan normal form, and ~, K-
homologically without small divisors, the above lemma ensures that ag(L) <
v~ for 2 < k < K and if L is 7, 7-homologically Diophantine, then ax(L) <
v~ L kT for k> 2.

Proof of Lemma 2.5. (a): Although this result is classical (see [7]), we
give its short proof for self-containedness of the paper. Let () be an invertible
matrix such that J = Q !LQ is under complex Jordan normal form and
observe that A, |, = 7;_1AJ\H]€TQ where (7,9)(Y) = Q'®(QY’). Hence the
spectrum of A, [, ~is equal to the spectrum of A, [, . Let {¢;},_,_, be the
canonical basis of C™. Then, since J is under Jordan normal form, we have
JCj = )\jcj + 5]‘_1Cj_1 with 50 = 0 and where 5j—1 = 0 if )‘j 7é )\j—l and
d;—1 =0 or 1 otherwise. Let {P; be the basis of Hj given by

’a}lﬁjﬁmyaeva\a\:k
. aq «
Pia(Y) = Y. - Ygme,

we order this basis with the lexicographical order, i.e. P;, < Py g if the first
non zero integer ¢ — j, 31 —oq.- -+ By — Quy, is positive. Within this order, A,
is upper triangular and

A, P = ((A, @) = X)) Pia + > dePja-optory — 0j-1Pj-1a (19)
=1
with oy = (0,---,0,1,---,0) where the coefficient 1 is at the ¢-th position.

Hence the spectrum of A4, |Hk and thus the spectrum of A, |Hk is given by (18).
Formula (19) also ensures that A, is semi simple if and only if J is so.

(b) : We proceed in two steps.

Step 1. First assume that L is semi-simple and is under complex Jordan
normal form i.e. assume that L = J is diagonal. Then 6; = 0 for 1 < j < m.
Thus, by (19), A, |, is also semi simple and {Pja},_ . . cum o 18 & basis of
eigenvectors of A, |, . For ® € H, let us denote

e=3+0, d=mdeker(A.l, ), d= Y & .P.cran(Al,)
1<j<m,|al=k
Aj

70
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_ —1 : A -1d — _
and M = o max |A;o|™'. Then since .AL|Hk(I> = 0 and (Pja|Prp), =0 for
Aj a0

(4, ) # (¢, B) we have

— 2 . o~ 9
AL = X el @0 [Pl
2 1<i<mylal=k
Aj,a?’éo
1<j<m,lal=k

A 070

:M2’§>

2
.
Finally, since (&)@)H =0,

\Z«[\;icb\z < MJal,. (20)

Step 2. If L is real semi simple and is under real Jordan normal form then it
is conjugated to its complex Jordan normal form by a unitary matrix since

T +1 0 T — 4 L

! o' [T Ve with =V V2

0 x—1iy Yy x % %
Then, remark 2.4 and the previous step ensures that (20) still holds when L
is real, semi simple and under real Jordan normal form. O

2.2.8  The non semi-simple case: proof of Theorem 1.4-(b)

Theorem 1.4-(b) directly follows from proposition 2.2 and from the following
lemma

Lemma 2.7 For L=0%0---0, L=0%0---0, a,(L) satisfies
——

——
q times q times
ar(L) < a, for every k > 1

with a = 1.

The detailed proof of this lemma is postponed to subsection 2.4. (see Lemmas
2.22 and 2.24). For non semi-simple operators L the direct computation of
the norm of AL|;i is in general quite intricate. So, in subsection 2.4, the

computation of ay(L) for L=070---0, j = 2,3 is performed via the following

q times
lemma which gives this norm in terms of the spectrum of the self adjoint

operator (A, |, )*A,l,, =A..l,, A.l,, which appears easier to handle.

15



Lemma 2.8 For every linear operator L in R™ or C™ and every k > 1, let
us denote by (L) C RT the spectrum of the positive self adjoint operator
(AL|Hk)*AL|Hk =A,. ’HkAL‘Hk' Then,

=

(D)= AT, = (i 1)

oeXi(L)\{0}

Proof. Observe that

SIS

A -1
AL\Hké‘

|| . <A * g AL g ‘I"‘I’>
2 = —2 = inf A"k b

A = Sup ——gr—— = Sup !
QeH,\{0} | |2 \Pe(ker.AL\Hk)i AL‘H,C\I/ \Ifé(ker.AL\Hk)i v,
2

Then, since ker A, |, = ker A,

2, Asly, and since A, .|, A, [, is a positive

1
self adjoint operator, we get ay(L) := < Err%iLr)l\{o} |cr|) 2.
[ASOIA

O

Remark 2.9 For L = 0%iw|,_ ., the above strategy leads to an estimate of
ar(L) of the form

ar(L) < a(Ck)1
which is far too large to get an exponential estimate of the remainder. So, at
the present time, we do not know whether an estimate of the form (7) is still
true for L = 0%iw|,_ ..

2.3  Ezponentially small estimates of the remainder for polynomially bounded
pseudo inverse of the homological operator.

This subsection is devoted to the proof of proposition 2.2. To fix the notations
we make the proof for vector fields in R™. The proof is the same for C™. So, let
V be an analytic vector field in a neighborhood of 0 in R™ such that V' (0) = 0,
i.e. a vector field satisfying (5) and (6). We assume that the pseudo inverse
of the homological operator is polynomially bounded on Hy for 2 < k < K <
400, i.e we assume that there exists a > 0 and 7 > 0 such that

ap = .7l:|71.<1> < ak” for 2<k < K.
Hy, 9

Our aim is to find an exponential upper bound of the remainder R,(Y") for
Y in a ball of radius 4. Since the remainder R,(Y") is given by equation (14),
for estimating it, we successively compute upper bounds for @, (Y"), N,(Y),

16



> D@k(Y), Z ®;,(Y) and finally for R,(Y"). For the polynomials IV, and
2<k<p <k<p
®,, the natural norm to finally compute an upper bound of sup [|R,(Y)| is
Yll<é
the "sup-norm” defined for any & € 'H,, by

o)
(6} = su .
Pl = S0 IV

However, N,, and ®,, are the solutions of the Homological Equation (15) given
by (17), i.e. defined via the orthogonal projector m, which has nice properties
for the euclidian norm and not for the sup norm. These two norm can be
compared has follows :

Lemma 2.10 (Comparison of the euclidian and the sup norm)

For every ® € Hy,

m m—1
@ |0k—f|¢| <O o], < Vim kS jof

. n!
wher’e Cn = m

The proof of this Lemma is given in Appendix A (see Lemmas A.3 and A.5).
Moreover if we normalize the euclidian norm on H,, by defining

|D| |<I>|2, for every ® € H,,

1
2,n = ﬁ

then the normalized euclidian norm has very nice properties with respect to
multiplication and derivation :

Lemma 2.11 (Multiplicativity of the normalized euclidian norm)
(a) Let g and {ps}i<e<q be positive integers and let R, € L,(R™) be q-linear.

Then for every ®,, € Hy,, 1 < € < g, the polynomial Ry[®p,,---, P, |
lies in 'H,, withn =p; +---+p, and

Bl @] < WRM gy (2], o[,

27pq

(b) Let k>0 and p > 0 be two integers and let Oy, N, lie respectively in Hj,
and H,. Then D®;.N, lies in 'H,, withn =k —1+p and

DON,|, < VK24 (m = 1)k B4, , 1N,

This Lemma is also proved in Appendix A (see lemmas A.8 and A.9).
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Hence to compute by induction upper bounds of ®,,, N,, defined via w,, we
use the normalized euclidian norms

= |N,|. , forn>2,
2,n

=|®,|, , forn>1,
2,n

with the convention ®1(Y) =Y and thus ¢; = |[Y| = /m. Lemma 2.10

ensures that the same upper bounds will also hold for the sup norms of N,,, ®,,.
Since 7, is orthogonal, we deduce from (17) that

Un = |Nn‘27n = ‘ﬂ'n<Fn)‘27n = ﬁ |7Tn(Fn>|2 % | Fr ‘ = | n‘

and similarly -
b0 < WA, 1B, < an” |l

Hence using the multipicativity and the derivation properties of the normalized
euclidian norms, we get that

Vn <) (k‘2+( ))

=

OrVn—ri1 + > cgbpl”‘gbp“, (21)

2<k<n—1 2<q<n pit-dpg=n P!
n <an’ (k2 ) PrVn—r1tan’ >y d e OpiOp (22)
2<k<n—1 2<q<n pr+-tpg=n P

for 2 < n < K with the convention ¢; = [®1| = [Y] = v/m. Hence using
that (k* + (m — 1)k)% < v/mk, we check by induction that

Lemma 2.12 Let {3, },>1 be the sequence defined by induction

q—2
b= S kBt X5 (L) B nz2 (29

2<k<n—1 2<q<n p1+-Fpg=n 4C

6, = 1.
Then we have the estimates

Uy < vm (“’i;éﬁ)nl (n=1)) B. for2<n<K (24)

a
acy/m
2
p

n—1
On < /m ( ) ()76, forl1<n<K. (25)

Proof. We proceed by induction. For n = 1, the above inequality is true since

= /m. For n = 2, equation (23) ensures that 5, = 1 and (21), (22) ensure
that 1o < emp™2 and ¢y < acm27p~2, and thus (25), (24) are true for n = 2.
Assume now that (24), (25) holds for £ < n with n > 3. Then (21) ensures

18



v, < @ <ac\/ﬁ>"1 ((n — 1)!)T (m Y kBkBurir (D)

2<k<n—1

+ Z Z <£)q2 By - 'ﬁpq(Dmm,---,pq)T)

9<q<n p1+-tpg=n A€

where I B | |
, kl(n—k)! _p!epy!
Dy, = 7@ — )1 and Drpyopy = 7(71 S
It remains to prove that D , <1 for 2 <k <n—1 and that D, .., <1
for2<qg<mn, py+---+p, =n, p; > 1, to ensures that (24) holds for n and

similarly that (25) holds also for n.

Denoting C,’j = ﬁlk), and observing that C,’j >nforl <k<n-—1, we get
n
o

Dn,k —_— E S 1.
Finally to prove that D, p, .. ,, < 1 we proceed by induction on q. For g = 2,
we have

p1!<n - pl)! ’

npLpz = N T <1
wh (n—1)! 1P
since 1 < p; < n — 1. Assume now that D, .., < 1 for ¢ > 2 and every
n > q, then
Pgt1!
Dn,p17---,pq+1 = Dp1+---+pq7p17--wpq (pl _'_ T _'_pq - 1)' (nq_ 1)'7
1

=D

PitePqp1Pg APt <1,
n—1

since for every 7 € N and j with 0 < j < r, we have CY > 1. This completes
the proof of Lemma 2.12. O

The study of the sequence {f,},>1 enables to obtain Gevrey estimates for

Pns Vn-

Lemma 2.13 In choosing oy = 1 and

an = 0" ?(n —2)!, forn > 2
and © large enough such that
ac® > p, (26)
and ; L
§m + 2 2 =) <
ac 1 27
6 1-L =" (27)
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then B, in (23) satisfies B, < a,, for n > 1 and thus

n—2
On < en <ac\/r_n @> (n)™ (n—2), for2<n<K, and ¢, = /m,

p p
n—2
vy < (@) ((n-1) (-2,  for2<n<K.
p p

Proof. We proceed by induction. We have f; =1 =a; < a; and B, =1 =
s < . Assume now that 3, < oy, for k <n and n > 3.

Step 1. Splitting of the bounds. Then by induction hypothesis,
Bn <AL+ AL (28)
with

1
Ay=m > koaponpnt Y any,

2<k<n—1 1<k<n—1

-2
A=Y > <£)q Qpy e Oy

3<q<n p1+...+pg=n “4€

Step 2. Two auxiliary sums for Al.

Step 2.1 Upper bound for S,,. Let us we define
k(k—2)!(n—k—1)!
G-y HE=2 ko)

2<k<n—1 (n—2)!

Explicit computations show that S3 = 2, Sy = S5 = g Hence, S, < 5/2 for
3 < n < 5. To prove that it also holds for n > 5, observe that for n > 5,

B k(k —2)l(n —k)! k(k—2)(n—k—1)!

S"“_S"_%%n (n—1)! _QS,EI (n—2)! ’
m—k)! (n—k—-1!'\ n+2 1 n+1
?Sgli(k_z)!<(n—l)!_ (n—2)! >+n—1+n—2_n—2’

1 1 n—4
= k(k=2)! ((n—l)...(n—kJrl)_ <n—2>...<n—k>>+<n—1><n—2>’

e Kl n—4

__%Eidhr—UWM—kf+m—iﬂn—@’

o k! ~_ (n=2) n—4

- %%;dn—ﬂm@—@ CEN RO
. 9

:_%éiﬁﬁr—nmm—k)_Or—Dm—Q)SO
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where, here again, by convention, the sums corresponding to an empty index
set are equal to 0.

Hence S,+1 <5, for n > 5, and we can conclude

Sn <5/2, for n > 3. (29)

Step 2.2 Upper bound for P,. We now define

P= Y

2<k<n—2

(k—2)(n—k—2)!
(n —2)! '

Observe that Py = % and that for n > 4,

(k=2n—k-1)! k(k —2)l(n — k — 2)!

Pn+1_Pn: Z

>

= (n-1) = n—20
2;2(’;—2)! <(n—1)}.(n—k) _(n—2)...(1n—k—1)>+(n—1)1(n—2)’
- Qg,gm (n— 1]§(k(; i)'k YR 1)1(n )

B ;S,g (- 1k)(k(; 3);; 1) (”Zf )—(711;!4)! (n—1)1(n—2)’
¥ k-2 1 N

D<hen3 n—1)..n—k=1) (m—-1)n-2)(n—-3) ~

Hence, P, < P,, for n > 4 and we can conclude

P, <1/2, forn >4. (30)

Step 3. Upper bound for Al. It results from (29) and (30) that for © > 1,

Sm+2
A1<2
" 0

Qp, N> 3, (31)

where the proof of this inequality is direct for n = 3.

Step 4. Auxiliary sums for A2. Now, we define for n > ¢ > 2:
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then we already have

1
Hn,n =1< —204n, n Z 3,

= 9n-
H272:17

11 <2 >3
n> R0, 29,
=9

where the last inequality comes easily from the inequality for P,. For estimat-
ing II,,, with n > ¢+ 1, we proceed as follows

Hq,n = Z Oék:qul,nfk = qul,nfl + Qp—g+1 + Z Oélcl_[qfl,nflc

1<k<n—q+1 2<k<n—q

and prove by induction that
2
Hq,né Wan’ nZC]+1 23
Finally, gathering all our results, we get

2
Hq,n S mana n Z q Z 37 (32)

Step 5. Upper bound for A2. We deduce from (32) that

. AN P\ 2uo
8- (5) s X 2(G) %S%{ﬁ}’ (33)

3<q<n N0€ 3<g<n e

provided that —£5 < 1.

Step 6. Upper bound for 3,. Hence, (31) and (33) ensure that

5
9 2 2_&
Bn§{2m+ + —acd }anﬁan

S} 1 -5
ided that —— < 1 and (2 +2)1+ 2u6 <1
rovided that — and (3m — 4 —%C .
P acO 2 CRNE
O
In all what follows we choose
5 3p
0=- 24+ — 34
S 2+ (34)

22



which ensures that (26) and (27) are simultaneously satisfied since with this
choice

p 1 5 1 25 (Gm+2) 5 24
L d z 2) = ac < ac -1
a6~y M GMEY gt e s T T

We can now compute an upper bound for the change of coordinates and for
its differential.
Lemma 2.14 For every 6 > 0 and every p, 2 < p < K satisfying

2

1+7 <

5p _r
~ 2acy/m ©°

we have

| Y wm)l < gV (30)

1<k<p

Il S DB, < 2/5. (37)

2<k<p
for every Y € R™ with ||Y]| <.
Remark 2.15 Observe that the size 0 of the ball where Y lies and the degree

p of the normal form, i.e. the degree of the polynomial change of variable are
now mutually constrained by (35).

Proof. We proceed in three steps.

Step 1. Upper bound for || Y ®,(Y)||. Lemmas 2.10, 2.13 ensure that
1<k<p

DR NOTESS ST Ao

1<k<p 1<k<p
< X |, IV
1<k<p ’
< Z ¢/€5k7
1<k<p
9 k—2
<oym o+ Y Lo (“C@@ 5) (K1) (k —2)!
o<k<p P P
1 1 k—1
<dymil+ = <———> (YT (k—2)' ¢,
{ @sz:ﬁp 2
1 1\
<Symil+— > (—) :
O P, 5%, \2
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since for 2 < k < p,

(k—2)! 1 K2k
~— 2 <- and —=Z.....=<1. 38
pEt T p] Pt p %)
Hence,
1 10
| 3wl <avin{is o< v
1<k<p

. 5 9
since © > om +2 > 3 and p > 2.

Step 2. Upper bound for |||D<I>k(Y)|||£ Em)" For Y, Z € R™ seeing Z as
an homogeneous polynomial of degree 0, Lemmas 2.10, 2.11 ensure that

| D (Y).Z]|
2R 20 Do, (V).Z
”Y”kil —‘ k( ) ‘O,k’
< |D®(Y).Z], .
< R+ ( —1k\<I>k| 20,
= k2 + ( ko 121,

Hence using that \/k:2 + (m — 1)k < /mk we obtain

1D (Y g, < Virkell Y[

Step 3. Upper bound for ||| Z D®.(Y)|l|
<k<p
vious step and estimate (38) ensure that for ||Y|| < 6, with d, p satisfying (35)

we have

@™ Lemma 2.13, the pre-

acy/mOs\" ! .
R S I
2<k<p 2<k<p P
1 k—1
gpm) k(R (k= 2)L

&)

N
IN
o
A
=

IA |

O3 O3 O3 OIS
2
Lé\
/N

IA
SIEN

5

LS O

since © >
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We have now enough material to compute an upper bound of the remainder.We
first prove

Lemma 2.16 For every 6 > 0, every p, 2 < p < K satisfying (35) and for
every Y € R™ with ||Y|| <6, we have

IR, (V) < 3 (&) +45 +4)) (39)

wW| ot

where

A;, = Z \/E korvp k410",

2<k<p
p+1<n<p+k—1
9 co”
A, = > ——py by
2<g<p P (40)
pF+1<n=pi+--+pg,
1<p;<p

A= X SV oy

p+i<q P !
Proof. The remainder R,(Y) is given by equation (14) where it gathers all
the terms of order larger than p. To bound it, we proceed in several steps.

Step 1. Explicit formula for the remainder R,. Identifying the powers
of Y in (14), we get that the remainder R, is explicitely given by

£, Rp(Y) =0, + 9 + N (41)
with
£, =Ild+ X DoY),
2<k<p

N(Y)= ¥ DO(Y).Nu(Y),

2<k<p,2<k'<p

E—1+k'>p+1
MWY) = L V|2, (V)0 (V)]

2<q<p, 1<p;<p
p1+tpg>ptl

W)= £ %[5 a0

q>p+1 1<k<p

Step 2. Upper bound for ||| || Since lemma 2.14 ensures that

LER™)"

I >2 DOkl < 2/5 <1

2<k<p
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we get that £, is invertible and for every § > 0, every Y € R™ with ||Y]| <§
and every p, 2 < p < K satisfying (35),

L-2 (42)

’H):;l|”£(Rm) < -2 3

Step 3. Upper bound for |9t (Y)||. Setting n = k — 1+ &' in the sum
defining 91)(Y) we obtain

m;(Y) = Z D®y(Y).Npp+1(Y).

2<k<p,
p+1<n<p+k—1

Thus, using lemmas 2.10, 2.11 we get

19, < X D2(Y) Ny (Y],
2<k<p,
p+1<n<p+k—1

< ) [DO% Np—pial, Y,
2<k<p, ’
p+1<n<p+k-1

< > |D(I)k-Nn—k+1|2 o",
2<k<p, i
p+1<n<p+k—1

< Y R+ (m— 1)k |y
2<k<p,
p+1<n<p+k—1

Noiord] o,

2,k ‘ 2,n—k+1

Hence, for every § >0, every Y € R™ with ||Y]|| <6 and everyp, 2 <p < K
satisfying (35),

LA < X Vmkdprpead”. (43)

2<k<p
pr1<n<pt+k—1

Step 4. Upper bound for ||‘)TZ(Y)|| Here again, using lemmas 2.10, 2.11
we obtain

9] < )Y 1Vy [ @y (V), -+, 2, (V)] ],
2<q<p, 1<p;<p
pittpg>p+l
< Z ’V;] [(I)pl"" 7(I)pq} ||Y||n’
2<q<p, 1<p;<p 0,n
p1+-+pg=n, n>p+1
< Z “/q |:q)p17"' 7®pqi| 571’
2<q<p, 1<p;<p 2n
p1+--+pg=n, n>p+1
[
< > —|® ..-..\cp 5.
2<q<p, 1<pj<p P? [Pl Plon

p1ttpg=n, n2p+1
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So, in conclusion, for every § > 0, every Y € R™ with ||Y|| < 6 and every p,
2 < p < K satisfying (35),

co”
LT S (44
2<q<
p+1§n:_p?1}-)--+pq7
1<p;<p

Step 5. Upper bound for ||9t2(Y)||. First, observe that

W< Y G eam@)i< ¥ S Y sl

q>p+1 1<k<p q>p+1 1<k<p

Then, using lemma 2.14, we get that for every 0 > 0 and everyp, 2 <p < K
satisfying (35),
3 c 10
L)< Y —(5Vm ) (45)

p+1<q

Finally, gathering (41), (43), (44), (45), we get the desired upper bound for
IRy (V)

Lemma 2.17 For every 6 > 0 and every p, 2 < p < K satisfying
2

1+7 p
VS T 6 (46)

we have

10 PRI | 1 \P*!
iR, < e (Coro s iz (a) )

for every Y € R™ with ||Y]| < 0 where

C:acf@ \/7{<2m+2> ac+3,0}

p? p?

Remark 2.18 Observe that the constraint (46) imposed on § and p is slightly
stronger than the one (35) imposed in Lemma 2.14 since = < 3. The con-
straint (46) has been chosen to get the optimal exponential decay rate for the

upper bound of R, obtained by an optimal choice of pop = l g ], ie
e(Cé) 1+7

S (Popt) 1T & (for details see below lemmas 2.19 and 2.21).

1+TC
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Proof. Lemma 2.16, we get that for every § > 0, every p, 2 < p < K satisfying
(35) and for every Y € R™ with [|Y]| <4,

3
SRV < AL+ A2+ A

where Ay, Ay, Ay are given by (40). The sums AII) and A?) can be optimally
bounded with constraint (35) whereas for AIQ) we use the stronger constraint

(46).

Step 1. Upper bound for Al Defining C = \pﬁ © and using lemma 2.13
we get

Al gm%“i 3 <“CV @> " k(R (k=2)! ((n=k)!)” (n—k—1)L,
P o<k<p p?
p+1<n<p+k 1

< — 3Zk (k)" (k—=2)/(Co) 1S (Co)" P (n—k—1)! ((n—Fk)!)
a=c @ 2<k<p p+H1<n<p+k—1
05 p+1 n—p— 1 nnf;l)! (ijk)! T’
2<k< p+1<nz<p+k< 1) e <p 1)

since C§ < epll = < 3 pl — (here we do not need the strongest constraint).

Then, observe that for p+1<n<p+k—1,

n—k—1) n—k)!
Thus, we obtain
1 mp’ T p+1 T
A< g 2 kR)T(R=2) (CO) 2(p— k) ((p—k+ 1)),
2<k<p
2mp? 1 p+1\"
< (CoyP (pl) ( ) ,
a?c ©3 2<§<p Ck(k—1) Ck
2mp? 1
< (05)p+1( )1+r - -
a’c ©3 2<Zk<p C’;f(k: 1)’
2mp?
< p+1 1+T
~ a?c ©3 (C9) T -1

Hence, for every § > 0 and every p, 2 < p < K satisfying (35),

2mp?
1
A, < W2c O3

(Coy ) (47)
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Step 2. Upper bound for A2. Observing that a,, < (n —2)! ©"' for any
n > 1 where (—1)! = 0! =1 and using Lemma 2.13 we get

A= vy (e (), ) - () 0y, )

2<g<p n>p+1 —n P P
<q<p n2p+l pi+--+pg=n

1<p;<p
c(vm)? [ acy/mO\ "l
< X > 3 (p# (p—\g) ) ( ) (]91—2) (pq) <p _2>!
2<q<p n>p+l pi+--+pg=n
1<p;<p

acy/m n q
S - > e (80N (5) () (i —2)! - () (pg—2)!,
2<g<p n>p+l pi4-+ps=n
1<p;<p

<c ¥ ort X S (C8) (p]) (pr — 2) - (pg)) 7 (pg — 2,
2<q<p n>p+l pr+-+pg=n
1<p;<p

since C' = 279 and where r = e < 1 3 with our choice of © given by

(34). Moreover, for 6 > 0 and p > 2 satisfying (46) (here we use the stronger
constraint), i.e. for C'§ <1 1 +, we obtain

1+7)
2 1 n(

A2<e Y 17 X% > (3) (

2<q<p n>p+1l pi+--+pg=n

1<p;<p

n(1+7)
<ec — Tq 1 —2 —2 '
<e(@=) 2 s s ()T e G2t el n-2)
1<p;<p

pi)7(p1=2)! - (pg)" (pg—2)!,

Then, recalling that n < pq, we get that

Nze(o) X (Z (pll)juwf(j—m!)q,

1 \Ptl 2r \?
S ¢ (€1+T) Z <p1+7'> ’
2<q<p

1\ 4p? 1
C(€1+7') p2+27' 1 — 2r

p1+7'

IA

since 1+T < 1. Hence, for every § > 0 and every p, 2 < p < K satisfying (46),

2 p+1
, P 11 1
Ay sde (ac@) 1 — L5 pt2r <61+T) ' (48)
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Step 3. Upper bound for Ai. Observing that with our choice of © given
by (34), for every § > 0 and every p, 2 < p < K satisfying (35), we obtain

vmé . p 1
p 2acOptT T 12

and thus,

oo (552

p+1<q p

CE\/E(SPJA
> 9 P

> (1)

q>0
Hence, for every 0 > 0 and every p, 2 < p < K satisfying (35),

10 /m 6\"™
A§<49 (9‘/;> (49)

Step 4. Upper bound for |R,(Y)||. Gathering the upper bounds for
AL AZ A3 given by (47), (48), (49), that with our choice of © given by (34),

p 1 m
—< I, _
ac® — 3 Q)

IA
SN

we obtain that for every 6 > 0 and every p, 2 < p < K satisfying (46)

o)
1 +1
< (+8()") copron el (L)

since with our choice of © given by (34),

10y/m _10 p 10,

IR,(YV)| <3 (AL+ A2+ A3,

4c p+1( |\ 14+T 10c 1 1 i 900 0
<25 (GO ()T + S5 < > Pl

p2+27' elt+7

9% 9 acO 27

10

3
ﬁ))g%,foreveryé>O8Lndeveryp,2gpgK

Hence, since (% + % (
satisfying (46) we have

[R,(Y)] < 1—900 ((Cé)ml( i+ p%leT (611+T)p+1>

for every Y € R™ with ||Y|| < §6. O

The upper bound of the norm of the remainder ||R,(Y)|| contains two terms.

+1
The second one, zﬁ (#)p tends to 0 as p tends to infinity whereas the
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first one (C§)P(p!)!*7 tends to infinity. The key idea is to choose an optimal

P 1+7
p for which (Co)PH (ph)*™ = ((05) 1Ep') is minimal and prove that this

minimal value is exponentially small with respect to ¢. This results from the
following lemma :

Lemma 2.19 Choose ¢ > 0 and let us define f.(p) := e?™'p! for p € N.
Moreover, for x € R, denote by [z] its integer part.

Then, for popt = Lie}, fe(Popt) ts exponentially small with respect to €. Indeed,

(2] =mie

e? p!

where m = sup
peN pp+ze p

Remark 2.20 Stirling’s formula ensure that m is finite.

(D < F (][]« (2]
= cn{([1] [
BRI

Proof.

IA
| &
@

]
o
—N
N

|

O

Using this lemma we finally obtain the desired exponentially small upper

bound for R,(Y).

Lemma 2.21 [If there exits K > 2, a > 0 and 7 > 0 such that ap =
|||:4:|;i|||2 < ak™ for every k with 2 < k < K, then for every 6 > 0 such
that K > popy > 2, the remainder R, given by the Normal Form Theorem 1.1
for p = popt satisfies

SUD || Ry, (V)| < M6% exp (— %)

Iy<é
with

__ b 1 _ Lo 242r
b= 147 Popt = [e(C’(S)b] W= eCt’ M= {(mf) (2e) }

e? p!

where C' = \F{( m+2)ac+3,0} andm—ilelgpp T
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Proof. Let 0 > 0 be such that p,, = |:e(C;6)b:| satisfies K > popy > 2. Observe
that condition (46) reads ¢°p < ﬁ and thus that pp, satisfies it. Then since,

1 1
> Popt Z 2 and

e(CoH)b — Dopt

lemmas 2.17 and 2.19 with & = (C§)® ensure that

popt + 1 Z S 2 6(05)b

10 (Co)P . = a B\ 2+27 7L7b
oup 1 ()] < 2 (/ST ) (aeic0p)" T |,

e
Yll<é

IN

_ 1471 3 _; 1+7
Fe(eTCo)? e o(C0)" (%(e(Cé)b)m 6(05)b>+41+7 :

1+7

(26)2+2T} 52 e_e(C’(S)b’

IN

o |3
2o

4T

_ %002 {(m 2)14—7

3 1+71
762) +41+T ,

+

8e

. 3 _3
since x2e™% < \/2—87e 2 for any = > 0. O

2.4  Computations of the norm of the pseudo inverse of the homological op-
erator for non semi simple-operators.

This subsection is devoted to the computation of the norm of A, |;i for two
examples of non semi simple operator L. We begin with the 0% singularity.
In both cases, the computations of the norm of the pseudo inverse of the ho-
mological operator are performed via lemma 2.8. Hence, in all this subsection

we denote by X, (L) C RT the spectrum of the positive self adjoint operator
(ALl AL, = AL

rip A, -
Lemma 2.22 (Norm of the pseudo inverse Il;l for L = 0?)
k

For L = 0% and for every k > 2, we have min {A\} > 1 and thus
A€X (L)\{0}

ag(L) = [lA, 1l < 1.

Proof. We are in dimension 2, with Y = (z,y) and L = <8 (1]> We intend

to give a lower bound of the non zero eigenvalues of A , A, in the subspace
‘H;. of homogeneous polynomials of degree k. We recall that

A, ®(Y) = DO(Y)LY — LO(Y).
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Thus, denoting ® = (¢4, ¢2) in Hy, we have

0 0
A8 = (50— 00y S2) e Ker A, = span{(s",0), (e o)

Now we look for the eigenvalues A (A > 0) of A,..A, in the subspace Hj. They
are given by

P 01 O

xy@x(?y e or " oy = A (50)
. O ¢y +x8¢2 09 by = 2O
y@x(‘?y ar Yo 2 >

We check that

i) ® = (0,2") gives A = k + 1;

i) ® = (y*,0) gives A = 0;

i) ® = (2%9%, 2271y gives A = (a = 1)(B+ 1) with a+ B =k, a = 1,..k;
iv) @ = (B + 1)a%y?, —az* 1yl gives A = (B + 2) with a + 3 = k,

a=1,..k.

These are the 2(k + 1) eigenvalues of the operator A*A in the subspace
‘H;., corresponding to a family of orthogonal eigenvectors. It is clear that

min  {A} > 1 and thus,
AeXx(L)\{0}

ag = [ AL, NI, < 1.

O

Lemma 2.23 (Norm of the pseudo inverse .71;|;1 for L =0%.0---0)
k A

q times

For L =02.0---0 and for every k > 2, we have ~ min {\} > 1 and thus
~——

, AET, (L)\{0}
q times

ap(L) = (| A1, NI, < 1.

Proof. We are in dimension 2 + ¢, with Y = (z,y,%1,---,%,), ® =

(61,02, 1, -, b,) and

01
00
L= 0
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Here again, we intend to give a lower bound of the non zero eigenvalues of

A,.A, in the subspace Hj;. We have

1500} 8(25 8(25 8@
AL(I) ( —1 — P2,V 2 xl .. ;)

8(25 18)0} 8(25 8@
AL*q)_( iyl 2 ¢17 1 9;)

Hence, for 6 = (61,---,9,) € N? and 1 < ¢ < g, the spaces

Hi,lQ = Hk N {(I)/(I)( ) - ffl o '§Sq<¢l<x7y>7¢2<xuy)ao7 o 70)7
01, P2 polynomials},
77:;,?’5 =Hi N {cb/cb(Y) — xayﬁiiﬁ .. .fgq<0707 . 707@707 -, 0), 5@ c R}

are stable under A, A,. Then, since H, = @ Hi1, & @ Haﬁé,

|6|<k 1<t<q
atBris|=k
have
spec(A A, ) = U spec(A A |, U U spec(AL*.AL\ﬁaﬁ’&).
15]<k 12 1<t<q ki
a+p0+|0|=k

On one hand, in ‘Hj, |, the spectral equation A, . A, & = A® reads (50). So the
proof of Lemma 2.22 ensures that the spectrum of AL*AL\H(s is composed of
k,12

non-negative integers.

On the other hand, in ﬁg‘f ? the spectral equation A, A, ® = A\® reads

(B +1) ¢ = Ao
Hence, spec(A,, A |~QB6) = {a(B+ 1)} and the spectrum of A,.A, Hy is

composed of non- negatwe integers. So, En&n\{o}{)\} > 1 and thus,
k
ap = [ A [, < 1.

Lemma 2.24 (Norm of the pseudo inverse Il;l for L = 0%)
k

For L = 0% and for every k > 2, we have _min {A} > 1 and thus
AETK(L)\{0}

ap(L) = I, Ill, <1
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Proof. We are in dimension 3, with Y = (z,y, 2), ® = (¢1, ¢, ¢3) and

010
L=1001
000

Here again, we intend to give a lower bound of the non zero eigenvalues of
A,. A, in Hy. This is performed in several steps.

Step 1. Splitting of the operators. We define differential operators D and
D* by

0
D=yl 1.2 D=zl yZ 51
y8x+28y’ x8y+y8z (51)
then
A ®=DP - LD, AU = D'V — L'V
and

D*(D¢1 — ¢2)
AL AP = | DDy — ¢3) — Dy + ¢
D*Dés — Doa + ¢3
Moreover, we check that ker A, is spanned by

2%(xz — %)5 yz*(rz — %)5 z2%(xz — %)5
0 | 22 (22 — %)ﬁ | oy (e — %)5
0 0 2o (xz — y;)ﬁ

In what follows we use the properties

Dx =y, Dy=2z2 Dz=0, D(azz—%)
2

D'z =0, Dy=g, D'z=y, D'(wz~%5)=0.

=0,

Step 2. Splitting of H;. Using the basis of monomials, for a, 3, non
negative integers

2 2

Gapo =" oz = L), and g, =ayez = L) (52)

we split ‘Hj, into the direct sum

Hy = H), & H},
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where

H), = { (¢1,¢2,¢3)/¢1,¢365pan {%,ﬁw} ¢2 € span  {Vapy)

a+-p+2y+1=k

p = {‘D = (¢1, 02, ¢3)/ 1, 03 € span {¢a67} P2 E span {(%57}

a+B+2y+1= B+2v=k
Then, using the identities
’Dﬁba,ﬁ,w = Oﬂ/}ozflﬁ,'ya
Dwa,ﬁ,'y - (]- + 2a)¢a,ﬁ+1,'y - 2a¢o¢—1,ﬁ;\/+1
D*¢a,ﬁ,7 = 51/101,571,7,
D*waﬂ,'y - (1 + 25)¢a+1ﬂ,’y - Zﬁgba,ﬁ—l;y—}—l)

D*D¢aﬁ7 = O‘<1 + 2ﬁ)¢a,@7 - 2aﬁ¢a 1,8—1,y+1, (53>
D*Dpapy = (2a+ 1)(B + Dtapy = 200%a1,5-1541, (54)

we observe that Hj and Hj are both invariant under A, ,A,. Hence, the
spectrum of the operator A . A, in Hy is the union of its spectrum when
restricted to 'H;, and to Hy.

Step 3. Spectrum of A, A, in H;. We also split H}, into subspaces in-
variant under A, , A, .

Step 3.1. Splitting of M, . First observe that for a + 3 + 27y = k, the
subspace &, 5., of H}, gathering the polynomials @ of the form

1= Z ApPa—p,B—p,y-+p>
P

¢2 = Z bpwafpfl,ﬁfprwrpv
P

b3 = Z CpPa—p—1,6-p+1,7+p
p

where

fora<fg, 0<p<a, by=c =0,

for 6+1<a,0<p<pB+1, agy1 =bpr1 =0 andcg =0if =3+ 1.
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is invariant under the operator A, . A, . Indeed, we have

Do — ¢p = Z{(O‘ —p)a, — p}wafpflﬁfp,wrpv
Doy — ¢35 = Z{@Oé —2p— 1)bp - Cp}(?afpflﬁfpﬂ,vﬂ)
—2(a = p — DbpPa—p-2,6-prtpt1;
D*(D¢y — ¢2) = Z(2ﬁ —2p+ D{(a —p)ay — bp}da—ps—prip
—2(8 = p){(a —play — bp}Pa—p-1,8-p-1,7+p+1;
D* (Do — ¢3) = Z(ﬁ —p+ 1){(2a —2p —1)b, — Cp}z/’afpfl,ﬁfp,'wrp
—2(B—p)a—p—1D)ba—p-2-p-17tp+1;
D*Dos = Z(a —p—1)(28 = 2p+3)cpPa—p-1,5-ptiytp
—2(a—p—1)(B—p+ L)cpPa—p-26-prtpti-

Moreover, ®;. = (0,0, ¢r0,0) is an eigenvector of A , A, in H; belonging to
the eigenvalue A =k + 1.

Then, since ® = (¢a,,0,0), © = (0,%a-15+,0), & = (0,0, po—1,4+1,,) and
® = (0,0, po—23~+1) belong to 5(;75,7 respectively fora >0, a>1,a >1
and a > 2, we have the splitting of H}, into the non direct sum

! / /
M, =CP+ > s,
a+pB+2v=k
Hence, the spectrum spec(A . A, |,,) of the operator A . A, in Hj is given by
k

the union with possibly many overlaps

spec(.AL*.AL|H£() ={k+1}u (J spec(.AL*.AL|% ; 7).

a+pB+2vy=k

Step 3.2. Spectrum of A,. A, in £ ;_. The spectral equation A, A, ® =

A®, for & € &, 5., can be written as a hierarchy of systems of equation (55),,
where for p = 0 we have

(Qﬁ + 1)(aa0 — bo) = )\(Io,
(ﬁ + 1){(20& — 1)b0 — CQ} + bo — aag = )\bo, (55)0
(a—1)(26+3)co+ o — (2a — 1)by = Acy
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and for 1 < p < min{ea, 5+ 1},

Aay = (26— 2p + D){(a — p)a, — by}
28— p+ D{(a—p+ Vagr — by 1},

M, = (5~ p+ 1){(20 — 20— Db, — ) — (@ — play +b,
(5~ p+ 1)(a— pbys

Aep = (o —p—1)(28-2p+3)c, — 2a—2p —1)b, + ¢,
—2(a = p)(B—=p+2)cp-1+2(a — p)by-1.

(55)p

In particular, when o < [ the last system of the hierarchy is obtained for
p=a (by = ¢, =0) and it reads

Mg = =2(f —a+1)(aa—1 — ba_1),
0 =0,

(55)a

while for # < a—1 the last system is obtained for p = 5+1 (agt1 = bgy1 =0,
and cgp1 = 0if @ = B+ 1) and it reads

)\CIB+1 = (Oé — ﬁ — 1)Cﬁ+1 - 2(Oé - ﬁ - 1){Cﬁ - bﬁ}7
0=0.

(55)+1

The system with p = 0 gives the eigenvalues:

)\1 = (Oé—l)(2ﬁ+1), ag = b(] = Cyp = 1,
Ay = a(26+3), ag = (B+1)(284+1), by = —2a(F+1), co = a(2a-1),
A3 = 2a—=1)(B4+1), ag=—(20+1), p=a—F—1, ¢g =2a — 1.

We check that for for « = 0 or 1, we recover known eigenvectors belonging to
the 0 eigenvalue, all other eigenvalues are positive integers.

For proving that they indeed give eigenvalues of A, A, it is needed to check
that for 1 < p < min{a, 3+ 1} the determinant A, does not cancel for A = )\
or \g or Az where

(260 + 1)’ — A —(260'+1) 0
A, = —a/ (B +1)2 —1)+1— A —(3+1)
0 —2a' +1 (o =1)(20'+3)+1—-A
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with o = a —p, ' = 3 — p. It results that
Ap = (A = A (A = A)(A3 = A)
with

A= (=126 +1) = M\ — p2a + 26— 2p — 1),
Ny =/ (26" 4+ 3) = Xy — p(2a + 28 — 2p + 3),
Ay= (22 —1)(F +1)=X3—pRa+28—2p+1).

It is then easy to see (using the fact that 1 < p < min{a — 1, 5}) that the
only case when A,(A;) =01is when p =1 and X, = A; :

Ay =N =(1=p)(2a+26—2p+1).
The case p =1, A = A\ = (o — 1)(26 + 1) leads to

—2(a—1)a; — (28— 1)by =26(a — 1),
—(a—1)a; — (a+ B —2)by — ey = 20(a — 1),
—(2a0 — 3)by — 20¢c; = 26(a — 1)

where the compatibility condition is satisfied, hence giving a one parameter
family of eigenvectors.

Finally, it remains to study the cases when the limiting equations cannot be
solved, i.e. the two cases

i) when a < g, A =0 (i.e.a=0,0r 1), p=a; thecase a =0,p=0, A\ =0
gives a known eigenvector, while « = p =1, A = 0 gives ap = by = ¢y = 1
and the equation for a; gives 0.a; = —2(ag — by) = 0, hence the compatibility
condition is satisfied.

ii) When 8 < a—2, A = a— (-1, p = f+ 1. The only possibility is
A = a — # — 1 which happens if § = 0. Then p = 1, and we need to solve
c1 = c1—2(cog — by) where ag = by = ¢o = 1. Hence the compatibility condition
is satisfied. This ends the study in the first invariant subspace.

In conclusion, all the eigenvalues of A . A, in &, 5. and thus in Hj, are non
negative integers.

Step 4. Spectrum of A,, A, in H}. We also split ], into subspaces in-
variant by A,. A, .
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Step 4.1. Splitting of H;/ . For a+ 3+ 2y +1 =k, let us denote & 5 the
subspace of H} gathering the polynomials ® of the form

¢ = Z apWYo—p,B—py+ps
P

¢2 = Z bp(bafp,ﬁfpﬂ,wrpv
P

¢3 = Z CpWa—p—1,6-p+1,7+p

p

where

for a < 3, 0<p<a, ca=0
for <a—-1, 0<p<pB+1, agy1 =0, andcg1 =0if a =5+ 1.

The following identities

Doy — o = Z{@O‘ —2p+ 1)ay, — by} Pa—p,s—pt1y+p
—2(a = P)apPa—p-1,8-prtp+is
Doy — ¢3 = Z{(a - p)bp - Cp}@boz—p—lﬂ—p-klﬂ-#pa
D*(D¢1 — ¢2) = Z(ﬁ —p+D{(2a =2p+1)a, = bp}ta—ps—prtp
= 2(a = p)(B = P)apVa—p-1,6-p-1,9+4p+1,
D*(D¢y — ¢3) = 2(25 —2p + 3){(a = p)by — cp}Pa—p,s—pt1+p
—2(8—p+ D{(a—p)by — cp}Pa—p-1,5-prtpt1s
D*Dos = 2(204 —2p = 1)(B =P+ 2)cp¥a—p-18-priqip
—2(a—p—1)(B—p+ L)cpla—p-—2p5-prtpt+i

ensure that subspace &} 5 is invariant under A, A, .

Moreover, the two dimensional subspace P; = span{®}, ¥}} where ®] =
(0, ¢r.0,0,0) and W/ = (0,0,%,_1,0,0) is stable by A, ., A, since

ALA D! = (k+1)0) — kU and A, A U = —& + 2k

Then, since ® = (¢n5,,0,0), ® = (0, pag11+,0), = (0, Ppo—15+1,0), & =
(0,0,%a-1,811) and ® = (0,0,%q25+11) belong to &) 5. respectively for
a>0,a>0,a>1,a>1and a> 2, we have the splitting of H} into the
non direct sum

HY =Py + Z Sgﬁ,,y with P}/ = span{®}, ¥}}.
a+p+2y=k
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Hence, the spectrum spec(A.. A, | ,) of the operator A, . A, in H} is given by

e
the union with possibly many overlaps

spec(A A | ) =spec(A_ Al ) U [J spec(A.A|

a+0+2v=k

).

g//
o, B,y

Step 4.2. Spectrum of A, A, in P; . In the basis {®}, U]} the matrix of

A A, |, reads
k+1—k
~1 2% )

P
Hence, the spectrum of A . A, in Py is given by

spec(A, . A, | ) = {2k + 1,k}.

"
7)k

Step 4.3. Spectrum of A,. A, in £ ;_. The spectral equation A, A, ¢ =
A®, for @ € £ 5., can be written as a hierarchy of systems of equation (56),,

where for p = 0 we have

(ﬁ —+ 1){(20& + 1)(10 — bo} = )\ao,
(Zﬁ + 3)((Ib0 - CQ) + bo - (20& + ].)ao = )\bo, (56)0
(2a — 1)(B + 2)co + co — aby = Ao

for 1 < p <min{a, 3+ 1}

Aap = (B—p+1D{Q2a =2p+1)a, — by} —2(a —p+1)(6 —p+ Daps,
Ab, = (28 —2p+3){(a—p)b, — ¢} — (2ac — 2p + 1)a, + by+

=20 =p+ 2@ =p+ Dby1 = ) +2(a = p+1)ap1,
Aep = 2a—2p—1)(B—p+2)c, — (a—p)b, + ¢+

—2(a = p)(B —p+2)¢p1.
(56),

In particular, when o« < 3 the last system of the hierarchy is reached for p = «
(co = 0) and it reads

)\aa = (ﬁ—a—i—l)(aa—ba)—2(ﬁ—04+1)@a—17
Ay = —aq + by —2(8—a+2)(ba—1 — Ca—1) + 2041,
0 =0.
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This last system enables to compute a,, b, if A # 0 and A # 0 —a + 2.

When # < a — 1, the last system of the hierarchy is reached for p = § + 1
(ag+1 =0 and cgy1 = 0if § = a — 1) and it reads
0 =0,
Abgi1 = (a = B)bs1 — cpa + 2{ (o — B)(ap — bg) + ¢},
Acgr = (a =B = 1){2¢p41 — bg1 — 2¢5}-

This last system enables to compute by, ¢, if A # 1, when § = o — 1 and if
AZa—F—T1and A # 2a — 20 — 1 when f < a — 2.

The system for p = 0 gives the eigenvalues A1, Ao, A3 where

A1 = a(20+ 3) a=0+1 bp=0—a+1, ¢g=—a,
)\Qz(ﬁ+1)(2a—1) (10:1, b0:2, 00:1,
A3 = (64+2)(204+1)  ap=(+1)(2643),bp =—2a+1)(2643), co=a(2a+1).

Notice that A\; = 0 for a = 0, which corresponds to a already known eigenvec-
tor in the kernel of A, . The coefficients a,, b,, ¢, can be computed by induction
provided that for A = Ay or Ay or A3 the determinant

Ap(A) = (A} = D)X = D)(X5 = A)
does not cancel, where

N =M\ — p(2a + 28— 2p + 3),
Ay =Xy — p(2a + 20 — 2p + 1),
Ay = A3 — p(2a + 28 — 2p + 5).

Using the fact that 1 < p < min{a, 8+ 1}, we can see that the only problem
comes when \; = Ay :

Ay — X = (1—p)(2a+ 26+ 3 —2p)

which occurs when p = 1. This case p = 1, A = (f + 1)(2ac — 1) gives the
system

0 =—2a—1)a; — Bby — 2aBay,
0=—-R2a—1Da+(1—-—a—0)b—26+1)c; —2(6+ 1)(aby — c) + 2cuay,
0=(1—-a)b —(28+1)c; —2(a—1)(B+ 1)co
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where the compatibility condition is satisfied with the values we found for
ap, bo, Co ((1,0 - bo +co = 0)

Finally, it then remains to study the last equation of the hierarchy:

i) when o < 3, p =, A =0 (i.e. @« = p = 0 leading to the know eigenvector
in the kernel) or A = f—a+2, i.e. A = Ay, &« = 1 = p where the compatibility
condition is satisfied due to ag — by + ¢o = 0.

ii) When < a—1,p= 3+ 1. Then for 8 = o — 1, \y =1 (the bad case) for
« = 1 and this is again the case seen above. For 3 < a — 2, the bad cases are
when \; =a— 8 —1or 2a—28—1,ie A =2a—28—1for 3 =0. We are
again in the case p = 1 (notice that a; = 0) :

(1 — )by — ¢; — 2(aby — co) + 2aay,
(1 —a)by —c1 —2(a—1)c

0
0
which admits solutions since ag — by + ¢ = 0.

In conclusion, all the eigenvalues of A, . A, in &, 5. and thus in Hj are non
negative integers. Gathering the results of step 3 and 4 we finally conclude that
for every k > 2 all non zero eigenvalues of A,. A, in Hy, are positive integers.
Hence, for every k > 2,

ar = [l I, <
(]

Remark 2.25 For L = 0%, the computation of eigenvalues of A_, A, is more
complicated and we could not find a lower estimate as in the 0% case. In par-
ticular, the kernel of this operator, which is also the kernel of A, may be
obtained as in the work [12], where it is observed for example that the poly-
nomials invariant under D (same notation as for 0%) are generated by 4 non
independent polynomials of degree 1,2,3,4 with a non trivial relation between
them. The same holds with D*. Moreover there are no common invariant poly-
nomial under D and D*, contrary to the case 03. This does not allow to find
a family of monomials giving a basis leading to a simple (triangular) matrix
for the operator A,..A, in suitables subspaces (it seems necessary to obtain
a not too complicated D*D operator applied to a suitable basis, for such a
computation, as in the 0% case).
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Lemma 2.26 (Norm of the pseudo inverse .71;|;1 for L =0%.0---0)
k NV

q times

For L =03%.0---0 and for every k > 2, we have ~min {A} > 1 and thus
——

. A€, (L)\{0}
q times

ag(L) = [IA [, < 1.

Proof. We are in dimension 3 + ¢, with Y = (z,y,2,21,---,%,), ® =

(61, P2, b3, 01, -+, §y) and

010
001
000

Here again, we intend to give a lower bound of the non zero eigenvalues of

A,. A, in the subspace Hj;. We have

D*(Dé1 — o)
D*(Dy — ¢3) — D1 + 2
D*Des — Do + ¢3
D*D¢,

L*

D*Dg,
Hence, for 6 = (61,---,9,) € N? and 1 < ¢ < g, the spaces
7—{2,123 = Hk A {(I)/(I)(Y) = fil o “%gq(gg(xv Y, 2)7 07 U 70)7
5 ‘R3 - R? polynomial},
HY, = Hy N {CD/(I)(Y) = 0 754(0,0,- -+, 0, de(w,y, 2),0,- - ,0),

q

b :R* >R polynomial}
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are stable under A,, A, . Then, since Hy = @ H) 153® D HS > we have
|6]<k 1<(<q
15]<k

spec(Ap A, [, ) = U spec(AL Al , )U |J spec(A,. A, |~ )
6] <k 1"123 1<t<q
16]<k

On one hand, in H}, ;55 the spectral equation A, , A, & = A\® reads A33A03$ =
)\QAS. So the proof of Lemma 2.24 ensures that the spectrum of AL*AL|H6 18

k,123
composed of non-negative integers.

On the other hand, in ﬁi,e the spectral equation A,, A, ® = A\® reads
DDy = Ay

Let us decompose 77275
My, =H), ®H,
with
HH = {<I> € Hk g/qf)z € span {Qboz,ﬁw}}’

a+p+2y=k—||

My ={ecH,/de som  {unss}}

o+B+2y+1=k—|4|
where ¢q 3., Va,p~ are defined in (52). Formulas (53)-(54) ensures that 772;

and 77272/ are both stable under D*D. Moreover, ordering the basis ¢, g (resp.
Ya.3~) by lexicographical order for (a, 3,7), formulas (53)-(54) also ensures
that the matrix of D*D| ., (resp. of D*D| s ,,) in this basis is upper triangular

ké

with diagonal coefficient given by «/(1 + 25) (resp. by (2a +1)(6+1)). Thus

wecd Al = U {e@+20)0 U {Qa+D@B+D)

ke af+2y=k—|d| a+pB+2y+1=k—|d|

Hence the spectrum of A, AL|Hk is composed of non-negative integers. So,

min  {A\} > 1 and thus
A€, (L)\{0}

ap = [ A1, I, < 1.
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3 Exponential estimates for perturbed vector fields

This section is devoted to the proof of Theorem 1.10. So, let V' : R™ xR* — R™
be an analytic family of vector fields in a neighborhood of 0 in C™ x C*

du

Vv o7
Vi (57)
admitting the origin as a fixed point, i.e. satisfying V(0,u) = 0, (10) and
(11). To deduce Theorem 1.10 from Theorem 1.4 which deals with the non
perturbed case, we set U = (u, ), V(U) = (V(u, p),0) and we observe that

(57) is equivalent to

daUu
i V(U). (58)
Let us denote by £ = DyV(0) the linear operator corresponding to the (m +

s) X (m + s) square matrix

. Ly 0
00
Proposition 2.2 ensures that when ax(L£) = |||7l;|;i|||2 < ak”, an optimal

choice of the order p = pop; of the change of coordinates U = YV + Q,, (V)
leads to a normal form equation

dy

E = ‘Cy +'/V;70p: (y) + Rpopt(y)

where R, given by the Normal Form Theorem 1.1 for p = p,p, satisfies

Sup || Ry (V)| < M 6% 5 (59)
|PV)I<6

with
b= . Dopt = L w = L M = 002 <m 2>11T(26)2+27
17 7P e(Co) ] eC?’ 9 8e

e? p!
here C' = Y2 { (3 42 3 — sup —— and where f 1
where 2 {(2m+ )ac+ ,0}, m ?;lellr\l)p”%e*p and where for a rea
number z, we denote by [z] its integer part. Here, the situation is particular,
since V(U) = (V(U),0). So, let us decompose H;, as follows

Hk = Hk,m P Hk,s
where Hj,,,, (resp. Hys) is the space of the homogeneous polynomial Q of

degree k from R™ x R® to R”™ x R* such that ps(Q) = 0 (resp. p,,(Q) = 0)
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where p; (resp. p,,) is the canonical projection from R™ x R® onto R* (resp.
onto R™). Thus, since V,,y € Hy4sm for every n, ¢ and since Hy,,, and Hy s
are both stable under A,, we can choose Q, and N, of the form

0,(Y) = (Q,().0) = z ). M) = (N(D).0) = Z N()

where @5, N lie in Hy, ,,,. With this choice
Y=(Y,p), withY e R™, peR* and p,(R,(Y)) =0.
Moreover with this choice, the homological equation (15) which is the center
of this analysis reads
A, Q= N+ F,  in Hyp,
0 =0 in Hy, s

So with this particular form of the homological equation, we only need to have
k(L) = 1417, < ab”

to get the exponential estimate (59) given by Proposition 2.2. Then, Theorem
1.10 follows directly from the following lemma which gives ay ., (Lo) when
either Lg is semi simple or Ly = 02.0.--- .0 or Ly = 03.0.--- .0.

—_—— —_———

q times q times

Lemma 3.1

(a) Let Lo be a semi simple matriz under real or complex Jordan normal
form. Then,

agm(Lo) < max |Aj7a|_1,
1<j<m,|al<k

j,a#0
where Aj o = (Ar,, @) — \;j where A, = {1, -+, Ay} is the spectrum of
Ly.
(b) For Ly =0%0.---.0 and Ly =0%.0.--- .0, apm(Ly) < 1.
q times q times

Remark 3.2 When L is semi-simple, under real or complex Jordan normal
form and 7, K-homologically non-resonant we deduce from this lemma that

ak,m(LO) S ’yil

and when L is semi-simple, under real or complex Jordan normal form and
v, T-homologically diophantine we get that

arm(Lo) <771 max |a|m =~y K.
’ 1<j<m,|a|<k
Aj o0
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Proof of Lemma 3.1. (a): Let Ly be a semi simple matrix under real or
complex Jordan normal form.

Step 1. We first assume that Ly is under complex Jordan normal form, i.e.
that Lo is diagonal. Then, £ is also diagonal and we deduce from (19) that
the spectrum of A,[, s given by

spec(.A£|Hk7m) = { (ALys )0, as)=Nj, 1 <5 <m, |ag,| + |as] =k,

a, €N™ o, € Ns},

= { (ALo> ) — Njy, 1 <5 <m, |am| < k,am, € Nm}.
Hence, as in the proof of Lemma 2.5, we deduce from the above formula that

arm(Lo) € max  [Ajal ™. (60)
1<j<m,|a|<k
Aj,a#0

Step 2. When L is semi-simple and under real Jordan normal form, but not
diagonal, then it is conjugated to a complex diagonal matrix Jy via a unitary
map . So, L is conjugated to the complex (m + s) x (m+ s) diagonal matrix
Jo ® 0 by the unitary map @) @ I,. Hence, Remark 2.4 and step 1 ensure that
arm(Lo) still satisfies (60) in this case.

(b):For Ly = 07.0.--- .0 with j=2,3, Lemmas 2.23, 2.26 ensure that
——

q times

axn(Lo) = 1AL, < WAL, = ax(07.0.-- 0) <1

q+s times
A Properties of the normalized euclidian norm

A.1 Comparison of the euclidian and the sup norm

We begin with two technical lemmas which are used several times

Lemma A.1 Let k,m be two positive integers and {u;} be m complex

numbers. Then

1<j<m

(ur 4 -+ 4 up)* upt o upge

k! o;! !
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Proof. We proceed by induction. For m = 1 this is trivial and for m = 2 this
is true because of the binomial formula. Assume now that it is true for m > 2,
then

a Qm4-1 k Am41 «
1 m+ m+ ul 1 U

o
Zul um_+1': 3 um_+1' > S

m
|
o=k Q! [e7NRR ami1=0 a1 a1+t am—k—ami1 Q! m:

k Am+1 k—am
Upth (un - uy)"

o a0 Omt1! (k — am1)! ’
(ug + -+ Upgr)*
N k! '

Lemma A.2 Let k,m be two positive integers and

gkl:,m:{ﬁ: (517"' 7ﬁm) ENm7ﬁj > 17‘ﬁ| :k}a

glg,m = {O{ = (al’. .. ,Oém) c Nm,O[j Z O, |OZ| _ k?}
Then, the cardinals d{;ﬁm of 5,g'7m, 7 =0,1, are given by
d]lg’m = ]267117 dg’m = C]::):LI;”{lLfl'
here C n!
where CT = SToETh

Proof. The cardinal of dj ,,, is equal to the number of ways for placing (m—1)
distinct separators among k — 1 possible locations, the order of the separators
being meaningless. For instance, the cardinal of d,lﬁ’?,, is equal to the number
of ways for placing 2 distinct separators among k& — 1 possible locations, the
order of the separators being meaningless.

(07] [6%) (0%

Hence, d} ; = C?_, and more generally, d}., = C* .

Finally, the map &7, — &t = (01, ) = (Bri=or + 1, By =
am, + 1) is one to one. Hence

0 _ 11 o m—1
dk,m - dm—i—k =C +k—1"

m

49



Lemma A.3 For every ® € Hy, |(I)|0k < |<I>|2k = # |2, -

Proof. For ® € H;, with ® = > ;.Y --- Y ¢; where {¢;}1<j<m, is the

1<j<m "
|a|=n
canonical basis of R™ we have
B = | (@l !
2k VR 1Sgem
|a|=k
and
d(Y)|? m Y™ yom |2
U | g, N
Y] =t laize Y] [[Y || ; )
m Y a1 Y Qm
SZ(Z ‘b‘aQOZ!"'OZm!)(Z 1 m )
E el e allV e
by the Cauchy Schwarz formula. Then using Lemma A.1 we get
2 allY P Y kY vIE) TR
Hence,
[e(Y)]] 1 & 21,
9], = swp 122l 1S (5 (@l ant - anl) = 2 =g,
ok VT SR 2 (2 1 i 19k
(I
We now prove a Parseval like formula :
Lemma A.4 For every ® € Hy,

2 2 o [hee oo i, Om\|[20—T1.  a=Tm
\<I>|2:W 0d91 e Odﬁm Odrl e OdrmH(D(\/rTe oA/ Tme ™) |[feT e T,
Proof. We have
||(I)(\/Eei91’ ) \/mewm)nz =

m @1+81 am+Bm .
Z Z (I)j,aq)j,ﬁ T 2 e Tm 2 6191(061—51) Ce . elgm(am_ﬁm).
=1 |a|=k

|81=Fk

20



Hence,

2 2 “+oo +o0 . .
d@l... dem drl... dTmH(I)<\/7’_1€Z€1,"' ’\/melemN‘Q e_rl...e_rm’

(2m)m
L /dm /drm e
i=1 |a|=k
Z Z |(I>j a| ;! |(I)|22
J=1 |a|=k
(I
Finally, we ready to prove the opposite comparison of the two norms in Hy.
Lemma A.5 For every ® € Hy, |<I>|27 VT, \Q)\M
Proof. Using the Lemmas A.1, A.4 we get
+00 +00 - k
02 <D /dr1~-~ dry, (it 4 7m) e e
2.k 0k Jo 0 k!
2 too +oo T?l Tng —r —Tm
q)‘o,k/drl"' Od,«m |z_:ka_1!..._!e Log7m
>,
Ok
|a|=k
2
- |(I)‘O’k Cm+k 1
O

A.2  Multiplicativity of the normalized Euclidian Norm

To handle the computations, we need in this subsection more compact nota-
tions. For Y = (Y3,---,Y,,) € C" and oo = (v, - -+ , v,) € N™ let us denote

al =gl ap! and Ye=Y™...Yyom,

With these notations, for & € H,, with (V) = > &,Y* where &, € R™,

laf=n

> 2ol ol

laj=n

we have

|D|

We start with two technical lemmas which are used several times.

2,n

Lemma A.6 Fora € N™ and n € N let us denote
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Then for every positive integers q and {pi}1<i<q and every v € N™ with
7| =p1+ -+ py, we have

B e (@

By, +. +pg Z B, "'%pq :
a®eN™ a0 |=p,
a4 o@D =

Proof. Using Lemma A.1 we get that for every u = (uy, -, u,) € C™,
(Ul 4ot um>p1+---+pq — Z %;Hqu u’Y’
[v|=p1+-+pq

= (w4 +up)” + -+ um)pa
— a® @ oM. +a()
o Z s3101 53

al®eNm |al0) |=p,
Identifying the powers of u we get the desired result. O

Lemma A.7 Let k > 0,p > 0 be two integers. Then for every v € N™ with
7| =n withn:=k—-1+p

(K2 + (m — 1)) z=i Py <j>2933935-

where o; = (0,---,0,1,0,---,0) € N™ with the coefficient 1 placed at the j-th
position.

Proof. Observe that for every u = (uq,- -+ ,u,) € C™,

= (K*+ (m = Dk)(uy + -+ + up)™

Hence, since (uj 507 T 8u)> u®"%  we get
(K> + Z =2 > (o) BY B w7,

Identifying the powers of u we immediately get the desired result. a

We are now ready to prove the multiplicativity of the normalized euclidian
norm in H,,.
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Lemma A.8 Let q and {ps}i1<i<, be positive integers and let R, € L,(R™) be
q-linear. Then for every ®,, € H,,, 1 < { < g, the polynomial R,[®,,, - , P, ]
lies in 'H,, withn =p; +---+p, and

q

Rol®p1- - @5)| <Rl gy |2, -+ |5
2,n 2,pq
Proof. For 1 </ < ¢, let us denote
= Y 0P ye,
|or|=pe
Since R, is g-linear we get
o) et (@
RQ[(I)Z?N"' 7(I)pq]: Z Y oa RQ[(I)(%)(llz? 7(1)((5(?13]7

a®) eNm,‘a(z) |:pl

_ ¥ (1) .. &Pd)

=2V > Rel@n o 2]
Yl=n  a@eNm |a®)|=p,
a4 qa(D =y

Hence
R = X | E Rl el |
7= D eNm™ |a(D)|=p,
a(1)+~~~+oz(‘”:'y
1 v 9
<X (S Rl g NN )
al

[vl=n )eN™ |al®) |=p,

oM. Jra(Q)—»y

stqH@q(Rm)zlgg S (@al) - (@)

l=n L= a®enm |a(d|=p,
1 1
XQ 2 i g )]

a4 oD =
a( )ENm,‘a(Z) ‘:pe
a4 qa(D =y

by the Cauchy-Schwarz formula. Then since Lemma A.6 ensures that

1 1 1 1

Z Z N (9)

oo = %a %OK ! == %’y7
al9eN™ |a®)]=p, " ahenm o) |=p, I
a4 qal@= a(l)—l—---—i—a(q):'y
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we obtain

o NRIZ o
I, St S (MRP)  (al|e ),

V1= oD eN™ |al®)]=p,
a4 qal@=

IR, .
= ALY @O - (@R ),

’RQ[(I)IH? Y 7(I)Pq

p1! . .pq. a([)eNmJa“)\ —py
a /1
RN (o X aljel)?).
P o0 enm a0 =p,
2
— 2 .
= IR, oy 12 5, |0, 0

Lemma A.9 Let k >0, p > 0 be two integers and let @y, N, lie respectively
in Hy and H,. Then D®y.N, lies in H,, withn =k —1+p and

DOLN,|, < R+ (m = DE [, N,

Proof. Let us denote

= > Y9, N,(Y)= > VPN
la|=k |8l=p

where ®,, Ng € C™, and Ng = (Ng1,---, Ngm). Then,

Dd,.N, = Z S o YNG9, = Y Y’YZ S NP,

i=1]a|=k =n  7=1|a|=k,|8|=p
18|=p a—o;+0=y
where 0; = (0,---,0,1,0,---,0) with the coefficient 1 placed at the j-th
position. Hence,

PNl < ¥ (X X aValiea])
r=n J=1a|=k,|8|=p
a— U]+6 =7

Zg[(z > alBINgPIeal?),

[y[=n 7=1|a|=k,|8|=p
a—o;+B=y

S ell ]
8 <]§ a|:§|%:p<o‘f> ol ﬁ!)
a—o;+0=y

by the Cauchy-Schwarz formula. Then, since Lemma A.7 ensures that
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i 11
2 o e} ﬁ 2 ol
Z Q; T 12 Za 53 53 | |(k ( )k)an’
= almkgame @O RPN S S kp
a—oj+p=y a—oj+p=y

we finally obtain

|D(I>k.Np|22 <W(k;2 m—-10k) Y3 3 alBlNg,P|Pa
" I=ni=L |aj=k|8|=p
a0 +B=
1 m
= S (R (m=1)k) D0 > alBl|@al*[ Nyl
p: la|=k, j=1
|Bl=p
1
=7 (B + (m = 1)k) 3 all]|®q|*| N5,
P =k,
|Bl=p

= (B + (m = DR) (B2 N2

A.8  Invariance of the euclidian norm under unitary linear change of coordi-
nates

Lemma A.10 Let @ be a unitary linear map in R™ or C™ and denote 7T, :
H—H,®— Q lodoQ. Then 1, is a unitary linear operator in 'H, i.e. for
every ® € H,

‘%@‘2 - ‘q)‘z ’

Proof. Using lemma A .4 we get that
7 ‘P\
d01 7r dT1 /d’l"m ||(I> \/78 ‘A /rmeiem))H?efrl coleTTm

Then performing the change of coordinates

(T17"' 7Tm7917"' 76m> '_><T117"'7 m79I17"' 791In>

(\/'Zewll sy /The Qe \rmetm)

the Jacobian of which is equal to 1 and observmg that

with

TI1+"'+7“;n:HQ(\/ﬁewl,'“7 rmewf")H2=T1+'“+7‘m
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we get the desired result. a
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