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Existence of quasipatterns solutions of the Swift-Hohenberg
equation

Boele Braaksma* , Gérard Ioossfand Laurent Stolovitch *

November 15, 2012

Abstract

We consider the steady Swift - Hohenberg partial differential equation. It is a one-
parameter family of PDE on the plane, modeling for example Rayleigh - Bénard con-
vection. For values of the parameter near its critical value, we look for small solutions,
quasiperiodic in all directions of the plane and which are invariant under rotations of
angle m/q, ¢ > 4. We solve an unusual small divisor problem, and prove the existence
of solutions for small parameter values.
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1 Introduction

In the present paper we study the existence of a special kind of stationary solutions (i.e.
independent of ), bifurcating from 0 (i.e. tending towards zero when the parameter A tends
towards 0), called quasipatterns of the 2-dimensional Swift-Hohenberg PDE

du 5 3
E—)\u 1+A)>u—u (1)

where v is the unknown real-valued function on some subset of Rt x R2, A= <§—; + g—;)
and A is a parameter. These are two-dimensional patterns that have no translatilon syrQn—
metry and are quasiperiodic in any spatial direction.

Mathematical existence of quasipatterns is one of the outstanding problems in pattern
formation theory. To our knowledge, hereafter is the first proof of existence of such quasipat-
terns of a PDE. Quasipatterns were discovered in nonlinear pattern-forming systems in the
Faraday wave experiment [BCM92, EF94], in which a layer of fluid is subjected to vertical
oscillations. Since their discovery, they have also been found in nonlinear optical systems,
shaken convection and in liquid crystals (see references in [AG12]) . In spite of the lack
of translation symmetry (in contrast to periodic patterns), the solutions are 7/g-rotation
invariant for some integer ¢ (most often observed, 2¢ is 8, 10 or 12).

In many of these experiments, the domain is large compared to the size of the pattern,
and the boundaries appear to have little effect. Furthermore, the pattern is usually formed
in two directions (x1 and z2), while the third direction (z) plays little role. Mathematical
models of the experiments are therefore often posed with two unbounded directions, and
the basic symmetry of the problem is E(2), the Euclidean group of rotations, translations
and reflections of the (x1,z2) plane.

The above model equation is the simplest pattern-forming PDE, and is extremely suc-
cessful for describing primary bifurcations (the first symmetry breaking) of hydrodynamical
instability problems such as the Rayleigh - Bénard convection. Its essential properties are
that

i) the system is invariant under the group E(2);

ii) the instability occurs for a certain critical value of the parameter (here A = 0) for
which critical modes are given by wave vectors sitting on a circle of non zero radius (here
the unit circle);

iii) the linear part is selfadjoint and contains the main derivatives.

In contrast to periodic patterns, quasipatterns do not fit into any spatially periodic
domain and have Fourier expansions with wavevectors that live on a quasilattice (defined
below). At the onset of pattern formation, the critical modes have zero growth rate but
there are other modes on the quasilattice that have growth rates arbitrarily close to zero,
and techniques that are used for periodic patterns cannot be applied. These small growth
rates appear as small divisors, as seen below, and correspond at criticality (A = 0) to the



Figure 1: Example 8-fold quasipattern after [IR10]. This is an approximate solution of the
steady Swift—Hohenberg equation (2) with A = 0.1, computed by using Newton iteration
to find an equilibrium solution truncated to wavenumbers satisfying |k| < v/5 and to the
quasilattice I'y7 obtained with N < 27.

fact that for the linearized operator at the origin (here —(1 + A)?), the 0 eigenvalue is
not isolated in the spectrum, appearing as part of the continuous spectrum.

If a formal computation in powers of v/ is performed in this case without regard to its
validity, this results in a possibly divergent power series in the parameter, and this approach
does not lead to the existence of quasipattern solutions, but instead to approximate solutions
up to an exponentially small error [IR10].

In this work, we prove the existence of quasipattern solutions of the steady
Swift-Hohenberg equations. Our result rests on the article [IR10] by G. Iooss and A.M.
Rucklidge which settle the mathematical foundation of the problem such as the formulation
of suitable functions spaces. We refer to the articles of Rucklidge [RR03, RS07] and Iooss-
Rucklidge[IR10] for physical motivation as well as for the bibliography.

1.1 Main result and sketch of the proof

The problem is to find a special kind of solutions defined on R? of the steady Swift-
Hohenberg equation
(1+A2U - \U+U?=0. (2)

The parameter A is supposed to be real and small in absolute value. The solutions we are
interested in should tend towards zero as the parameter goes to zero.

We study equation (2) for A > 0. Namely, let Q = 2¢ be an even integer and let
k; = exp M, j = 1,...,2q be the 2q unit vectors of the plane, identified with roots
of unity. Let I'" be the set of linear combinations of vectors k; with nonnegative integer

coefficients. We look for the existence of a (nonzero) m/g-rotation invariant solution of the



form

U(X) _ Z u(k) eik.x

kel
which belongs to a “Sobolev” like space Hs, s > 0 :

U112 = D 1l + Ng)* < +oc.
kel

The natural number Ny denotes the minimal length of the linear combinations of the k;’s
needed to reach k.
We then show that such a solution exists indeed, for small positive parameters A:

Theorem 1. For any q > 4 and any s > q/2, there exists N\g > 0, such that the steady
Swift-Hohenberg equation for 0 < X\ < Ag, admits a quasipattern solution in Hs, invariant
under rotations of angle 7w/q. Moreover the asymptotic expansion of this solution is given
by the formal series given in [IR10].

One of the main difficulty is that the linearized operator at W = 0, has an unbounded
inverse. Indeed, it is easy to show that the eigenvalues of (1 + A)? in H, are (1 — |k[?)?
where k € I". These numbers accumulate in 0. It creates a small divisor problem, such
that if A > 0 nothing can be said a priori about (1 + A)2 — A\Id. We use the first terms
of the asymptotic expansion of the solution and change the unknown as U = U, + ¢*W
and \ = 62()\2 + )\462) for some well chosen U, and positive Ay. Let £, be the linear part
at W = 0 of the nonlinear equation so obtained. For € = 0, the operator Lo = (1 + A)?
is a positive selfadjoint operator in Hg. It is bounded from Hs14 into Hs, but it is not
Fredholm, since its range is not closed. Its spectrum is an essential spectrum filling the half
line [0,00). The set of eigenvalues is dense in the spectrum. The linear operator L. is the
sum of Ly and a bounded operator (multiplication by a small function O(e?)) selfadjoint in
Ho. If the range of L. were closed, a usual way to estimate the inverse of the selfadjoint
operator L, in Hy, would be to estimate the distance from 0 to its numerical range (see
[Kat95]) (containing the spectrum). Such estimate as

(LU U)o > c®||U|[

for a certain constant ¢ > 0, cannot be proved here. So we need to study the linear operator
in more details.

We show that there exists an orthogonal decomposition (depending on €) of the space
Hs = Eog @ E1 @ Ea, s > q/2, such that the solution of the equation LU = f in H, can
be computed and estimated from its Eo-component Us. The latter is solution of a linear
equation ££2)U2 = f The main part (with respect to powers of €) of that operator is
an operator A.. When restricted to rotation invariant elements, it has a block-diagonal
structure of fixed finite dimensional blocks. Then, it is possible to estimate all eigenvalues

of these selfadjoint blocks. These eigenvalues have the form
(|k[? = 1)% 4+ 362 + O(e?)

for k € I'. One of the main feature is that they do not accumulate at the origin, and
despite of the small divisor problem arising for ¢ = 0, we are able to give an upper bound



in Hy of the inverse of A¢ of order 1/X for nonzero A. Then we extend this estimate in H
for s > ¢/2. Finally, we use a variant of the implicit function theorem to conclude to the
existence of quasipatterns solutions.

Remark 2. If the coefficient (3) of €2 were negative, then the operator could have again
small divisors. Then the proof of the existence would have been much more involved. At
that point, solving the nonlinear problem in Us would have required the use of a version of
Nash-Moser theorem such as those developed by J. Bourgain, W. Craig, M. Berti and al.
(see for instance [Bou95, Cra00, BBP10, Ber07]). Their main feature is the use of the good
separation property of the “singular sites” of the main linear operator. Indeed, we can show
that the operator (14 A)? does have this property.

Remark 3. For A < 0 the solution U = 0 is isolated in an open ball of radius \/|\|, as it
is easily deduced from the following estimate

I+ A)2 = A7 < AT
which holds in Hs.

2 Analysis of the main part of the differential

2.1 Setting

In this section, we recall and improve some of the properties of the function spaces we use,
as defined in [IR10].

Let @ = 2q, ¢ > 4 being an integer. Let us define the unit wave vectors (identifying C
with R?)

. i1
k; ::em]T, ji=1,...,2q. (3)

We define the quasilattice I' C R? to be the set of points spanned by (nonnegative)

integer linear combinations of the k;’s :

2q
kmzzmjkja m = (ml,...,qu) ENQq. (4)
j=1
We have k; = —k;;,. Hence, we can write

q
E /
i=1

' :=mj — mji4 belongs to Z. Thus,

where, m J

q
K> = > mimly < ki, k; > .
ij=1

We then define, for any m € N*¢ and k € T,
im| = mj, Ny :=min{|m|:k=Xkp}.
J
We have



Lemma 4. [IR10/[Lemma 4.1] For any k € I, we have :

Ny < N+ Ny, N_yx = Ny (5)

[ ]
k| < Ni (6)

[ ]
card{k | Ny = N} < ¢1(¢)N9™! (7)

for some constant c1(q) depending only on q.

As in [IR10], we use function spaces defined as

o {W = > Wk IWE = (14 M) W < OO} | ®)
kel kel
which are Hilbert spaces with the scalar product
(WV)s =Y (1 + N whve, (9)
kel

Lemma 5. For s > q/2, for any U € Hs and any V € Hy, we have
UV ]o < eslUls[V]lo
for a certain constant cs > 0.

Proof. Using Cauchy-Schwarz inequality, we have

lovig < >

2
Z {(m)y/ (k—m)

kel Ilmel’
< > <Z o™ (1 +N3n>5> (Z v eom 2 +N3n/>s>
kel \merll m’el
< UIP (Z rv<km’>\2> R,
kel”

where Ry := Y (1 + NZ,)~*. This last sum converges if s > ¢/2. Indeed, according to
[IR10][(24)], card{k € ' | Nx = N} < ¢(q)N?! for some constant c(q). Hence ||[UV|2 <
IUIZIVIIGRs- u

Lemma 6. (Moser-Nirenberg type inequality) Let s,s' > q/2 and let U,V € HsNHg. Then,
1UV]ls < C(s, YU VI + U5 [V []s) (10)

for some positive constant C(s,s') that depends only on s and s'. For £ >0 and s > {+q/2,
H, is continuously embedded into C*

We postpone the proof to the appendix.



2.2 Formal computation

Let us look for formal solutions of the steady Swift-Hohenberg equation
AU — (1+ AU -U3 =0, (11)

We characterise the functions of interest by their Fourier coefficients on the quasilattice T’
generated by the 2¢ equally spaced unit vectors k; (see (4)):

U(x) = Z uMek X x = (11, 25) € R%
kel’

We seek a non trivial solution, bifurcating from 0, parameterized by €, and which is
invariant under rotations by 7 /q. As it is shown for example in [IR10], a formal computation
with identification of orders in € leads to

U(xy,z9) = euo(xl,xg)—l—e?’ul(xl,xg)+... A= Do+t +... (12)

and gives at order O(e)
0= (1+A)%u. (13)

We take as our basic solution a quasipattern that is invariant under rotations by m/q:

2q
ug = Z eikix, (14)
j=1

At order O(e3) we have
Aol — ug = (1 + A)Qul. (15)

In order to solve this equation for u;, we must impose a solvability condition, namely that
the coefficients of ¢, j = 1,...,2¢ on the left hand side of this equation must be zero.
Because of the invariance under rotations by /g, it is sufficient to cancel the coefficient of
e 1% For the computation of the coefficient, we need the following property

Property: If we have

ki +k +k, + ks =0 for j,l,r,s € {1,2¢}

then either k; +k; = 0, or kj + k., or kj + kg =0 (there are two pairs of opposite unit
vectors).

Proof. Since there are 4 unit vectors on the unit circle, we can assume without restriction,
that k; and k; make an angle 20 < 7/2. Then |k; + k;| = 2cos@ > /2. It results that
|k, + ks| = 2cos 0 with k, and kg symmetric with respect to the direction of the bissectrix
of (kj,k;), making the same angle as k; and k; with the bissectrix. So {k;,, ks} is the
symmetric with respect to 0 of {k;, k;}. I

This yields
A2 =3(2¢—1) (16)



which is strictly positive. Moreover

up = Z e, (17)
ke, Ny #1, Ny <3
3

= —1/64 Lk, = — ki +k #0
Q3k; /64, o1k, A2k, T kP2 Y +k; #0,
6
. = — NE B
Ok, +k;+k, (1 — |k] + kl + kr|2)2 J 75 75 r 7£ J
kj+kl #* O,kj+kr7é0,kr+k17é0.
We notice that for any k, aj < 0 in u;. At order O(€®) we have
Ao + Aoug — 3ugu1 = (1 + A)QUQ. (18)
iki-x

The solvability condition gives A4 equal to the coefficient of e
expression (17) of uy

in 3u%u1. From the

)\4 = Z (83

kj+k;+k=ki, Ny=3

where all coefficients «y are negative, it results that

A < 0. (19)

2.3 Formulation of the problem

Let us define the new unknown function W in rewriting (12) as:
U = U+¢€'Ww
U. = eug+ eup + uy (20)
Ae = Ex+ety
where ug, u1, uz, A2, \g, are as above. Given a particular (small) positive value of A, we
get €2 by the implicit function theorem, and since A > 0, we obtain a unique positive e.

All the corrections are in W. The aim is to show that the quasi-periodic function W exists
and is small as € tends towards 0. By construction we have

AU — (1 4+ 02U, — U3 =: =€ f.

where f, is quasi-periodic, of order O(1) with a finite expansion, and is function of €2. After
substituting (20) into the PDE (11), we obtain an equation of the form

F(e, W) =0,

with

Fle, W) =: LW + & f. + 3 UW? + EW3, (21)
where

Lo = (1+A2 -\ +302= £ +P, (22)

L = (1+A)%+a+ e, (23)

a = 3u(2) — X2, b= 06ugus — A4,
P. = 6ugug + 3(ug + 62u2)2.



Remark 7. The degree of truncation, that is the degree in € in the expansion of U, is
chosen so that the power of € in front of both W? and f. are greater than 2. This is crucial
for the very last step of the proof.

It is clear that the operator P. is an operator bounded in any H,, r > 0 uniformly
bounded in €, for € < €.

A nice property of the operator £, is that the averages ag and by of @ and b are strictly
> 0. Indeed, we have for any ¢

apg = 3, bo = —Xg > 0.

For ag this results from (16) and a simple examination of u3 the average of which is 2¢, and
for by we observe that the average of ugui is 0, due to the form of uy.

Assume that we could prove that £-! is O(e=2). Then, provided that we are in Hs, s >
q/2 which is a Banach algebra, we should get from (21)

W = 0(e) + O(e*||W|[)

The standard implicit function theorem then would allow to conclude and to get W = O(e).
In fact, it is not expected that the operator L. has a bounded inverse, due to the small
divisor problem mentioned in section 1.1. Notice in particular that it is shown in [IR10]
that there exists ¢ > 0 such that for any k € I'\{k;;j = 1,2, ...,2¢}
c
where [y + 1 is the order of the algebraic number w = 2 cos 7w/q. This estimate is similar to
the Siegel’s diophantine condition for linearization of vector fields [Arn80].

This lower bound shows that the inverse of £y on the orthogonal complement of its
kernel is an unbounded operator in H,, only bounded from Hy to Hs_4;,. In other words,
0 belongs to the continuous spectrum of £ and the main difficulty to be solved below is to
find a bound for the inverse £_-! for small values of e. Notice that L. is selfadjoint in H,
but not in H for s > 0. It is tempting to work on its small (real) eigenvalues to obtain
a bound of its inverse. However, we are in infinite dimensions, so the spectrum does not
contain only eigenvalues, and an option would be to truncate the space to functions with
finite Fourier expansions (with k such that Ny < N). Since our method consists in reducing
the study to an operator in a smaller space, it is preferable to use the eigenvalues later, on
the reduced operator.

K[> —1| > (24)

2.4 Splitting of the space and first reduction of the problem
Let us split the space Hy into three mutually othogonal (in any H) subspaces. We define

Ey = {W:ZW<k>eik'xeHS;||k|2—1|2252, and |k—kj|>61,,j6{1,2q}},
kel

B, = {W => Whek> e H ke 01} ,

kel

By = {W — Z Wmekx ¢ 1,35 € {1,..2¢} such that k € 027]} )
kel



Figure 2: Division of the Fourier spectrum into og, o1 and o.

where (see figure 2)
o1 = {kel; [k -1 < and [k —k;j| > 6 = V30,5 € {1,2¢}},
025 = {keT; [k—kj| <1}, o2 =UL 0.

In figure 2 the annulus centered at the unit circle has a thickness 2§ and the little discs
should have a radius 1 = V35 , such that the intersection of the shaded area with the shifted
one, centered at the point (2k;,0) is, for § small enough, reduced to the disc centered at k;.
In the sequel, we choose § = Ce'/? with C' large enough and

51 = 61/4\/%

hence 20 + 62 < 62 is verified for €'/2 < 1/C and the intersection o1 N {o] 4 2k} is empty
(hint: solve 67 = (14 6)? — 1 for intersecting the circle centered in 0, of radius 1+ & with
the line of abscissa 1 parallel to y axis).

This leads to (see figure 3)

0'1ﬂ{0'1—|—kj+kl, 7, 0l=1,.2q, k]—{—kl#O}:@

The subspaces Ej are closed as intersections of closed subspaces (kernel of certain coef-
ficients, still continuous functionnals here) and we have the orthogonal decomposition

1L 1L

Hs = Eo & By @ Es.
The orthogonal projections associated with this decomposition are denoted by Py, P1, P». We
also notice that the multiplication operator by a function having a finite Fourier expansion
with wave vectors in I' is a bounded linear operator in H, for any r > 0. Indeed a finite
Fourier expansion belongs to H, for any s, and Lemmas 5 and 6 apply.
2.5 Reduction to the subspace E;
The aim here is to solve with respect to U € H, the equation

LU = f, (25)

where L. is defined in (22) and where f € H, is given.

10
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Figure 3: Empty intersections of o1 with o shifted by k; +k;
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Remark 8. We denote by Lo the operator Loo = Low = (1 + A)% = £¢. For being more
explicit in formulae, we denote by P;LoP; the restriction of Lo to the invariant subspace
E;,j=0,1,2.

We decompose this equation on the subspaces FEy, E1, Fo, which gives, after noticing
that the subspaces Ey, F1, Fy are invariant under Lo, and that Lo|g,, Lo|z, are bounded
operators, and P;LoPy = 0 for j € {1,2},

PoL Uy + Po{(e2a + et + €6Pe)(U1 +U2)} = fo (26)
PILUL + P{(Ea+e'b+ P) (U + o)} = fi (27)
P L Uy 4 Po{(2a+ €'b+ SP) (U + Uy = fo (28)

where f; = P;f,j =0,1,2.
We have the following

Lemma 9. Let fir S > 0 and choose s such that 0 < s < S. Then, there exists eg > 0, such
that choosing C' large enough in the definition of §, € < €, the equation LU = f in H
reduces to

LPU, = Q(e) f
where Uy = PU,
LP = A+ R,
AUy = Pz(ﬁo + 620,)U2
RUs = PofbUy — a(PyLoPy)  Py(ally)} 4+ O(€*)Us, (29)

Here O(e?) denotes a bounded linear operator in Hs which norm is bounded by ce?. The
components Uy := PoU and Uy := PLU are functions of Us and f and satisfy the following
inequalities :

[|Uolls

IN

C
ce’||Ualls + ~[1(Po + P1) fls

N

C
101ls < ce'l|Uzlls + ll(ePo + Pr)flls

where a = a — ag, for a certain ¢ > 0, only depending on s, and R, and Q(€) are bounded
linear operators in Hs, depending smoothly on €.

We need the following Lemma

Lemma 10. For ¢ small enough, we have
alU; € Ey, Pi(aUs) =0, P(bUs) =0, (30)
where a is the oscillating part of a :
a=a— ag.

Moreover, the Fourier spectra of Py(aUs) and Py(bUs) are at a distance of order 1 of the
unit circle.

12



By distance of order 1 of the circle, we mean a strictly positive distance as € tends to 0,
in the decomposition into subspaces E;.

Proof. We need to prove that i) for k € oy, then k + ky, ¢ 01 U og for ky, # 0, m| = 2,
and ii) for k € o9, then k + ky, ¢ 01 with [m| =2 or 4.

For showing this, let us first observe that the intersections of the unit circle with all
circles of radius 1, centered at kp,, with k,, # 0, |m| = 2, are exactly the 2¢ points k,,
r =1,...,2q. Let us define the region ay (shaded region in figure 2 (a)) defined by

a0 = 01 Uje{1,..2q} 02,5

which is the union of the annulus oy and the discs Uje(1,.. 24102,j. Now consider the inter-
section of ap with the union of shifted analogue annuli ay,

Ok = 1K+ km; k € ag, ki # 0, [m| = 2}

centered at all ky,,such that |m| = 2 (see figure 3). It is clear that for any given ¢, and €
small enough, the little discs of radius d; are such that the intersection ag N {Ujm|—20k,, } is
exactly the union of the little closed discs centered at each k;. It results that for U € E1 @ Ey,
the product aU for which the corresponding wave vectors belong to some ay,_,, has a zero
projection on FE7. This proves that

Py(aUy) =0, Pi(aUs) =0,
which implies
P1 ((IUQ) =0.
It is also clear that
ap N{k +km;k € 01, km # 0, m| =2} = g2,
which moreover implies that
Py(alUy) =0,

and (30) is proved for the part concerning a. Now observe that we have |k; +km| # 1 except
when k; + kn, = k, for some r € (1,2¢). Since we only consider the finite number of cases
lm| = 2 or 4, it is clear that in choosing € small enough (i.e. d; small enough), then for
k € 09, k + kyy ¢ 01. It results in particular that

Py(bU) = 0.

The last assertion of Lemma 10 results from the fact that |k + k| # 1 for the Fourier
spectrum of terms € Py(aUsy) and Py(bUs), with a distance to the unit circle equivalent to
llk; + km| — 1| when it is not zero. I

Proof. of Lemma 9 : We know by construction that

1

-1
[(PoLoPo) " ||s < ik

13



Hence, we have
(PoLcPo) ™" = [1+ (PoLoPo)  (€a+ €'b+ e"Po)] " (PoLoFy) ', (31)

and the estimate
||€2a 4 €*b + SP||s < ¢(s)e?

leads for e small enough (s < S) to

(PoLcPy)™' = [[— (PoLoPy) H(*a+ e*b+ OP) +
—|—{(P0E0P0)71(62a + €4b + 66736)}2 + 0(63)](P0,C0P0)71

with a convergent Neumann power series in the bracket, as soon as C(Cfg)g < 1, which holds
for € small enough (s < S). The first consequence is

||(POEePO)_1||s < m

Notice that
Up = —(PyLcPy) ' Po{(®a + €*b + P (Uy + Uz)} + (PoLePo) "L fo (32)

The last property of Lemma 10 and (31) imply that in (32) we have, for € € (0,¢p) and for
any s
(PoLoPo) ™" Po(all)|ls
1(PoLoPo) ™' Po(bUs)|ls

d(s)[|Uz]ls,
d(s)[|Uz]ls,

[(PoLoPo) a(PoLoPy) ' Py(allz)||s < d(s)||Us|ls.

<
<

It results that

—(Poﬁepo)ilpo{(e%l + €4b + 66P€)U2} = —62(P0,C0P0)71P0(CLU2) +
+O(']|Ua]|s),
hence
Uo = Qo1(€)U1 + Qo2(e)Usz + (PoLcPo) ™ fo (33)
with

Qo,j(€) =: —(PyLPy) ' Py(e®a + b+ €6P5)Pj j=12,
and for s < S, € € (0,€9(5)) the following estimates hold:

Qo.2()Uz = —€*(PoLoPy) ' Py(alla) + €' Qfy 5(€) U2,

1Qoa(OTls < %ﬂé)euwsywuws, (34)
1Q5a(@Ualle < er()|Ualle,
IRLP) ol < i,

€
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It results from Lemma 10 that equation (27) leads to
Py(Lo + €ag + €*b+ SPIUL + Pi{(?a + €*b+ SPHUY} + PiebPUS = f (35)

and since ag = 3 > 0 and the operator P;LyP; is positive, we can invert the operator
Pi(Lo + €2ap) Py with the estimate
1

I{PL(Lo + €a0) P} | < 5.

3€
Now replacing Uy by its expression (33) into equation (35),
on Uj of the form

we introduce an operator acting

P1(e4b + EGPe)Pl + P1(e2a +etb + 66736)@0,1(6)

which is bounded by O(e?), perturbing Py (Lg + €2ag)P; the inverse of which is bounded by
1/3€2. Tt results that, for € small enough, the operator acting on U; has a bounded inverse,
with
2 4 6 -1 1
[HPLe + (Fa+ €0+ € Pe)Qoa ()P} s < -

Moreover by Lemma 10 we have Pj[a(PyLoPy) ™ Py(alz)] = 0, hence it results that there
are bounded linear operators

Béo) : E2 — Eo, B(l) . EQ — El,

€

such that
U, = BO(U, + %Q(I’O)(G)fo + 6%Q(l’l)(e)fh (36)
Uy = @BOO0 +- Q000+ 200D (), (37)
with the estimates
IBD(ls < ea(s),j = 0,1,
10U ()lls < eals), i, =0,1,

uniform in € € (0, ¢y) and in W bounded in Hs. Moreover, as € — 0
BO®) = By +0(e),
BOU, ~ —(PyLoPy) ' Py(als).
Equation (28) now reads
PyLUs + Po{(’a+ ¢*b+ €*P)Uo} + Pof(e'b + "P) UL} = fo
and replacing Uy and U; by their expressions (37), (36) in function of Us leads to

Py LUy 4+ Po{(é2a + €'b + ¥P)e2BO) (e)Uy +
+Po{(e*b + 5P e BY (€) Uy}

= fo— P <(€2a +€elb + 667)5)[% Q0 (e) fo + %Q(O’l)(e)flo +
-1 (4 PIL QA + 5OV,

15



this gives (see the definition of A, in Lemma 9)
AUs + €' RUs = Q(e) f

with the announced properties for bounded operators R, and Q(e) in Hs. Lemma 9 is
proved. 1

2.6 Structure of the reduced operator A,

2.6.1 General structure - Invariant subspaces

We study in this section the structure of the operator A, defined by (29). We first observe

that we deal with functions U which are invariant under the rotation R= of the plane. So,
q

let us define a new subspace of H for such functions:

ESY = {U € Ex;U(R=x) = U(x)}.

This implies immediately that
v =y, (38)

(5)

and for any U € E;”’ we have the following decomposition

U= Y Uy

j=1,...,2q

where ‘
Upj(x) = ) UM ™™ = Uy 1 (Ra_p-x). (39)
q

keoa ;

It results that any U € Eés) may be written as

Ux)= Y Usi(Ro-psx).
j=1,....2q /

Let us notice that in the little disc 021 we have
o012k =k + K, |K| <8 =€/4V3C,

and let decompose the discs o9, into 2¢ equal sectors k; + X,,,m = 1, ...,2¢ such that

(40)

m— 1) T —1
) ,u+1)},
q 2q q 2q

Y = {k' e K| <dy,argk’ € [(7 - —

For any k’ € ¥;, we define the set of 2¢ spectral points ag,) by

Jl(f/) = {k =kj+k €0q,; j= 1,...,2q}.

16



The subspace of H, associated with ag,) is denoted by ESL,, so that any U € Eés) may be
written as

, i(kj-f—RM k/)-x
Ux) = Y. do Utk a
j=1,....2¢k1+k’€o2 1

= 2 2 2 U

l:1772q k/ezl ]:1,,2(]

ki+R_H. K
( 1+ (1 qj)ﬂ' )ez(kJ—I—k/)x
)

hence

2q

U= 33U, o e,

=1 k'€,

U(l,k/)(x) — Z ei(ijrk’)-x: Z U(kj+k/)ei(kj+k/)'x
7=1,...,2q j=1,...,.2q

ki+R1_j)= k)
q

(1)

and any U € Eés) is completely determined by the set of 2q— dimensional ULK) E5 s

k/ € ¥4, identified with the set of components

L (k1+R - j)n K)
(Uk+K) — 7 = =1, 2q)

Indeed we have

(LK) _ (I4+1,R= k') .
UbK)(x) =U © ' (Rzx),
hence
’ 1L,R_p=k/
UK (x) = g Ra-nz )(R(H)%x), k' ex,
LR_1. K Ki+R . k) i(kij+R_1 - k')x
My oy e e s
Jj=1,....2q
where (ki+R K')
U(lyk/)(x) _ U 1 (1—qj)7r ei(kfrk/).x’ k’eEl, (41)

j=1,...2q

(lvR(l—l)ﬂ' k/)
q

and we observe that the coordinates of U ,k/ € 31, correspond to those shifted

of ULK) | Moreover we have

29
Ux)=)_ Y Ulk )(R(l,l)%x). (42)
I=1 K'e%
From now on, we denote by Fy s the previously defined 2q-dimensional subspace Eéllz,.
Looking at the form of the operator A, we see that the wave vector k of U is shifted by
Km, |m| = 2 at order €2, and |m| = 4 at order ¢*. Now, we observe that for a fixed finite
|m|, if the combination

km — (k1 — kj)

17



is not 0, then it has a minimal length of order 1 as € tends to 0. It results that for
k=k; + k' e 02,1, and 1 = kj +1 € 02, with

km—(k—=1)#0
then, for ¢ small enough
km —(k—=1)=0().

It results that the only possibility for going from 1 € o9 ; to 021 is to add ky = ki +kj1 g =
ki — k;. It results that the system

km+1=k 1=k;+1, k=k; +¥

has the only solution
I =K. (43)

It should be clear that ky, comes from terms with many possible combinations, not only
trivial ones as for ¢ = 4. For example for ¢ = 6, the terms occuring in the coefficients
giving ky, are even more frequent at order €* because of the existing special combinations
k; + Rw/?}kj + R27r/3kj = 0. However, in all cases we can write, for k = k; + k' € 02,1

o

(ALY =3k QU (44)

Remark 11. The argument € in yj(k, €) only refers to the perturbation of PoLoPs in A,
(see (29)), and not on the fact that Py also depends on € via the radii of the little discs
composing the set oo which are O(e'/*).

Remark 12. Due to the form of orders € and €* in A, and ££2), and because of (43), we
notice that the dependency in k of the coefficients yj(k, €) only occurs at orders ® and €*.

Indeed, the dependency in k comes from operators Ly at order 0 and (POEOPO)*1 in the
term Py{a(PyLoPy) ' Py(al)} at order e*.

The property that A U is invariant under the rotation Rz and the identity
q
R—_ﬂ'E_'_ kj -k = R—_ﬂ'(i;+kj+1 — k2)
q q

lead to

(k) _ (k+k'+1*k2) k — P
(AU) Z% R_wke J , k=Rzk € 022.
Choosing 099 > k = k' + ko, |k'| < 61, we then have

2q
(A U)K TR) = 75 (R=K + X, e UK +kit1) (45)
j=1

18



In the same way, after identifying j + 2¢ with j, we obtain for r =1, ..., 2¢

2q
AEHD =% "y, <Rw<1r)k'+k1,e) g k),
i=1 !

2q
= D Vs <Rw<1—r>k' + k1,e> UK +k),
=1 ‘

The important result is that, for a fixed k = ki +k/,k’ € X1, the subspace Es y is invariant
under the operator A, then denoted Agk ). Hence the 2q x 2q matrices of Agk ) are uncoupled
for different k' € 3. We notice that if 7, were independent of k, the lines of the matrix of

AEk') would be deduced each from the previous one by a simple right shift.

The next useful property of A, is its self-adjointness in Fo with the Hilbert structure
of Ho. This property is immediate from the definition (29) with the scalar product of
the space H; for s = 0. It should be noticed that the full linear operator LSIZV acting in
Es is not selfadjoint in general. Now, isolating the coordinates UK Tk j =1, ... 2¢ for
k' € ¥, we still have, for any fixed k/, a 2¢q x 2¢ self-adjoint matrix Agk,) due to the previous
self-adjointness of the operator A, in Hy. It results that we have

Vit1—r (Rm—r) k' + k1,€> = Vr41-j (Rm—j)k' + k17€> : (46)
q q

We sum up these results in the following
Lemma 13. The subspace Eés) of Hs consisting of functions invariant under rotations by
w/q may be decomposed into the following Hilbert sum

il
Eés): @ Eoy
k/'eXy

where we identify the wave vector k with Rzk i.e., ki + k' € 02,1 with Kj + R k' € 02,j
q q

(see (42)).
The 2q— dimensional subspace Eys is invariant under the operator Ac. Defining the
coefficients v;(k, €) by

2q
(AD)EFRD) =3 " (k, ) URTR), k€ 04
j=1

the 2q x 2q matrix of the restriction AEk') of Ac to Eqys is symmetric and satisfies

Vjr1—r (Rw(l—m k' + ki, 6) = Vr41—j (Rm-j)k' + ki, e>
a q

for any k' € ¥1.
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Let us define A((]k/) which is a diagonal matriz with
71k, 0) = ([kf* = 1)*, 72(k, 0) = 0, ....7, (K, 0) = 0.
For k =k’ +k; € 0 j, we define
B;(K) = (K +k;|*-1)% j=1,..,2¢ (47)

Hence for j =1,...,2q

2 2
M (Rw(lj) k' +ki, 0> = ('Rw(lj) kK +ki| — 1) = f;(k')
q q

= (2 K +[KP)?,

and A((]k/) reads

By (k') 0 0 0 0
0 By(k) 0 0 0
(k’)_ . . . . . . . .
A" = 0 0o . . BK) . : 0
0 0 .. 0 . Bya) 0

0 o .. 0 . 0 Bog(K)

Then, according to the definition of Aﬁk/), we can write
AR = AU 4 2p

According to (46), in the case when the coefficients v, (k, €) are independent of k, (which
corresponds here to the order €2), this leads to a first line for the 2¢ x 2¢ matrix, of the
form

717727---’anfYq—f—lafYq?’Yq—la--73772 (48)

and next lines are deduced by a right shift, making a symmetric matrix. For example in
the case ¢ = 4, we obtain for A; a matrix of the form (easily generalizable for any q)

Y1 Y2 Y3 Y4 Vs Y4 V3 V2
Y2 Y1 Y2 V3 Va4 Vs V4 V3
Y3 Y2 Y1 Y2 V3 Y4 V5 V4
Ya Y3 Y2 Y1 VY2 V3 Y4 Vs ) (49)
Y5 Y4 V3 Y2 Y1 VY2 V3 V4
Ya V5 Y4 V3 T2 Y1 V2 V3
Y3 Y4 V5 Y4 V3 VY2 Y1 V2
Y2 Y3 Y4 V5 Va4 V3 Y2 M1

where 7, ...7,41 are independent of K.
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2.6.2 Computation of coefficients v, in Ay
Let us compute the operator

EY) 5 U éPyal),
a = 3ud—3(2¢-1).

where ug is given by (14). We have for U € Eés) (see(39))

Po1(ujl) = 2qUs,1 (%) + U gra ()™ 1+ 372Uy j(x)e a7k,
J=2,..,4,9+2,....2¢

where we denote by P»; the orthogonal projection corresponding to the part oo of the
spectrum. Since we have

U2,j(X)6i(k1—kj)~x: Z 7 gi(ktki—k;)x _ Z [ Otk —ka) ikex

kecog ; k€oa1
we obtain
Pyy(al) = Y 3exJulo 2l 3" gyl 4 - (50)
k€0'2,1 ]:277q7q+2772q

As expected, it appears that the linear operator
2 (S)
U~ Pye“a)U, U € E, (51)

leaves invariant the subspaces Fy s and in this subspace it takes the form of a matrix with
4 identical blocks for the set of 2¢ coordinates UMX) | and coefficients 7, are independent
of k" and have the form (48) with:

Y1 =Vi4qg =3, Y2 =73=--74=6.

Hence, Agk/) is independent of k/ and we write Agk/) =A;.
For example, in the case ¢ = 4, we have the following corresponding matrix for

U — (Py(a)¥NU, U € By

=
—
I
w
NN NN DN
DN NN DN
N = NN = DN DN
NN N - DN DN DN
NN NN DN
DN NN - DN
N NN - DN DN
NN DN DN DN

for each fixed k' € ¥;.
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2.7 Eigenvalues of A,

From (29) we have
AR = A 42,

We show below the following
Lemma 14. For any given ¢ > 4, and k € o3 the eigenvalues p;of Agkl) take the form
py = (2kj kK +[K[*)? + 36 + O(eh),
= (K +k*-12+32+0(h), j=1,.,2q.
Proof. The eigenvalues u € R of Agk/) satisfy for a certain ¢ € R?
(A + @A) = uc. (52)

Since we deal with selfadjoint operators, any eigenvalue takes the form (see [Kat95] in the
2¢-dimensional subspace Fj y/.)

1 = p0(k) + Ep (K)+O0(h), j=1,..,2
with
nio(k) = (2k; - K+ [K'[*)? = §,(K))
by definition (47). Eigenvectors take the form
C] = C]‘70 + €2<]~71 + 0(64),j = 1, veey 2(],

with
Cjo=1(0,..,0,1, 0..,0), 1 taking the jth place.

A simple identification at order €2 leads to
(k")
(Ao " = 15,0)C51 + (A1 = p51)¢0 = 0, (53)

Taking the scalar product of (53) with ¢, gives, taking into account the form of Ay,

b= (A1C05C50)
a (€.0:C50)

which is independent of k/, and which gives the result of Lemma 14.

=3, j=1,...,2q,

2.8 Inverse of £, in H,

We already have the following estimate in Hj :

Lemma 15. For any given ¢ > 4, and for € small enough, the linear operator A is invertible

in Ho with .
1
1A o < 22
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The proof of Lemma 15 follows directly from Lemma 14 for € < ¢, since k’ is bounded,
and all eigenvalues for k/ € ¥; are positive and larger than 2¢2.
For extending the estimate to Hg, we need next property

Lemma 16. For any K > 0, |t —y| < K, x and y > 0, and any p > 0 there exists
d(p, K) > 0 such that

(14 2)P — (L +y)P| < d(p, K)(1+ )P~

The proof of this Lemma is in Appendix A.
Then we prove the following

Lemma 17. For any given ¢ > 4, and for € small enough, the linear operator A is invertible
in Hs for s > 0, with ¢ > 0 such that

AT S )
Proof. Let us assume that f € Hg, and define f, € Hg by its Fourier coefficients
[ = (14 N2

We then have || fs|lo = || f|ls. Then AU = f leads to (AU)s € Ho, |[(AU)sl| = || f]ls-
By definition
A0 = (1= k") UY + D10 DUD,

where k € 9. Now
(AD)E = (AUNY = @81, [(1+ NF)*? = (1+ NP)*la® DU,
and since |[Nx — Nj| < 2 from the form of a, we have from Lemma 16
(L N2 — (L NP2 < d(s/2,2)(1 + N>,

Now define U for any U € H; by
U = g™,

Then ||U||s = ||U||s and since for 0 < s < 2, (1 + N2)#2 <1,
(AL, — (AW < d(s/2,2)) @0)*
(where a differs from the one defined at Lemma 9), hence for 0 < s < 2
1(AD)s = (AU)llo < d(s/2,2)e?|[all]o < dse®||U|Jo-
Hence we obtain

1AUsllo < 1(AU)sllo + ds /211 fllo = [ f1]s + ds /21| flo,

and finally, for 0 < s <2
Cs
1U1ls = 11Usllo = 5 2||A6Us||0 < Sl
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Let us prove by induction on s > 0 that ||[AZ!||s < cse~2. This holds for 0 < s < 2. Assume
that it holds for s — 2, then

[(AU)s = (AU W] < d(s/2,2))(1 + N> @)™,
Hence, we have

I(AU)s = (AUs)llo < d(s/2,2)e*|[aU||s—2 < dse?||U]|s—2-
We assumed that ||[A7!]]s_2 < 52, hence we obtain

[[AUs|lo < (AU )sllo + dscs—2|| flls—2 = || f||s + dscs—2| f]|s—2,

hence

1 c
1011s = 10sllo < 5 5lIATilo < 5111l
This ends the proof of Lemma 17. I
Then we finally have

Lemma 18. For any q > 4, and s > 0,there exists g > 0, such that for 0 < e < ¢ the
linear operator L has a bounded inverse in Hg, with

_ c(s)
||£El||3 S 62 )

where ¢(s) is a positive constant only depending on s.
Proof. From Lemma 17 we have
(L&)~ = (1 4+ AT R,
and |[e*A7 R ||s < cs€?||Re||s < ci€?. For e small enough we then have

2c
2)y—1 s
@) < =

Then, from Lemma 9 we deduce immediately that there exists a constant ¢(s) such that

101l < <211,

€

which proves the Lemma. I

3 Existence of the solution

Below we prove our main result

Theorem 19. For any q > 4 and for any s > q/2, there exists A\g > 0 such that for
0 < X < Ao, there exists a quasipattern solution of the Swift-Hohenberg steady equation
(11) in Hs, bifurcating from 0 and invariant under rotations of angle w/q. Its asymptotic
expansion at the origin is given by the formal expansion computed in [IR10].
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Proof. We want to solve (21) with respect to W in Hg, s > ¢/2. Taking into account of
Lemma 18, this equation takes the following form for € # 0 :

W =—L fe + 3eUW? + EW3, (54)

which we write as

W =G(e, W)

where G is well defined in ]0, g[xHs, depending smoothly on its arguments for 0 < € < ¢
and W € H,. In fact for € # 0 fixed, G is analytic in W, and observing that €2£-! = O(e),
we see that G is continuous in € on |0, €.

The map G is Lipschitz in W in a fixed ball of Hg, with a small Lipschitz constant for
e €]0, eg[. Indeed, we have

IG(e, W) = G(e, W)ls < €L BeU(W? = W) + (W2 — WP,
|| L5 < cse and ||Uc||s < che. Moreover, we have
g(E,O) = —6356_1(fe) = 0(6)

Than according Dieudonné’s version of the implicit function theorem [D60][(10.1.1)],
there exists a unique mapping W (e) into a ball in H of size O(e), such that

W(e) = G(e, W(e))

for all € €]0, ¢y and W is continuous there. Finally we have a solution U = U, + €*W (¢) of
(11) of the form (20). B

A  Proof of Lemma 6

We follow and modify the argument of Iooss-Rucklidge [IR10][appendix C] used to prove
that Hs is an algebra [IR10][lemma 4.2]. Let

2 — Z u(k) (V)eik.x, v = Z ,U(k) (V)eik.x
kel’ kel

be elements of H; N Hy. We have

3 )

k+k/'=K

2 2
(1+ N2)*.

p,K

275 o2 < Y

K

3wy

k+k/'=K

L+DND* 4>
K K

p7
S1 So

Moreover, we have

2 2

1 / /
551 < g E u® o) (1 4+ N2+ E E w1 4 N2)E.
K |k+k'=K K |k+k'—=K
Ny <3N/ Ny >3Nyp/

/

~~
/ "
Sl Sl
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16(1+N2)

S/
GESEN ) and Cauchy-Schwarz inequality, we obtain (s’ > ¢/2)
K

Using the fact that 1 < (

!

. 16 \°
ﬂﬂKWWM%ZQ——7>SWMM@

— \(1+Ng

To obtain a similar bound for S}, we use the Iooss-Rucklidge dyadic decomposition of
STt Apu = Y op oy <ot uMek*x Ay = u® and Spu = ZI;:_l Apu. Then, u =
>p>—18pu € Hyif and only if 37~ 22P5|| Apul|2 < +00. According to the computation
of [IR10][p. 387], we have

2

400 7+1
ST=D"1 D0 w®oM B <o Y 270 1| YT A(S,-1vApu) (55)
K | k+k'=K j=- p=j—1 0

Ny >3Ny/ s

Since ' > ¢/2, by Cauchy-Schwarz, we have 3 [v&)| < ¢|jv[|s. So, following the computa-
tions [IR10][p.388], we obtain ||S,—1vA,uld < C||Apul3||v]|%. From this and following the
same computation as in [IR10][p. 388], we obtain

o
S < el Y 2l Apuly < Culloll? llul?
p=—1

To get an estimate for So, we just need to interchange the role of u and v and the result is
proved.

B Proof of Lemma 16

We assume z,y > 0, and p > 0 and
|z —y| < K.

Then, we prove that
(1 +2)? — (L +y)P| < dp)(L + )P,

with
dip) = pK(1+K) forp>1,
= pK(1 —|—K)1_p for p < 1.
Proof. For some t between x and y, we have
(L+a)P = (1 +y)P =ple—y) (1 + )P

Ifp>1lweuse (1+t)/1+2z)=1+(t—2)/1+2)<1+Kifzr<t<yand <1if
y < t < x. This proves the lemma if p > 1.

Similarly if p <1weuse (1+2z)/(1+t) <lifz <t<yand =1+(z—t)/(1+1t) <1+ K
ify<t<axandso (1+t)P~! < const.(1+z)P~L. 1
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