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1I.U.F., Université de Nice, Labo J.A.Dieudonné
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Abstract

Quasipatterns (two-dimensional patterns that are quasiperiodic in any
spatial direction) remain one of the outstanding problems of pattern for-
mation. As with problems involving quasiperiodicity, there is a small
divisor problem. In this paper, we consider 8-fold, 10-fold, 12-fold, and
higher order quasipattern solutions of the Swift–Hohenberg equation. We
prove that a formal solution, given by a divergent series, may be used to
build a smooth quasiperiodic function which is an approximate solution
of the pattern-forming PDE up to an exponentially small error.
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1 Introduction

Quasipatterns remain one of the outstanding problems of pattern formation.
These are two-dimensional patterns that have no translation symmetries and
are quasiperiodic in any spatial direction (see figure 1). In spite of the lack of
translation symmetry, the spatial Fourier transforms of quasipatterns have dis-
crete rotational order (most often, 8, 10 or 12-fold). In contrast, regular patterns
have translation symmetries (they are periodic in space) and so cannot have 8,
10 or 12-fold rotation symmetry. Quasipatterns were first discovered in nonlin-
ear pattern-forming systems in the Faraday wave experiment [10,14], in which a
layer of fluid is subjected to vertical oscillation. Since their discovery, they have
also been found in nonlinear optical systems [19], shaken convection [28,32] and
in liquid crystals [25], as well as being investigated in detail in large aspect ratio
Faraday wave experiments [1, 4, 5, 24].
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Figure 1: Example 8-fold quasipattern. This is an approximate solution of
the Swift–Hohenberg equation (1) with µ = 0.1, computed by using Newton
iteration to find an equilibrium solution of the PDE truncated to wavenumbers
satisfying |k| ≤

√
5 and to the quasilattice Γ27.

In many of these experiments, the domain is large compared to the size of
the pattern, and the boundaries appear to have little effect. Furthermore, the
pattern is usually formed in two directions (x and y), while the third direction
(z) plays little role. Mathematical models of the experiments are therefore often
posed with two unbounded directions, and the basic symmetry of the problem is
E(2), the Euclidean group of rotations, translations and reflections of the (x, y)
plane.

The mathematical basis for understanding the formation of regular patterns
is well founded in equivariant bifurcation theory [16]. With regular (spatially
periodic) patterns, the pattern-forming problem (usually a PDE) is posed in a
periodic spatial domain instead of the infinite plane. Spatially periodic patterns
have Fourier expansions with wavevectors that live on a lattice. There is a
parameter µ in the PDE, and at the point of onset of the pattern-forming
instability (µ = 0), the primary modes have zero growth rate and all other
modes on the lattice have negative growth rates that are bounded away from
zero. In this case, the infinite-dimensional PDE can be reduced rigorously to a
finite-dimensional set of equations for the amplitudes of the primary modes [8,9,
17,20,31], and existence of regular patterns as solutions of the pattern-forming
PDE can be proved. The coefficients of leading order terms in these amplitude
equations can be calculated and the values of these coefficients determine how
the amplitude of the pattern depends on the parameter µ, and which of the
regular patterns that fit into the periodic domain are stable. The solutions of
the PDE are expressed as power series in

√
µ, which can be computed, and

which has a non-zero radius of convergence.
In contrast, quasipatterns do not fit into any spatially periodic domain and
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have Fourier expansions with wavevectors that live on a quasilattice (defined
below). At the onset of pattern formation, the primary modes have zero growth
rate but there are other modes on the quasilattice that have growth rates arbi-
trarily close to zero, and techniques that are used for regular patterns cannot
be applied. (These small growth rates appear as small divisors, as seen be-
low.) If weakly nonlinear theory is applied in this case without regard to its
validity, this results in a divergent power series [29], and this approach does not
lead to a convincing argument for the existence of quasipattern solutions of the
pattern-forming problem.

This paper is primarily concerned with proving the existence of quasipatterns
as steady solutions of the simplest pattern-forming PDE, the Swift–Hohenberg
equation:

∂U

∂t
= µU − (1 + ∆)2U − U3 (1)

where U(x, y, t) is real and µ is a parameter. We are not concerned with the sta-
bility of these quasipatterns: in fact, they are almost certainly unstable in the
Swift–Hohenberg equation. Stability of a pattern depends on the coefficients
in the amplitude equations (as computed using weakly nonlinear theory). In
the Faraday wave experiment, and in more general parametrically forced pat-
tern forming problems, resonant mode interactions have been identified as the
primary mechanism for the stabilisation of quasipatterns and other complex pat-
terns (see [30] and references therein). These mode interactions are not present
in the Swift–Hohenberg equation, though their presence will not significantly
alter our existence results.

In many situations involving a combination of nonlinearity and quasiperiod-
icity, small divisors can be handled using hard implicit function theorems [13],
of which the KAM theorem is an example. Unfortunately, there is as yet no
successful existence proof for quasipatterns using this approach, although these
ideas have been applied successfully to a range of small-divisor problems arising
in other types of PDEs [12, 21, 22]. There are also alternative approaches to
describing quasicrystals based on Penrose tilings and on projections of high-
dimensional regular lattices onto low-dimensional spaces [23].

We take a different approach in this paper: we show how the divergent power
series that is generated by the naive application of weakly nonlinear theory can
be used to generate a smooth quasiperiodic function that (a) shares the same
asymptotic expansion as the naive divergent series, and (b) satisfies the PDE (1)
with an exponentially small error as µ tends to 0. This approach is based on
summation techniques for divergent power series: see [2,7,27] for other examples.
In order to make the paper self-contained, we put in Appendices some proofs of
useful results, even though they are “known”.

In section 2, we define the quasilattice and derive Diophantine bounds for the
small divisors that will arise in the nonlinear problem, for Q-fold quasilattices:
Lemma 2.1 extends the results of [29] covering the cases Q = 8, 10, 12 to any
even Q ≥ 8. We then compute in section 3 (following [29]) the power series
in

√
µ for a formal quasipattern solution U of the Swift–Hohenberg equation,

where µ is the bifurcation parameter in the PDE.
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In section 4, we define an appropriate function space Hs: each term in the
formal power series U is in this space. In section 5, we prove (Theorem 5.1)
bounds on the norm of each term in the formal power series solution of the
PDE. In the Q-fold case, the norm of the µn+ 1

2 term in the power series for the
quasipattern is bounded by a constant times Kn(n!)2α, where K is a constant
and α/2+1 is the order of the algebraic number ω = 2 cos(2π/Q), which is also
half of Euler’s Totient function ϕ(Q) (α = 2 for Q = 8, 10 and 12, α = 4 for
Q = 14 and 18, α = 6 for Q = 16, 20, 24, 30, . . . ). This result was announced
in [29] for Q ≤ 12, and is extended here to Q ≥ 14. With a bound that grows
in this way with n, the power series is Gevrey - 2α, taking values in a space of
quasiperiodic functions.

In section 6, for convenience, we consider the cases Q = 8, 10 and 12. We
introduce a small parameter ζ related to the bifurcation parameter µ by ζ = 4

√
µ,

so that the norm of the ζ4n+2 term in the power series for U is also bounded
by a constant times Kn(n!)4 < Kn(4n!). We use the Borel transform Û of the

formal solution U : the ζ4n+2 term in the power series for Û is the ζ4n+2 term
in the power series for U divided by (4n + 2)!. With this definition, Û is an

analytic function of ζ in the disk |ζ| < K−1/4, and for each ζ in this disk, Û is a

quasiperiodic function of (x, y) in the space Hs. Of course the new function Û
does not satisfy the original PDE, but we prove that it satisfies a transformed
PDE (Theorem 6.2).

The next stage would be to invert the Borel transform: however, the usual
inverse Borel transform is a line integral (related to the Laplace transform)

taking ζ from 0 to ∞, and Û is only an analytic function of ζ for ζ in a disk.
If the definition of Û could be extended to a line in the complex ζ plane, the
inverse Borel transform would provide a quasiperiodic solution of the PDE –
this remains an open problem.

Since the full inverse Borel transform cannot be used, in section 7, we use
a truncated integral to define Ū(ν). This involves integrating ζ along a line

segment inside the disk where Û is analytic, weighted by an exponential that
decays rapidly as ν → 0. We show that Ū(ν) and U(µ) have the same power
series expansion when we set ν = 4

√
µ, but unlike U , Ū(ν) is a C∞ function

of ν in a neighbourhood of 0, taking values in Hs. In other words, Ū(µ1/4) is
a quasiperiodic function of (x, y) for small enough µ. This function is not an
exact solution of the Swift–Hohenberg PDE, but we show in Theorem 7.2 that
the residual when Ū(µ1/4) is substituted into the PDE is exponentially small as
µ → 0.

In conclusion, we have shown that, for any even Q ≥ 8, the divergent power
series U(µ) generated by the naive application of weakly nonlinear theory can
be used to find a smooth quasiperiodic function Ū(µ1/2α) that shares the same
asymptotic expansion as U , and that satisfies the PDE with an exponentially
small error.

This technique does not prove the existence of a quasiperiodic solution of
the PDE. However, this is a first step towards an existence proof for quasiperi-
odic solutions of PDEs like (1). In particular, we may hope to use Ū as a
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starting point for the Newton iteration process that would form part of an ex-
istence proof using the Nash–Moser theorem. As an aside, ordinary numerical
Newton iteration succeeds in finding an approximate solution of the truncated
PDE for values of µ where the formal power series has already diverged, as in
figure 3.

We believe that an analogous result might be proved for example in the
Rayleigh–Bénard convection problem, since the dispersion equation possesses
the same property as in the present model: at the critical value of the parameter
there is a circle of critical wavevectors in the plane. The method may also
extend to the case of the Faraday wave experiment by considering fixed points
of a stroboscopic map.

In the present work we consider quasilattices generated by regularly spaced
wavevectors on the unit circle, and solutions invariant under 2π/Q rotations. It
might be worth studying the case of solutions having less symmetry on the same
quasilattice, or quasilattices (still dense in the plane) generated by wavevectors
that are irregularly spaced.

Acknowledgments : We are grateful for useful discussions with Sylvie Ben-
zoni, André Galligo, Ian Melbourne, Jonathan Partington, David Sauzin and
Gene Wayne. We are also grateful to the Isaac Newton Institute for Mathemat-
ical Sciences, where some of this work was carried out.

2 Small divisors: Quasilattices and Diophantine

bounds

Let Q ∈ N (Q ≥ 8) be the order of a quasipattern and define wavevectors

kj =

(
cos

(
2π

j − 1

Q

)
, sin

(
2π

j − 1

Q

))
, j = 1, 2, . . . , Q

(see figure 2a). We define the quasilattice Γ ⊂ R2 to be the set of points spanned
by integer combinations km of the form

km =

Q∑

j=1

mjkj , where m = (m1, m2, . . . , mQ) ∈ NQ. (2)

The set Γ is dense in R2.
We are interested in real functions U(x) that are linear combinations of

Fourier modes eik·x, with x ∈ R2 and k ∈ Γ. If U(x) is to be a real function, we
need Q to be even, with kj and −kj in Γ, hence the quasilattice Γ is symmetric
with respect to the origin.

Define |m| =
∑

j mj , then, for a given wavevector k ∈ Γ, we define the order
Nk of k by

Nk = min{|m|;k = km}.

5



(a) (b) (c)

k1

k2

k3

k4

k5

k6

k7

k8

Figure 2: Example quasilattice with Q = 8, after [29]. (a) The 8 wavevectors
with |k| = 1 that form the basis of the quasilattice. (b,c) The truncated quasi-
lattices Γ9 and Γ27. The small dots mark the positions of combinations of up
to 9 or 27 of the 8 basis vectors on the unit circle. Note how the density of
points increases with Nk.

The reason for this is that, for a given k, there is an infinite set of m’s satisfying
k = km. For example, we could increase mj and mj+Q/2 by 1: this increases
|m| by 2 but does not change km.

Whenever solutions are computed numerically, it is necessary to use only a
finite number of Fourier modes, so we define the truncated quasilattice ΓN to
be:

ΓN = {k ∈ Γ : Nk ≤ N} . (3)

Figure 2(b,c) shows the truncated quasilattices Γ9 and Γ27 in the case Q = 8.
In the calculations that follow, we will require Diophantine bounds on the

magnitude of the small divisors in terms of Nk. We see below that the small
divisors are

∣∣|k|2 − 1
∣∣, for k ∈ Γ. To compute the required bound, we start with

|km|2 =
∑

1≤j1≤j2≤Q

2mj1mj2 cos
2π

Q
(j1 − j2),

hence
|km|2 − 1 = q0 + ωq1 + · · · + ωlql (4)

where q0 + 1 and qj , j = 1, . . . , l are integer-valued quadratic forms of m, and
ω is an algebraic number defined by

ω = 2 cos
2π

Q
.

This number is solution of a polynomial of degree l + 1 ≤ Q/2 with integer
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coefficients. For example, we have in the case Q = 8:

|km|2 =

4∑

j=1

m′
j
2

+
√

2 (m′
1m

′
2 + m′

2m
′
3 + m′

3m
′
4 − m′

4m
′
1) , (5)

Nk =

4∑

j=1

|m′
j | (6)

where m′
j = mj − mj+Q/2. More generally we have

Nk ≤
Q/2∑

j=1

|m′
j |.

The above inequality can occur strictly (for example) in the case Q = 12,
because only 4 of the 12 vectors kj are rationally independent in this case.

In the cases Q = 8, 10 and 12, the irrational numbers ω = 2 cos(2π/Q) are√
2, 1+

√
5

2 and
√

3: these are quadratic algebraic numbers (l + 1 = 2), while for
Q = 14, ω is cubic (l + 1 = 3). For an algebraic number ω of order l + 1, the
quantity |q0 + ωq1 + · · · + ωlql| may be as small as we want for good choices of
large integers qj .

In [29], it was proved that in the cases Q = 8, 10 and 12, there is a constant
c > 0 such that

∣∣|k|2 − 1
∣∣ ≥ c

N2
k

, for any k ∈ Γ with |k| 6= 1. (7)

The proof relies on the fact that for quadratic algebraic numbers, there exists
C > 0 such that

|p − ωq| ≥ C

q

holds for any (p, q) ∈ Z2, q 6= 0 [18]. Now using the fact that q is quadratic in
m (see (5)) we have

q ≤ QN2
k

(8)

from which (7) can be deduced.
We extend the Diophantine bound (7) to any even Q ≥ 8, and prove that

there exists c > 0 depending only on Q, such that for any k ∈ Γ, with |k| 6= 1,
there exists α ≥ 2 such that

∣∣|k|2 − 1
∣∣ ≥ c

Nα
k

. (9)

To show this, we use the following known result (see [11]) proved in Appendix A:

Lemma 2.1 Let ω be an algebraic number of order l + 1, that is, a solution
of P (ω) = 0 where P is a polynomial of degree l + 1 with integer coefficients,
that is irreducible on Q. Then, there exists a constant C and an integer α with
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2 ≤ α ≤ 2l such that for any q = (q0, q1, . . . , ql) ∈ Zl+1\{0}, the following
estimate

|q0 + q1ω + q2ω
2 + · · · + qlω

l| ≥ C

|q|α/2
(10)

holds, where |q| =
∑

0≤j≤l |qj |.

As an aside, the polynomials P are related to cyclotomic polynomials, and
the order l + 1 of the algebraic number ω is ϕ(Q)/2, where ϕ(Q) is Euler’s
Totient function [3], the number of positive integers j < Q such that j and Q
are relatively prime. For example, ϕ(14) = 6 since the 6 numbers 1, 3, 5, 9, 11
and 13 have no factors in common with 14, and so l +1 = 3 in the case Q = 14.

The expression 2 cos 2pπ
Q as a polynomial in ω, for 1 ≤ p ≤ Q − 1, as

2 cos
2pπ

Q
= ωp − pωp−2 +

p(p − 3)

2
ωp−4.....

has integer coefficients which only depend on Q (easy proof by induction). Hence
the estimate (8) is replaced by

|q| ≤ c(Q)N2
k

where c(Q) depends only on Q. Then estimate (9) is satisfied by taking

c =
C

[c(Q)]α/2
,

It should be observed that the estimate α ≤ 2l might be not optimal, however
for l + 1 = 2 we have indeed α = 2 and for Q = 14, this gives α ≤ 4, and
computations of

∣∣|k|2 − 1
∣∣ in the case Q = 14 up to Nk = 1000 suggest that

indeed α = 4 in this case [29].

3 Formal power series computation

Let us consider the steady Swift–Hohenberg equation

(1 + ∆)2U − µU + U3 = 0 (11)

where we look for a Q-fold quasiperiodic function U of x ∈ R2, defined by
Fourier coefficients Uk on a quasilattice Γ as defined above. We write formally

U(x) =
∑

k∈Γ

Ukeik·x,

the meaning of this sum being given in section 4. We seek a solution of (11),
bifurcating from the origin when µ = 0, that is invariant under rotations by
2π/Q. First we look for a formal solution in the form of a power series of an
amplitude. More precisely we look for the series

U(x, µ) =

√
µ

β

∑

n≥0

µnU (n)(x) (12)

8



as a formal solution of (11), where all coefficients U (n) are invariant under

rotations by 2π/Q of the plane. The coefficient β will be given by fixing U
(0)
k1

.

At order O(
√

|µ|) in (11) we have

0 = (1 + ∆)2U (0) (13)

and we choose the solution

U (0) =

Q∑

j=1

eikj ·x, (14)

which is invariant under rotations by 2π/Q and defined up to a factor which we
take equal to 1. Let us rewrite (11) in the form

L0U = µU − U3 (15)

where
L0 = (1 + ∆)2.

At order O(|µ|3/2) we have

L0U
(1) = U (0) − β−1(U (0))3. (16)

We need to impose a solvability condition, namely that the coefficients of eikj·x,
for j = 1, . . . , Q on the left hand side of this equation must be zero. Because of
the invariance under rotations by 2π/Q, it is sufficient to cancel the coefficient
of eik1·x. This yields

β = 3(Q − 1) > 0, (17)

and U (1) is known up to an element β(1)U (0) in kerL0, which is determined at
the next step:

U (1) = Ũ (1) + β(1)U (0), Ũ (1) =
∑

k∈Γ,Nk=3

αkeik·x, (18)

α3kj = −1/64, α2kj+kl
= − 3

(1 − |2kj + kl|2)2
, kj + kl 6= 0,

αkj+kl+kr = − 6

(1 − |kj + kl + kr|2)2
, j 6= l 6= r 6= j,

kj + kl 6= 0, kj + kr 6= 0, kr + kl 6= 0,

where Ũ (1) has no component on eikj ·x.
Order |µ|n+1/2 in (15) leads for n ≥ 2 to

L0U
(n) = U (n−1) − β−1

∑

k+l+r=n−1,
k,l,r≥0

U (k)U (l)U (r). (19)
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Figure 3: Amplitude A(N) of the quasipattern, as a function of µ and of N , with
Q = 8, N = 1, 3, 9 and 27, and scaled so that A(1) =

√
µ. Increasing the order of

the truncation leads to divergence for smaller values of µ. The squares represent
amplitudes computed by solving the PDE by Newton iteration, truncated to the
quasilattice Γ27 (Nk ≤ 27) and restricted to wavevectors with |k| ≤

√
5. Note

that for µ = 0.1, the Newton iteration succeeds in finding an equilibrium solution
of the PDE, while the formal power series has diverged. The spatial form of the
solution with µ = 0.1 is shown in figure 1.

For n = 2, the solvability condition on the right hand side gives β(1), and U (2)

is then determined up to β(2)U (0). Indeed we obtain on the right hand side

U (1) − 3β−1U (1)U (0)2 = Ũ (1) + β(1)U (0) − 3β−1β(1)U (0)3 − 3β−1Ũ (1)U (0)2

= −2β(1) + Ũ (1) − 3β−1Ũ (1)U (0)2 − 3β−1L0Ũ
(1),(20)

where we used the fact that the component of U (0)3 on eik1·x is β (see (16)).

Hence 2β(1) is the coefficient of eik1·x of −3β−1Ũ (1)U (0)2, and since all coeffi-
cients of Ũ (1) are negative, we find β(1) > 0. We obtain in the same way the
coefficients β(n−1)U (0) of U (n−1) in using the solvability condition on the right
hand side of (19).

It is then clear that we can continue to compute this expansion as far as we
wish, where at each step we use the formal inverse of L0 on the complement of
the kernel, which is one-dimensional because of the invariance under rotations
by 2π/Q. However, applying L−1

0 to eik·x introduces a factor

1

(1 − |k|2)2 ,

which may be very large for combinations k = km with large m, since points
km of the quasilattice Γ sit as close as we want to the unit circle. This is a small
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divisor problem and computations indicate that the series (12) seems to diverge
numerically [29]. We illustrate this in figure 3, plotting the amplitude A(N)

against µ, where

A(N) = ||P0

√
µ

β

(N−1)/2∑

n=0

µnU (n)||s =

√
µ

β




(N−1)/2∑

n=0

µnβ(n)


 ||U (0)||s,

and the norm || · ||s and the projection operator P0 are defined below: A(N) is
essentially the magnitude of the coefficient of eik1·x as a function of µ and of N ,
the maximum order of wavevectors included in the truncated power series.

However, we prove in section 5 that in all cases we can control the divergence
of the coefficients of the series (12), and obtain a Gevrey estimate ||U (n)||s ≤
γKn(n!)2α, where the norm || · ||s is defined below.

4 Function spaces

We characterise the functions of interest by their Fourier coefficients on the
quasilattice Γ generated by the Q unit vectors kj :

U(x) =
∑

k∈Γ

Ukeik·x

Recall that for each k ∈ Γ, there exists a vector m ∈ NQ such that k = km =∑Q
j=1 mjkj and we can choose m such that

|m| = Nk = min{|m| : k = km}.

We have the following properties, proved in Appendix B:

Lemma 4.1 (i) We define m′
j = mj − mj+Q/2, then

Nk = min





Q/2∑

j=1

|m′
j | :

Q/2∑

j=1

m′
jkj = k, m′

j ∈ Z, j = 1, . . . , Q/2



 . (21)

(ii) We have the following inequalities:

Nk+k′ ≤ Nk + Nk′ , N−k = Nk, (22)

|k| ≤ Nk. (23)

(iii) We have the following estimate of the numbers of vectors k having a
given Nk:

card{k : Nk = N} ≤ c1(Q)NQ/2−1 (24)

where c1(Q) only depends on Q.
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Define now the space of functions

Hs =

{
U =

∑

k∈Γ

Ukeik·x : ||U ||2s =
∑

k∈Γ

(1 + Nk
2)s|Uk|2 < ∞

}
, (25)

which becomes a Hilbert space with the scalar product

〈W, V 〉s =
∑

k∈Γ

(1 + Nk
2)sWkV k. (26)

In the sequel we need the following lemma, proved in Appendix C:

Lemma 4.2 The space Hs is a Banach algebra for s > Q/4. In particular there
exists cs > 0 such that

||UV ||s ≤ cs||U ||s||V ||s. (27)

For ℓ ≥ 0 and s > ℓ + Q/4, Hs is continuously embedded into Cℓ.

From now on, all inner products are s unless otherwise stated, so that we
can remove the s subscripts throughout in scalar products.

We will also use the orthogonal projection on kerL0: for any U ∈ Hs, let

P0U =
∑

j=1,...,Q

Ukje
ikj ·x,

and we denote by Q0 the orthogonal projection:

Q0 = I − P0,

which consists in suppressing the Fourier components of eikj ·x, j = 1, . . . , Q.
The norm of the linear operator Q0 is 1 in all spaces Hs.

5 Gevrey estimates

In this section we prove rigorously a Gevrey estimate of the coefficients U (n)

in (12). The estimate for Q = 8, 10 and 12 (α = 2) was announced in [29].
Recall that a formal power series

∑∞
n=0 unζn is Gevrey - k [15], where k is a

positive integer, if there are constants δ > 0 and K > 0 such that

|un| ≤ δKn(n!)k ∀n ≥ 0. (28)

Theorem 5.1 For any even Q ≥ 8, assume that s > Q/4. Then there exist
positive numbers K(Q, c, s) and δ(Q, s) such that there exists a unique U(µ) as
a power series in µ1/2, all coefficients belonging to Hs, that is a formal solution

12



of (11), and that satisfies

U =

√
µ

β

∑

n≥0

µnU (n), (29)

U (n) = β(n)U (0) + Ũ (n), 〈Ũ (n), eikj·x〉s = 0, j = 1, . . . , Q,

||Ũ (n)||s ≤ δ
(Q − 1)

2s/2c2
sQ

Kn(n!)2α, n ≥ 1,

|β(n)| ≤ δKn(n!)2α, n ≥ 1.

where α is the integer defined in Lemma 2.1. From the above inequalities, it
follows that

||U (n)||s ≤ γKn(n!)2α, n ≥ 0,

where γ is related to δ, Q and s only.

Remark 5.2 The above Theorem claims that the series U in powers of
√

µ is
Gevrey - α taking its values in Hs.

Proof We choose s > Q/4 since Lemma 4.2 insures that Hs is then a
Banach algebra. We notice that

||eikj ·x||s = 2s/2,

and
||U (0)||s = 2s/2

√
Q. (30)

We also have β(0) = 1 and Ũ (0) = 0. Now we notice from (9) that for |k| 6= 1
we have ∣∣|k|2 − 1

∣∣−2 ≤ N2α
k

c2
,

which controls the unboundedness of the pseudo-inverse L̃−1
0 (inverse of L0

restricted to the orthogonal complement of its kernel). Indeed L̃−1
0 is bounded

from Hs to Hs−2α. The basic observation here is that the coefficient U (n) of µn

has a finite Fourier expansion in eik·x, with k =
∑Q

j=1 mjkj ,
∑

mj ≤ 2n + 1,

hence Nk ≤ 2n + 1. Since for Ũ (1) we have |m| = 3 in all km’s, equation (16)
leads to

||Ũ (1)||s ≤ 32αc2
s2

3s/2Q3/2

c23(Q − 1)
. (31)

We set
U (n) = β(n)U (0) + Ũ (n), Ũ (n) = Q0U

(n), (32)

and replacing this decomposition in (19) we obtain, by taking the scalar product
with eik1·x

β(n−1)2s− 1

β

〈
3U (n−1)U (0)2, eik1·x

〉
− 1

β

〈 ∑

k+l+r=n−1,
0≤k,l,r≤n−2

U (k)U (l)U (r), eik1·x
〉

= 0,

13



where we have used
〈
U (0), eik1·x

〉
= ||eik1·x||2s = 2s. Next, we use

〈3U (n−1)U (0)2, eik1·x〉 = β(n−1)〈3U (0)3, eik1·x〉 + 〈3Ũ (n−1)U (0)2, eik1·x〉
= 3ββ(n−1)2s + 〈3Ũ (n−1)U (0)2, eik1·x〉,

and we are led to solve with respect to β(n−1), Ũ (n) the following system for
n ≥ 2

L0Ũ
(n) = Ũ (n−1) − β−1Q0

∑

k+l+r=n−1,
k,l,r≥0

U (k)U (l)U (r), (33)

β(n−1) =
−1

21+sβ

〈
3Ũ (n−1)U (0)2 +

∑

k+l+r=n−1,
0≤k,l,r≤n−2

U (k)U (l)U (r), eik1·x
〉

.(34)

Now we make the following recurrence assumption: there exist positive con-
stants γ1, δ and K, depending on Q, s and α, such that

||Ũ (p)||s ≤ γ1K
p(p!)2α, p = 0, 1, . . . , n − 1, (35)

|β(p)| ≤ δKp(p!)2α, p = 1, . . . , n − 2.

These estimates hold for Ũ (0) = 0 and for Ũ (1) provided that γ1 and K satisfy

32αc2
s2

3s/2Q3/2

c23(Q − 1)
≤ γ1K. (36)

Putting these together results in

||U (p)||s = ||β(p)U (0) + Ũ (p)||s ≤
(
2s/2δ

√
Q + γ1

)
Kp(p!)2α,

or
||U (p)||s ≤ γKp(p!)2α, with γ = 2s/2δ

√
Q + γ1. (37)

The resolution of (33) and (34) provides β(n−1) and Ũ (n), starting with
n = 2. A useful lemma is the following, proved in Appendix D.

Lemma 5.3 The following estimates hold true for α ≥ 2:

Π3,n =
∑

k+l+r=n
k,l,r≥0

(k!l!r!)2α ≤ 4(n!)2α, n ≥ 1

Π′
3,n =

∑

k+l+r=n
0≤k,l,r≤n−1

(k!l!r!)2α ≤ 10((n− 1)!)2α, n ≥ 2.

Thanks to Lemma 5.3 and the estimate for ||U (p)||s in (37), we observe that
∥∥∥∥∥∥∥∥

∑

k+l+r=n−1
0≤k,l,r≤n−2

U (k)U (l)U (r)

∥∥∥∥∥∥∥∥
s

≤ 10c2
sγ

3Kn−1((n − 2)!)2α.

14



From this it follows that

|β(n−1)| ≤ c2
s

21+s/2β
Kn−1((n − 1)!)2α

{
3γ12

sQ + 10γ3
}

,

and the recurrence assumption is realized if

c2
s

3(Q − 1)21+s/2

{
3γ12

sQ + 10γ3
}
≤ δ (38)

holds. Now we have, still by using Lemma 5.3

||Ũ (n)||s ≤ (2n + 1)2αKn−1((n − 1)!)2α

c2

{
γ1 +

4c2
s

β
γ3

}
(39)

≤ Kn(n!)2α(2 +
1

n
)2α 1

Kc2

{
γ1 +

4c2
s

β
γ3

}
.

The factor (2n + 1)2α/c2 here comes from the pseudo-inverse of L0 acting on
functions containing modes of order up to 2n + 1. The recurrence assumption
is realized if

32α

c2

{
γ1 +

4c2
s

β
γ3

}
≤ γ1K. (40)

We now must choose γ1, δ and K in such a way as to satisfy the three
conditions (36), (38) and (40). Indeed, we may choose γ1 and δ small enough,
and K large enough for having

γ1 = δ
(Q − 1)

2s/2c2
sQ

,

δ2 ≤ 3(Q − 1)2s/2−1

5c2
s

(
2s/2

√
Q +

Q − 1

2s/2c2
sQ

)−3

,

K = max

{
32α

c2

(
1 +

2s+1c2
sQ

5(Q − 1)

)
,
1

δ

32α−122sc4
sQ

5/2

c2(Q − 1)2

}
.

We conclude that the bounds on ||Ũ (n)||s and |β(n)| in Theorem 5.1 hold,
and that (37), which holds for 0 ≤ p ≤ n − 1, also holds for p = n, and so

||U (n)||s ≤ γKn(n!)2α, n ≥ 1.

This ends the proof of Theorem 5.1.

6 Borel transform of the formal solution

In this and subsequent sections, we consider the case with α = 2 (Q = 8, 10
and 12) and set √

µ = ζ2.
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Remark 6.1 In the cases with α > 2, we can always assume that α is an
integer (large enough) and set ζ = µ1/2α.

The formal expansion (29) becomes, after incorporating β−1/2 into U (n),

U = ζ2
∑

n≥0

ζ4nU (n), (41)

and we have the estimate

||U (n)||s ≤ γKn(n!)4 ≤ γKn(4n!).

Thus the formal power series (41) is a Gevrey 1 series in ζ.

Let us now consider the new function ζ 7→ Û(ζ), taking its values in Hs,
defined by

Û(ζ) =
∑

n≥0

ζ4n+2

(4n + 2)!
U (n).

Indeed, by construction, this function is analytic in the disc |ζ| < K−1
1 = K−1/4,

with values in the Hilbert space Hs and invariant under rotations of angle 2π/Q.

The mapping U 7→ Û , where we divide the coefficient of ζn by n!, is the Borel
transform [6] applied to the series U . Since U satisfies a Gevrey 1 estimate, the

Borel transform Û is analytic in a disc.
We now need to show that this function Û(ζ) is solution of a certain partial

differential equation. Let us recall a simple property of Gevrey 1 series. Consider
two scalar Gevrey 1 series u and v

u =
∑

n≥1

unζn, v =
∑

n≥1

vnζn,

|un| ≤ c1K
n
1 n!, |vn| ≤ c2K

n
1 n!,

then we have

(uv)n =
∑

1≤k≤n−1

ukvn−k,

|(uv)n| ≤ c1c2K
n
1 n!,

as this results from Appendix D, by using the following inequality for n ≥ 3

1

(n − 1)!

∑

1≤k≤n−1

k!(n − k)! ≤ 1 + 2(
1

2
+ · · · + 1

n − 1
) ≤ n,

which shows that in our case we can multiply two Gevrey 1 series with coef-
ficients belonging to Hs (the factor c1c2 is then multiplied by cs) and obtain
a new Gevrey 1 series with coefficients in Hs. It is then classical that we can
write

Û3 = Û ∗G Û ∗G Û (42)
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where the convolution product, written as ∗G, is well defined by

(û ∗G v̂)(ζ) =
∑

n≥1

∑

1≤k≤n−1

ukvn−k

n!
ζn,

and satisfies
(û ∗G v̂) = (̂uv).

This convolution product is easily extended for two functions f(ζ) and g(ζ),
analytic in the disc |ζ| < K−1

1 , and with no zero order term, by

(f ∗ g)(ζ) =
∑

n≥1

∑

1≤k≤n−1

fkgn−k
k!(n − k)!

n!
ζn. (43)

It is clear that for f = û, and g = v̂ we have

f ∗ g = (û ∗G v̂) = (̂uv).

Since we have (42), it is clear from (19) that we have

( ̂(1 + ∆)2U)(x, ζ) = (1 + ∆)2Û(x, ζ).

Now let us define a bounded linear operator K as follows: for any function
ζ 7→ V (ζ) analytic in the disc |ζ| < K−1

1 , taking values in Hs, canceling for
ζ = 0, and satisfying

V (ζ) =
∑

n≥1

Vnζn, ||Vn||s ≤ cKn
1 ,

we define

(KV )(ζ) =
∑

n≥1

n!

(n + 4)!
ζn+4Vn.

It is then clear for V = Û that

(KÛ )(ζ) =
∑

n≥0

ζ4n+6

(4n + 6)!
U (n) = (̂ζ4U),

and we see that
∂4

ζ (KÛ) = Û .

We now claim the following:

Theorem 6.2 The Borel transform Û(x, ζ) of the Gevrey solution found in
Theorem 5.1 for α = 2 is the unique solution, analytic in the disc |ζ| < K−1/4,
cancelling for ζ = 0, and taking values in Hs invariant under rotations of angle
2π/Q, of the equation

(1 + ∆)2V −KV + V ∗ V ∗ V = 0. (44)
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Proof. We still assume α = 2 in what follows. The changes needed for larger
α’s are left to the reader. Let us look for a solution V in the form

V =
∑

n≥1

ζnVn,

where Vn ∈ Hs is invariant under rotations of angle 2π/Q. Then defining a
formal series

U =
∑

n≥1

ζnUn, Un = n!Vn,

it is clear that U satisfies formally

(1 + ∆)2U − ζ4U + U3 = 0,

and by identifying powers of ζ:

L0U1 = 0,

L0U2 = 0,

L0U3 + U3
1 = 0,

which leads to U1 = 0 because of the last equation where the solvability condi-
tion cannot be satisfied. Then we have

U1 = 0, L0Uj = 0, j = 2, 3, 4, 5,

and
L0U6 − U2 + (U2)

3 = 0.

We observe that U2 and U6 satisfy the equations verified by β−1/2U (0) and
β−1/2U (1) (see (16)). This is indeed the only solution invariant under rotations
of 2π/Q. Hence

U2 = β−1/2U (0),

U6 = β−1/2U (1).

Now at order ζ7 we get

L0U7 − U3 + 3U2
2 U3 = 0

and since U3 = CU (0), where C is a constant, the solvability condition gives

C =
3C

β
〈U (0)3, eik1·x〉s = 3C

hence C = 0 and U3 = 0. It is the same for U4 = U5 = 0, and we obtain
L0U7 = L0U8 = L0U9 = 0. Then the computation of higher orders is exactly
as the one for the computation of U (n), since the cubic term cancels if the sum
of the 3 indices p in Up is not 2 mod 4. Coming back to the definition of
Un = n!Vn, it is then clear that Theorem 6.2 is proved.
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7 Truncated Laplace transform

Let us take K ′ > K1 and define a linear mapping U 7→ Ū in the set of Gevrey 1
series taking values in Hs

Ū(ν) =
1

ν

∫ 1

K′

0

e−
ζ
ν Û(ζ) dζ, (45)

where Û(ζ) is the Borel transform of U as defined above, which is analytic in
the disc |ζ| < 1/K1. The function ν 7→ Ū(ν) is a truncated Laplace transform
of the Borel transform of U .

Remark 7.1 If Û(ζ) could be shown to be analytic on a line in the complex
ζ plane extending to ∞, instead of just in a disk, then the Laplace transform
in (45) would be the inverse Borel transform, and would provide a quasiperiodic
solution of (11) in Hs.

It is clear that Ū(ν) is a C∞ function of ν in a neighborhood of 0, taking its
values in Hs, as this results from

Ū(ν) =

∫ 1

K′ν

0

e−zÛ(νz) dz

and from the dominated convergence theorem. Moreover Ū(ν) and U(µ) have
the same asymptotic expansion in powers on ν, when we set µ = ν1/4, as this
results from

1

ν

∫ 1

K′

0

e−
ζ
ν

ζn

n!
dζ = νn−e−

1

K′ν

(
νn

1
+

νn−1

K ′1!
+ · · · + ν

K ′n−1(n − 1)!
+

1

K ′nn!

)
.

(46)
It is also clear that in a little disc near the origin

̂̄U = Û ,

but this does not imply that Ū = U since U has no meaning as a function
of ν, and an asymptotic expansion does not define a unique function. The real
question is whether or not Ū is solution of (11) in Hs.

By construction, we know that the Gevrey 1 expansion of

V (µ1/4) =: (1 + ∆)2Ū(µ1/4) − µŪ(µ1/4) + Ū(µ1/4)3

in powers of µ1/4 is identically 0, but we don’t know whether this function
(smooth in µ1/4), which is in Hs−4, is indeed 0. In fact we have the following

Theorem 7.2 For any even Q ≥ 8, take s > Q/4. Then, α being defined by
Lemma 2.1, the quasiperiodic function Ū(µ1/2α) ∈ Hs, with s > Q/4, defined
from the series found in Theorem 5.1, is solution of the Swift–Hohenberg PDE

up to an exponentially small term bounded by C(K ′)e
− 1

K′µ1/2α in Hs−4, for any
K ′ > K1/2α.
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Proof. The result of the Theorem follows directly from two elementary lemmas
E.1 and E.2 on Gevrey 1 series shown in Appendix E, and which may be un-
derstood in the function space Hs instead of C. Indeed, for α = 2 this gives an
estimate of the difference beween V (µ1/4) and the truncated Laplace transform
of the equation (44) (which is then 0), taking into account of

(1 + ∆)2Ū(µ1/4) =
1

µ1/4

∫ 1

K′

0

e−
ζ
ν (1 + ∆)2Û(ζ)dζ.

Using Remark 6.1, the extension to larger α’s is left to the reader.

A Proof of Lemma 2.1

We give below an elementary proof of Lemma 2.1.
The polynomial P being irreducible on Q of degree l +1 and the polynomial

Q defined by

Q(x) =
∑

0≤j≤l

qjx
j ,

being of degree l, then by the Bezout Theorem there exist two polynomials A(x)
of degree l − 1 and B(x) of degree l, with coefficients in Q such that

A(x)P (x) + B(x)Q(x) = 1. (47)

Defining coefficients pj , 0 ≤ j ≤ l + 1, aj , 0 ≤ j ≤ l − 1 and bj , 0 ≤ j ≤ l of
polynomials P , A and B, the identity (47) becomes a linear system of 2l + 1
equations, of the form

MX = ξ0, (48)

where the unknown is X with

X =




aj−1

aj−2

·
a0

bl

bl−1

·
b0




, ξ0 =




0
0
·
·
·
·
0
1




,

M =




pl+1 0 · 0 ql 0 · · 0
pl pl+1 · · ql−1 ql 0 · ·
· · · 0 ql−2 ql−1 ql · ·
· · · pl+1 · · · · 0

p1 · · pl q0 · · · ql

p0 · · pl−1 0 q0 · · ql−1

0 p0 · pl−2 0 0 · · ·
· · · · · · · · ·
0 · 0 p0 0 · · 0 q0




.
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The (2l+1)× (2l+1) matrix M has integer coefficients and is invertible (other-
wise it would contradict the Bezout Theorem). Hence its determinant is integer
valued and is an homogeneous polynomial of degree l + 1 in q = (q0, . . . , ql).
We may invert the system (48) by Cramer’s formulas and we observe that the
coefficients bj are rational numbers, with a common denominator of degree l+1
in q and with a numerator of degree l only (we replace in the determinant one
column containing the qj ’s by ξ0). It results that the polynomial B(x) is the
ratio of a polynomial with integer coefficients B0 of degree l in q, with an integer
d, homogeneous polynomial of q of degree l + 1 and which is different from 0
(detM 6= 0). Now taking x = ω in (47) leads to

|Q(ω)| =
d

|B0(ω)| ,

and since d ≥ 1 and the coefficients of B0 are bounded by C′|q|l, this completes
the proof of Lemma 2.1.

B Proof of Lemma 4.1

By construction we have (21), so assertion (i) is clear. This implies directly
assertion (iii), since in the Q/2− dimensional space of {m′

j, j = 1, . . . , Q/2} the

set
∑Q/2

j=1 |m′
j | = N is a union of 2Q/2 simplexes of area of order O(NQ/2−1).

To prove (22) we observe that

Nk+l = min{|m + n|;k + l =

Q∑

j=1

(mj + nj)kj}

≤ min{|m|;k =

Q∑

j=1

mjkj} + min{|n|; l =

Q∑

j=1

njkj}

≤ Nk + Nl,

where

Nk = min
k=km

Q∑

j=1

mjkj , Nl = min
l=l n

Q∑

j=1

njkj .

We notice that N0 = 0, and N−k = Nk (each m′
j for k is just the opposite for

−k); we deduce that inequality (22) may be strict, since

0 = N0 = Nk−k < N−k + Nk = 2Nk.

The last inequality (23) is easily deduced from

k =

Q∑

j=1

mjkj
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where {mj} gives precisely the “norm” Nk; which implies (since |kj | = 1)

|k| ≤
Q∑

j=1

|mj | = Nk,

and the Lemma is proved.

C Proof of Lemma 4.2

Let u ∈ Hs, then by Cauchy–Schwarz inequality in l2(Γ) (Γ is countable) we
have

∣∣∣∣∣
∑

k∈Γ

ukeik·x

∣∣∣∣∣

2

≤
(∑

k∈Γ

(1 + Nk
2)s|uk|2

)∑

k∈Γ

1

(1 + Nk
2)s

≤ ||u||2Hs

∑

k∈Γ

1

(1 + Nk
2)s

.

Now by (24) we have the following estimate

∑

k∈Γ

1

(1 + Nk
2)s

≤ c1(Q)
∑

n∈N

nQ/2−1

(1 + n2)s

which is bounded when s > Q/4. Hence for s > Q/4 the series
∑

k∈Γ ukeik·x

converges absolutely and represents a continuous quasiperiodic function, the
norm (uniform norm) of which being bounded as soon as the norm in Hs is
bounded. We may proceed in the same way for the derivatives in using (23),
and show that the series ∑

k∈Γ

|k|lukeik·x

is absolutely convergent for s > Q/4+l. This ends the proof of the last assertion
of the Lemma. Let us now prove the first assertion which is necessary for our
nonlinear problem.

First step: We first use the following inequality due to (22)

(1 + N2
k+k′)s/2 ≤ 2s−1

{
(1 + N2

k
)s/2 + (1 + N2

k′)s/2
}

valid for any s ≥ 1, because of (22) and a simple convexity argument (this
inequality is in fact valid for s > 0). Then the following decomposition holds

∑

K

∣∣∣∣∣
∑

k+k′=K

ukvk′

∣∣∣∣∣

2

(1 + N2
K)s ≤ 22s−1(S1 + S2)
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with

S1 =
∑

K

∣∣∣∣∣
∑

k+k′=K

ukvk′

∣∣∣∣∣

2

(1 + N2
k)s

S2 =
∑

K

∣∣∣∣∣
∑

k+k′=K

ukvk′

∣∣∣∣∣

2

(1 + N2
k′)s.

For symmetry reasons in the space (k,k′), it is then sufficient to estimate S1.
Let us split the bracket in the sum S1 into two terms: a sum S′

1 containing
(k,k′) such that

Nk ≤ 3Nk′,

and a sum S′′
1 containing (k,k′) such that Nk > 3Nk′ . Hence we have now

S1 ≤ 2(S′
1 + S′′

1 )

with

S′
1 =

∑

K

∣∣∣∣∣∣∣∣

∑

k+k
′=K,

Nk≤3N
k′

ukvk′

∣∣∣∣∣∣∣∣

2

(1 + N2
k
)s,

S′′
1 =

∑

K

∣∣∣∣∣∣∣∣

∑

k+k
′=K,

Nk>3N
k′

ukvk′

∣∣∣∣∣∣∣∣

2

(1 + N2
k
)s.

To estimate S′
1 we use (22) which gives NK ≤ 4Nk′ , hence

1

1 + N2
k′

≤ 16

1 + N2
K

,

and, in using again Cauchy–Schwarz

∑

k+k
′=K,

Nk≤3N
k′

|ukvk′ |(1 + N2
k)s/2 ≤

∑

k+k
′=K,

Nk≤3N
k′

4s|ukvk′ | (1 + N2
k
)s/2(1 + N2

k′)s/2

(1 + N2
K

)s/2

≤ 4s

(1 + N2
K

)s/2
||u||Hs ||v||Hs .

It results that

S′
1 ≤ ||u||2Hs

||v||2Hs

∑

K

42s

(1 + N2
K

)s

which, for s > Q/4 leads to

S′
1 ≤ C||u||2Hs

||v||2Hs
.
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Second step: We now find a bound for S′′
1 , which is more technical, since we

split this sum into packets of increasing lengths.
Let us define

∆pu =
∑

2p≤Nk<2p+1

ukeik·x, ∆−1u = u0.

It is clear that for s > Q/4 (the series is absolutely convergent)

u =

∞∑

p=−1

∆pu.

Moreover, it is clear from the definition that the norm of u ∈ Hs is equivalent
to ( ∞∑

p=−1

22ps||∆pu||20

)1/2

.

To estimate the sum S′′
1 , we notice that in the product uv the terms ∆pu∆qv

only take into account the wavevectors k and k′ such that

2p ≤ Nk < 2p+1, 2q ≤ Nk′ < 2q+1, Nk > 3Nk′ .

This implies
Nk′ < 2p, 2q+1 < Nk,

hence in S′′
1

∆pu∆qv = 0, for p ≤ q.

Now, we use (for the sum in S′′
1 )

2

3
Nk ≤ NK

S′′
1 ≤ (

2

3
)2s
∑

K

∣∣∣∣∣∣∣∣

∑

k+k
′=K,

Nk>3N
k′

ukvk′

∣∣∣∣∣∣∣∣

2

(1 + N2
K)s

and the right hand side is the square of the norm of the product uv computed
on terms such that Nk > 3Nk′, k + k′ = K. We now use the equivalent norm
defined above with the decomposition in packets, hence

S′′
1 ≤ C

∞∑

j=−1

22js

∥∥∥∥∥∥
∆j


∑

p≥0

(
p−1∑

q=−1

∆qv

)
∆pu



∥∥∥∥∥∥

2

0

.

Let us define Sp−1v =
∑p−1

q=−1 ∆qv, then we have

∆j

(∑

p

Sp−1v∆pu

)
=

j+1∑

p=j−1

∆j(Sp−1v∆pu)2ps2−ps
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hence by Cauchy–Schwarz

22js

∥∥∥∥∥∆j

(∑

p

Sp−1v∆pu

)∥∥∥∥∥

2

0

≤




j+1∑

p=j−1

22(j−p)s




j+1∑

p=j−1

22ps ‖∆j(Sp−1v∆pu)‖2
0

Now
‖Sp−1v∆pu‖2

0 =
∑

K

|
∑

k+k′=K,0≤N
k′<2p≤Nk<2p+1

ukvk′ |2

and a classical computation (convolution l1 ∗ l2) using Cauchy–Schwarz gives

∑

K

|
∑

k+k′=K

ukvk′ |2 ≤
∑

K

{
(
∑

k+k′=K

|vk′ ||uk|2)(
∑

k′

|vk′ |)
}

≤ (
∑

k′

|vk′ |)(
∑

k

∑

K

|vK−k||uk|2)

≤
(

(
∑

k′

|vk′ |)
)2∑

k

|uk|2)

which leads to

‖Sp−1v∆pu‖2
0 ≤ ||∆pu||20

(
(
∑

k′

|vk′ |)
)2

and since the series
∑ |vk′ | ≤ c||v||Hs for s > Q/4, as shown at the beginning of

the proof of Lemma 4.2, we have

‖Sp−1v∆pu‖2
0 ≤ C||∆pu||20||v||2Hs

.

Finally, we obtain

j+1∑

p=j−1

22ps ‖∆j(Sp−1v∆pu)‖2
0 ≤

j+1∑

p=j−1

22ps ‖Sp−1v∆pu‖2
0

≤ C′||v||2Hs

j+1∑

p=j−1

22ps||∆pu||20,

and

22js

∥∥∥∥∥∆j

(∑

p

Sp−1v∆pu

)∥∥∥∥∥

2

0

≤ C′′||v||2Hs

j+1∑

p=j−1

22ps||∆pu||20,

hence

S′′
1 ≤ 3C

′′ ||v||2Hs

∞∑

p=−1

22ps||∆pu||20

≤ C1||u||2Hs
||v||2Hs

and Lemma 4.2 is proved.
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D Proof of Lemma 5.3

Let us define the two sums

Π2,n =

n∑

k=0

(k!(n − k)!)2α

Π′
2,n =

n−1∑

k=1

(k!(n − k)!)2α

we have already

Π2,0 = 1, Π2,1 = 2, Π2,2 = (2 +
1

22α
)(2!)2α,

Π′
2,2 = 1, Π′

2,3 = 2(2!)2α,

which shows that Π2,n ≤ (2 + 1
16 )(n!)4 for n = 0, 1, 2, and α ≥ 2. Now we have

for n ≥ 2

Π2,n+1

((n + 1)!)2α
− Π2,n

(n!)2α
=

n−2∑

k=2

(
k!(n − k)!

n!

)2α
{(

n + 1 − k

n + 1

)2α

− 1

}
+

+
2

(n + 1)2α
− 2

n2α
+

22α

(n(n + 1))2α
,

and since n2α − (n+1)2α +22α−1 < 0 for n ≥ 1 the above right hand side terms
are negative. It results that for n ≥ 2

Π2,n+1 ≤
(

(n + 1)!

n!

)2q

Πn,2,

hence

Π2,n ≤ (2 +
1

16
)(n!)2α, n ≥ 0. (49)

In the same way

Π′
2,n+1

(n!)2α
−

Π′
2,n

((n − 1)!)2α
=

n−2∑

k=2

(
k!(n − k)!

n!

)2α
{(

n + 1 − k

n + 1

)2α

− 1

}
+

22α

n2α
,

hence for n ≥ 2
Π′

2,n+1

(n!)2α
≤

Π′
2,n

((n − 1)!)2α
+

22α

n2α
,

and

Π′
2,n

((n − 1!)2α
≤ 22α

(
1

(n − 1)2α
+ · · · + 1

22α

)
+ Π′

2,2

≤ 2 + 22α

(
1

(n − 1)2α
+ · · · + 1

32α

)

≤ 2 +
2

2α − 1
≤ 3.
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Finally
Π′

2,n ≤ 3((n − 1!)2α for n ≥ 2. (50)

Consider now Π3,n defined by

Π3,n =
∑

k+l+r=n
k,l,r≥0

(k!l!r!)2α.

We already have

Π3,0 = 1, Π3,1 = 3, Π3,2 = (3 +
3

22α
)(2!)2α ≤ 4(2!)2α,

In splitting the sum we obtain easily for n ≥ 3

Π3,n = Π2,n + (n!)2α +

n−1∑

r=1

(r!)2αΠ2,n−r

≤ (3 +
1

16
)(n!)2α + (2 +

1

16
)Π′

2,n

≤ (n!)2α(3 +
1

16
+ 3(2 +

1

16
)

1

n2α
)

≤ (3 +
3

16
+

9

34
)(n!)2α ≤ 4(n!)2α.

Hence
Π3,n ≤ 4(n!)2α (51)

holds for any n ≥ 0. Consider now Π′
3,n defined for n ≥ 2 by

Π′
3,n =

∑

k+l+r=n
0≤k,l,r≤n−1

(k!l!r!)2α.

We already have
Π′

3,2 = 1,

and for n ≥ 3, we obtain in the same way

Π′
3,n = Π′

2,n +

n−1∑

r=1

(r!)2αΠ2,n−r

≤
(

3 + 3(2 +
1

16
)

)
(n − 1!)2α

≤ 10(n − 1!)2α. (52)

Hence, with estimates (51) and (52), Lemma 5.3 is proved.
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E Lemmas on Gevrey 1 series

Below we give elementary proofs of two useful lemmas. The interested reader
will find more general results in [27] and [26].

In the following we denote by LK′ the linear operator defined for analytic
functions v on the disc {|z| < 1/K1} by

(LK′v)(ν) =
1

ν

∫ 1/K′

0

e−
z
ν v(z)dz, K ′ > K1.

We also use the notations

||v||0,K′ = sup
z∈(0,1/K′)

|v(z)|, ||v||1,K′ = sup
z∈(0,1/K′)

|v′(z)|,

and when v(0) = 0, we notice that (integrating by parts for the second estimate)

|(LK′v)(ν)| ≤ ||v||0,K′ , (53)∣∣∣∣∣(LK′v)(ν) −
∫ 1/K′

0

e−
z
ν v′(z)dz

∣∣∣∣∣ ≤ e−
1

K′ν ||v||0,K′ .

Then we have the following Lemmas giving estimates of the commutator of
LK′ ◦B (where B is the Borel transform) with the multiplication by ν4 and with
the mapping u 7→ u3 in the space of Gevrey series.

Lemma E.1 Assume that u(ν) is a Gevrey 1 series, with u0 = 0, then for
ν < 1/K ′

∣∣∣
(
LK′(û3

)
(ν) − (LK′ û)

3
(ν)
∣∣∣ ≤ e−

1

K′ν

(K ′ν)3
||û||0,K′(||û||0,K′ + ν||û||1,K′)2.

For any given Gevrey 1 series u, with u0 = 0, there is C(K ′) > 0 such that for
ν < ν0(K

′) we have the estimate

∣∣∣
(
LK′(û3

)
(ν) − (LK′ û)

3
(ν)
∣∣∣ ≤ C(K ′)e−

1

K′ν , K ′ > K1.

Lemma E.2 Assume that u(ν) is a Gevrey 1 series, with u0 = 0, then for
ν < 1/K ′ there exists C(K ′) such that

∣∣(LK′Kû)(ν) − ν4LK′ û
∣∣ ≤ C(K ′)||û||0,K′e−

1

K′ν .

Proof of Lemma E.1. From the identity

∫ z

0

(∫ z1

0

zk−1
1 zm−1

2 (z − z1 − z2)
l

(k − 1)!(m − 1)!l!
dz2

)
dz1 =

zk+m+l

(k + m + l)!
,
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from the definition (43) of the convolution product, and from the analyticity of
û in the disc {|z| < 1/K1}, we have

(LK′(û ∗ û ∗ û)) (ν) =
(
LK′(û3

)
(ν) =

=
1

ν

∫ 1/K′

0

e−
z
ν

(∫ z

0

(∫ z1

0

û′(z1)û
′(z2)û(z − z1 − z2)dz2

)
dz1

)
dz.

By Fubini’s theorem and a simple change of variables, we obtain

(
LK′(û3

)
(ν) =

1

ν

∫

DK′

e−
z1+z2+z3

ν û′(z1)û
′(z2)û(z3)dz1dz2dz3 (54)

where DK′ = {z1, z2, z3 > 0; z1 + z2 + z3 < 1/K ′}. Now, we have

(LK′ û)
3
(ν) =

1

ν3

∫

(0,1/K′)3
e−

z1+z2+z3
ν û(z1)û(z2)û(z3)dz1dz2dz3,

and from (53) we obtain
∣∣∣∣∣(LK′ û)

3
(ν) − 1

ν

∫

(0,1/K′)3
e−

z1+z2+z3
ν û′(z1)û

′(z2)û(z3)dz1dz2dz3

∣∣∣∣∣ ≤

≤ e−
1

K′ν ||û||20,K′(||û||0,K′ + ν||û||1,K′). (55)

Now, we observe that (0, 1/K ′)3\DK′ is such that z1 + z2 + z3 > 1/K ′, hence
∣∣∣∣∣
1

ν

∫

(0,1/K′)3\DK′

e−
z1+z2+z3

ν û′(z1)û
′(z2)û(z3)dz1dz2dz3

∣∣∣∣∣ ≤
e−

1

K′ν

ν3K ′3 ||û||0,K′(ν||û||1,K′)2.

(56)
Collecting (54), (55) and (56) the first result of Lemma E.1 is proved. Notice

that by choosing K ′′ > K ′, then for ν small enough e
−

1

K′ν

ν3K′3 ≤ e−
1

K′′ν . Since K ′

is chosen arbitrarily larger than K1, we can assert that u being given, there is
C(K ′) such that

∣∣∣
(
LK′(û3

)
(ν) − (LK′ û)

3
(ν)
∣∣∣ ≤ C(K ′)e−

1

K′ν , K ′ > K1.

Proof of Lemma E.2. By integrating by parts, we obtain

(LK′Kû)(ν) = −e−
1

K′ν

[
(Kû) + ν(Kû)′ + ν2(Kû)′′ + ν3(Kû)′′′

]
|1/K′ +

+ν4(LK′ û)(ν).

Hence

∣∣(LK′Kû)(ν) − ν4(LK′ û)(ν)
∣∣ ≤ e−

1

K′ν ||û||0,K′

{
ν3

K ′ +
ν2

2K ′2 +
ν

6K ′3 +
1

24K ′4

}

which proves Lemma E.2.
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