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Quasipatterns (two-dimensional patterns that are quasiperiodic in any spatial direction) remain one of the outstanding problems of pattern formation. As with problems involving quasiperiodicity, there is a small divisor problem. In this paper, we consider 8-fold, 10-fold, 12-fold, and higher order quasipattern solutions of the Swift-Hohenberg equation. We prove that a formal solution, given by a divergent series, may be used to build a smooth quasiperiodic function which is an approximate solution of the pattern-forming PDE up to an exponentially small error.

Introduction

Quasipatterns remain one of the outstanding problems of pattern formation. These are two-dimensional patterns that have no translation symmetries and are quasiperiodic in any spatial direction (see figure 1). In spite of the lack of translation symmetry, the spatial Fourier transforms of quasipatterns have discrete rotational order (most often, 8, 10 or 12-fold). In contrast, regular patterns have translation symmetries (they are periodic in space) and so cannot have 8, 10 or 12-fold rotation symmetry. Quasipatterns were first discovered in nonlinear pattern-forming systems in the Faraday wave experiment [START_REF] Christiansen | Ordered capillarywave states: Quasi-crystals, hexagons, and radial waves[END_REF][START_REF] Edwards | Patterns and quasi-patterns in the Faraday experiment[END_REF], in which a layer of fluid is subjected to vertical oscillation. Since their discovery, they have also been found in nonlinear optical systems [START_REF] Herrero | Twelvefold quasiperiodic patterns in a nonlinear optical system with continuous rotational symmetry[END_REF], shaken convection [START_REF] Rogers | Complex-ordered patterns in shaken convection[END_REF][START_REF] Volmar | Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation[END_REF] and in liquid crystals [START_REF] Lifshitz | Soft quasicrystals: Why are they stable?[END_REF], as well as being investigated in detail in large aspect ratio Faraday wave experiments [START_REF] Arbell | Pattern formation in two-frequency forced parametric waves[END_REF][START_REF] Binks | Nonlinear pattern formation of Faraday waves[END_REF][START_REF] Binks | Effect of depth on the pattern formation of Faraday waves[END_REF][START_REF] Kudrolli | Superlattice patterns in surface waves[END_REF]. In many of these experiments, the domain is large compared to the size of the pattern, and the boundaries appear to have little effect. Furthermore, the pattern is usually formed in two directions (x and y), while the third direction (z) plays little role. Mathematical models of the experiments are therefore often posed with two unbounded directions, and the basic symmetry of the problem is E(2), the Euclidean group of rotations, translations and reflections of the (x, y) plane.

The mathematical basis for understanding the formation of regular patterns is well founded in equivariant bifurcation theory [START_REF] Golubitsky | Singularities and Groups in Bifurcation Theory[END_REF]. With regular (spatially periodic) patterns, the pattern-forming problem (usually a PDE) is posed in a periodic spatial domain instead of the infinite plane. Spatially periodic patterns have Fourier expansions with wavevectors that live on a lattice. There is a parameter µ in the PDE, and at the point of onset of the pattern-forming instability (µ = 0), the primary modes have zero growth rate and all other modes on the lattice have negative growth rates that are bounded away from zero. In this case, the infinite-dimensional PDE can be reduced rigorously to a finite-dimensional set of equations for the amplitudes of the primary modes [START_REF] Carr | Applications of Centre Manifold Theory[END_REF][START_REF] Chossat | The Couette-Taylor Problem[END_REF][START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[END_REF][START_REF] Iooss | Topics in Bifurcation Theory and Applications[END_REF][START_REF] Vanderbauwhede | Center manifold theory in infinite dimensions[END_REF], and existence of regular patterns as solutions of the pattern-forming PDE can be proved. The coefficients of leading order terms in these amplitude equations can be calculated and the values of these coefficients determine how the amplitude of the pattern depends on the parameter µ, and which of the regular patterns that fit into the periodic domain are stable. The solutions of the PDE are expressed as power series in √ µ, which can be computed, and which has a non-zero radius of convergence.

In contrast, quasipatterns do not fit into any spatially periodic domain and have Fourier expansions with wavevectors that live on a quasilattice (defined below). At the onset of pattern formation, the primary modes have zero growth rate but there are other modes on the quasilattice that have growth rates arbitrarily close to zero, and techniques that are used for regular patterns cannot be applied. (These small growth rates appear as small divisors, as seen below.) If weakly nonlinear theory is applied in this case without regard to its validity, this results in a divergent power series [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF], and this approach does not lead to a convincing argument for the existence of quasipattern solutions of the pattern-forming problem. This paper is primarily concerned with proving the existence of quasipatterns as steady solutions of the simplest pattern-forming PDE, the Swift-Hohenberg equation:

∂U ∂t = µU -(1 + ∆) 2 U -U 3 (1) 
where U (x, y, t) is real and µ is a parameter. We are not concerned with the stability of these quasipatterns: in fact, they are almost certainly unstable in the Swift-Hohenberg equation. Stability of a pattern depends on the coefficients in the amplitude equations (as computed using weakly nonlinear theory). In the Faraday wave experiment, and in more general parametrically forced pattern forming problems, resonant mode interactions have been identified as the primary mechanism for the stabilisation of quasipatterns and other complex patterns (see [START_REF] Rucklidge | Design of parametrically forced patterns and quasipatterns[END_REF] and references therein). These mode interactions are not present in the Swift-Hohenberg equation, though their presence will not significantly alter our existence results. In many situations involving a combination of nonlinearity and quasiperiodicity, small divisors can be handled using hard implicit function theorems [START_REF] De La Llave | A tutorial on KAM theory[END_REF], of which the KAM theorem is an example. Unfortunately, there is as yet no successful existence proof for quasipatterns using this approach, although these ideas have been applied successfully to a range of small-divisor problems arising in other types of PDEs [START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equations[END_REF][START_REF] Iooss | Small divisor problem in the theory of threedimensional water gravity waves[END_REF][START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF]. There are also alternative approaches to describing quasicrystals based on Penrose tilings and on projections of highdimensional regular lattices onto low-dimensional spaces [START_REF] Janot | Quasicrystals: a Primer[END_REF].

We take a different approach in this paper: we show how the divergent power series that is generated by the naive application of weakly nonlinear theory can be used to generate a smooth quasiperiodic function that (a) shares the same asymptotic expansion as the naive divergent series, and (b) satisfies the PDE [START_REF] Arbell | Pattern formation in two-frequency forced parametric waves[END_REF] with an exponentially small error as µ tends to 0. This approach is based on summation techniques for divergent power series: see [START_REF] Balser | From Divergent Power Series to Analytic Functions: Theory and Application of Multisummable Power Series[END_REF][START_REF] Candelpergher | From analytic functions to divergent power series[END_REF][START_REF] Ramis | Gevrey separation of fast and slow variables[END_REF] for other examples. In order to make the paper self-contained, we put in Appendices some proofs of useful results, even though they are "known".

In section 2, we define the quasilattice and derive Diophantine bounds for the small divisors that will arise in the nonlinear problem, for Q-fold quasilattices: Lemma 2.1 extends the results of [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF] covering the cases Q = 8, 10, 12 to any even Q ≥ 8. We then compute in section 3 (following [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF]) the power series in √ µ for a formal quasipattern solution U of the Swift-Hohenberg equation, where µ is the bifurcation parameter in the PDE.

In section 4, we define an appropriate function space H s : each term in the formal power series U is in this space. In section 5, we prove (Theorem 5.1) bounds on the norm of each term in the formal power series solution of the PDE. In the Q-fold case, the norm of the µ n+ 1 2 term in the power series for the quasipattern is bounded by a constant times K n (n!) 2α , where K is a constant and α/2 + 1 is the order of the algebraic number ω = 2 cos(2π/Q), which is also half of Euler's Totient function ϕ(Q) (α = 2 for Q = 8, 10 and 12, α = 4 for Q = 14 and 18, α = 6 for Q = 16, 20, 24, 30, . . . ). This result was announced in [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF] for Q ≤ 12, and is extended here to Q ≥ 14. With a bound that grows in this way with n, the power series is Gevrey -2α, taking values in a space of quasiperiodic functions.

In section 6, for convenience, we consider the cases Q = 8, 10 and 12. We introduce a small parameter ζ related to the bifurcation parameter µ by ζ = 4 √ µ, so that the norm of the ζ 4n+2 term in the power series for U is also bounded by a constant times K n (n!) 4 < K n (4n!). We use the Borel transform U of the formal solution U : the ζ 4n+2 term in the power series for U is the ζ 4n+2 term in the power series for U divided by (4n + 2)!. With this definition, U is an analytic function of ζ in the disk |ζ| < K -1/4 , and for each ζ in this disk, U is a quasiperiodic function of (x, y) in the space H s . Of course the new function U does not satisfy the original PDE, but we prove that it satisfies a transformed PDE (Theorem 6.2).

The next stage would be to invert the Borel transform: however, the usual inverse Borel transform is a line integral (related to the Laplace transform) taking ζ from 0 to ∞, and U is only an analytic function of ζ for ζ in a disk. If the definition of U could be extended to a line in the complex ζ plane, the inverse Borel transform would provide a quasiperiodic solution of the PDEthis remains an open problem.

Since the full inverse Borel transform cannot be used, in section 7, we use a truncated integral to define Ū (ν). This involves integrating ζ along a line segment inside the disk where U is analytic, weighted by an exponential that decays rapidly as ν → 0. We show that Ū (ν) and U (µ) have the same power series expansion when we set ν = 4 √ µ, but unlike U , Ū(ν) is a C ∞ function of ν in a neighbourhood of 0, taking values in H s . In other words, Ū (µ 1/4 ) is a quasiperiodic function of (x, y) for small enough µ. This function is not an exact solution of the Swift-Hohenberg PDE, but we show in Theorem 7.2 that the residual when Ū(µ 1/4 ) is substituted into the PDE is exponentially small as µ → 0.

In conclusion, we have shown that, for any even Q ≥ 8, the divergent power series U (µ) generated by the naive application of weakly nonlinear theory can be used to find a smooth quasiperiodic function Ū (µ 1/2α ) that shares the same asymptotic expansion as U , and that satisfies the PDE with an exponentially small error. This technique does not prove the existence of a quasiperiodic solution of the PDE. However, this is a first step towards an existence proof for quasiperiodic solutions of PDEs like [START_REF] Arbell | Pattern formation in two-frequency forced parametric waves[END_REF]. In particular, we may hope to use Ū as a starting point for the Newton iteration process that would form part of an existence proof using the Nash-Moser theorem. As an aside, ordinary numerical Newton iteration succeeds in finding an approximate solution of the truncated PDE for values of µ where the formal power series has already diverged, as in figure 3.

We believe that an analogous result might be proved for example in the Rayleigh-Bénard convection problem, since the dispersion equation possesses the same property as in the present model: at the critical value of the parameter there is a circle of critical wavevectors in the plane. The method may also extend to the case of the Faraday wave experiment by considering fixed points of a stroboscopic map.

In the present work we consider quasilattices generated by regularly spaced wavevectors on the unit circle, and solutions invariant under 2π/Q rotations. It might be worth studying the case of solutions having less symmetry on the same quasilattice, or quasilattices (still dense in the plane) generated by wavevectors that are irregularly spaced.
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Small divisors: Quasilattices and Diophantine bounds

Let Q ∈ N (Q ≥ 8) be the order of a quasipattern and define wavevectors

k j = cos 2π j -1 Q , sin 2π j -1 Q , j = 1, 2, . . . , Q
(see figure 2a). We define the quasilattice Γ ⊂ R 2 to be the set of points spanned by integer combinations k m of the form

k m = Q j=1 m j k j , where m = (m 1 , m 2 , . . . , m Q ) ∈ N Q . ( 2 
)
The set Γ is dense in R 2 . We are interested in real functions U (x) that are linear combinations of Fourier modes e ik•x , with x ∈ R 2 and k ∈ Γ. If U (x) is to be a real function, we need Q to be even, with k j and -k j in Γ, hence the quasilattice Γ is symmetric with respect to the origin.

Define |m| = j m j , then, for a given wavevector k ∈ Γ, we define the order The reason for this is that, for a given k, there is an infinite set of m's satisfying k = k m . For example, we could increase m j and m j+Q/2 by 1: this increases |m| by 2 but does not change k m . Whenever solutions are computed numerically, it is necessary to use only a finite number of Fourier modes, so we define the truncated quasilattice Γ N to be:

N k of k by N k = min{|m|; k = k m }. (a) (b) (c) k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8
Γ N = {k ∈ Γ : N k ≤ N } . (3) 
Figure 2(b,c) shows the truncated quasilattices Γ 9 and Γ 27 in the case Q = 8.

In the calculations that follow, we will require Diophantine bounds on the magnitude of the small divisors in terms of N k . We see below that the small divisors are |k| 2 -1 , for k ∈ Γ. To compute the required bound, we start with

|k m | 2 = 1≤j1≤j2≤Q 2m j1 m j2 cos 2π Q (j 1 -j 2 ), hence |k m | 2 -1 = q 0 + ωq 1 + • • • + ω l q l (4) 
where q 0 + 1 and q j , j = 1, . . . , l are integer-valued quadratic forms of m, and ω is an algebraic number defined by

ω = 2 cos 2π Q .
This number is solution of a polynomial of degree l + 1 ≤ Q/2 with integer coefficients. For example, we have in the case Q = 8:

|k m | 2 = 4 j=1 m ′ j 2 + √ 2 (m ′ 1 m ′ 2 + m ′ 2 m ′ 3 + m ′ 3 m ′ 4 -m ′ 4 m ′ 1 ) , (5) 
N k = 4 j=1 |m ′ j | (6) 
where m ′ j = m j -m j+Q/2 . More generally we have

N k ≤ Q/2 j=1 |m ′ j |.
The above inequality can occur strictly (for example) in the case Q = 12, because only 4 of the 12 vectors k j are rationally independent in this case.

In the cases Q = 8, 10 and 12, the irrational numbers

ω = 2 cos(2π/Q) are √ 2, 1+ √ 5 2
and √ 3: these are quadratic algebraic numbers (l + 1 = 2), while for Q = 14, ω is cubic (l + 1 = 3). For an algebraic number ω of order l + 1, the quantity

|q 0 + ωq 1 + • • • + ω l q l |
may be as small as we want for good choices of large integers q j .

In [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF], it was proved that in the cases Q = 8, 10 and 12, there is a constant c > 0 such that

|k| 2 -1 ≥ c N 2 k , for any k ∈ Γ with |k| = 1. (7) 
The proof relies on the fact that for quadratic algebraic numbers, there exists C > 0 such that |p -ωq| ≥ C q holds for any (p, q) ∈ Z 2 , q = 0 [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. Now using the fact that q is quadratic in m (see ( 5)) we have

q ≤ QN 2 k (8)
from which (7) can be deduced. We extend the Diophantine bound [START_REF] Candelpergher | From analytic functions to divergent power series[END_REF] to any even Q ≥ 8, and prove that there exists c > 0 depending only on Q, such that for any k ∈ Γ, with |k| = 1, there exists α ≥ 2 such that

|k| 2 -1 ≥ c N α k . (9) 
To show this, we use the following known result (see [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF]) proved in Appendix A:

Lemma 2.1 Let ω be an algebraic number of order l + 1, that is, a solution of P (ω) = 0 where P is a polynomial of degree l + 1 with integer coefficients, that is irreducible on Q. Then, there exists a constant C and an integer α with 2 ≤ α ≤ 2l such that for any q = (q 0 , q 1 , . . . , q l ) ∈ Z l+1 \{0}, the following estimate

|q 0 + q 1 ω + q 2 ω 2 + • • • + q l ω l | ≥ C |q| α/2 (10)
holds, where |q| = 0≤j≤l |q j |.

As an aside, the polynomials P are related to cyclotomic polynomials, and the order l + 1 of the algebraic number ω is ϕ(Q)/2, where ϕ(Q) is Euler's Totient function [START_REF] Barbeau | Polynomials[END_REF], the number of positive integers j < Q such that j and Q are relatively prime. For example, ϕ(14) = 6 since the 6 numbers 1, 3, 5, 9, 11 and 13 have no factors in common with 14, and so l + 1 = 3 in the case Q = 14.

The expression 2 cos 2pπ Q as a polynomial in ω, for 1

≤ p ≤ Q -1, as 2 cos 2pπ Q = ω p -pω p-2 + p(p -3) 2 ω p-4 .....
has integer coefficients which only depend on Q (easy proof by induction). Hence the estimate ( 8) is replaced by

|q| ≤ c(Q)N 2 k
where c(Q) depends only on Q. Then estimate ( 9) is satisfied by taking

c = C [c(Q)] α/2 ,
It should be observed that the estimate α ≤ 2l might be not optimal, however for l + 1 = 2 we have indeed α = 2 and for Q = 14, this gives α ≤ 4, and computations of |k| 2 -1 in the case Q = 14 up to N k = 1000 suggest that indeed α = 4 in this case [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF].

Formal power series computation

Let us consider the steady Swift-Hohenberg equation

(1 + ∆) 2 U -µU + U 3 = 0 ( 11 
)
where we look for a Q-fold quasiperiodic function U of x ∈ R 2 , defined by Fourier coefficients U k on a quasilattice Γ as defined above. We write formally

U (x) = k∈Γ U k e ik•x ,
the meaning of this sum being given in section 4. We seek a solution of [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF], bifurcating from the origin when µ = 0, that is invariant under rotations by 2π/Q. First we look for a formal solution in the form of a power series of an amplitude. More precisely we look for the series

U (x, µ) = µ β n≥0 µ n U (n) (x) (12) 
as a formal solution of [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF], where all coefficients U (n) are invariant under rotations by 2π/Q of the plane. The coefficient β will be given by fixing

U (0) k1 . At order O( |µ|) in (11) we have 0 = (1 + ∆) 2 U (0) (13) 
and we choose the solution

U (0) = Q j=1 e ikj •x , (14) 
which is invariant under rotations by 2π/Q and defined up to a factor which we take equal to 1. Let us rewrite [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF] in the form

L 0 U = µU -U 3 (15) 
where

L 0 = (1 + ∆) 2 .
At order O(|µ| 3/2 ) we have

L 0 U (1) = U (0) -β -1 (U (0) ) 3 . (16) 
We need to impose a solvability condition, namely that the coefficients of e ikj•x , for j = 1, . . . , Q on the left hand side of this equation must be zero. Because of the invariance under rotations by 2π/Q, it is sufficient to cancel the coefficient of e ik1•x . This yields

β = 3(Q -1) > 0, (17) 
and U (1) is known up to an element β (1) U (0) in ker L 0 , which is determined at the next step:

U (1) = U (1) + β (1) U (0) , U (1) = k∈Γ,N k =3 α k e ik•x , (18) 
α 3kj = -1/64, α 2kj+k l = - 3 (1 -|2k j + k l | 2 ) 2 , k j + k l = 0, α kj +k l +kr = - 6 (1 -|k j + k l + k r | 2 ) 2 , j = l = r = j, k j + k l = 0, k j + k r = 0, k r + k l = 0,
where U (1) has no component on e ikj •x . Order |µ| n+1/2 in (15) leads for n ≥ 2 to For n = 2, the solvability condition on the right hand side gives β (1) , and U (2) is then determined up to β (2) U (0) . Indeed we obtain on the right hand side

L 0 U (n) = U (n-1) -β -1 k+l+r=n-1, k,l,r≥0 U (k) U (l) U (r) . (19) 
U (1) -3β -1 U (1) U (0)2 = U (1) + β (1) U (0) -3β -1 β (1) U (0)3 -3β -1 U (1) U (0)2 = -2β (1) + U (1) -3β -1 U (1) U (0)2 -3β -1 L 0 U (1) ,( 20 
)
where we used the fact that the component of U (0)3 on e ik1•x is β (see ( 16)). Hence 2β (1) is the coefficient of e ik1•x of -3β -1 U (1) U (0)2 , and since all coefficients of U (1) are negative, we find β (1) > 0. We obtain in the same way the coefficients β (n-1) U (0) of U (n-1) in using the solvability condition on the right hand side of [START_REF] Herrero | Twelvefold quasiperiodic patterns in a nonlinear optical system with continuous rotational symmetry[END_REF].

It is then clear that we can continue to compute this expansion as far as we wish, where at each step we use the formal inverse of L 0 on the complement of the kernel, which is one-dimensional because of the invariance under rotations by 2π/Q. However, applying L -1 0 to e ik•x introduces a factor 1 (1 -|k| 2 ) 2 , which may be very large for combinations k = k m with large m, since points k m of the quasilattice Γ sit as close as we want to the unit circle. This is a small divisor problem and computations indicate that the series (12) seems to diverge numerically [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF]. We illustrate this in figure 3, plotting the amplitude A (N ) against µ, where

A (N ) = ||P 0 µ β (N -1)/2 n=0 µ n U (n) || s = µ β   (N -1)/2 n=0 µ n β (n)   ||U (0) || s ,
and the norm || • || s and the projection operator P 0 are defined below: A (N ) is essentially the magnitude of the coefficient of e ik1•x as a function of µ and of N , the maximum order of wavevectors included in the truncated power series. However, we prove in section 5 that in all cases we can control the divergence of the coefficients of the series [START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equations[END_REF], and obtain a Gevrey estimate

||U (n) || s ≤ γK n (n!) 2α
, where the norm || • || s is defined below.

Function spaces

We characterise the functions of interest by their Fourier coefficients on the quasilattice Γ generated by the Q unit vectors k j :

U (x) = k∈Γ U k e ik•x
Recall that for each k ∈ Γ, there exists a vector m ∈ N Q such that k = k m = Q j=1 m j k j and we can choose m such that

|m| = N k = min{|m| : k = k m }.
We have the following properties, proved in Appendix B:

Lemma 4.1 (i) We define m ′ j = m j -m j+Q/2 , then N k = min    Q/2 j=1 |m ′ j | : Q/2 j=1 m ′ j k j = k, m ′ j ∈ Z, j = 1, . . . , Q/2    . (21) 
(ii) We have the following inequalities:

N k+k ′ ≤ N k + N k ′ , N -k = N k , ( 22 
) |k| ≤ N k . (23) 
(iii) We have the following estimate of the numbers of vectors k having a given N k : card{k :

N k = N } ≤ c 1 (Q)N Q/2-1 (24) 
where c 1 (Q) only depends on Q.

Define now the space of functions

H s = U = k∈Γ U k e ik•x : ||U || 2 s = k∈Γ (1 + N k 2 ) s |U k | 2 < ∞ , (25) 
which becomes a Hilbert space with the scalar product

W, V s = k∈Γ (1 + N k 2 ) s W k V k . (26) 
In the sequel we need the following lemma, proved in Appendix C:

Lemma 4.2
The space H s is a Banach algebra for s > Q/4. In particular there exists c s > 0 such that

||U V || s ≤ c s ||U || s ||V || s . ( 27 
)
For ℓ ≥ 0 and s > ℓ

+ Q/4, H s is continuously embedded into C ℓ .
From now on, all inner products are s unless otherwise stated, so that we can remove the s subscripts throughout in scalar products.

We will also use the orthogonal projection on ker L 0 : for any U ∈ H s , let

P 0 U = j=1,...,Q U kj e ikj •x ,
and we denote by Q 0 the orthogonal projection:

Q 0 = I -P 0 ,
which consists in suppressing the Fourier components of e ikj •x , j = 1, . . . , Q.

The norm of the linear operator Q 0 is 1 in all spaces H s .

Gevrey estimates

In this section we prove rigorously a Gevrey estimate of the coefficients U (n) in [START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equations[END_REF]. The estimate for Q = 8, 10 and 12 (α = 2) was announced in [START_REF] Rucklidge | Convergence properties of the 8, 10 and 12 mode representations of quasipatterns[END_REF]. Recall that a formal power series

∞ n=0 u n ζ n is Gevrey -k [15],
where k is a positive integer, if there are constants δ > 0 and K > 0 such that

|u n | ≤ δK n (n!) k ∀n ≥ 0. ( 28 
)
Theorem 5.1 For any even Q ≥ 8, assume that s > Q/4. Then there exist positive numbers K(Q, c, s) and δ(Q, s) such that there exists a unique U (µ) as a power series in µ 1/2 , all coefficients belonging to H s , that is a formal solution of [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF], and that satisfies

U = µ β n≥0 µ n U (n) , (29) 
U (n) = β (n) U (0) + U (n) , U (n) , e ikj•x s = 0, j = 1, . . . , Q, || U (n) || s ≤ δ (Q -1) 2 s/2 c 2 s Q K n (n!) 2α , n ≥ 1, |β (n) | ≤ δK n (n!) 2α , n ≥ 1.
where α is the integer defined in Lemma 2.1. From the above inequalities, it follows that

||U (n) || s ≤ γK n (n!) 2α , n ≥ 0,
where γ is related to δ, Q and s only.

Remark 5.2

The above Theorem claims that the series U in powers of √ µ is Gevrey -α taking its values in H s .

Proof We choose s > Q/4 since Lemma 4.2 insures that H s is then a Banach algebra. We notice that

||e ikj •x || s = 2 s/2 ,
and

||U (0) || s = 2 s/2 Q. (30) 
We also have β (0) = 1 and U (0) = 0. Now we notice from (9) that for |k| = 1 we have

|k| 2 -1 -2 ≤ N 2α k c 2 ,
which controls the unboundedness of the pseudo-inverse L -1 0 (inverse of L 0 restricted to the orthogonal complement of its kernel). Indeed L -1 0 is bounded from H s to H s-2α . The basic observation here is that the coefficient U (n) of µ n has a finite Fourier expansion in e ik•x , with k = Q j=1 m j k j , m j ≤ 2n + 1, hence N k ≤ 2n + 1. Since for U (1) we have |m| = 3 in all k m 's, equation ( 16) leads to

|| U (1) || s ≤ 3 2α c 2 s 2 3s/2 Q 3/2 c 2 3(Q -1) . (31) 
We set

U (n) = β (n) U (0) + U (n) , U (n) = Q 0 U (n) , (32) 
and replacing this decomposition in [START_REF] Herrero | Twelvefold quasiperiodic patterns in a nonlinear optical system with continuous rotational symmetry[END_REF] we obtain, by taking the scalar product with e ik1•x

β (n-1) 2 s - 1 β 3U (n-1) U (0)2 , e ik1•x - 1 β k+l+r=n-1, 0≤k,l,r≤n-2 U (k) U (l) U (r) , e ik1•x = 0,
where we have used

U (0) , e ik1•x = ||e ik1•x || 2 s = 2 s . Next, we use 3U (n-1) U (0)2 , e ik1•x = β (n-1) 3U (0)3 , e ik1•x + 3 U (n-1) U (0)2 , e ik1•x = 3ββ (n-1) 2 s + 3 U (n-1) U (0)2 , e ik1•x ,
and we are led to solve with respect to β (n-1) , U (n) the following system for n ≥ 2

L 0 U (n) = U (n-1) -β -1 Q 0 k+l+r=n-1, k,l,r≥0 U (k) U (l) U (r) , (33) 
β (n-1) = -1 2 1+s β 3 U (n-1) U (0)2 + k+l+r=n-1, 0≤k,l,r≤n-2 U (k) U (l) U (r) , e ik1•x .( 34 
)
Now we make the following recurrence assumption: there exist positive constants γ 1 , δ and K, depending on Q, s and α, such that

|| U (p) || s ≤ γ 1 K p (p!) 2α , p = 0, 1, . . . , n -1, ( 35 
)
|β (p) | ≤ δK p (p!) 2α , p = 1, . . . , n -2.
These estimates hold for U (0) = 0 and for U (1) provided that γ 1 and K satisfy

3 2α c 2 s 2 3s/2 Q 3/2 c 2 3(Q -1) ≤ γ 1 K. ( 36 
)
Putting these together results in

||U (p) || s = ||β (p) U (0) + U (p) || s ≤ 2 s/2 δ Q + γ 1 K p (p!) 2α , or ||U (p) || s ≤ γK p (p!) 2α , with γ = 2 s/2 δ Q + γ 1 . ( 37 
)
The resolution of (33) and (34) provides β (n-1) and U (n) , starting with n = 2. A useful lemma is the following, proved in Appendix D. Lemma 5.3 The following estimates hold true for α ≥ 2:

Π 3,n = k+l+r=n k,l,r≥0 (k!l!r!) 2α ≤ 4(n!) 2α , n ≥ 1 Π ′ 3,n = k+l+r=n 0≤k,l,r≤n-1 (k!l!r!) 2α ≤ 10((n -1)!) 2α , n ≥ 2.
Thanks to Lemma 5.3 and the estimate for ||U (p) || s in (37), we observe that k+l+r=n-1 0≤k,l,r≤n-2

U (k) U (l) U (r) s ≤ 10c 2 s γ 3 K n-1 ((n -2)!) 2α .
From this it follows that

|β (n-1) | ≤ c 2 s 2 1+s/2 β K n-1 ((n -1)!) 2α 3γ 1 2 s Q + 10γ 3 ,
and the recurrence assumption is realized if

c 2 s 3(Q -1)2 1+s/2 3γ 1 2 s Q + 10γ 3 ≤ δ (38)
holds. Now we have, still by using Lemma 5.3

|| U (n) || s ≤ (2n + 1) 2α K n-1 ((n -1)!) 2α c 2 γ 1 + 4c 2 s β γ 3 (39) ≤ K n (n!) 2α (2 + 1 n ) 2α 1 Kc 2 γ 1 + 4c 2 s β γ 3 .
The factor (2n + 1) 2α /c 2 here comes from the pseudo-inverse of L 0 acting on functions containing modes of order up to 2n + 1. The recurrence assumption is realized if

3 2α c 2 γ 1 + 4c 2 s β γ 3 ≤ γ 1 K. ( 40 
)
We now must choose γ 1 , δ and K in such a way as to satisfy the three conditions (36), ( 38) and ( 40). Indeed, we may choose γ 1 and δ small enough, and K large enough for having 2 .

γ 1 = δ (Q -1) 2 s/2 c 2 s Q , δ 2 ≤ 3(Q -1)2 s/2-1 5c 2 s 2 s/2 Q + Q -1 2 s/2 c 2 s Q -3 , K = max 3 2α c 2 1 + 2 s+1 c 2 s Q 5(Q -1) , 1 δ 
3 2α-1 2 2s c 4 s Q 5/2 c 2 (Q -1)
We conclude that the bounds on || U (n) || s and |β (n) | in Theorem 5.1 hold, and that (37), which holds for 0 ≤ p ≤ n -1, also holds for p = n, and so

||U (n) || s ≤ γK n (n!) 2α , n ≥ 1.
This ends the proof of Theorem 5.1.

Borel transform of the formal solution

In this and subsequent sections, we consider the case with α = 2 (Q = 8, 10 and 12) and set

√ µ = ζ 2 .
Remark 6.1 In the cases with α > 2, we can always assume that α is an integer (large enough) and set ζ = µ 1/2α .

The formal expansion (29) becomes, after incorporating

β -1/2 into U (n) , U = ζ 2 n≥0 ζ 4n U (n) , (41) 
and we have the estimate

||U (n) || s ≤ γK n (n!) 4 ≤ γK n (4n!).
Thus the formal power series (41) is a Gevrey 1 series in ζ.

Let us now consider the new function ζ → U (ζ), taking its values in H s , defined by

U (ζ) = n≥0 ζ 4n+2 (4n + 2)! U (n) .
Indeed, by construction, this function is analytic in the disc |ζ| < K -1 1 = K -1/4 , with values in the Hilbert space H s and invariant under rotations of angle 2π/Q. The mapping U → U , where we divide the coefficient of ζ n by n!, is the Borel transform [START_REF] Borel | Leçons sur les Séries Divergentes[END_REF] applied to the series U . Since U satisfies a Gevrey 1 estimate, the Borel transform U is analytic in a disc.

We now need to show that this function U (ζ) is solution of a certain partial differential equation. Let us recall a simple property of Gevrey 1 series. Consider two scalar Gevrey 1 series u and v

u = n≥1 u n ζ n , v = n≥1 v n ζ n , |u n | ≤ c 1 K n 1 n!, |v n | ≤ c 2 K n 1 n!, then we have (uv) n = 1≤k≤n-1 u k v n-k , |(uv) n | ≤ c 1 c 2 K n 1 n!,
as this results from Appendix D, by using the following inequality for n ≥ 3

1 (n -1)! 1≤k≤n-1 k!(n -k)! ≤ 1 + 2( 1 2 + • • • + 1 n -1 ) ≤ n,
which shows that in our case we can multiply two Gevrey 1 series with coefficients belonging to H s (the factor c 1 c 2 is then multiplied by c s ) and obtain a new Gevrey 1 series with coefficients in H s . It is then classical that we can write

U 3 = U * G U * G U (42) 
where the convolution product, written as * G , is well defined by

(û * G v)(ζ) = n≥1 1≤k≤n-1 u k v n-k n! ζ n ,
and satisfies (û

* G v) = (uv).
This convolution product is easily extended for two functions f (ζ) and g(ζ), analytic in the disc |ζ| < K -1 1 , and with no zero order term, by

(f * g)(ζ) = n≥1 1≤k≤n-1 f k g n-k k!(n -k)! n! ζ n . (43) 
It is clear that for f = û, and g = v we have

f * g = (û * G v) = (uv).
Since we have (42), it is clear from ( 19) that we have

( (1 + ∆) 2 U )(x, ζ) = (1 + ∆) 2 U (x, ζ).
Now let us define a bounded linear operator K as follows: for any function

ζ → V (ζ) analytic in the disc |ζ| < K -1
1 , taking values in H s , canceling for ζ = 0, and satisfying

V (ζ) = n≥1 V n ζ n , ||V n || s ≤ cK n 1 , we define (KV )(ζ) = n≥1 n! (n + 4)! ζ n+4 V n .

It is then clear for

V = U that (K U )(ζ) = n≥0 ζ 4n+6 (4n + 6)! U (n) = (ζ 4 U ),
and we see that

∂ 4 ζ (K U ) = U .
We now claim the following: Theorem 6.2 The Borel transform U(x, ζ) of the Gevrey solution found in Theorem 5.1 for α = 2 is the unique solution, analytic in the disc |ζ| < K -1/4 , cancelling for ζ = 0, and taking values in H s invariant under rotations of angle 2π/Q, of the equation

(1 + ∆) 2 V -KV + V * V * V = 0. ( 44 
)
Proof. We still assume α = 2 in what follows. The changes needed for larger α's are left to the reader. Let us look for a solution V in the form

V = n≥1 ζ n V n ,
where V n ∈ H s is invariant under rotations of angle 2π/Q. Then defining a formal series

U = n≥1 ζ n U n , U n = n!V n ,
it is clear that U satisfies formally

(1 + ∆) 2 U -ζ 4 U + U 3 = 0,
and by identifying powers of ζ:

L 0 U 1 = 0, L 0 U 2 = 0, L 0 U 3 + U 3 1 = 0,
which leads to U 1 = 0 because of the last equation where the solvability condition cannot be satisfied. Then we have

U 1 = 0, L 0 U j = 0, j = 2, 3, 4, 5, 
and

L 0 U 6 -U 2 + (U 2 ) 3 = 0.
We observe that U 2 and U 6 satisfy the equations verified by β -1/2 U (0) and β -1/2 U (1) (see [START_REF] Golubitsky | Singularities and Groups in Bifurcation Theory[END_REF]). This is indeed the only solution invariant under rotations of 2π/Q. Hence 1) . Now at order ζ 7 we get

U 2 = β -1/2 U (0) , U 6 = β -1/2 U (
L 0 U 7 -U 3 + 3U 2 2 U 3 = 0 and since U 3 = CU (0)
, where C is a constant, the solvability condition gives

C = 3C β U (0)3 , e ik1•x s = 3C
hence C = 0 and U 3 = 0. It is the same for U 4 = U 5 = 0, and we obtain

L 0 U 7 = L 0 U 8 = L 0 U 9 = 0.
Then the computation of higher orders is exactly as the one for the computation of U (n) , since the cubic term cancels if the sum of the 3 indices p in U p is not 2 mod 4. Coming back to the definition of U n = n!V n , it is then clear that Theorem 6.2 is proved.

Proof. The result of the Theorem follows directly from two elementary lemmas E.1 and E.2 on Gevrey 1 series shown in Appendix E, and which may be understood in the function space H s instead of C. Indeed, for α = 2 this gives an estimate of the difference beween V (µ 1/4 ) and the truncated Laplace transform of the equation (44) (which is then 0), taking into account of

(1 + ∆) 2 Ū (µ 1/4 ) = 1 µ 1/4 1 K ′ 0 e -ζ ν (1 + ∆) 2 U (ζ)dζ.
Using Remark 6.1, the extension to larger α's is left to the reader.

A Proof of Lemma 2.1

We give below an elementary proof of Lemma 2.1.

The polynomial P being irreducible on Q of degree l + 1 and the polynomial Q defined by Q(x) = 0≤j≤l q j x j , being of degree l, then by the Bezout Theorem there exist two polynomials A(x) of degree l -1 and B(x) of degree l, with coefficients in Q such that

A(x)P (x) + B(x)Q(x) = 1. (47) 
Defining coefficients p j , 0 ≤ j ≤ l + 1, a j , 0 ≤ j ≤ l -1 and b j , 0 ≤ j ≤ l of polynomials P , A and B, the identity (47) becomes a linear system of 2l + 1 equations, of the form

MX = ξ 0 , (48) 
where the unknown is X with

X =             a j-1 a j-2 • a 0 b l b l-1 • b 0             , ξ 0 =             0 0 • • • • 0 1             , M =               p l+1 0 • 0 q l 0 • • 0 p l p l+1 • • q l-1 q l 0 • • • • • 0 q l-2 q l-1 q l • • • • • p l+1 • • • • 0 p 1 • • p l q 0 • • • q l p 0 • • p l-1 0 q 0 • • q l-1 0 p 0 • p l-2 0 0 • • • • • • • • • • • • 0 • 0 p 0 0 • • 0 q 0              
.

The (2l + 1) × (2l + 1) matrix M has integer coefficients and is invertible (otherwise it would contradict the Bezout Theorem). Hence its determinant is integer valued and is an homogeneous polynomial of degree l + 1 in q = (q 0 , . . . , q l ). We may invert the system (48) by Cramer's formulas and we observe that the coefficients b j are rational numbers, with a common denominator of degree l + 1 in q and with a numerator of degree l only (we replace in the determinant one column containing the q j 's by ξ 0 ). It results that the polynomial B(x) is the ratio of a polynomial with integer coefficients B 0 of degree l in q, with an integer d, homogeneous polynomial of q of degree l + 1 and which is different from 0 (det M = 0). Now taking x = ω in (47) leads to

|Q(ω)| = d |B 0 (ω)| ,
and since d ≥ 1 and the coefficients of B 0 are bounded by C ′ |q| l , this completes the proof of Lemma 2.1.

B Proof of Lemma 4.1

By construction we have [START_REF] Iooss | Small divisor problem in the theory of threedimensional water gravity waves[END_REF], so assertion (i) is clear. This implies directly assertion (iii), since in the Q/2-dimensional space of {m ′ j , j = 1, . . . , Q/2} the set

Q/2 j=1 |m ′ j | = N is a union of 2 Q/2 simplexes of area of order O(N Q/2-1
). To prove [START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF] we observe that

N k+l = min{|m + n|; k + l = Q j=1 (m j + n j )k j } ≤ min{|m|; k = Q j=1 m j k j } + min{|n|; l = Q j=1 n j k j } ≤ N k + N l ,
where

N k = min k=km Q j=1 m j k j , N l = min l=l n Q j=1 n j k j .
We notice that N 0 = 0, and N -k = N k (each m ′ j for k is just the opposite for -k); we deduce that inequality (22) may be strict, since

0 = N 0 = N k-k < N -k + N k = 2N k . The last inequality (23) is easily deduced from k = Q j=1 m j k j
where {m j } gives precisely the "norm" N k ; which implies (since

|k j | = 1) |k| ≤ Q j=1 |m j | = N k ,
and the Lemma is proved.

C Proof of Lemma 4.2

Let u ∈ H s , then by Cauchy-Schwarz inequality in l 2 (Γ) (Γ is countable) we have

k∈Γ u k e ik•x 2 ≤ k∈Γ (1 + N k 2 ) s |u k | 2 k∈Γ 1 (1 + N k 2 ) s ≤ ||u|| 2 Hs k∈Γ 1 (1 + N k 2 ) s .
Now by [START_REF] Kudrolli | Superlattice patterns in surface waves[END_REF] we have the following estimate

k∈Γ 1 (1 + N k 2 ) s ≤ c 1 (Q) n∈N n Q/2-1 (1 + n 2 ) s
which is bounded when s > Q/4. Hence for s > Q/4 the series k∈Γ u k e ik•x converges absolutely and represents a continuous quasiperiodic function, the norm (uniform norm) of which being bounded as soon as the norm in H s is bounded. We may proceed in the same way for the derivatives in using [START_REF] Janot | Quasicrystals: a Primer[END_REF], and show that the series k∈Γ |k| l u k e ik•x is absolutely convergent for s > Q/4+l. This ends the proof of the last assertion of the Lemma. Let us now prove the first assertion which is necessary for our nonlinear problem.

First step: We first use the following inequality due to ( 22)

(1 + N 2 k+k ′ ) s/2 ≤ 2 s-1 (1 + N 2 k ) s/2 + (1 + N 2 k ′ ) s/2
valid for any s ≥ 1, because of ( 22) and a simple convexity argument (this inequality is in fact valid for s > 0). Then the following decomposition holds

K k+k ′ =K u k v k ′ 2 (1 + N 2 K ) s ≤ 2 2s-1 (S 1 + S 2 )
with

S 1 = K k+k ′ =K u k v k ′ 2 (1 + N 2 k ) s S 2 = K k+k ′ =K u k v k ′ 2 (1 + N 2 k ′ ) s .
For symmetry reasons in the space (k, k ′ ), it is then sufficient to estimate S 1 .

Let us split the bracket in the sum S 1 into two terms: a sum

S ′ 1 containing (k, k ′ ) such that N k ≤ 3N k ′ ,
and a sum S ′′ 1 containing (k, k ′ ) such that N k > 3N k ′ . Hence we have now

S 1 ≤ 2(S ′ 1 + S ′′ 1 )
with

S ′ 1 = K k+k ′ =K, N k ≤3N k ′ u k v k ′ 2 (1 + N 2 k ) s , S ′′ 1 = K k+k ′ =K, N k >3N k ′ u k v k ′ 2 (1 + N 2 k ) s .
To estimate S ′ 1 we use [START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF] which gives

N K ≤ 4N k ′ , hence 1 1 + N 2 k ′ ≤ 16 1 + N 2 K ,
and, in using again Cauchy-Schwarz

k+k ′ =K, N k ≤3N k ′ |u k v k ′ |(1 + N 2 k ) s/2 ≤ k+k ′ =K, N k ≤3N k ′ 4 s |u k v k ′ | (1 + N 2 k ) s/2 (1 + N 2 k ′ ) s/2 (1 + N 2 K ) s/2 ≤ 4 s (1 + N 2 K ) s/2 ||u|| Hs ||v|| Hs . It results that S ′ 1 ≤ ||u|| 2 Hs ||v|| 2 Hs K 4 2s (1 + N 2 K ) s which, for s > Q/4 leads to S ′ 1 ≤ C||u|| 2 Hs ||v|| 2 
Hs .

Second step: We now find a bound for S ′′ 1 , which is more technical, since we split this sum into packets of increasing lengths.

Let us define

∆ p u = 2 p ≤N k <2 p+1 u k e ik•x , ∆ -1 u = u 0 .
It is clear that for s > Q/4 (the series is absolutely convergent)

u = ∞ p=-1 ∆ p u.
Moreover, it is clear from the definition that the norm of u ∈ H s is equivalent to

∞ p=-1 2 2ps ||∆ p u|| 2 0 1/2 .
To estimate the sum S ′′ 1 , we notice that in the product uv the terms ∆ p u∆ q v only take into account the wavevectors k and k ′ such that

2 p ≤ N k < 2 p+1 , 2 q ≤ N k ′ < 2 q+1 , N k > 3N k ′ . This implies N k ′ < 2 p , 2 q+1 < N k , hence in S ′′ 1 ∆ p u∆ q v = 0, for p ≤ q.
Now, we use (for the sum in

S ′′ 1 ) 2 3 N k ≤ N K S ′′ 1 ≤ ( 2 3 ) 2s K k+k ′ =K, N k >3N k ′ u k v k ′ 2 (1 + N 2 K ) s
and the right hand side is the square of the norm of the product uv computed on terms such that N k > 3N k ′ , k + k ′ = K. We now use the equivalent norm defined above with the decomposition in packets, hence Now S p-1 v∆ p u

S ′′ 1 ≤ C ∞ j=-1 2 2js ∆ j   p≥0 p-1 q=-1 ∆ q v ∆ p u   2 
2 0 = K | k+k ′ =K,0≤N k ′ <2 p ≤N k <2 p+1 u k v k ′ | 2
and a classical computation (convolution l 1 * l 2 ) using Cauchy-Schwarz gives

K | k+k ′ =K u k v k ′ | 2 ≤ K ( k+k ′ =K |v k ′ ||u k | 2 )( k ′ |v k ′ |) ≤ ( k ′ |v k ′ |)( k K |v K-k ||u k | 2 ) ≤ ( k ′ |v k ′ |) 2 k |u k | 2 )
which leads to 

((n -1!) 2α ≤ 2 2α 1 (n -1) 2α + • • • + 1 2 2α + Π ′ 2,2 ≤ 2 + 2 2α 1 (n -1) 2α + • • • + 1 3 2α ≤ 2 + 2 2α -1 ≤ 3.
Hence, with estimates (51) and (52), Lemma 5.3 is proved.

Figure 1 :

 1 Figure 1: Example 8-fold quasipattern. This is an approximate solution of the Swift-Hohenberg equation (1) with µ = 0.1, computed by using Newton iteration to find an equilibrium solution of the PDE truncated to wavenumbers satisfying |k| ≤ √ 5 and to the quasilattice Γ 27 .

Figure 2 :

 2 Figure 2: Example quasilattice with Q = 8, after [29]. (a) The 8 wavevectors with |k| = 1 that form the basis of the quasilattice. (b,c) The truncated quasilattices Γ 9 and Γ 27 . The small dots mark the positions of combinations of up to 9 or 27 of the 8 basis vectors on the unit circle. Note how the density of points increases with N k .

9 N = 3 Figure 3 :

 933 Figure 3: Amplitude A (N ) of the quasipattern, as a function of µ and of N , with Q = 8, N = 1, 3, 9 and 27, and scaled so that A (1) = √ µ. Increasing the order of the truncation leads to divergence for smaller values of µ. The squares represent amplitudes computed by solving the PDE by Newton iteration, truncated to the quasilattice Γ 27 (N k ≤ 27) and restricted to wavevectors with |k| ≤ √ 5. Note that for µ = 0.1, the Newton iteration succeeds in finding an equilibrium solution of the PDE, while the formal power series has diverged. The spatial form of the solution with µ = 0.1 is shown in figure 1.
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 2222122222232222 since the series |v k ′ | ≤ c||v|| Hs for s > Q/4, as shown at the beginning of the proof of Lemma 4.2, we have S p-1 v∆ p u Hs . 2ps ∆ j (S p-1 v∆ p u) Hs Hs ) 2α , which shows that Π 2,n ≤ (2 + 1 16 )(n!) 4 for n = 0, 1, 2, and α ≥ 2. Now we have for n ≥ 2 Π 2,n+1((n + 1)!) 2α -Π 2,n (n!) 2α = n + 1)) 2α ,and since n 2α -(n + 1) 2α + 2 2α-1 < 0 for n ≥ 1 the above right hand side terms are negative. It results that for n ≥

Finally Π ′ 2 ,≤ 4 )≤

 24 n ≤ 3((n -1!) 2α for n ≥ 2. (50) Consider now Π 3,n defined by Π 3,n = k+l+r=n k,l,r≥0(k!l!r!) 2α .We already haveΠ 3,0 = 1, Π 3,1 = 3, Π 3,2 = (3 + 3 2 2α )(2!) 2α ≤ 4(2!) 2α ,In splitting the sum we obtain easily for n ≥ 3Π 3,n = Π 2,n + (n!) 2α + n-1 r=1 (r!) 2α Π 2,n-r (n!) 2α ≤ 4(n!) 2α . Hence Π 3,n ≤ 4(n!) 2α(51)holds for any n ≥ 0. Consider now Π ′ 3,n defined for n ≥ 2 byΠ ′ 3,n = k+l+r=n 0≤k,l,r≤n-1 (k!l!r!) 2α .We already have Π ′ 3,2 = 1, and for n ≥ 3, we obtain in the same way Π ′ 10(n -1!) 2α .

Truncated Laplace transform

Let us take K ′ > K 1 and define a linear mapping U → Ū in the set of Gevrey 1 series taking values in H s

where U(ζ) is the Borel transform of U as defined above, which is analytic in the disc |ζ| < 1/K 1 . The function ν → Ū (ν) is a truncated Laplace transform of the Borel transform of U .

Remark 7.1 If U (ζ) could be shown to be analytic on a line in the complex ζ plane extending to ∞, instead of just in a disk, then the Laplace transform in (45) would be the inverse Borel transform, and would provide a quasiperiodic solution of (11) in H s .

It is clear that Ū(ν) is a C ∞ function of ν in a neighborhood of 0, taking its values in H s , as this results from

and from the dominated convergence theorem. Moreover Ū (ν) and U (µ) have the same asymptotic expansion in powers on ν, when we set µ = ν 1/4 , as this results from

(46) It is also clear that in a little disc near the origin Ū = U , but this does not imply that Ū = U since U has no meaning as a function of ν, and an asymptotic expansion does not define a unique function. The real question is whether or not Ū is solution of (11) in H s .

By construction, we know that the Gevrey 1 expansion of

in powers of µ 1/4 is identically 0, but we don't know whether this function (smooth in µ 1/4 ), which is in H s-4 , is indeed 0. In fact we have the following Theorem 7.2 For any even Q ≥ 8, take s > Q/4. Then, α being defined by Lemma 2.1, the quasiperiodic function Ū (µ 1/2α ) ∈ H s , with s > Q/4, defined from the series found in Theorem 5.1, is solution of the Swift-Hohenberg PDE up to an exponentially small term bounded by C(K ′ )e

E Lemmas on Gevrey 1 series

Below we give elementary proofs of two useful lemmas. The interested reader will find more general results in [START_REF] Ramis | Gevrey separation of fast and slow variables[END_REF] and [START_REF] Marco | Stability and instability for Gevrey quasiconvex near-integrable Hamiltonian systems[END_REF].

In the following we denote by L K ′ the linear operator defined for analytic functions v on the disc {|z| < 1/K 1 } by

We also use the notations

and when v(0) = 0, we notice that (integrating by parts for the second estimate)

Then we have the following Lemmas giving estimates of the commutator of L K ′ • B (where B is the Borel transform) with the multiplication by ν 4 and with the mapping u → u 3 in the space of Gevrey series.

Lemma E.1 Assume that u(ν) is a Gevrey 1 series, with u 0 = 0, then for

For any given Gevrey 1 series u, with u 0 = 0, there is C(K ′ ) > 0 such that for ν < ν 0 (K ′ ) we have the estimate

Lemma E.2 Assume that u(ν) is a Gevrey 1 series, with u 0 = 0, then for ν < 1/K ′ there exists C(K ′ ) such that

Proof of Lemma E.1. From the identity

from the definition (43) of the convolution product, and from the analyticity of u in the disc {|z| < 1/K 1 }, we have

By Fubini's theorem and a simple change of variables, we obtain

where

and from (53) we obtain

Now, we observe that (0,

(56) Collecting (54), (55) and (56) the first result of Lemma E.1 is proved. Notice that by choosing K ′′ > K ′ , then for ν small enough e -1

K ′′ ν . Since K ′ is chosen arbitrarily larger than K 1 , we can assert that u being given, there is C(K ′ ) such that

Proof of Lemma E.2. By integrating by parts, we obtain

which proves Lemma E.2.