Gérard Iooss 
email: gerard.iooss@inln.cnrs.fr
  
Eric Lombardi 
email: eric.lombardi@ujf-grenoble.fr
  
Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields

Keywords: Analytic vector fields, Normal forms, exponentially small remaiders

A key tool in the study of the dynamics of vector fields near an equilibrium point is the theory of normal forms, invented by Poincaré, which gives simple forms to which a vector field can be reduced close to the equilibrium. In the class of formal vector valued vector fields the problem can be easily solved, whereas in the class of analytic vector fields divergence of the power series giving the normalizing transformation generally occurs. Nevertheless the study of the dynamics in a neighborhood of the origin, can very often be carried out via a normalization up to finite order. This paper is devoted to the problem of optimal truncation of normal forms for analytic vector fields in R m . More precisely we prove that for any vector field in R m admitting the origin as a fixed point with a semi-simple linearization, the order of the normal form can be optimized so that the remainder is exponentially small.We also give several examples of non semi-simple linearization for which this result is still true.

1 Introduction

Position of the problem

A key tool in the study of the dynamics of vector fields near an equilibrium point is the theory of normal forms, invented by Poincaré, which gives simple forms to which a vector field can be reduced close to the equilibrium [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF], [START_REF] Brjuno | Analytic normal forms of differential equations[END_REF]. In the class of formal vector valued vector fields the problem can be easily solved [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF], whereas in the class of analytic vector fields divergence of the power series giving the normalizing transformation generally occurs [START_REF] Brjuno | Analytic normal forms of differential equations[END_REF], [START_REF] Stolovitch | Classification analytique de champs de vecteurs 1-résonnants de (C n , 0)[END_REF], [START_REF] Stolovitch | Sur un théorème de Dulac[END_REF]. Nevertheless the study of the dynamics in a neighborhood of the origin, can very often be carried out via a normalization up to finite order (see for instance [START_REF] Chossat | The Couette -Taylor problem[END_REF], [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems and bifurcations of vector fields[END_REF], [START_REF] Iooss | Perturbed homoclinic solutions in 1:1 resonance vector fields[END_REF], [START_REF] Lanford 0 | Bifurcations of periodic solutions into invariant tori[END_REF], [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF], [START_REF] Vanderbauwhede | Center manifolds, normal forms and elementary bifurcations[END_REF]). Normal forms are not unique and various characterization exist in the literature [START_REF] Belitskii | Normal forms relative to a filtering action of group[END_REF], [START_REF] Cushman | Splitting algorithm for nilpotent normal forms[END_REF], [START_REF] Elphick | A simple global characterization for normal forms of singular vector fields[END_REF], [START_REF] Iooss | Topics in bifurcation theory and applications[END_REF], [START_REF] Vanderbauwhede | Center manifolds, normal forms and elementary bifurcations[END_REF]. In this paper we will consider the version given in [START_REF] Iooss | Topics in bifurcation theory and applications[END_REF]:

Theorem 1.1 (Unperturbed NF-Theorem) Let V be a smooth (resp. analytic) vector field defined on a neighborhood of the origin in R m (resp. in C m ) such that V (0) = 0. Then, for any integer p ≥ 2, there are polynomials Q p , N p : R m → R m (resp. C m → C m ) , of degree ≤ p, satisfying Q p (0) = N p (0) = 0, DQ p (0) = DN p (0) = 0 such that under the near identity change of variable X = Y + Q p (Y ), the vector field dX dt = V (X) [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF] becomes

dY dt = LY + N p (Y ) + R p (Y ) (2) 
where DV (0) = L, where the remainder R p is a smooth (resp. analytic) function satisfying R p (X) = O( X p+1 ) and where the normal form polynomial N p of degree p satisfies

N p (e tL * Y ) = e tL * N p (Y )
for all Y ∈ R m (resp. in C m ) and t ∈ R or equivalently

DN p (Y )L * Y = L * N p (Y )
where L * is the adjoint of L. Moreover, if T is a unitary linear map which commutes with V , then for every Y ,

Q p (T Y ) = T Q p (Y ) N p (T Y ) = T N p (Y ).
Similarly, if V is reversible with respect to some linear unitary symmetry S (S = S -1 = S * ), i.e. if V anticommutes with this symmetry, then for every

Y , Q p (SY ) = SQ p (Y ) N p (SY ) = -SN p (Y ).
This version of the Normal Form Theorem up to any finite order has the following advantages : its proof is elementary and the characterization given is global in terms of a unique commutation property. Moreover it uses a simple hermitian structure of the space of homogeneous polynomials of given degree.

Since a usual way to study the dynamics of vector fields close to an equilibrium is to see the full vector field as a perturbation of its normal form L + N p by higher order terms, it happens to be of great interest to obtain sharp upper bounds of the remainders R p . A similar theory of resonant normal forms was developed for Hamiltonians systems written in action-angle coordinates (see for instance [START_REF] Delshams | Effective stability and KAM theory[END_REF], [START_REF] Fassò | Lie series method for vector fields and Hamiltonian perturbation theory[END_REF], [START_REF] Pöschel | Nekoroshev estimates for quasi convex hamiltonian systems[END_REF]). A sticking result obtained by Nekhoroshev [START_REF] Nekhoroshev | An exponential estimate of the time of stability of nearly integrable Hamiltonian systems[END_REF], [START_REF] Nekhoroshev | An exponential estimate of the time of stability of nearly integrable Hamiltonian systems[END_REF], in order to study the stability of the action variables over exponentially large interval of time, is that up to an optimal choice of the order p of the normal form , the remainder can be made exponentially small. For more details of such Normal Form Theorems with exponentially small remainder for Hamiltonian systems written in action angle variables, we refer to the work of Pöschel in [START_REF] Pöschel | Nekoroshev estimates for quasi convex hamiltonian systems[END_REF]. A similar result of exponential smallness of the remainder was also obtained by Giorgilli and Posilicano in [START_REF] Giorgilli | Estimates for normal forms of differential equation near an equilibrium point[END_REF] for a reversible system with a linear part composed of harmonic oscillators.

So a natural question is to determine for which class of analytic vector fields, such results of normalization up to exponentially small remainder can be obtained?

Since in the previously mentioned works dealing with particular hamiltonian or reversible systems, the normalization procedure is based on diagonalizable homological operators, a first natural class to consider, is the class C s of analytic vector fields, fixing the origin, and such that their linearization at the origin is semi-simple (i.e. is diagonalizable). This is indeed the largest class for which the homological operators involved in the normalization procedure are diagonalizable (see Lemma 2.5-(a)). More precisely, we prove in this paper that such results of normalization up to exponentially small remainder can be obtained for any analytic vector fields in C s provided that the spectrum of the linearization at the origin satisfies some "nonresonance assumptions" which enable to control the small divisor effects.

The question of the validity of such results for analytic vector fields with non semi-simple linearization is far more intricate : we give two examples of non semi-simple linearizations for which the result is still true. However, the question remains totally open for other non semi simple linearizations. We perform some estimates which suggest that the results should not be true in general for non semi-simple linearizations, but theses estimates are not sufficient to build a counter example (see Remark 2.9).

Statement of the results

To state our results we need to specify some "nonresonance assumptions" which enable to control the small divisor effects. In many problems, one uses one of the two following classical "nonresonance assumptions" : for a subset Z of Z m , for K ∈ N, and for γ > 0, a vector λ = (λ 1 ,

• • • , λ m ) ∈ C m , is said to be γ, K-nonresonant modulo Z if for every k ∈ Z m with |k| ≤ K, | λ, k | ≥ γ when k / ∈ Z. (3) 
Similarly, for γ > 0, τ > m -1, λ is said to be γ, τ -Diophantine modulo

Z if for every k ∈ Z m , | λ, k | ≥ γ |k| τ when k / ∈ Z, (4) 
where

for k = (k 1 , • • • , k m ) ∈ Z m , |k| := |k 1 | + • • • + |k m |.
However, in the problem of normal forms, the small divisors appear as eigenvalues of the homological operator giving the normal forms by induction (see Subsection 2.1 and Lemma 2.5). To control these small divisors let us introduce two slightly different definitions : (a) The vector λ is said to be γ, K-homologically without small divisors if for every α ∈ N m with 2 ≤ |α| ≤ K, and every j ∈ N, 1 ≤ j ≤ m, | λ, αλ j | ≥ γ when λ, αλ j = 0.

(b) The vector λ is said to be γ, τ -homologically Diophantine if for every

α ∈ N m , |α| ≥ 2, | λ, α -λ j | ≥ γ |α| τ
when λ, αλ j = 0.

(c) For a linear operator L in R m , let us denote by λ 1 , • • • , λ m its eigenvalues and λ L := (λ 1 , • • • , λ m ). Then L is said to be γ, K-homologically without small divisors ( resp. γ, τ -homologically Diophantine) if λ L is so.

Remark 1.3 Observe that in the above definitions, the components of α are nonnegative integers whereas in (3) and ( 4), k lies in

Z m .
In what follows we use Arnold's notations [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF] for denoting matrices under complex Jordan normal forms : λ 2 denotes the 2 × 2 complex Jordan block corresponding to λ ∈ C whereas λ.λ represents 2 × 2 complex diagonal matrix diag(λ, λ), i.e.

λ 2 :=    λ 1 0 λ    whereas λ.λ :=    λ 0 0 λ    .
A matrix under complex Jordan normal form is then denoted by the products of the name of its Jordan blocs. Moreover since for real matrices the Jordan blocks corresponding to non zero matrices occur by pairs λ r and λ r we shorten their name as follows : for

λ 1 , λ 2 ∈ C\R, 0 2 .λ r 1 1 .λ r 2 2 .λ r 1 1 .λ r 2
2 is simply denoted by 0 2 .λ r 1 1 .λ r 2 2 | C . Moreover, when one works with vector fields in R m , one may want to remain in R m and thus to use real Jordan normal forms for the linearization of the vector field. So, for µ ∈ R and λ

= x + iy ∈ C \ R, we denote by µ 2 λ 2 | R the real Jordan matrix             µ 1 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 x -y y x 1 0 0 1 0 0 0 0 0 0 0 0 x -y y x            
.

Finally, we equip R m and C m with the canonical inner product and norm, i.e. for X = (X 1 ,

• • • , X m ) ∈ C m , X 2 := X, X = m j=1
X j X j . We are now ready to state our main result:

Theorem 1.4 (NF-Theorem with exponentially small remainder) Let V be an analytic vector field in a neighborhood of

0 in R m (resp. in C m ) such that V (0) = 0, i.e. V (X) = LX + k≥2 V k [X (k) ] ( 5 
)
where L is a linear operator in R m (resp. in C m ) and where V k is bounded k-linear symmetric and

V k [X 1 , • • • , X k ] ≤ c X 1 • • • X k ρ k (6)
with c, ρ > 0 independent of k.

(a) If L is semi-simple and under real (resp. complex) Jordan normal form, then (i) if L is γ, τ -homologically Diophantine, then for every δ > 0 such that p opt ≥ 2, the remainder R p , given by the Normal Form Theorem 1.1 for p = p opt , satisfies

sup Y ≤δ R popt (Y ) ≤ M τ δ 2 e -w δ b (7) with b = 1 1 + τ , p opt = 1 e(Cδ) b , w = 1 eC b and M τ = 10 9 cC 2        m 27 8e   1+τ + (2e) 2+2τ     
where

C = √ m ρ 2 5 2 m + 2 ac + 3ρ , m = sup p∈N e 2 p! p p+ 1 2 e -p , a = γ -1 .
(ii) if L is γ, K-homologically without small divisors, then for every δ > 0 such that K ≥ p opt ≥ 2 then the remainder R p given by the Normal Form Theorem 1.1 for p = p opt satisfies [START_REF] Duistermaat | Bifurcations of periodic solutions near equilibrium points of hamiltonian systems[END_REF] 

with τ = 0, i.e. b = 1. (b) For L = 0 2 0 • • • 0 q times and L = 0 3 0 • • • 0 q times
, estimate [START_REF] Duistermaat | Bifurcations of periodic solutions near equilibrium points of hamiltonian systems[END_REF] still holds with τ = 0, i.e b = 1, and with a = 1.

The proof of this theorem is given in section 2. 

* = Q -1 ), then it becomes d Y dt = L Y + N p ( Y ) + R p ( Y ) with L = Q -1 LQ, N p ( Y ) = Q -1 N p (Q Y ), R p (Y ) = Q -1 R p (QY )
, where N p satisfies the same normal form criteria as N p , i.e. N (e t L * Y ) = e t L * N ( Y ) and where R p admits the same exponentially small upper bound as R p given by [START_REF] Duistermaat | Bifurcations of periodic solutions near equilibrium points of hamiltonian systems[END_REF].

However, when Q is not unitary then N p satisfies a slightly different normal form criteria given by

N (e t ∨ L Y ) = e t ∨ L N ( Y )
where

∨ L = Q -1 L * Q which is not equal to L * when Q is not unitary.
In this case, R popt also admits a slightly different upper bound given by sup

Y ≤ δ R popt (Y ) ≤ M τ |Q -1 | |Q | 2 δ 2 e - w |Q | b δ b where |Q | = sup Y =1 Q(Y ) .
The above remark enables to state a corollary without assuming that L is under real or complex Jordan normal form Corollary 1.9 Let V be an analytic vector field in a neighborhood of 0 in R m (resp. in C m ) such that V (0) = 0, i.e. satisfying [START_REF] Cushman | Splitting algorithm for nilpotent normal forms[END_REF] and [START_REF] Delshams | Effective stability and KAM theory[END_REF]. Denote L = DV (0) and let Q be an invertible matrix such that J = QLQ -1 is under real (resp. complex) Jordan normal form.

Then, there are polynomials

Q popt , N popt : R m → R m (resp. C m → C m ) , of degree ≤ p opt , satisfying Q popt (0) = N popt (0) = 0, DQ popt (0) = DN popt (0) = 0 such that under the near identity change of variable X = Y + Q popt (Y ), the vector field (1) becomes dY dt = LY + N popt (Y ) + R popt (Y )
where the remainder

R popt = O( Y popt+1
) is analytic and where N popt satisfies the normal form criteria

N popt (e t ∨ L Y ) = e t ∨ L N popt (Y ) with ∨ L = Q -1 J * Q for all Y ∈ R m (resp. in C m ) and t ∈ R. Moreover,
(a) if L is semi-simple and γ, τ -homologically Diophantine, then for every δ > 0 such that p opt ≥ 2, the remainder R popt satisfies

sup Y ≤δ R popt (Y ) ≤ M τ δ 2 e -w δ b (8) with b = 1 1 + τ , p opt = 1 e(Cδ) b , w = 1 eC b and M τ = 10 9 c |Q | |Q -1 | C 2        m 27 8e   1+τ + (2e) 2+2τ     
where

C = √ m ρ 2 5 2 m + 2 ac |Q | 2 |Q -1 | 2 + 3ρ |Q | |Q -1 | , and m = sup p∈N e 2 p! p p+ 1 2 e -p
, a = γ -1 ;

(b) if L is semi-simple and γ, K-homologically without small divisors, then for every δ > 0 such that K ≥ p opt ≥ 2 then the remainder R popt satisfies [START_REF] Elphick | A simple global characterization for normal forms of singular vector fields[END_REF] 

with τ = 0, i.e. b = 1; (c) for J = 0 2 0 • • • 0 q times and J = 0 3 0 • • • 0 q times
, estimate (8) still holds with τ = 0, i.e b = 1, and with a = 1.

Proof. Starting with [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF], perform a first change of coordinates X = Q -1 X to obtain a vector field V such that D V (0) = J is under Jordan normal form, then apply Theorem 1.4, i.e perform a second change of coordinates X = Q popt ( Y ) and finally perform a last change of coordinates Y = QY to get the desired result.
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The previous corollary readily enables to state a second one which holds for perturbed vector fields

du dt = V (u, µ), u ∈ R m , µ ∈ R s (9) 
by setting U = (u, µ), V = (V, 0) and observing that ( 9) is equivalent to

dU dt = V(U).
Theorem 1.10 Let V : R m × R s → R m be an analytic family of vector fields defined in a neighborhood of 0 in C m × C s such that V (0, µ) = 0, i.e.

V (X, µ) = L 0 X + n+ℓ≥2 k≥1 V k,ℓ [X (k) , µ (ℓ) ] ( 10 
)
where L 0 = D u V (0, 0) is a linear operator in R m (resp. in C m ) and where V k,ℓ is bounded k + ℓ-linear symmetric and

V k,ℓ [X 1 , • • • , X k , µ 1 , • • • , µ ℓ ] ≤ c X 1 • • • X n ρ k µ 1 • • • µ ℓ ρ ℓ (11) 
with c, ρ > 0 independent of n and ℓ.

Let Q be an invertible matrix such that J = QL 0 Q -1 is under real (resp. complex) Jordan normal form.

Then, there are polynomials

Q popt , N popt : R m × R s → R m (resp. C m × C s → C m
) , of degree ≤ p opt , satisfying Q popt (0, 0) = N popt (0, 0) = 0, DQ popt (0, 0) = DN popt (0, 0) = 0 such that under the near identity change of variable X = Y + Q popt (Y ), the vector field [START_REF] Fassò | Lie series method for vector fields and Hamiltonian perturbation theory[END_REF] becomes

dY dt = L 0 Y + N popt (Y, µ) + R popt (Y, µ)
where the remainder R popt = O ( Y + µ ) popt+1 is analytic and where N popt satisfies the normal form criteria 

N popt (e t ∨ L 0 Y, µ) = e t ∨ L 0 N popt (Y, µ) with ∨ L 0 = Q -1 J * Q for all Y ∈ R m (resp. in C m ) and t ∈ R. Moreover, ( 
M τ = 10 9 c |Q | |Q -1 | C 2        m 27 8e   1+τ + (2e) 2+2τ     
where

C = √ m ρ 2 5 2 m + 2 ac |Q | 2 |Q -1 | 2 + 3ρ |Q | |Q -1 | , and m = sup p∈N e 2 p! p p+ 1 2 e -p
, a = γ -1 ;

(b) if L 0 is semi-simple and γ, K-homologically without small divisors, then for every δ > 0 such that K ≥ p opt ≥ 2 then the remainder R popt satisfies (12) with τ = 0, i.e. b = 1;

(c) for J = 0 2 0 • • • 0 q times and J = 0 3 0 • • • 0 q times
, estimate [START_REF] Iooss | A codimension two bifurcation for reversible vector fields[END_REF] still holds with τ = 0, i.e b = 1, and with a = 1.

The proof of this theorem is given in section 3.

Remark 1.11 In the non semi-simple case, we get the exponential smallness of the remainder only in two special nilpotent cases. For the other cases the problem remains open. Nevertheless, in [START_REF] Iooss | Normal forms with exponentially small remainder : application to homoclinic connections for the 0 2+ iω resonance[END_REF], we study analytic reversible families of vector fields V (X, µ) in R 4 admitting a 0 2 iω resonance ( i.e. D X V (X, 0) = 0 2 iω| R ) and we show how the above theorem can be used to get an exponentially small upper bound of the remainder of the form sup

Y ∈B(µ) R popt (Y, µ) ≤ M τ e - w √ |µ| (13) 
where B(µ) is some appropriate neighborhood of the origin of size of order |µ|. We then deduce from [START_REF] Iooss | Topics in bifurcation theory and applications[END_REF], the existence of homoclinic connections to exponentially small periodic orbits.

Exponential estimates for unperturbed vector fields

This section is devoted to the proof of Theorem 1.4. We first recall in few words the proof of Theorem 1.1.

Normalization and Homological equations

Let V be an analytic vector field in a neighborhood of 0 in R m (resp. in C m ) such that V (0) = 0, i.e. a vector field satisfying (5) and [START_REF] Delshams | Effective stability and KAM theory[END_REF]. Let H be the space of the polynomial Φ : R m → R m (resp. C m → C m ) and let H k be the space of the homogeneous ones of degree k. We are interested in polynomial changes of variables, of the form

X = Y + Q p (Y ) with Q p (Y ) = 2≤k≤p Φ k (Y ), Φ k ∈ H k
such that by the change of variable, equation (1) becomes of the form [START_REF] Belitskii | Normal forms relative to a filtering action of group[END_REF] with

N p (Y ) = 2≤k≤p N k (Y ), N k ∈ H k ,
where N p is as simple as possible. A basic identification of powers of Y leads to {Id

+ 2≤k≤p DΦ k (Y )}{LY + 2≤k≤p N k (Y ) + R p (Y )} = L{ 1≤k≤p Φ k (Y )} + q≥2 V q { 1≤k≤p Φ k (Y )} (q) . (14) 
where Φ 1 (Y ) = Y . This leads to the following hierarchy of homological equations in H n for 2 ≤ n ≤ p,

A L Φ n + N n = F n , (15) 
with

F n = - 2≤k≤n-1 DΦ k .N n-k+1 + 2≤q≤n p 1 +•••+pq=n V q [Φ p 1 , • • • , Φ pq ], (16) 
where A L is the homological operator given by

(A L Φ)(Y ) = DΦ(Y ).LY -LΦ(Y ).
In [START_REF] Lanford 0 | Bifurcations of periodic solutions into invariant tori[END_REF] The key idea of the proof of Theorem 1.1 contained in [START_REF] Iooss | Topics in bifurcation theory and applications[END_REF] is to introduce an appropriate inner product on H such that the adjoint A * L of A L is given by A L * . Hence,

H n = ker A L | Hn ⊥ ⊕ ranA L * | Hn , H n = ranA L | Hn ⊥ ⊕ ker A L * | Hn .
Then for solving [START_REF] Iooss | Perturbed homoclinic solutions in 1:1 resonance vector fields[END_REF], we use the orthogonal projection π n on ker A L * | Hn for obtaining N n and the pseudo-inverse

A L | -1 Hn of A L | Hn defined in (ker A L * ) ⊥ = ranA L | Hn taking values in (ker A L | Hn ) ⊥ for Φ n , i.e. N n = π n (F n ) and Φ n = A L | -1 Hn ((Id -π n )(F n )). ( 17 
)
This completes the proof of theorem 1.1 and ensures that N n belongs to ker A L * | Hn and thus that N p lies in ker

A L * := {N /DN (Y )L * Y -L * N (Y ) = 0}.
To conclude this subsection, the appropriate inner product in H introduced in [START_REF] Iooss | Topics in bifurcation theory and applications[END_REF] is given by

Φ|Φ ′ H = m j=1 Φ j |Φ ′ j with Φ = (Φ 1 , • • • , Φ m ), Φ ′ = (Φ ′ 1 , • • • , Φ ′ m )
, where for any pair of polynomial P, P ′ : R m → R (resp. C m → C) ,

P |P ′ = P (∂ Y )P ′ (Y )| Y =0 .
where by definition P (Y ) := P Y . E.g, for all positive integers α 1 , We want to give an estimate on R p (Y ) depending on p and on the size of the ball where Y lies. Given the size of this ball, the aim is to optimize the degree p of the normal form, and show that R p (Y ) can be made exponentially small with respect to δ. For unperturbed vector fields, all follows from the following proposition which ensures that the exponentially estimates of the remainder follows from the estimates of the growth with respect to k of the euclidian norm of the pseudo inverse of A L | H k .

• • • , α m , β 1 , • • • , β m Y α 1 1 . • • • .Y αm m |Y β 1 1 . • • • .Y βm m = α 1 !. • • • .α m ! δ α 1 ,β 1 . • • • .δ αm,

Remark 2.1 A priori the pseudo inverse of the homological operator

A L | -1 H k is only defined from (ker A L * ) ⊥ = ranA L | H k onto (ker A L | H k ) ⊥ .
From now on, we extend it on the whole space H k as follows

A L | H k A L | -1 H k Φ = Φ for Φ ∈ (ker A L * ) ⊥ , A L | -1 H k Φ = 0, for Φ ∈ ker A L * .
Proposition 2.2 (Exponential estimates of the remainder) Let V be an analytic vector field in a neighborhood of 0 in R m (resp. in C m ) such that V (0) = 0, i.e. a vector field satisfying ( 5) and ( 6). Denote

a k (L) := | A L | -1 H k | 2 = sup |Φ| 2 =1 A L | -1 H k .Φ 2 .
Then, if there exits K ≥ 2, a ≥ 0 and τ ≥ 0 such that a k (L) ≤ ak τ for every k with 2 ≤ k ≤ K ≤ +∞, then for every δ > 0 such that K ≥ p opt ≥ 2 the remainder R p given by the Normal Form Theorem 1.1 for p = p opt satisfies sup

Y ≤δ R popt (Y ) ≤ M δ 2 e -w δ b with b = 1 1 + τ , p opt = 1 e(Cδ) b , w = 1 eC b , M = 10 9 cC 2 m 27 8e 1+τ + (2e) 2+2τ where C = √ m ρ 2 5 2 m + 2 ac + 3ρ , m = sup p∈N e 2 p! p p+ 1 2 e -p
and where for a real number x, we denote by [x] its integer part.

Remark 2.3 Stirling's formula ensures that m is finite.

The proof of this proposition is performed in two main steps. We first prove that roughly speaking, R p admits an upper bound of the form sup

Y ≤δ R p (Y ) ≤ M(Cδ) p+1 (p!) 1+τ .
where M depends on τ but not on δ nor p. Then we optimize p (see Lemma 2.19), so that (Cδ) p+1 (p!) τ +1 is exponentially small for p = p opt . In fact, the upper bound for R p is a little bit more complicated (see Lemma 2.17) and we obtain it only for (Cδ)

1 1+τ p ≤ e -1
, which is just enough to obtain the desired exponentially small upper bound of the remainder. The detailed proof of this proposition is postponed to subsection 2.3.

Remark 2.4

The euclidian norms a k (L) of the homological operator are invariant under unitary changes of coordinates. Indeed, if Q is a unitary linear operator, let us denote

L ′ = Q -1 LQ and a k (L ′ ) = | A L ′ | -1 H k | 2 . Then, since A L ′ | H k = T Q A L | H k T -1 Q where (T Q Φ)(Y ) = Q -1 Φ(QY ) and since T Q is unitary when Q is unitary (see Appendix A.3), we get that a k (L ′ ) = a k (L) for every k ≥ 1.

The semi-simple case: proof of Theorem 1.4-(a)

Theorem 1.4-(a) directly follows from proposition 2.2 and from the following lemma

Lemma 2.5 Let L be a linear operator in R m or C m . (a) Denote by σ(L) := {λ 1 , • • • , λ m } the spectrum of L. Then, for every k ≥ 2 the spectrum σ(A L | H k ) of A L | H k is given by σ(A L | H k ) := {Λ j,α := λ L , α -λ j , 1 ≤ j ≤ m, α ∈ N m , |α| = k}. (18) Moreover, A L | H k is semi simple if an only if L is so. (b)
If L is semi-simple and is under real or complex Jordan normal form, then for every k ≥ 2,

a k (L) := | A L | -1 H k | 2 ≤ max 1≤j≤m,|α|=k Λ j,α =0 |Λ j,α | -1 .
Remark 2.6 When L is semi simple, under Jordan normal form, and γ, Khomologically without small divisors, the above lemma ensures that

a k (L) ≤ γ -1 for 2 ≤ k ≤ K and if L is γ, τ -homologically Diophantine, then a k (L) ≤ γ -1 k τ for k ≥ 2.
Proof of Lemma 2.5. (a): Although this result is classical (see [START_REF] Duistermaat | Bifurcations of periodic solutions near equilibrium points of hamiltonian systems[END_REF]), we give its short proof for self-containedness of the paper. Let Q be an invertible matrix such that J = Q -1 LQ is under complex Jordan normal form and observe that

A L | H k = T -1 Q A J | H k T Q where (T Q Φ)(Y ) = Q -1 Φ(QY ). Hence the spectrum of A L | H k is equal to the spectrum of A J | H k . Let {c j } 1≤j≤m be the canonical basis of C m .
Then, since J is under Jordan normal form, we have Jc j = λ j c j + δ j-1 c j-1 with δ 0 = 0 and where δ j-1 = 0 if λ j = λ j-1 and δ j-1 = 0 or 1 otherwise. Let {P j,α } 1≤j≤m,α∈N m ,|α|=k be the basis of H k given by

P j,α (Y ) := Y α 1 1 . • • • .Y αm m c j
we order this basis with the lexicographical order, i.e. P j,α < P ℓ,β if the first non zero integer ℓj,

β 1 -α 1 . • • • .β m -α m is positive.
Within this order, A J is upper triangular and

A J P j,α = ( λ L , α -λ j )P j,α + m ℓ=1 α ℓ δ ℓ P j,α-σ ℓ +σ ℓ+1 -δ j-1 P j-1,α (19) 
with

σ ℓ = (0, • • • , 0, 1, • • • , 0)
where the coefficient 1 is at the ℓ-th position.

Hence the spectrum of A J | H k and thus the spectrum of A L | H k is given by [START_REF] Nekhoroshev | An exponential estimate of the time of stability of nearly integrable Hamiltonian systems[END_REF]. Formula ( 19) also ensures that A J is semi simple if and only if J is so.

(b) : We proceed in two steps.

Step 1. First assume that L is semi-simple and is under complex Jordan normal form i.e. assume that L = J is diagonal. Then δ j = 0 for 1 ≤ j ≤ m. Thus, by [START_REF] Lombardi | Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves[END_REF],

A L | H k is also semi simple and {P j,α } 1≤j≤m,α∈N m ,|α|=k is a basis of eigenvectors of A L | H k . For Φ ∈ H k , let us denote Φ = Φ + ∨ Φ , ∨ Φ = π k Φ ∈ ker(A L * | H k ), Φ = 1≤j≤m,|α|=k Λ j,α =0 Φ j,α P j,α ∈ ran(A L | H k ),
and

M = max 1≤j≤m,|α|=k Λ j,α =0 |Λ j,α | -1 . Then since A L | -1 H k ∨ Φ = 0 and P j,α |P ℓ,β H = 0 for (j, α) = (ℓ, β) we have A L | -1 H k Φ 2 2 = 1≤j≤m,|α|=k Λ j,α =0 |Λ j,α | -2 | Φ j,α | 2 |P j,α | 2 2 , ≤ M 2 1≤j≤m,|α|=k Λ j,α =0 | Φ j,α | 2 |P j,α | 2 2 , = M 2 Φ 2 2
.

Finally, since

∨ Φ | Φ H = 0, A L | -1 H k Φ 2 ≤ M |Φ| 2 . ( 20 
)
Step 2. If L is real semi simple and is under real Jordan normal form then it is conjugated to its complex Jordan normal form by a unitary matrix since

   x + iy 0 0 x -iy    = Q -1    x -y y x    Q, with Q =    1 √ 2 1 √ 2 1 i √ 2 -1 i √ 2    .
Then, remark 2.4 and the previous step ensures that [START_REF] Pöschel | Nekoroshev estimates for quasi convex hamiltonian systems[END_REF] still holds when L is real, semi simple and under real Jordan normal form. 

Lemma 2.7 For L = 0 2 0 • • • 0 q times , L = 0 3 0 • • • 0 q times , a k (L) satisfies a k (L) ≤ a, for every k ≥ 1 with a = 1.
The detailed proof of this lemma is postponed to subsection 2.4. (see Lemmas 2.22 and 2.24). For non semi-simple operators L the direct computation of the norm of

A L | -1 H k is in general quite intricate. So, in subsection 2.4, the computation of a k (L) for L = 0 j 0 • • • 0 q times
, j = 2, 3 is performed via the following lemma which gives this norm in terms of the spectrum of the self adjoint operator

(A L | H k ) * A L | H k = A L * | H k A L | H k which appears easier to handle.
Lemma 2.8 For every linear operator L in R m or C m and every k ≥ 1, let us denote by Σ k (L) ⊂ R + the spectrum of the positive self adjoint operator

(A L | H k ) * A L | H k = A L * | H k A L | H k . Then, a k (L) := | A L | -1 H k | 2 = min σ∈Σ k (L)\{0} |σ| -1 2 .
Proof. Observe that

a k = sup Φ∈H k \{0} A L | -1 H k Φ 2 |Φ| 2 = sup Ψ∈(ker A L | H k ) ⊥ |Ψ| 2 A L | H k Ψ 2 =   inf Ψ∈(ker A L | H k ) ⊥ A L * | H k A L | H k Ψ|Ψ |Ψ| 2 2   -1 2 .
Then, since ker

A L | H k = ker A L * | H k A L | H k and since A L * | H k A L | H k is a positive self adjoint operator, we get a k (L) := min σ∈Σ k (L)\{0} |σ| -1 2 .
2 Remark 2.9 For L = 0 2 iω| R or C , the above strategy leads to an estimate of a k (L) of the form a k (L) ≤ a(Ck) k-1 which is far too large to get an exponential estimate of the remainder. So, at the present time, we do not know whether an estimate of the form (7) is still true for L = 0 2 iω| R or C .

Exponentially small estimates of the remainder for polynomially bounded pseudo inverse of the homological operator.

This subsection is devoted to the proof of proposition 2.2. To fix the notations we make the proof for vector fields in R m . The proof is the same for C m . So, let V be an analytic vector field in a neighborhood of 0 in R m such that V (0) = 0, i.e. a vector field satisfying ( 5) and ( 6). We assume that the pseudo inverse of the homological operator is polynomially bounded on H k for 2 ≤ k ≤ K ≤ +∞, i.e we assume that there exists a > 0 and τ ≥ 0 such that

a k = A L | -1 H k .Φ 2 ≤ ak τ for 2 ≤ k ≤ K.
Our aim is to find an exponential upper bound of the remainder R p (Y ) for Y in a ball of radius δ. Since the remainder R p (Y ) is given by equation ( 14 

Y ∈C m Φ(Y ) Y n .
However, N n and Φ n are the solutions of the Homological Equation [START_REF] Iooss | Perturbed homoclinic solutions in 1:1 resonance vector fields[END_REF] given by ( 17), i.e. defined via the orthogonal projector π n which has nice properties for the euclidian norm and not for the sup norm. These two norm can be compared has follows :

Lemma 2.10 (Comparison of the euclidian and the sup norm)

For every Φ ∈ H k , |Φ| 0,k ≤ 1 √ k! |Φ| 2 ≤ C m-1 k+m-1 |Φ| 0,k ≤ √ m k m-1 2 |Φ| 0,k . where C r n = n! r!(n -r)! .
The proof of this Lemma is given in Appendix A (see Lemmas A. (a) Let q and {p ℓ } 1≤ℓ≤q be positive integers and let R q ∈ L q (R m ) be q-linear.

Then for every 

Φ p ℓ ∈ H p ℓ , 1 ≤ ℓ ≤ q, the polynomial R q [Φ p 1 , • • • , Φ pq ] lies in H n with n = p 1 + • • • + p q and R q [Φ p 1 , • • • , Φ pq ] 2,n ≤ |R q | Lq(R m ) |Φ p 1 | 2,p 1 • • • Φ pq
|DΦ k .N p | 2,n ≤ k 2 + (m -1)k |Φ k | 2,k |N p | 2,p
This Lemma is also proved in Appendix A (see lemmas A.8 and A.9).

Hence to compute by induction upper bounds of Φ n , N n defined via π n , we use the normalized euclidian norms

ν n = |N n | 2,n
, for n ≥ 2,

φ n = |Φ n | 2,n , for n ≥ 1, with the convention Φ 1 (Y ) = Y and thus φ 1 = |Y | 2,1 = √ m. Lemma 2.10
ensures that the same upper bounds will also hold for the sup norms of N n , Φ n . Since π n is orthogonal, we deduce from [START_REF] Nekhoroshev | An exponential estimate of the time of stability of nearly integrable Hamiltonian systems[END_REF] that

ν n = |N n | 2,n = |π n (F n )| 2,n = 1 √ n! |π n (F n )| 2 ≤ 1 √ n! |F n | 2 = |F n | 2,n
and similarly

φ n ≤ | A L | -1 Hn | 2 |F n | 2,n ≤ an τ |F n | 2,n
.

Hence using the multipicativity and the derivation properties of the normalized euclidian norms, we get that

ν n ≤ 2≤k≤n-1 k 2 + (m -1)k 1 2 φ k ν n-k+1 + 2≤q≤n p 1 +•••+pq=n c φ p 1 • • • φ pq ρ q , (21) 
φ n ≤an τ 2≤k≤n-1 k 2 +(m-1)k 1 2 φ k ν n-k+1 +an τ 2≤q≤n p 1 +•••+pq=n c φ p 1 • • • φ pq ρ q (22) for 2 ≤ n ≤ K with the convention φ 1 = |Φ 1 | 2,1 = |Y | 2,1 = √ m. Hence using that (k 2 + (m -1)k) 1 2 ≤
√ mk, we check by induction that Lemma 2.12 Let {β n } n≥1 be the sequence defined by induction

β n = m 2≤k≤n-1 kβ k β n-k+1 + 2≤q≤n p 1 +•••+pq=n ρ ac q-2 β p 1 • • • β pq , n ≥ 2, ( 23 
)
β 1 = 1.
Then we have the estimates

ν n ≤ √ m a ac √ m ρ 2 n-1 (n -1)! τ β n , for 2 ≤ n ≤ K, (24) 
φ n ≤ √ m ac √ m ρ 2 n-1 (n!) τ β n , for 1 ≤ n ≤ K. ( 25 
)
Proof. We proceed by induction. For n = 1, the above inequality is true since φ 1 = √ m. For n = 2, equation [START_REF] Vanderbauwhede | Center manifolds, normal forms and elementary bifurcations[END_REF] ensures that β 2 = 1 and ( 21), [START_REF] Stolovitch | Sur un théorème de Dulac[END_REF] ensure that ν 2 ≤ cmρ -2 and φ 2 ≤ acm2 τ ρ -2 , and thus (25), (24) are true for n = 2. Assume now that (24), (25) holds for k < n with n ≥ 3. Then [START_REF] Stolovitch | Classification analytique de champs de vecteurs 1-résonnants de (C n , 0)[END_REF] ensures that

ν n ≤ √ m a ac √ m ρ 2 n-1 (n -1)! τ   m 2≤k≤n-1 kβ k β n-k+1 (D ′ n,k ) τ + 2≤q≤n p 1 +•••+pq=n ρ ac q-2 β p 1 • • • β pq (D n,p 1 ,••• ,pq ) τ   where D ′ n,k = k!(n -k)! (n -1)! and D n,p 1 ,••• ,pq = p 1 ! • • • p q ! (n -1)! . It remains to prove that D ′ n,k ≤ 1 for 2 ≤ k ≤ n -1 and that D n,p 1 ,••• ,pq ≤ 1 for 2 ≤ q ≤ n, p 1 + • • • + p q = n
, p j ≥ 1, to ensures that (24) holds for n and similarly that (25) holds also for n.

Denoting C k n = n! k!(n-k)! and observing that C k n ≥ n for 1 ≤ k ≤ n -1, we get D ′ n,k = n C k n ≤ 1.
Finally to prove that D n,p 1 ,••• ,pq ≤ 1 we proceed by induction on q. For q = 2, we have

D n,p 1 ,p 2 = p 1 !(n -p 1 )! (n -1)! = D ′ n,p 1 ≤ 1 since 1 ≤ p 1 ≤ n -1. Assume now that D n,p 1 ,••• ,pq ≤ 1 for q ≥ 2 and every n ≥ q, then D n,p 1 ,••• ,p q+1 = D p 1 +•••+pq,p 1 ,••• ,pq (p 1 + • • • + p q -1)! p q+1 ! (n -1)! , = D p 1 +•••+pq,p 1 ,••• ,pq 1 C p q+1 n-1 ≤ 1,
since for every r ∈ N and j with 0 ≤ j ≤ r, we have C j r ≥ 1. This completes the proof of Lemma 2.12.
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The study of the sequence {β n } n≥1 enables to obtain Gevrey estimates for φ n , ν n .

Lemma 2.13 In choosing α 1 = 1 and

α n = Θ n-2 (n -2)!, for n ≥ 2,
and Θ large enough such that acΘ > ρ, (26) and

5 2 m + 2 Θ + 2 ρ acΘ 1 -ρ acΘ ≤ 1, ( 27 
)
then β n in (23) satisfies β n ≤ α n for n ≥ 1 and thus

φ n ≤ acm ρ 2 ac √ m Θ ρ 2 n-2 (n!) τ (n -2)!, for 2 ≤ n ≤ K, and φ 1 = √ m, ν n ≤ cm ρ 2 ac √ m Θ ρ 2 n-2 (n -1)! τ (n -2)!, for 2 ≤ n ≤ K.
Proof. We proceed by induction. We have

β 1 = 1 = α 1 ≤ α 1 and β 2 = 1 = α 2 ≤ α 2 . Assume now that β k ≤ α k for k < n and n ≥ 3.
Step 1. Splitting of the bounds. Then by induction hypothesis,

β n ≤ ∆ 1 n + ∆ 2 n ( 28 
)
with

∆ 1 n = m 2≤k≤n-1 k α k α n-k+1 + 1≤k≤n-1 α k α n-k , ∆ 2 n = 3≤q≤n p 1 +...+pq=n ρ ac q-2 α p 1 .....α pq .
Step 2. Two auxiliary sums for ∆ 1 n .

Step 2.1 Upper bound for S n . Let us we define

S n = 2≤k≤n-1 k(k -2)!(n -k -1)! (n -2)! .
Explicit computations show that S 3 = 2, S 4 = S 5 = 5 2 . Hence, S n ≤ 5/2 for 3 ≤ n ≤ 5. To prove that it also holds for n ≥ 5, observe that for n ≥ 5,

S n+1 -S n = 2≤k≤n k(k -2)!(n -k)! (n -1)! - 2≤k≤n-1 k(k -2)!(n -k -1)! (n -2)! , = 3≤k≤n-2 k(k-2)! (n -k)! (n -1)! - (n -k -1)! (n -2)! + n + 2 n -1 + 1 n -2 - n + 1 n -2 , = 3≤k≤n-2 k(k-2)! 1 (n-1)...(n-k+1) - 1 (n-2)...(n-k) + n-4 (n-1)(n-2) , = - 3≤k≤n-2 k! (n -1)...(n -k) + n -4 (n -1)(n -2) , = - 3≤k≤n-3 k! (n -1)...(n -k) - (n -2)! (n -1)! + n -4 (n -1)(n -2) , = - 3≤k≤n-3 k! (n -1)...(n -k) - 2 (n -1)(n -2) ≤ 0
where, here again, by convention, the sums corresponding to an empty index set are equal to 0.

Hence S n+1 ≤ S n for n ≥ 5, and we can conclude

S n ≤ 5/2, for n ≥ 3. ( 29 
)
Step 2.2 Upper bound for P n . We now define

P n = 2≤k≤n-2 (k -2)!(n -k -2)! (n -2)! .
Observe that P 4 = 1 2 and that for n ≥ 4,

P n+1 -P n = 2≤k≤n-1 (k -2)!(n -k -1)! (n -1)! - 2≤k≤n-2 k(k -2)!(n -k -2)! (n -2)! , = 2≤k≤n-2 (k-2)! 1 (n-1)...(n-k) - 1 (n-2)...(n-k-1) + 1 (n-1)(n-2) , = - 2≤k≤n-2 k(k -2)! (n -1)...(n -k -1) + 1 (n -1)(n -2) , = - 2≤k≤n-3 k(k -2)! (n -1)...(n -k -1) - (n-2)(n-4)! (n -1)! + 1 (n-1)(n-2) , = - 2≤k≤n-3 k(k -2)! (n -1)...(n -k -1) - 1 (n -1)(n -2)(n -3) ≤ 0.
Hence, P n+1 ≤ P n , for n ≥ 4 and we can conclude

P n ≤ 1/2, for n ≥ 4. ( 30 
)
Step 3. Upper bound for ∆ 1 n . It results from ( 29) and (30) that for Θ ≥ 1,

∆ 1 n ≤ 5 2 m + 2 Θ α n , n ≥ 3, (31) 
where the proof of this inequality is direct for n = 3.

Step 4. Auxiliary sums for ∆ 2 n . Now, we define for n ≥ q ≥ 2 :

Π q,n = p 1 +...+pq=n α p 1 .....α pq ,
then we already have

Π n,n = 1 ≤ 1 Θ n-2 α n , n ≥ 3, Π 2,2 = 1, Π 2,n ≤ 2 Θ α n , n ≥ 3,
where the last inequality comes easily from the inequality for P n . For estimating Π q,n with n ≥ q + 1, we proceed as follows

Π q,n = 1≤k≤n-q+1 α k Π q-1,n-k = Π q-1,n-1 + α n-q+1 + 2≤k≤n-q α k Π q-1,n-k
and prove by induction that

Π q,n ≤ 2 Θ q-1 α n , n ≥ q + 1 ≥ 3.
Finally, gathering all our results, we get

Π q,n ≤ 2 Θ q-2 α n , n ≥ q ≥ 3, ( 32 
)
Step 5. Upper bound for ∆ 2 n . We deduce from (32) that

∆ n 2 = 3≤q≤n ρ ac q-2 Π q,n ≤ 3≤q≤n 2 ρ acΘ q-2 α n ≤ α n 2 ρ acΘ 1 -ρ acΘ , (33) 
provided that ρ acΘ < 1.

Step 6. Upper bound for β n . Hence, (31) and (33) ensure that

β n ≤ 5 2 m + 2 Θ + 2 ρ acΘ 1 -ρ acΘ α n ≤ α n provided that ρ acΘ < 1 and ( 5 2 m + 2) 1 Θ + 2 ρ acΘ 1 -ρ acΘ ≤ 1. 2 
In all what follows we choose

Θ = 5 2 m + 2 + 3ρ ac (34) 
which ensures that (26) and ( 27) are simultaneously satisfied since with this choice

ρ acΘ < 1 3
, and (

5 2 m + 2) 1 Θ + 2 ρ acΘ 1 -ρ acΘ ≤ ( 5 2 m + 2) 1 Θ 1 -ρ acΘ + 2 ρ acΘ 1 -ρ acΘ = 1.
We can now compute an upper bound for the change of coordinates and for its differential.

Lemma 2.14 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp 1+τ ≤ ρ 2 2ac √ m Θ . ( 35 
)
we have

1≤k≤p Φ k (Y ) ≤ 10 9 √ m δ, (36) 
| 2≤k≤p DΦ k (Y ) | L(R m ) ≤ 2/5. ( 37 
)
for every Y ∈ R m with ||Y || ≤ δ.

Remark 2.15 Observe that the size δ of the ball where Y lies and the degree p of the normal form, i.e. the degree of the polynomial change of variable are now mutually constrained by (35).

Proof. We proceed in three steps.

Step 

Φ k (Y ) ≤ 1≤k≤p |Φ k | 0,k Y k , ≤ 1≤k≤p |Φ k | 2,k Y k , ≤ 1≤k≤p φ k δ k , ≤ δ √ m + 2≤k≤p acm δ 2 ρ 2 ac √ mΘ δ ρ 2 k-2 (k!) τ (k -2)! ≤ δ √ m    1 + 1 Θ 2≤k≤p 1 2p 1+τ k-1 (k!) τ (k -2)!    , ≤ δ √ m    1 + 1 Θ p 2≤k≤p 1 2 k-1    , since for 2 ≤ k ≤ p, (k -2)! p k-1 ≤ 1 p , and k! p k-1 = 2 p . • • • . k p ≤ 1. (38) Hence, 1≤k≤p Φ k (Y ) ≤ δ √ m 1 + 1 pΘ ≤ 10 9 √ m δ, since Θ ≥ 5 2 m + 2 ≥ 9 2 and p ≥ 2.
Step 2. Upper bound for

|DΦ k (Y ) | L(R m ) .
For Y, Z ∈ R m seeing Z as an homogeneous polynomial of degree 0, Lemmas 2.10, 2.11 ensure that

DΦ k (Y ).Z Y k-1 ≤ |DΦ k (Y ).Z| 0,k , ≤ |DΦ k (Y ).Z| 2,k , ≤ k 2 + (m -1)k |Φ k | 2,k |Z| 2,0 , = k 2 + (m -1)k φ k Z .
Hence using that

k 2 + (m -1)k ≤ √ mk we obtain |DΦ k (Y ) | L(R m ) ≤ √ mkφ k Y k-1 .
Step 

| 2≤k≤p DΦ k (Y ) | L(R m ) ≤ m Θ 2≤k≤p ac √ mΘδ ρ 2 k-1 k (k!) τ (k -2)!, ≤ m Θ 2≤k≤p 1 2p 1+τ k-1 k (k!) τ (k -2)!, ≤ m Θ 2≤k≤p 1 2 k-1 , ≤ m Θ , ≤ 2 5 , since Θ ≥ 5 2 m. 2 
We have now enough material to compute an upper bound of the remainder.We first prove Lemma 2.16 For every δ > 0, every p, 2 ≤ p ≤ K satisfying (35) and for every Y ∈ R m with Y ≤ δ, we have

R p (Y ) ≤ 5 3 ∆ 1 p + ∆ 2 p + ∆ 3 p ( 39 
)
where

∆ 1 p = 2≤k≤p p+1≤n≤p+k-1 √ m kφ k ν n-k+1 δ n , ∆ 2 p = 2≤q≤p p+1≤n=p 1 +•••+pq, 1≤p j ≤p cδ n ρ q φ p 1 • • • φ pq , ∆ 3 p = p+1≤q c ρ q ( 10 9 √ m δ) q . ( 40 
)
Proof. The remainder R p (Y ) is given by equation [START_REF] Iooss | Normal forms with exponentially small remainder : application to homoclinic connections for the 0 2+ iω resonance[END_REF] where it gathers all the terms of order larger than p. To bound it, we proceed in several steps.

Step 1. Explicit formula for the remainder R p . Identifying the powers of Y in ( 14), we get that the remainder R p is explicitely given by

L p R p (Y ) = N 1 p + N 2 p + N 3 p ( 41 
)
with

L p = Id + 2≤k≤p DΦ k (Y ), N 1 p (Y ) = 2≤k≤p,2≤k ′ ≤p k-1+k ′ ≥p+1 DΦ k (Y ).N k ′ (Y ), N 2 p (Y ) = 2≤q≤p, 1≤p j ≤p p 1 +•••+pq≥p+1 V q Φ p 1 (Y ), • • • , Φ pq (Y ) , N 3 p (Y ) = q≥p+1 V q { 1≤k≤p Φ k (Y )} (q) .
Step 2. Upper bound for |L -1 p | L(R m ) . Since lemma 2.14 ensures that

| 2≤k≤p DΦ k (Y ) | L(R m ) ≤ 2/5 < 1
we get that L p is invertible and for every δ > 0, every Y ∈ R m with ||Y || ≤ δ and every p, 2 ≤ p ≤ K satisfying (35),

|L -1 p | L(R m ) ≤ 1 1 -2 5 = 5 3 . ( 42 
)
Step 3. Upper bound for N 1 p (Y ) . Setting n = k -1 + k ′ in the sum defining N 1 p (Y ) we obtain

N 1 p (Y ) = 2≤k≤p, p+1≤n≤p+k-1 DΦ k (Y ).N n-k+1 (Y ).
Thus, using lemmas 2.10, 2.11 we get

N 1 p (Y ) ≤ 2≤k≤p, p+1≤n≤p+k-1 DΦ k (Y ).N n-k+1 (Y ) , ≤ 2≤k≤p, p+1≤n≤p+k-1 |DΦ k .N n-k+1 | 0,n Y n , ≤ 2≤k≤p, p+1≤n≤p+k-1 |DΦ k .N n-k+1 | 2,n δ n , ≤ 2≤k≤p, p+1≤n≤p+k-1 k 2 + (m -1)k |Φ k | 2,k . |N n-k+1 | 2,n-k+1 δ n .
Hence, for every δ > 0, every Y ∈ R m with ||Y || ≤ δ and every p, 2 ≤ p ≤ K satisfying (35),

N 1 p (Y ) ≤ 2≤k≤p p+1≤n≤p+k-1 √ m kφ k ν n-k+1 δ n . ( 43 
)
Step 4. Upper bound for N 2 p (Y ) . Here again, using lemmas 2.10, 2.11 we obtain

N 2 p (Y ) ≤ 2≤q≤p, 1≤p j ≤p p 1 +•••+pq≥p+1 V q Φ p 1 (Y ), • • • , Φ pq (Y ) , ≤ 2≤q≤p, 1≤p j ≤p p 1 +•••+pq=n, n≥p+1 V q Φ p 1 , • • • , Φ pq 0,n Y n , ≤ 2≤q≤p, 1≤p j ≤p p 1 +•••+pq=n, n≥p+1 V q Φ p 1 , • • • , Φ pq 2,n δ n , ≤ 2≤q≤p, 1≤p j ≤p p 1 +•••+pq=n, n≥p+1 c ρ q |Φ p 1 | 2,n . • • • . Φ pq 2,n δ n .
So, in conclusion, for every δ > 0, every Y ∈ R m with ||Y || ≤ δ and every p, 2 ≤ p ≤ K satisfying (35),

N 2 p (Y ) ≤ 2≤q≤p p+1≤n=p 1 +•••+pq, 1≤p j ≤p cδ n ρ q φ p 1 • • • φ pq . (44) 
Step 5. Upper bound for N 3 p (Y ) . First, observe that

N 3 p (Y ) ≤ q≥p+1 V q { 1≤k≤p Φ k (Y )} (q) ≤ q≥p+1 c ρ q 1≤k≤p Φ k (Y ) q .
Then, using lemma 2.14, we get that for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35),

N 3 p (Y ) ≤ p+1≤q c ρ q ( 10 9 √ m δ) q . ( 45 
)
Finally, gathering (41), ( 43), ( 44), (45), we get the desired upper bound for R p (Y ) .
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Lemma 2.17 For every δ > 0 and every p, 2 ≤ p ≤ K satisfying

δp 1+τ ≤ ρ 2 e 1+τ ac √ m Θ . ( 46 
)
we have

R p (Y ) ≤ 10 9 c (Cδ) p+1 (p!) 1+τ + 1 p 2+2τ 1 e 1+τ p+1 for every Y ∈ R m with ||Y || ≤ δ where C = ac √ mΘ ρ 2 = √ m ρ 2 5 2 m + 2 ac + 3ρ .
Remark 2.18 Observe that the constraint (46) imposed on δ and p is slightly stronger than the one (35) imposed in Lemma 2.14 since 1 e 1+τ ≤ 1 2 . The constraint (46) has been chosen to get the optimal exponential decay rate for the upper bound of R p obtained by an optimal choice of p opt = 1 e(Cδ) and using lemma 2.13 we get

∆ 1 p ≤ m 5 2 ac 2 ρ 4 2≤k≤p p+1≤n≤p+k-1 ac √ m Θ ρ 2 n-3 δ n k(k!) τ (k-2)! (n-k)! τ (n-k-1)!, ≤ mρ 2 a 2 c Θ 3 2≤k≤p k(k!) τ (k-2)!(Cδ) p+1 p+1≤n≤p+k-1 (Cδ) n-p-1 (n-k-1)! (n-k)! τ , ≤ mρ 2 a 2 c Θ 3 2≤k≤p k(k!) τ (k -2)! (Cδ) p+1 p+1≤n≤p+k-1 1 2 n-p-1 (n-k-1)! p n-p-1 (n-k)! p n-p-1 τ , since Cδ ≤ 1 (ep) 1+τ ≤ 1
2 p 1+τ (here we do not need the strongest constraint). Then, observe that for p + 1

≤ n ≤ p + k -1, (n -k -1)! (p -2) n-p-1 ≤ (p -k)! and (n -k)! p n-p-1 ≤ (p -k + 1)!.
Thus, we obtain

∆ 1 p ≤ mρ 2 a 2 c Θ 3 2≤k≤p k(k!) τ (k -2)! (Cδ) p+1 2(p -k)! (p -k + 1)! τ , ≤ 2mρ 2 a 2 c Θ 3 (Cδ) p+1 (p!) 1+τ 2≤k≤p 1 C k p (k -1) p + 1 C k p+1 τ , ≤ 2mρ 2 a 2 c Θ 3 (Cδ) p+1 (p!) 1+τ 2≤k≤p 1 C k p (k -1) , ≤ 2mρ 2 a 2 c Θ 3 (Cδ) p+1 (p!) 1+τ 2≤k≤p 1 p -1 .
Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35),

∆ 1 p ≤ 2mρ 2 a 2 c Θ 3 (Cδ) p+1 (p!) 1+τ (47) 
Step 2. Upper bound for ∆ 2 p . Observing that α n ≤ (n -2)! Θ n-1 for any n ≥ 1 where (-1)! = 0! = 1 and using Lemma 2.13 we get

∆ 2 p = 2≤q≤p n≥p+1 p 1 +•••+pq=n 1≤p j ≤p c( √ m) q ρ q ac √ m ρ 2 n-q δ n (p 1 !) τ α p 1 • • • (p q !) τ α pq , ≤ 2≤q≤p n≥p+1 p 1 +•••+pq=n 1≤p j ≤p c( √ m) q ρ q ac √ mΘ ρ 2 n-q δ n (p 1 !) τ (p 1 -2)! • • • (p q !) τ (p q -2)! ≤ 2≤q≤p n≥p+1 p 1 +•••+pq=n 1≤p j ≤p c ac √ mδΘ ρ 2 n ρ acΘ q (p 1 !) τ (p 1 -2)! • • • (p q !) τ (p q -2)!, ≤ c 2≤q≤p r q n≥p+1 p 1 +•••+pq=n 1≤p j ≤p (Cδ) n (p 1 !) τ (p 1 -2)! • • • (p q !) τ (p q -2)!, since C = ac √ m Θ ρ 2
and where r := ρ acΘ ≤ 1 3 with our choice of Θ given by (34). Moreover, for δ > 0 and p ≥ 2 satisfying (46) (here we use the stronger constraint), i.e. for Cδ ≤ 1 (ep) 1+τ , we obtain

∆ 2 p ≤ c 2≤q≤p r q n≥p+1 p 1 +•••+pq=n 1≤p j ≤p 1 ep n(1+τ ) (p 1 !) τ (p 1 -2)! • • • (p q !) τ (p q -2)!, ≤ c 1 e 1+τ p+1 2≤q≤p r q n≥p+1 p 1 +•••+pq=n 1≤p j ≤p 1 p n(1+τ ) (p 1 !) τ (p 1 -2)! • • • (p q !) τ (p q -2)!.
Then, recalling that n ≤ pq, we get that

∆ 2 p ≤ c 1 e 1+τ p+1 2≤q≤p r q   p j=1 1 p 1+τ j (j!) τ (j -2)!   q , ≤ c 1 e 1+τ p+1 2≤q≤p r q 1 p 1+τ + p -1 p τ +2 q , ≤ c 1 e 1+τ p+1 2≤q≤p 2r p 1+τ q , ≤ c 1 e 1+τ p+1 4r 2 p 2+2τ 1 1 -2r p 1+τ , since 2 p 1+τ ≤ 1.
Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (46),

∆ 2 p ≤ 4c ρ acΘ 2 1 1 -ρ acΘ 1 p 2+2τ 1 e 1+τ p+1 . (48) 
Step 3. Upper bound for ∆ 3 p . Observing that with our choice of Θ given by (34), for every δ > 0 and every p, 2 ≤ p ≤ K satisfying ( 35 Hence, for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (35),

∆ 3 p ≤ 54 49 c 10 9 √ m δ ρ p+1 . ( 49 
)
Step 4. Upper bound for R p (Y ) . Gathering the upper bounds for ∆ 1 p , ∆ 2 p , ∆ 3 p given by ( 47), ( 48), (49), that with our choice of Θ given by (34),

ρ acΘ ≤ 1 3 , m Θ ≤ 2 5
we obtain that for every δ > 0 and every p, 

2 ≤ p ≤ K satisfying (46) R p (Y ) ≤ 5 3 ∆ 1 p + ∆ 2 p + ∆ 3 p , ≤ 4c 
R p (Y ) ≤ 10 9 c (Cδ) p+1 (p!) 1+τ + 1 p 2+2τ 1 e 1+τ p+1 for every Y ∈ R m with ||Y || ≤ δ. 2 
The upper bound of the norm of the remainder R p (Y ) contains two terms.

The second one, 1

p 2+2τ 1 e 1+τ
p+1 tends to 0 as p tends to infinity whereas the first one (Cδ) p+1 (p!) 1+τ tends to infinity. The key idea is to choose an optimal p for which (Cδ) p+1 (p!) 1+τ = (Cδ) p+1 1+τ p! 1+τ is minimal and prove that this minimal value is exponentially small with respect to δ. This results from the following lemma : Then, for p opt := 1 εe , f ε (p opt ) is exponentially small with respect to ε. Indeed, This subsection is devoted to the computation of the norm of

f ε 1 εe ≤ m ε e e -
:= | A L | -1 H k | 2 ≤ ak τ for every k with 2 ≤ k ≤ K, then for every δ > 0 such that K ≥ p opt ≥ 2,
A L | -1 H k
for two examples of non semi simple operator L. We begin with the 0 2 singularity. In both cases, the computations of the norm of the pseudo inverse of the homological operator are performed via lemma 2.8. Hence, in all this subsection we denote by Σ k (L) ⊂ R + the spectrum of the positive self adjoint operator

(A L | H k ) * A L | H k = A L * | H k A L | H k .

Lemma 2.22 (Norm of the pseudo inverse

A L | -1 H k for L = 0 2 )
For L = 0 2 and for every k ≥ 2, we have min

λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus

a k (L) := | A L | -1 H k | 2 ≤ 1.
Proof. We are in dimension 2, with Y = (x, y) and L = 0 1 0 0 . We intend to give a lower bound of the non zero eigenvalues of A L * A L in the subspace H k of homogeneous polynomials of degree k. We recall that

A L Φ(Y ) = DΦ(Y )LY -LΦ(Y ).
Thus, denoting Φ = (φ 1 , φ 2 ) in H k , we have (50)

A L Φ = (y ∂φ 1 ∂x -φ 2 ,
We check that

i) Φ = (0, x k ) gives λ = k + 1; ii) Φ = (y k , 0) gives λ = 0; iii) Φ = (x α y β , x α-1 y β+1 ) gives λ = (α -1)(β + 1) with α + β = k, α = 1, ...k; iv) Φ ((β + 1)x α y β , -αx α-1 y β+1 ) gives λ = α(β + 2) with α + β = k, α = 1, ...k.
These are the 2(k + 1) eigenvalues of the operator A * A in the subspace H k , corresponding to a family of orthogonal eigenvectors. It is clear that min

λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus,

a k := | A L | -1 H k | 2 ≤ 1. 2 Lemma 2.23 (Norm of the pseudo inverse A L | -1 H k for L = 0 2 . 0 • • • 0 q times ) For L = 0 2 . 0 • • • 0 q times
and for every k ≥ 2, we have min

λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus

a k (L) := | A L | -1 H k | 2 ≤ 1.
Proof. We are in dimension 2 + q, with Y = (x, y,

x 1 , • • • , x q ), Φ = (φ 1 , φ 2 , φ 1 , • • • , φ q ) and L =          0 1 0 0 0 . . . 0         
.

Here again, we intend to give a lower bound of the non zero eigenvalues of A L * A L in the subspace H k . We have

A L Φ = (y ∂φ 1 ∂x -φ 2 , y ∂φ 2 ∂x , y ∂ φ 1 ∂x , • • • , y ∂ φ q ∂x ), A L * Φ = (x ∂φ 1 ∂y , x ∂φ 2 ∂y -φ 1 , x ∂ φ 1 ∂y , • • • , x ∂ φ q ∂y ).
Hence, for δ = (δ 1 , • • • , δ q ) ∈ N q and 1 ≤ ℓ ≤ q, the spaces

H δ k,12 = H k ∩ Φ/Φ(Y ) = x δ 1 1 • • • x δq q (φ 1 (x, y), φ 2 (x, y), 0, • • • , 0), φ 1 , φ 2 polynomials , H α,β,δ k,ℓ = H k ∩ Φ/Φ(Y ) = x α y β x δ 1 1 • • • x δq q (0, 0, • • • , 0, φ ℓ , 0, • • • , 0), φ ℓ ∈ R are stable under A L * A L . Then, since H k = |δ|≤k H δ k,12 ⊕ 1≤ℓ≤q α+β+|δ|=k H α,β,δ k,ℓ , we have spec(A L * A L | H k ) = |δ|≤k spec(A L * A L | H δ k,12 ) ∪ 1≤ℓ≤q α+β+|δ|=k spec(A L * A L | H α,β,δ k,ℓ
).

On one hand, in H δ k,12 the spectral equation A L * A L Φ = λΦ reads (50). So the proof of Lemma 2.22 ensures that the spectrum of

A L * A L | H δ k,12
is composed of non-negative integers.

On the other hand, in H α,β,δ k,ℓ the spectral equation

A L * A L Φ = λΦ reads α(β + 1) φ ℓ = λ φ ℓ . Hence, spec(A L * A L | H α,β,δ k,ℓ ) = {α(β + 1)} and the spectrum of A L * A L H k is composed of non-negative integers. So, min λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus,

a k := | A L | -1 H k | 2 ≤ 1. 2 Lemma 2.24 (Norm of the pseudo inverse A L | -1 H k for L = 0 3 )
For L = 0 3 and for every k ≥ 2, we have min

λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus

a k (L) := | A L | -1 H k | 2 ≤ 1.
Proof. We are in dimension 3, with Y = (x, y, z), Φ = (φ 1 , φ 2 , φ 3 ) and

L =     0 1 0 0 0 1 0 0 0     .
Here again, we intend to give a lower bound of the non zero eigenvalues of A L * A L in H k . This is performed in several steps.

Step 1. Splitting of the operators. We define differential operators D and D * by

D = y ∂ ∂x + z ∂ ∂y , D * = x ∂ ∂y + y ∂ ∂z (51) 
then

A L Φ = DΦ -LΦ, A L * Ψ = D * Ψ -L * Ψ and A L * A L Φ =        D * (Dφ 1 -φ 2 ) D * (Dφ 2 -φ 3 ) -Dφ 1 + φ 2 D * Dφ 3 -Dφ 2 + φ 3       
.

Moreover, we check that ker A L is spanned by

       z α (xz -y 2 2 ) β 0 0        ,        yz α (xz -y 2 2 ) β z α+1 (xz -y 2 2 ) β 0        ,        xz α (xz -y 2 2 ) β yz α (xz -y 2 2 ) β z α+1 (xz -y 2 2 ) β       
.

In what follows we use the properties

Dx = y, Dy = z, Dz = 0, D(xz - y 2 2 ) = 0, D * x = 0, D * y = x, D * z = y, D * (xz - y 2 2 ) = 0.
Step 2. Splitting of H k . Using the basis of monomials, for α, β, γ non negative integers

φ α,β,γ = x α z β (xz - y 2 2 ) γ , and 
ψ α,β,γ = x α yz β (xz - y 2 2 ) γ . ( 52 
)
we split H k into the direct sum

H k = H ′ k ⊕ H ′′ k where H ′ k = Φ = (φ 1 , φ 2 , φ 3 )/φ 1 , φ 3 ∈ span α+β+2γ=k {φ α,β,γ }, φ 2 ∈ span α+β+2γ+1=k {ψ α,β,γ } , H ′′ k = Φ = (φ 1 , φ 2 , φ 3 )/φ 1 , φ 3 ∈ span α+β+2γ+1=k {ψ α,β,γ }, φ 2 ∈ span α+β+2γ=k {φ α,β,γ } .
Then, using the identities

Dφ α,β,γ = αψ α-1,β,γ , Dψ α,β,γ = (1 + 2α)φ α,β+1,γ -2αφ α-1,β,γ+1 D * φ α,β,γ = βψ α,β-1,γ , D * ψ α,β,γ = (1 + 2β)φ α+1,β,γ -2βφ α,β-1,γ+1 , D * Dφ α,β,γ = α(1 + 2β)φ α,β,γ -2αβφ α-1,β-1,γ+1 , (53) 
D * Dψ α,β,γ = (2α + 1)(β + 1)ψ α,β,γ -2αβψ α-1,β-1,γ+1 , (54) 
we observe that H ′ k and H ′′ k are both invariant under A L * A L . Hence, the spectrum of the operator A L * A L in H k is the union of its spectrum when restricted to H ′ k and to H ′′ k .

Step 3. Spectrum of

A L * A L in H ′ k . We also split H ′ k into subspaces in- variant under A L * A L .
Step 3.1. Splitting of H ′ k . First observe that for α + β + 2γ = k, the subspace E ′ α,β,γ of H ′ k gathering the polynomials Φ of the form

φ 1 = p a p φ α-p,β-p,γ+p , φ 2 = p b p ψ α-p-1,β-p,γ+p , φ 3 = p c p φ α-p-1,β-p+1,γ+p
where

for α ≤ β, 0 ≤ p ≤ α, b α = c α = 0, for β + 1 ≤ α, 0 ≤ p ≤ β + 1, a β+1 = b β+1 = 0 and c β+1 = 0 if α = β + 1.
is invariant under the operator A L * A L . Indeed, we have

Dφ 1 -φ 2 = {(α -p)a p -b p }ψ α-p-1,β-p,γ+p , Dφ 2 -φ 3 = {(2α -2p -1)b p -c p }φ α-p-1,β-p+1,γ+p -2(α -p -1)b p φ α-p-2,β-p,γ+p+1 , D * (Dφ 1 -φ 2 ) = (2β -2p + 1){(α -p)a p -b p }φ α-p,β-p,γ+p -2(β -p){(α -p)a p -b p }φ α-p-1,β-p-1,γ+p+1 , D * (Dφ 2 -φ 3 ) = (β -p + 1){(2α -2p -1)b p -c p }ψ α-p-1,β-p,γ+p -2(β -p)(α -p -1)b p ψ α-p-2,β-p-1,γ+p+1 , D * Dφ 3 = (α -p -1)(2β -2p + 3)c p φ α-p-1,β-p+1,γ+p -2(α -p -1)(β -p + 1)c p φ α-p-2,β-p,γ+p+1 . Moreover, Φ ′ k = (0, 0, φ k,0,0 ) is an eigenvector of A L * A L in H k belonging to the eigenvalue λ = k + 1.
Then, since Φ = (φ α,β,γ , 0, 0), Φ = (0, ψ α-1,β,γ , 0), Φ = (0, 0, φ α-1,β+1,γ ) and Φ = (0, 0, φ α-2,β,γ+1 ) belong to E ′ α,β,γ respectively for α ≥ 0 , α ≥ 1 , α ≥ 1 and α ≥ 2, we have the splitting of H ′ k into the non direct sum

H ′ k = CΦ ′ k + α+β+2γ=k E ′ α,β,γ .
Hence, the spectrum spec

(A L * A L | H ′ k ) of the operator A L * A L in H ′ k is
given by the union with possibly many overlaps

spec(A L * A L | H ′ k ) = {k + 1} ∪ α+β+2γ=k spec(A L * A L | E ′ α,β,γ
).

Step 3.2. Spectrum of

A L * A L in E ′ α,β,γ . The spectral equation A L * A L Φ = λΦ, for Φ ∈ E ′
α,β,γ can be written as a hierarchy of systems of equation (55) p where for p = 0 we have

(2β + 1)(αa 0 -b 0 ) = λa 0 , (β + 1){(2α -1)b 0 -c 0 } + b 0 -αa 0 = λb 0 , (α -1)(2β + 3)c 0 + c 0 -(2α -1)b 0 = λc 0 (55) 0
and for 1 ≤ p ≤ min{α, β + 1},

λa p = (2β -2p + 1){(α -p)a p -b p } -2(β -p + 1){(α -p + 1)a p-1 -b p-1 }, λb p = (β -p + 1){(2α -2p -1)b p -c p } -(α -p)a p + b p -2(β -p + 1)(α -p)b p-1 , λc p = (α -p -1)(2β -2p + 3)c p -(2α -2p -1)b p + c p -2(α -p)(β -p + 2)c p-1 + 2(α -p)b p-1 . (55) p 
In particular, when α ≤ β the last system of the hierarchy is obtained for p = α (b α = c α = 0) and it reads

λa α = -2(β -α + 1)(a α-1 -b α-1 ), 0 = 0, (55) α 
while for β ≤ α -1 the last system is obtained for p = β + 1 (a β+1 = b β+1 = 0, and c β+1 = 0 if α = β + 1) and it reads

λc β+1 = (α -β -1)c β+1 -2(α -β -1){c β -b β }, 0 = 0. (55) β+1 
The system with p = 0 gives the eigenvalues:

λ 1 = (α-1)(2β+1), a 0 = b 0 = c 0 = 1, λ 2 = α(2β+3), a 0 = (β+1)(2β+1), b 0 = -2α(β+1), c 0 = α(2α-1), λ 3 = (2α-1)(β+1), a 0 = -(2β + 1), b 0 = α -β -1, c 0 = 2α -1.
We check that for for α = 0 or 1, we recover known eigenvectors belonging to the 0 eigenvalue, all other eigenvalues are positive integers.

For proving that they indeed give eigenvalues of A L * A L it is needed to check that for 1 ≤ p < min{α, β + 1} the determinant ∆ p does not cancel for λ = λ 1 or λ 2 or λ 3 where

∆ p = (2β ′ + 1)α ′ -λ -(2β ′ + 1) 0 -α ′ (β ′ + 1)(2α ′ -1) + 1 -λ -(β ′ + 1) 0 -2α ′ + 1 (α ′ -1)(2β ′ + 3) + 1 -λ with α ′ = α -p, β ′ = β -p. It results that ∆ p = (λ ′ 1 -λ)(λ ′ 2 -λ)(λ ′ 3 -λ) with λ ′ 1 = (α ′ -1)(2β ′ + 1) = λ 1 -p(2α + 2β -2p -1), λ ′ 2 = α ′ (2β ′ + 3) = λ 2 -p(2α + 2β -2p + 3), λ ′ 3 = (2α ′ -1)(β ′ + 1) = λ 3 -p(2α + 2β -2p + 1).
It is then easy to see (using the fact that 1 ≤ p ≤ min{α -1, β}) that the only case when ∆ p (λ j ) = 0 is when p = 1 and λ ′ 2 = λ 1 :

λ ′ 2 -λ 1 = (1 -p)(2α + 2β -2p + 1). The case p = 1, λ = λ 1 = (α -1)(2β + 1) leads to -2(α -1)a 1 -(2β -1)b 1 = 2β(α -1), -(α -1)a 1 -(α + β -2)b 1 -βc 1 = 2β(α -1), -(2α -3)b 1 -2βc 1 = 2β(α -1)
where the compatibility condition is satisfied, hence giving a one parameter family of eigenvectors.

Finally, it remains to study the cases when the limiting equations cannot be solved, i.e. the two cases i) when α ≤ β, λ = 0 (i.e. α = 0, or 1), p = α; the case α = 0, p = 0, λ = 0 gives a known eigenvector, while α = p = 1, λ = 0 gives a 0 = b 0 = c 0 = 1 and the equation for a 1 gives 0.a 1 = -2(a 0b 0 ) = 0, hence the compatibility condition is satisfied.

ii

) When β ≤ α -2, λ = α -β -1, p = β + 1.
The only possibility is λ 1 = αβ -1 which happens if β = 0. Then p = 1, and we need to solve

c 1 = c 1 -2(c 0 -b 0 ) where a 0 = b 0 = c 0 = 1.
Hence the compatibility condition is satisfied. This ends the study in the first invariant subspace.

In conclusion, all the eigenvalues of A L * A L in E ′ α,β,γ and thus in H ′ k are non negative integers.

Step 4. Spectrum of A L * A L in H ′′ k . We also split H ′′ k into subspaces invariant by A L * A L . The following identities

Dφ 1 -φ 2 = {(2α -2p + 1)a p -b p }φ α-p,β-p+1,γ+p -2(α -p)a p φ α-p-1,β-p,γ+p+1 , Dφ 2 -φ 3 = {(α -p)b p -c p }ψ α-p-1,β-p+1,γ+p , D * (Dφ 1 -φ 2 ) = (β -p + 1){(2α -2p + 1)a p -b p }ψ α-p,β-p,γ+p -2(α -p)(β -p)a p ψ α-p-1,β-p-1,γ+p+1 , D * (Dφ 2 -φ 3 ) = (2β -2p + 3){(α -p)b p -c p }φ α-p,β-p+1,γ+p -2(β -p + 1){(α -p)b p -c p }φ α-p-1,β-p,γ+p+1 , D * Dφ 3 = (2α -2p -1)(β -p + 2)c p ψ α-p-1,β-p+1,γ+p -2(α -p -1)(β -p + 1)c p ψ α-p-2,β-p,γ+p+1 ensure that subspace E ′′ α,β,γ is invariant under A L * A L .
Moreover, the two dimensional subspace

P ′′ k = span{Φ ′′ k , Ψ ′′ k } where Φ ′′ k = (0, φ k,0,0 , 0) and Ψ ′′ k = (0, 0, ψ k-1,0,0 ) is stable by A L * A L since A L * A L Φ ′′ k = (k + 1)Φ ′′ k -kΨ ′′ k , and 
A L * A L Ψ ′′ k = -Φ ′′ k + 2kΨ ′′ k .
Then, since Φ = (ψ α,β,γ , 0, 0), Φ = (0, φ α,β+1,γ , 0), Φ = (0, φ α-1,β,γ+1 , 0), Φ = (0, 0, ψ α-1,β+1,γ ) and Φ = (0, 0, ψ α-2,β,γ+1 ) belong to E ′′ α,β,γ respectively for α ≥ 0 , α ≥ 0, α ≥ 1 , α ≥ 1 and α ≥ 2, we have the splitting of H ′′ k into the non direct sum

H ′′ k = P ′′ k + α+β+2γ=k E ′′ α,β,γ with P ′′ k = span{Φ ′′ k , Ψ ′′ k }.
Hence, the spectrum spec(A L * A L | H ′′ k ) of the operator A L * A L in H ′′ k is given by the union with possibly many overlaps

spec(A L * A L | H ′′ k ) = spec(A L * A L | P ′′ k ) ∪ α+β+2γ=k spec(A L * A L | E ′′ α,β,γ
).

Step 4.2. Spectrum of A L * A L in P ′′ k . In the basis

{Φ ′′ k , Ψ ′′ k } the matrix of A L * A L | P ′′ k reads    k + 1 -k -1 2k    .
Hence, the spectrum of A L * A L in P ′′ k is given by 

spec(A L * A L | P ′′ k ) = {2k + 1, k}.
λa p = (β -p + 1){(2α -2p + 1)a p -b p } -2(α -p + 1)(β -p + 1)a p-1 , λb p = (2β -2p + 3){(α -p)b p -c p } -(2α -2p + 1)a p + b p + -2(β -p + 2){(α -p + 1)b p-1 -c p-1 } + 2(α -p + 1)a p-1 , λc p = (2α -2p -1)(β -p + 2)c p -(α -p)b p + c p + -2(α -p)(β -p + 2)c p-1 .
(56) p In particular, when α ≤ β the last system of the hierarchy is reached for p = α (c α = 0) and it reads

λa α = (β -α + 1)(a α -b α ) -2(β -α + 1)a α-1 , λb α = -a α + b α -2(β -α + 2)(b α-1 -c α-1 ) + 2a α-1 , 0 = 0.
This last system enables to compute a α , b α if λ = 0 and λ = βα + 2.

When β ≤ α -1, the last system of the hierarchy is reached for p = β + 1 (a β+1 = 0 and c β+1 = 0 if β = α -1) and it reads 0 = 0,

λb β+1 = (α -β)b β+1 -c β+1 + 2{(α -β)(a β -b β ) + c β }, λc β+1 = (α -β -1){2c β+1 -b β+1 -2c β }.
This last system enables to compute b α , c α if λ = 1, when β = α -1 and if λ = αβ -1 and λ = 2α -2β -1 when β ≤ α -2.

The system for p = 0 gives the eigenvalues λ 1 , λ 2 , λ 3 where

λ 1 = α(2β + 3) a 0 = β + 1, b 0 = β -α + 1, c 0 = -α, λ 2 = (β + 1)(2α -1) a 0 = 1, b 0 = 2, c 0 = 1, λ 3 = (β+2)(2α+1) a 0 =(β+1)(2β+3), b 0 =-(2α+1)(2β+3), c 0 =α(2α+1).
Notice that λ 1 = 0 for α = 0, which corresponds to a already known eigenvector in the kernel of A L . The coefficients a p , b p , c p can be computed by induction provided that for λ = λ 1 or λ 2 or λ 3 the determinant

∆ p (λ) = (λ ′ 1 -λ)(λ ′ 2 -λ)(λ ′ 3 -λ)
does not cancel, where

λ ′ 1 = λ 1 -p(2α + 2β -2p + 3), λ ′ 2 = λ 2 -p(2α + 2β -2p + 1), λ ′ 3 = λ 3 -p(2α + 2β -2p + 5).
Using the fact that 1 ≤ p ≤ min{α, β + 1}, we can see that the only problem comes when λ ′ 3 = λ 2 :

λ ′ 3 -λ 2 = (1 -p)(2α + 2β + 3 -2p)
which occurs when p = 1. This case p = 1, λ = (β + 1)(2α -1) gives the system

0 = -(2α -1)a 1 -βb 1 -2αβa 0 , 0 = -(2α -1)a 1 + (1 -α -β)b 1 -(2β + 1)c 1 -2(β + 1)(αb 0 -c 0 ) + 2αa 0 , 0 = (1 -α)b 1 -(2β + 1)c 1 -2(α -1)(β + 1)c 0
where the compatibility condition is satisfied with the values we found for a 0 , b 0 , c 0 (a 0b 0 + c 0 = 0).

Finally, it then remains to study the last equation of the hierarchy: i) when α ≤ β, p = α, λ = 0 (i.e. α = p = 0 leading to the know eigenvector in the kernel) or λ = βα + 2, i.e. λ = λ 2 , α = 1 = p where the compatibility condition is satisfied due to a 0b 0 + c 0 = 0.

ii) When β ≤ α -1, p = β + 1. Then for β = α -1, λ 2 = 1 (the bad case) for α = 1 and this is again the case seen above. For β ≤ α -2, the bad cases are when λ j = αβ -1 or 2α -2β -1, i.e. λ 2 = 2α -2β -1 for β = 0. We are again in the case p = 1 (notice that a 1 = 0) :

0 = (1 -α)b 1 -c 1 -2(αb 0 -c 0 ) + 2αa 0 , 0 = (1 -α)b 1 -c 1 -2(α -1)c 0
which admits solutions since a 0b 0 + c 0 = 0.

In conclusion, all the eigenvalues of A L * A L in E ′′ α,β,γ and thus in H ′′ k are non negative integers. Gathering the results of step 3 and 4 we finally conclude that for every k ≥ 2 all non zero eigenvalues of A L * A L in H k are positive integers. Hence, for every k ≥ 2,

a k := | A L | -1 H k | 2 ≤ 1.
2 Remark 2.25 For L = 0 4 , the computation of eigenvalues of A L * A L is more complicated and we could not find a lower estimate as in the 0 3 case. In particular, the kernel of this operator, which is also the kernel of A L may be obtained as in the work [START_REF] Iooss | A codimension two bifurcation for reversible vector fields[END_REF], where it is observed for example that the polynomials invariant under D (same notation as for 0 3 ) are generated by 4 non independent polynomials of degree 1,2,3,4 with a non trivial relation between them. The same holds with D * . Moreover there are no common invariant polynomial under D and D * , contrary to the case 0 3 . This does not allow to find a family of monomials giving a basis leading to a simple (triangular) matrix for the operator A L * A L in suitables subspaces (it seems necessary to obtain a not too complicated D * D operator applied to a suitable basis, for such a computation, as in the 0 3 case).

are stable under A

L * A L . Then, since H k = |δ|≤k H δ k,123 ⊕ 1≤ℓ≤q |δ|≤k H δ k,ℓ , we have spec(A L * A L | H k ) = |δ|≤k spec(A L * A L | H δ k,123 ) ∪ 1≤ℓ≤q |δ|≤k spec(A L * A L | H δ k,ℓ
).

On one hand, in H δ k,123 the spectral equation A L * A L Φ = λΦ reads A * 0 3 A 0 3 φ = λ φ. So the proof of Lemma 2.24 ensures that the spectrum of

A L * A L | H δ k,123
is composed of non-negative integers.

On the other hand, in H δ k,ℓ the spectral equation

A L * A L Φ = λΦ reads D * D φ ℓ = λ φ ℓ . Let us decompose H δ k,ℓ H δ k,ℓ = H δ ′ k,ℓ ⊕ H δ ′′ k,ℓ with H δ ′ k,ℓ = Φ ∈ H δ k,ℓ / φ ℓ ∈ span α+β+2γ=k-|δ| {φ α,β,γ } , H δ ′′ k,ℓ = Φ ∈ H δ k,ℓ / φ ℓ ∈ span α+β+2γ+1=k-|δ| {ψ α,β,γ }
where φ α,β,γ , ψ α,β,γ are defined in (52). Formulas ( 53 ) in this basis is upper triangular with diagonal coefficient given by α(1 + 2β) (resp. by (2α + 1)(β + 1)). Thus

specA L * A L | H δ k,ℓ = α+β+2γ=k-|δ| {α(1 + 2β)} ∪ α+β+2γ+1=k-|δ| {(2α + 1)(β + 1)}.

Hence the spectrum of A

L * A L | H k is composed of non-negative integers. So, min λ∈Σ k (L)\{0}
{λ} ≥ 1 and thus,

a k := | A L | -1 H k | 2 ≤ 1. 2 
This section is devoted to the proof of Theorem 1.10. So, let V : R m ×R s → R m be an analytic family of vector fields in a neighborhood of 0 in

C m × C s du dt = V (u, µ) (57) 
admitting the origin as a fixed point, i.e. satisfying V (0, µ) = 0, [START_REF] Giorgilli | Estimates for normal forms of differential equation near an equilibrium point[END_REF] and [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems and bifurcations of vector fields[END_REF]. To deduce Theorem 1.10 from Theorem 1.4 which deals with the non perturbed case, we set U = (u, µ), V(U) = (V (u, µ), 0) and we observe that (57) is equivalent to

dU dt = V(U). (58) 
Let us denote by L = D U V(0) the linear operator corresponding to the (m + s) × (m + s) square matrix and where for a real number x, we denote by [x] its integer part. Here, the situation is particular, since V(U) = (V (U), 0). So, let us decompose H k as follows

L =    L 0 0 0 0    . Proposition 2.2 ensures that when a k (L) := | A L | -1 H k | 2 ≤ ak τ ,
H k = H k,m ⊕ H k,s where H k,m (resp. H k,s ) is the space of the homogeneous polynomial Q of degree k from R m × R s to R m × R s such that p s (Q) = 0 (resp. p m (Q) = 0)
where p s (resp. p m ) is the canonical projection from R m × R s onto R s (resp. onto R m ). Thus, since V n,ℓ ∈ H n+ℓ,m for every n, ℓ and since H k,m and H k,s are both stable under A L , we can choose Q p and N p of the form

Q p (Y) = (Q p (Y), 0) = p k=2 Φ k (Y), N p (Y) = (N p (Y), 0) = p k=2 N k (Y) where Φ k , N k lie in H k,m . With this choice Y = (Y, µ), with Y ∈ R m , µ ∈ R s and p s (R p (Y)) = 0.
Moreover with this choice, the homological equation ( 15) which is the center of this analysis reads

     A L Φ k = N k + F k in H k,m , 0 = 0 in H k,s .
So with this particular form of the homological equation, we only need to have

a k,m (L 0 ) := | A L | -1 H k,m | 2 ≤ ak τ
to get the exponential estimate (59) given by Proposition 2.2. Then, Theorem 1.10 follows directly from the following lemma which gives a k,m (L 0 ) when either L 0 is semi simple or

L 0 = 0 2 . 0. • • • .0 q times or L 0 = 0 3 . 0. • • • .0 q times . Lemma 3.1 ( 
a) Let L 0 be a semi simple matrix under real or complex Jordan normal form. Then,

a k,m (L 0 ) ≤ max 1≤j≤m,|α|≤k Λ j,α =0 |Λ j,α | -1 , where Λ j,α = λ L 0 , α -λ j where λ L 0 = {λ 1 , • • • , λ m } is the spectrum of L 0 . (b) For L 0 = 0 2 . 0. • • • .0 q times and L 0 = 0 3 . 0. • • • .0 q times , a k,m (L 0 ) ≤ 1.
Remark 3.2 When L 0 is semi-simple, under real or complex Jordan normal form and γ, K-homologically non-resonant we deduce from this lemma that

a k,m (L 0 ) ≤ γ -1
and when L 0 is semi-simple, under real or complex Jordan normal form and γ, τ -homologically diophantine we get that

a k,m (L 0 ) ≤ γ -1 max 1≤j≤m,|α|≤k Λ j,α =0 |α| τ = γ -1 k τ .
Proof of Lemma 3.1. (a): Let L 0 be a semi simple matrix under real or complex Jordan normal form.

Step 1. We first assume that L 0 is under complex Jordan normal form, i.e. that L 0 is diagonal. Then, L is also diagonal and we deduce from ( 19) that the spectrum of

A L | H k,m is given by spec(A L | H k,m ) = λ L 0 , α m + 0, α s -λ j , 1 ≤ j ≤ m, |α m | + |α s | = k, α m ∈ N m , α s ∈ N s , = λ L 0 , α m -λ j , 1 ≤ j ≤ m, |α m | ≤ k, α m ∈ N m .
Hence, as in the proof of Lemma 2.5, we deduce from the above formula that

a k,m (L 0 ) ≤ max 1≤j≤m,|α|≤k Λ j,α =0 |Λ j,α | -1 . (60) 
Step 2. When L 0 is semi-simple and under real Jordan normal form, but not diagonal, then it is conjugated to a complex diagonal matrix J 0 via a unitary map Q. So, L is conjugated to the complex (m + s) × (m + s) diagonal matrix J 0 ⊕ 0 by the unitary map Q ⊕ I s . Hence, Remark 2.4 and step 1 ensure that a k,m (L 0 ) still satisfies (60) in this case.

(b):For L 0 = 0 j . 0. 

) := | A L | -1 H k,m | 2 ≤ | A L | -1 H k | 2 = a k 0 j . 0. • • • .0 q+s times ≤ 1.

2

A Properties of the normalized euclidian norm

A.1 Comparison of the euclidian and the sup norm

We begin with two technical lemmas which are used several times Lemma A.1 Let k, m be two positive integers and {u j } 1≤j≤m be m complex numbers. Then

(u 1 + • • • + u m ) k k! = |α|=k u α 1 1 α 1 ! • • • u αm m α m ! .
Proof. We proceed by induction. For m = 1 this is trivial and for m = 2 this is true because of the binomial formula. Assume now that it is true for m ≥ 2, then

|α|=k u α 1 1 α 1 ! • • • u α m+1 m+1 α m+1 ! = k α m+1 =0 u α m+1 m+1 α m+1 ! α 1 +•••+αm=k-α m+1 u α 1 1 α 1 ! • • • u αm m α m ! , = k α m+1 =0 u α m+1 m+1 α m+1 ! (u 1 + • • • + u m ) k-α m+1 (k -α m+1 )! , = (u 1 + • • • + u m+1 ) k k! . 2 
Lemma A.2 Let k, m be two positive integers and

E 1 k,m = {β = (β 1 , • • • , β m ) ∈ N m , β j ≥ 1, |β| = k}, E 0 k,m = {α = (α 1 , • • • , α m ) ∈ N m , α j ≥ 0, |α| = k}.
Then, the cardinals d j k,m of E j k,m , j = 0, 1, are given by

d 1 k,m = C m-1 k-1 , d 0 k,m = C m-1 k+m-1 .
where C r n = n! r!(nr)! .

Proof. The cardinal of d 1 k,m is equal to the number of ways for placing (m-1) distinct separators among k -1 possible locations, the order of the separators being meaningless. For instance, the cardinal of d 1 k,3 , is equal to the number of ways for placing 2 distinct separators among k -1 possible locations, the order of the separators being meaningless.

k [ • | • | • α 1 | • | • α 2 | • | • | • | • ] α 3 
Hence, d 

Φ j,α Y α 1 1 Y α 1 • • • Y αm m Y αm 2 ≤ m j=1 |α|=k |Φ j,α | 2 α 1 ! • • • α m ! |α|=k Y 2α 1 1 α 1 ! Y 2α 1 • • • Y 2αm m α m ! Y 2αm
by the Cauchy Schwarz formula. Then using Lemma A.1 we get

|α|=k Y 2α 1 1 α 1 ! Y 2α 1 • • • Y 2αm m α m ! Y 2αm = 1 k! Y 2 1 Y 2 + • • • + Y 2 m Y 2 k = 1 k! .
Hence, 2 ) • • • (α (q) ! Φ (pq) α (q)

|Φ| 0,k = sup Y ∈C k \{0} Φ(Y ) Y k ≤ 1 k! m j=1 |α|=k |Φ j,α | 2 α 1 ! • • • α m ! = |Φ| 2 √ k! = |φ|
2 ),

= |R q | 2 Lq(R m ) p 1 ! • • • p q ! α (ℓ) ∈N m ,|α (ℓ) |=p ℓ (α (1) ! Φ (p 1 ) α (1)
2 ) • • • (α (q) ! Φ (pq) α (q)

2 ), Proof. Using lemma A.4 we get that

= |R q | 2 Lq(R m ) q ℓ=1 1 p ℓ ! α (ℓ) ∈N m ,|α (ℓ) |=p ℓ α (ℓ) ! Φ (p ℓ ) α (ℓ) 2 , = |R q | 2 Lq(R m ) |Φ p 1 | 2 2,p 1 • • • Φ pq
T Q Φ 2 2 = 1 (2π) m 2π 0 dθ 1 • • • 2π 0 dθ m +∞ 0 dr 1 • • • +∞ 0 dr m Φ(Q( √ r 1 e iθ 1 ,• • •, √ r m e iθm )) 2 e -r 1 • • • e -rm .
Then performing the change of coordinates

(r 1 , • • • , r m , θ 1 , • • • , θ m ) → (r ′ 1 , • • • , r ′ m , θ ′ 1 , • • • , θ ′ m ) with ( r ′ 1 e iθ ′ 1 , • • • , r ′ m e iθ ′ m ) = Q( √ r 1 e iθ 1 , • • • , √
r m e iθm ) the Jacobian of which is equal to 1 and observing that

r ′ 1 + • • • + r ′ m = Q( √ r 1 e iθ 1 , • • • , √ r m e iθm ) 2 = r 1 + • • • + r m

Definition 1 . 2

 12 Let us define λ = (λ 1 , • • • , λ m ) ∈ C m , K ∈ N, γ > 0 and τ > m -1.

Remark 1 . 5 Remark 1 . 8

 1518 Stirling's formula ensures that m is finite. Remark 1.6 Theorem 1.1 gives a polynomial upper bound of the remainder R p of the form sup Y ≤δ R p (Y ) ≤ C(p)δ p+1 whereas the above theorem ensures that with an optimal choice of p we have sup Y ≤δ R popt (Y ) ≤ Mδ 2 e -w δ b . The proof heavily relies on a precise control of the divergence of C(p) with p.Remark 1.7 A semi simple matrix under complex Jordan normal form is simply a diagonal matrix whereas a real semi simple matrix under real Jordan normal form is the direct sum of a diagonal matrix with 2 × 2 blocks of the form x -y y x with x, y ∈ R. The characterization of the normal form and the exponentially small estimates are invariant under unitary changes of coordinates. Indeed, if we perform in (2) a unitary change of coordinates Y = Q Y where Q is a unitary linear operator (Q

  a) if L 0 is semi-simple and γ, τ -homologically Diophantine, then for every δ > 0 such that p opt ≥ 2, the remainder R popt satisfies supY + µ ≤δ R popt (Y, µ) ≤ M τ δ 2 e -w

2 2. 2 . 3

 223 The non semi-simple case: proof of Theorem 1.4-(b) Theorem 1.4-(b) directly follows from proposition 2.2 and from the following lemma

  Let k > 0 and p ≥ 0 be two integers and let Φ k , N p lie respectively in H k and H p . Then DΦ k .N p lies in H n with n = k -1 + p and

9 ,

 9 27 (Cδ) p+1 (p!) 1+τ + for every δ > 0 and every p, 2 ≤ p ≤ K satisfying (46) we have

Lemma 2 . 19

 219 Choose ε > 0 and let us define f ε (p) := ε p+1 p! for p ∈ N. Moreover, for x ∈ R, denote by [x] its integer part.

2 5 2 m 3 2 2 2. 4

 22324 the remainder R p given by the Normal Form Theorem 1.1 for p = p opt satisfies sup Y ≤δ R popt (Y ) ≤ Mδ 2 exp -+ 2 ac + 3ρ and m = sup p∈N e 2 p! p p+ 1 2 e -p . Proof. Let δ > 0 be such that p opt = 1 e(Cδ) b satisfies K ≥ p opt ≥ 2. Observe that condition (46) reads δ b p ≤ 1 eC b and thus that p opt satisfies it. Then since, p opt + 1 ≥ 1 e(Cδ) b ≥ p opt ≥ 2 and 1 p opt ≤ 2 e(Cδ) b lemmas 2.17 and 2.19 with ε = (Cδ) b ensure that sup e -x ≤ 27 8 e -3 2 for any x ≥ 0. Computations of the norm of the pseudo inverse of the homological operator for non semi simple-operators.

Step 4 . 1 .

 41 Splitting of H ′′ k . For α + β + 2γ + 1 = k, let us denote E ′′ α,β,γ the subspace of H ′′ k gathering the polynomials Φ of the form φ 1 = p a p ψ α-p,β-p,γ+p , φ 2 = p b p φ α-p,β-p+1,γ+p , φ 3 = p c p ψ α-p-1,β-p+1,γ+p where for α ≤ β, 0 ≤ p ≤ α, c α = 0 for β ≤ α -1, 0 ≤ p ≤ β + 1, a β+1 = 0, and c β+1 = 0 if α = β + 1.

Step 4 . 3 .

 43 Spectrum ofA L * A L in E ′′ α,β,γ . The spectral equation A L * A L Φ = λΦ, for Φ ∈ E ′′ α,β,γ can be written as a hierarchy of systems of equation (56) p where for p = 0 we have (β + 1){(2α + 1)a 0b 0 } = λa 0 , (2β + 3)(αb 0c 0 ) + b 0 -(2α + 1)a 0 = λb 0 , (2α -1)(β + 2)c 0 + c 0αb 0 = λc 0 (56) 0 for 1 ≤ p ≤ min{α, β + 1}

  )-(54) ensures that H δ ′ k,ℓ and H δ ′′ k,ℓ are both stable under D * D. Moreover, ordering the basis φ α,β,γ (resp. ψ α,β,γ ) by lexicographical order for (α, β, γ), formulas (53)-(54) also ensures that the matrix of D * D| H δ ′ k,ℓ (resp. of D * D| H δ ′′ k,ℓ

  an optimal choice of the order p = p opt of the change of coordinates U = Y + Q popt (Y) leads to a normal form equation dY dt = LY + N popt (Y) + R popt (Y) where R p given by the Normal Form Theorem 1.1 for p = p opt satisfies sup Y ≤δ R popt (Y) ≤ M δ 2 e -

1 k, 3 = C 2 k- 1 2 Lemma A. 3 2 .

 321232 and more generally,d 1 k,m = C m-1 k-1 .Finally, the mapE 0 k,m → E 1 k+m,m : (α 1 , • • • , α m ) → (β 1 := α 1 + 1, • • • , β m := α m + 1) is one to one. Hence d 0 k,m = d 1 m+k = C m-1 m+k-1 . For every Φ ∈ H k , |Φ| Proof. For Φ ∈ H k with Φ = 1≤j≤m |α|=n Φ j,α Y α 1 1 • • • Y αm m c j where {c j } 1≤j≤m is the canonical basis of R m we have |Φ| |α|=k |Φ j,α | 2 α 1 !. • • • .α m

2 √ r 1 er α 1 +β 1 2 1 • • • r αm+βm 2 m e iθ 1 (α 1 -β 1 )√ r 1 edr m r α 1 1 • 2 . 2 Finally 1 + 2 A. 2 2

 211211111221222 We now prove a Parseval like formula :Lemma A.4 For every Φ ∈ H k , iθ 1 ,• • •, √ r m e iθm ) 2 e -r 1 • • • e -rm .Proof. We haveΦ( √ r 1 e iθ 1 , • • • , √ r m e iθm ) 2 = m j=1 |α|=k |β|=k Φ j,α Φ j,β • • • e iθm(αm-βm) . iθ 1 , • • • , √ r m e iθm ) 2 e -r 1 • • • e -rm , • • r αm m e -r 1 • • • e -rm , = m j=1 |α|=k |Φ j,α | 2 α 1 ! • • • α m ! = |Φ| 2 ,we ready to prove the opposite comparison of the two norms in H k .Lemma A.5 For every Φ ∈ H k , |Φ| • • • + r m ) k k! e -r 1 • • • e -rm , e -r 1 • • • e -rm ,Multiplicativity of the normalized Euclidian NormTo handle the computations, we need in this subsection more compact notations.For Y = (Y 1 , • • • , Y m ) ∈ C m and α = (α 1 , • • • , α m ) ∈ N m let us denote α! = α 1 ! • • • α m ! and Y α = Y α 1 1 • • • Y αm m . With these notations, for Φ ∈ H n with Φ(Y ) = |α|=n Φ α Y α where Φ α ∈ R m ,We start with two technical lemmas which are used several times.Lemma A.6 For α ∈ N m and n ∈ N let us denote q [Φ p 1 , • • • , Φ pq ] Lq(R m ) p 1 !•••pq! |γ|=n α (ℓ) ∈N m ,|α (ℓ) |=p ℓ α (1) +•••+α (q) =γ(α(1) ! Φ (p 1 ) α(1) 

2 Lemma A. 9 2 A. 3 Φ 2 = |Φ| 2 .

 292322 Let k > 0, p ≥ 0 be two integers and let Φ k , N p lie respectively in H k and H p . Then DΦ k .N p lies in H n with n = k -1 + p and|DΦ k .N p | 2,n ≤ k 2 + (m -1)k |Φ p | 2,k |N p | 2,p . Proof. Let us denote Φ k (Y ) = |α|=k Y α Φ α , N p (Y ) = |β|=p Y β N β where Φ α , N β ∈ C m , and N β = (N β,1 , • • • , N β,m ). Then, DΦ k .N p = m j=1 |α|=k |β|=p α j Y α-σ j +β N β,j Φ α = |γ|=n Y γ m j=1 |α|=k,|β|=p α-σ j +β=γ α j N β,j Φ α .where σ j = (0, • • • , 0, 1, 0, • • • , 0) with the coefficient 1 placed at the j-th position. Hence,|DΦ k .N p | 2 α-σ j +β=γ α j |N β,j | Φ α 2 + (m -1)k) |Φ k | 2Invariance of the euclidian norm under unitary linear change of coordinates Lemma A.10 Let Q be a unitary linear map in R m or C m and denoteT Q : H → H, Φ → Q -1 • Φ • Q.Then T Q is a unitary linear operator in H, i.e. for every Φ ∈ H, T Q

  , by convention, the sums corresponding to an empty index set are equal to 0. Observe that A L induces on each H n a linear endomorphism denoted by A L | Hn : H n → H n . Generally A L | Hn is not invertible. So when F n lies in the range ran(A L | Hn ) of A L | Hn , one can take N n = 0 and for Φ n any preimage of F n . When F n does not lie in ran(A L | Hn ), one has to choose N n in an appropriate supplementary space of ran(A L | Hn ) so that F n -N n belongs to ran(A L | Hn ).

  (Y ) and finally for R p (Y ). For the polynomials N n and Φ n the natural norm to finally compute an upper bound of sup

	the "sup-norm" defined for any Φ ∈ H n by	Y ≤δ	R p (Y ) is
	|Φ|	0,n	= sup

), for estimating it, we successively compute upper bounds for Φ n (Y ), N n (Y ),

2≤k≤p DΦ k (Y ), 1≤k≤p Φ k

  Proof. Lemma 2.16, we get that for every δ > 0, every p, 2 ≤ p ≤ K satisfying (35) and for every Y ∈ R m with Y ≤ δ,

	3 5	R p (Y ) ≤ ∆ 1 p + ∆ 2 p + ∆ 3 p
	where ∆ 1 , ∆ 2 , ∆ 3 are given by (40). The sums ∆ 1 p and ∆ 3 p can be optimally bounded with constraint (35) whereas for ∆ 2 p we use the stronger constraint
	(46).	
	Step 1. Upper bound for ∆ 1 p . Defining C = ac √ ρ 2 m Θ
		1 1+τ	, i.e
	δ(p opt ) 1+τ ≈ 1 e 1+τ C (for details see below lemmas 2.19 and 2.21).

  L = span{(y k , 0), (xy k-1 , y k )}. Now we look for the eigenvalues λ (λ ≥ 0) of A L * A L in the subspace H k .

		y	∂φ 2 ∂x	)	and		ker A They
	are given by	xy xy	∂ 2 φ 1 ∂x∂y ∂ 2 φ 2 ∂x∂y	+ x + x	∂φ 1 ∂x ∂φ 2 ∂x	-x -y	∂φ 2 ∂y ∂φ 1 ∂x	= λφ 1 , + φ 2 = λφ 2 .

Then for every positive integers q and {p ℓ } 1≤ℓ≤q and every γ ∈ N m with |γ| = p 1 + • • • + p q , we have

Proof. Using Lemma A.1 we get that for every u

Identifying the powers of u we get the desired result.

where

with the coefficient 1 placed at the j-th position.

Proof. Observe that for every u = (u

Hence, since u j

Identifying the powers of u we immediately get the desired result. 2

We are now ready to prove the multiplicativity of the normalized euclidian norm in H n .

Lemma A.8 Let q and {p ℓ } 1≤ℓ≤q be positive integers and let R q ∈ L q (R m ) be q-linear. Then for every

Proof. For 1 ≤ ℓ ≤ q, let us denote

Since R q is q-linear we get

Hence,

by the Cauchy-Schwarz formula. Then since Lemma A.6 ensures that