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Abstract We consider periodic travelling gravity waves at the surface of an
infinitely deep perfect fluid. The pattern is non symmetric with respect to the
propagation direction of the waves and we consider a general non resonant
situation. Defining a couple of amplitudes €1, e5 along the basis of wave vec-
tors which satisfy the dispersion relation, first we give the formal asymptotic
expansion of bifurcating solutions in powers of €1, 5. Then, introducing an
additional equation for the unknown diffeomorphism of the torus, associated
with an irrational rotation number, which allows to transform the differential
at the successive points of the Newton iteration method, into a differential
equation with two constant main coefficients, we are able to use a descent
method leading to an invertible differential. Then by using an adapted Nash
Moser theorem, we prove the existence of solutions with the above asymptotic
expansion, for values of the couple (¢2,£3) in a subset of the first quadrant
of the plane, with asymptotic full measure at the origin.
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1 Introduction
1.1 Presentation and history of the problem

We consider small-amplitude three-dimensional doubly periodic travelling
gravity waves on the free surface of a perfect fluid. These waves are steady in
a frame moving with the velocity of the wave (—c in the absolute reference
frame). The fluid layer is supposed to be infinitely deep, and the flow is
irrotational only subjected to gravity. The bifurcation parameters are the
horizontal phase velocity, and the direction of propagation of the travelling
waves, the infinite depth case being not essentially different from the finite
depth case.

In 1847 Stokes [27] gave a nonlinear theory of two-dimensional travel-
ling gravity waves, computing the flow up to the cubic order of the am-
plitude of the waves, and the first mathematical proofs for such periodic
two-dimensional waves are due to Nekrasov [22] and Levi-Civita [19]. Math-
ematical progress on the study of three-dimensional doubly periodic water
waves came much later. In particular, first formal expansions in powers of the
amplitude of three-dimensional travelling waves can be found in papers [7]
and [26]. One can find many references and results of research on this subject
in the review paper of Dias and Kharif [6]. Reeder and Shinbrot (1981)[24]
proved the existence of gravity-capillary waves with symmetric diamond pat-
terns, resulting from (horizontal) wave vectors belonging to a lattice I'" (dual
to the spatial lattice I" of the doubly periodic pattern) spanned by two wave
vectors K1 and Ko with the same length, the velocity of the wave being in
the direction of the bissectrix of these two wave vectors. This was completed
by Craig and Nicholls (2000) [3] who used the hamiltonian formulation intro-
duced by Zakharov [28], with a variational method. These waves appear in
litterature as ”short crested waves” (see Roberts and Schwartz [25], Bridges,
Dias, Menasce [1] for an extensive discussion on various situations and nu-
merical computations), and the fact that the surface tension is supposed not
to be too small is essential for being able to use Lyapunov-Schmidt technique,
and the authors mention a small divisor problem if there is no surface ten-
sion. Asymmetrical “simple” doubly periodic waves in the non resonant cases
were also considered by Craig and Nicholls (2002) [2] who gave the principal
part of the formal Taylor series, taking into account of the two-dimensions of
the vector parameter c. They emphasize the fact that this expansion is only
formal in the absence of surface tension.

Another type of mathematical results are obtained in using ”spatial dy-
namics”, in which one of the horizontal coordinates (the distinguished di-
rection) plays the role of a time variable, as was initiated by Kirchgéssner
[17] and extensively applied to two-dimensional water wave problems (see a
review in [5]). The advantage of this method is that one does not choose the
behavior of the solutions in the direction of the distinguished coordinate, and
solutions periodic in this coordinate are a particular case, as well as quasi-
periodic or localized solutions (solitary waves). In this framework one may a
priori assume periodicity in a direction transverse to the distinguished direc-
tion, and a periodic solution in the distinguished direction is automatically
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doubly periodic and non necessarily symmetric with respect to the propa-
gation direction. The first mathematical results obtained by this method,
containing 3-dimensional doubly periodic travelling waves, start with Hara-
gus, Kirchgéssner, Groves and Mielke (2001) [11], [9], [13], generalized by
Groves and Haragus (2003) [10]. They use a hamiltonian formulation and
center manifold reduction. This is essentially based on the fact that the spec-
trum of the linearized operator is discrete and has only a finite number of
eigenvalues on the imaginary axis. These eigenvalues are related with the
dispersion relation mentioned above. Here, one component (or multiples of
such a component) of the wave vector K is imposed in a direction transverse
to the distinguished one, and there is no restriction for the component of K
in the distinguished direction, which, in solving the dispersion relation, gives
the eigenvalues of the linearized operator on the imaginary axis. However, it
appears that the number of imaginary eigenvalues becomes infinite when the
surface tension cancels, which prevents the use of center manifold reduction
in the limiting case we are considering in the present paper.

One essential difficulty here, with respect to the existing literature, ex-
cept our previous work [16], is that we assume the absence of surface tension.
Indeed the surface tension plays a major role in all existing proofs for three-
dimensional travelling gravity-capillary waves, and when the surface tension
is very small, which is the case in many usual situations, this implies a re-
duced domain of validity of results strongly dependent on the existence of
a non small surface tension. In our previous work [16] on three-dimensional
travelling gravity waves, there is no surface tension, and we restricted the
study to the existence of diamond waves: the periodic lattice is a diamond
lattice, and there are equal amplitudes at the leading order for the two basic
wave vectors K, Ko symmetric with respect to the propagation direction
of the waves. We proved the existence of bifurcating diamond gravity waves,
symmetric with respect to the propagation direction of the waves. In this
case, because of the absence of surface tension, a small divisor problem arises
and since the use of Nash-Moser theorem is necessary, one of the essential
technical ingredients for the preparation of the differential near the origin
which needs to be inverted, is that the integral curves of the horizontal pro-
jection of the velocity field V' of particles, may be transformed by a suitable
diffeomorphism of the torus, into straight lines, parallel to the direction of
propagation. This diffeomorphism was given by the solution of a simple ordi-
nary differential equation, thanks to the required symmetries of the solution.

In the present work, we consider asymmetrical travelling gravity waves,
which implies that the basic wave vectors K7 and K5 have not the same
length, and given the two amplitudes on the basic modes, the direction of
propagation u of the waves is part of the unknown. We need to find a dif-
feomorphism for ”preparing” the differential we have to invert, and this is
now a serious new difficulty here, leading to the necessity to compute the
rotation number p of the velocity field V, (which was p = 1 in the symmet-
ric case) for which a diophantine condition is now necessary. This leads to
our choice to consider as unknowns in our problem: the main unknowns (the
velocity potential and the shape of the free surface) together with the un-
known diffeomorphism and the associated rotation number of V. This allows
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us to use only once the Nash-Moser implicit function theorem. Finally we
are able to prove the existence of asymmetrical gravity waves (see Theorem
2) for nearly all choices of angles 61,02 made by the basis of non symmetric
wave vectors K1, Ko with the direction ug of the critical velocity, and for
2-dimensional parameter values (£%,¢3%) in a set for which 0 is a Lebesgue
point (0 corresponds to the critical value c. of the velocity vector c).

As a side result which is worthy to mention, we prove the existence of
a “directional Stokes drift” (see Lemma 3). This means that the asymptotic
direction of the trajectories of fluid particles on the free surface differs from
the propagation direction of the waves by an angle of order O(¢? + £3). This
angle (0 for diamond waves) cancels for an appropriate choice of the ratio
between amplitudes €1, 3.

Finally, nice experimental results are known on diamond waves (sym-
metric with respect to the propagation direction, see Hammack, Henderson,
Segur [12]). We have now the explicit expansion in powers of the two am-
plitudes of asymmetric waves, and the directional Stokes drift property, it
would be then very interesting to have experiments allowing to verify the
domain of validity of these formulas.

1.2 Formulation of the problem

We are looking for waves travelling with velocity —c, so we consider the
system in the moving frame where the waves look steady. Assume that a
flow occupies a domain in the Euclidian space of points © = (1,2, 23)
bounded from above by a free surface X : {x3 = n(z1,22)}. Let us denote
by ¢ the potential defined by ¢ = ¢ — ¢ - X, where ¢ is the usual velocity
potential in the moving frame (the rest state is then ¢ = 0), X = (x1,22)
is the 2-dim horizontal coordinate, 3 is the vertical coordinate. We choose
|c| for the velocity scale, and L for a length scale (to be chosen below), and
we still denote by (X,z3) the new coordinates, and by ¢,n the unknown
functions. Now define the inverse squared Froude number by u = gL/c?,
where g denotes the acceleration of gravity, and by u the unit vector in
the direction of c. Following V.E.Zakharov we introduce the new unknown
function ¢(X) = ¢(X,n(X)), and define the Dirichlet-Neumann operator G,
by

_ 9
z3=n(X) 8%3 z3=n(X)

Gy =TT (VP

where n is normal to X, exterior to the domain of the flow, and ¢ is the
bounded solution of the n— dependent Dirichlet problem

Ap=0 for z3<n(X), =1 for z3=n(X).

This definition of G,, follows [18] and insures the selfadjointness and positivity
of this linear operator. Then the problem of a spatial gravity waves is equiv-
alent, see [16] for example, to the system of nonlinear operator equations for
function U = (¢, ) and parameters u and p,

F(U, p,u) =0, where F = (F1,F2), (1.2)
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Fi(U,0) = : Gy (e) —u- Vixn, (1.3)

\V/ 2
fz(U%u)::u-waJrunJr%ﬂL (1.4)
1

—m{v){n (Vxy +u)}’

We specialize our study to spatially periodic 3-dimensional travelling waves,
i.e. solutions n and ¢ are periodic in X. This means that there are two
independent wave vectors K1, Ky € R? generating a lattice

I’ = {k:anl—l—ngKQ:nj EZ, ]: 1,2},
and a dual lattice I" of periods in R? such that
I'= {A: miAL + maAs : mj; € Z,AJ‘ K= 27T5jl7 j,l = 1,2}

The Fourier expansions of 7 and ¢ are in terms of ¢’ X where k € I and
k-X=2nm,n € Z, for A\ € I The situation we consider in the further
analysis, is with a lattice I generated by the wave vectors

Kl = (1,7’1), KQ = A(l,—Tg).

This means that we have chosen the length scale L for having 1 in the first
component of K7, and 71,75 measure the angles between the wave vectors
K;, K5 and the 7 axis. We define the Fourier coefficients of a periodic func-
tion u on the lattice I' by

Uk = |Q|71/2/ w(X)exp(—ik - X)dX, [02]=4r*{\(r +7m2)} "
0

where (2 is the paralellogram built with A1, A2. For m > 0 we denote by
H™(R?/I") the Sobolev space of periodic functions of X € R?/I" which are
square integrable on a period, with their partial derivatives up to order m,
and we can choose the norm as

[l = {3 (1 + [)>™ 2} 2.

kel

For every s > 0 we denote by H? the Hilbert space of all 27 periodic functions
u : R? — R having the finite norm

R 1/2 R 1 e
llulls = { Z (1+ |k|2)5|uk|2} , where uy = o / e Yyu(Y)dY.
kez? R2/(27Z)2

Denote also by H; the closed subspace of H® which consists of all even
functions v € H*, i.e. u(Y) = u(=Y), and by H; the subspace of the odd
functions (u(—=Y) = —u(Y)). We also denote by H*? the subspace of H®
which consists of all function orthogonal to 1, i.e., H*% = {u € H® : g = 0}.
Let us define the 2-components function space

H™(R?/I) = Hy"(R*/T") x H™(R?*/T) with ||Ullm = ¢l + [0l
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where H{" means functions with 0 average, and U = (v, n). The 0 average
condition comes from the fact that the value ¢ of the potential is defined up
to an additive constant (easily checked in equations (1.3), (1.4)). Moreover,
the average of the right hand side of (1.3) is 0 as it can be easily checked
(this is proved for instance in [2]). We have the following

Lemma 1 For any fived m > 3, the mapping
(U, p,0) = F(U, p,u) is C°:H™(R?*/T) x R x S; — H™ Y(R?/TI)

in the neighborhood of {0} X R x Sy1. The mapping F(-, p, 1) is equivariant
under translations of the plane:

T.F(U, p,u) = F(LU, u,u) where T,U(X) =U(X +v),

and it is also equivariant with respect of the symmetry Sy defined by the
following representation of the symmetry with respect to 0

(SoU)(X) = (=¥ (=X), n(=X)).

In addition, there is M3 > 0, such that for ||U||s < M3 and |p| < Ms, F
satisfies for any m > 3 the "tame” estimate

||'7:(U7/1'7u)||m—1 < Cm(M3)||U||m (15)

Proof The C* smoothness of (1,1) — G, (¢) : H™(R*/I") — H™ (R?*/I")
comes from the study of the Dirichlet-Neumann operator, and the properties
of elliptic operators. This regularity is proved in particular by Craig et al
in [4], Craig and Nicholls in [3], D.Lannes in [18], Hu and Nicholls in [14],
and by Buffoni et al in [8] (the most elementary proof in Sobolev spaces).
Notice that H*(R?/I") is an algebra for s > 1. We choose here to work with
Sobolev spaces, with (¢,1) € H™(R?/I") and we refer to [18] for the proof
of the "tame” estimate, valid for any m > 3 (here simpler than in [18] since
we have periodic functions and there is no bottom wall). The equivariance
of F under translations of the plane is obvious. The system (1.2, 1.3, 1.4)
is equivariant under Sy, as this results from the reversibility of the original
Euler system.

It is important to note that for any p € R, the operator equation (1.2)
has the trivial solution U = 0, up = (1,0) and our main goal is to find
non-trivial solutions which bifurcate from the critical value y = ., where
T = (11, 72). Moreover, we are looking for non-trivial solutions satisfying a
special topological condition.

The specificity of spatial water wave problems is that the free boundary is
a two dimensional surface, then the liquid particles moving along the surface,
have two degrees of freedom, and the totality of their trajectories forms
a flow on the periodic free boundary. As it was shown in [16] this flow is
the geodesic flow for the Jacobi metric induced by the gravity field. Recall
that in our notation each trajectory xz = z(t) is determined by the relation
x(t) = {X(t),n(X(¢))} in which X (¢) is a solution of the equation

X =V(X), —oo<t< o0, (1.6)

trajectory
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where the periodic vector field V' = ug + O(g) determined by (4.1) is the
horizontal projection of the fluid velocity restricted to the free surface. Notice
that the behavior of integral lines of the perturbed vector field V' may be very
complicated, which makes impossible the analysis of the problem, since these
lines serve as characteristics of the linearized equations. Hence we have to
impose restrictions on the behavior of solutions to (1.6). In order to do this
we recall the notion of rotation number of a solution to this equation.

Definition 1 We say that a solution X () of equation (1.6) has a rotation
number p with respect to the lattice I" if

sup dist {X (), 1,} < oo, irtlf( A1+ pA2)- V(X(t)) >0, (1.7)

where 1, is the straight line parallel to the vector A; + pXo. We say that
equation (1.6) determines a foliation of the torus R? /I" with rotation number
p, if each solution of (1.6) has the rotation number p.

For the trivial solution, the integral curves of V' = uy are horizontal straight
lines on the X-plane. They form a trivial foliation of the torus R?/I" with
the rotation number p. = .

Hypothesis 1 Further we are looking for solutions of the asymmetrical wa-
ter waves problem satisfying an extra topological condition: the integral curves
of the vector field V' form a foliation of the torus R?/I" with rotation num-
ber p close to p.. In this setting p is unknown and is an integral part of the
solution.

The existence of such a foliation is equivalent to the existence of a foliation
of the Jacobi geodesic flow on the free surface [16]. A distinction needs to be
drawn between the question on the existence of a single geodesic with a given
rotation number and the question on the existence of a geodesic foliation. In
the first case the answer is positive and the corresponding result holds true
even in multidimensional case, see [20], [23]. The common belief is that in
generic cases the geodesic foliation does not exist because of the occurrence
of gaps related as Aubry-Maser sets. Nevertheless, as it was shown in [21],
the trivial foliation is stable with respect to perturbations of V' if the rotation
number p, is irrational and satisfies a Diophantine condition. Following this
result we restrict our considerations to the case of irrational p.

It is worthy to notice that for symmetric diamond waves, the rotation
number of trajectories of liquid particles on the free surface is equal to 1. In
this very special case the corresponding foliation exists only because of extra
symmetric properties of diamond waves, which do not hold for asymmetric
waves.

1.3 Method and Results

We now formulate the main results proved in this paper, on the existence of
asymmetric travelling gravity waves satisfying equations (1.2), (1.3), (1.4).
We find a unique solution in a small neighborhood of an approximate solu-
tion Un(€), pn(€),un(e) which is chosen such that ¢ is odd, and 7 even in

rotation
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X. Here the parameter € = (€1, e2) represents the (small) two-dimensional
amplitude of the waves. From a single solution of this type, we then deduce a
torus family of solutions by using the translation operator 7,,. We first define
the subspace where U lies:

His)(R?*/T") = {U = (¢, 1) € H*(R?/I') : (= X) = —(X),n(~X) = n(X)}.

Then we prove the following

Lemma 2 For any fived integer N > 3, and 7 = (11,72) € RT?\{0}, we
define

A=+ P +) V2 e = (4772 (1.8)
and assume (non resonance condition) that the equation p.|k| = (k - ug)?,
where ug = (1,0), has only the solutions k = 0,+K;,+K5 where K1 =
(1,71), K2 = M1, —72), and k € I''. Then, for any € = (1,62) € R*2, there
is an approximate asymmetric travelling wave given by the expansion

N
Un(e) = Z eledUy, € H?S)(RQ/F), for any k > 3,

p+q=1
N/2 N/2
_ 2p _2q _ 2p _2q
un(€) = pe + €1’ ex pg, un(e) =up + e g5y,
p+q=1 p+q=1

where pn(€) € RT, un(e) € Sy. In addition, we have
F(Un(e), nn(e),un(e)) = e[V Q(e),

with Q(e) bounded in H?S) (R2/I'), uniformly in €.

Proof This Lemma follows directly from Theorem 4.

We notice that the non resonance condition is in fact a condition on
(71, 72). It is indeed satisfied for a full measure set in R as it results from
Theorem 10. Notice also the difference between this result and the corre-
sponding one in [16] where only one amplitude occurs. In the above Lemma,
if we make 71 = 72, and €1 = &2 we recover the result of Lemma 1.2 in [16].

The following theorem is the main result of the paper

Theorem 2 Let us choose arbitrary integers | > 34, N even > 4 and a real
number 0 < & < 1. Then, there is a full measure subset T of R*? such that
for any T € T there exists a subset £(T) of the quadrant {(2,£3) € RT2} for
which 0 is a Lebesgque point, i.e.

2
5 meas (E(r)n{ei+e3<e}) =1 ase—0.
Moreover, for § < e1/eq <1/6 and € = (e1,e2) € E(T), the system (1.2, 1.3,
1.4) has a unique solution of the form

U = Uaw(e) + le"U(e) € Bl (B2/1),

b= pon(e) + le[Vi(e) € R,

u = uyn(e) + |e/Vii(e) € Sy,

where (U(e), ji(e), 1i(e)) € Hl(s) (R?/T") x R x R2.

|1ambda and muc
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The proof of this theorem follows the same structure as for the proof of
the main theorem in [15] and in [16]. As in [16], the above result expressed in
terms of bifurcation analysis, provides a branch of solutions bifurcating from
a non isolated eigenvalue 0 in the spectrum of the linearized operator at the
origin. However, there is an additional difficulty here, due to asymmetry.

After a simple study of the linearized system at the origin, made in sec-
tion 2, we prove Theorem 4 in section 3, equivalent to Lemma 2 showing
formally how to handle the pair of "angular parameters” 7; and the pair
of "amplitude parameters” e;. The formal computation used for proving
this Theorem shows a small divisor problem, which prevents us to use the
Lyapunov-Schmidt method, contrary to the case when there is surface ten-
sion and where this method would be possible to be used. We are then led
to use the Nash-Moser implicit function theorem.

In section 4 we consider the linear operator £, (U) corresponding to
the differential of F at a non zero point in H’(“S), which we need to invert.
The principal part of this operator is the sum of a second order derivative
in one direction V' and of the Dirichlet-Neumann operator which is integro-
differential of first order, both parts depending periodically on X. The prob-
lem of invertibility of the operator £, .(U) is equivalent to the problem of
existence and uniqueness of periodic solutions to the linear pseudodifferential
equation

T (T (68)) +Go(69) = h. (1.9)

where J = V-Vx and G, is the Dirichlet-Neumann operator. The coeflicients
of this equations depend on U, u, u and are determined by formulae (4.1)
and (4.5). If we prove the solvability of this equation in the space H*(R?/T"),
then the existence of a solution to the nonlinear problem can be obtained by
using a Nash-Moser iteration scheme. The main difficulty is that this equation
has variable coefficients. Hence the first task is to find a diffeomorphism
Y =Y(X):R?/I" — R?/(27Z)? of the torus which transforms the principal
part into a constant operator for the two main derivatives. It is clear that
this diffeomorphism must take the vector field V10,, + V20,, to the vector
field 9y, + p0y,, where p is the rotation number of the flow generated by V. It
follows from this that the inverse mapping X = X (V) : R?/(27Z)? — R?/I"
must satisfy the equation

DX =0, X + pdy, X = c(Y)V(X(Y)), (1.10)

where ¢ is a positive 27-periodic function which will be specified below. For
technical reasons it is convenient to take it in the form ¢ = (y/vf)~!. After
the change of variables in (1.9) we obtain (see section 5 ) the equation for
the function u(Y) = d¢p(X(Y))

vD*u + pDu + G1u + &*u = gh(X(Y)) (1.11)

where the differential operator D = 9y, + pdy,, the coefficients g , p depend
only on U, v, u , u, and &, is a first order pseudodifferential operator with
the symbol

{G1,22/€§ + 2G1 12k2 (k1 + pka) + G112(k1 + Pk2)2}1/27

introducteql
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and &* is a linear operator of order 0 . Hence the resulting equation has a
parabolic character with leading derivatives D? and d,,. In order to make
constant the coefficients of these derivatives, we choose the function f in such
a way that Gy 22 = 1. As it is shown in section 5, this gives the following
equation for the diffeomorphism X (V")

F3(U, X, p,v, pyu) := DX — |det X'|'3U(X (Y)) = 0, (1.12)

where

1/6

U(X) = F[U, v, p,u](X), F[U,v,mu] = (va) > (V24 (V-2 Vo,

p and v being unknown constants, necessary here for the solvability of (1.12),
a and V are periodic functions of X (depending on U(X), u, u). We are
looking for a solution in the form X = T~'Y + W(Y), where the matrix
T-1! is formed with columns \;/27, i = 1,2, and W is an unknown 27-
periodic function. We prove (Lemma 5) that (1.12) may be formally solved
with respect to (W, p,v) in powers of €, where at the origin p = A\, v =
[eA(T1 + 72)] 7", provided that A ¢ Q (which restricts the choice of 7 =
(71, 72)).

The solving of (1.12) is the only first step in the study of the linear
equation (1.9). In the course of application of the Nash-Moser scheme to the
nonlinear system (1.2) we have to repeat this step infinitely many times. This
makes the problem very difficult. The next step is of strategic importance.
We add to system (1.2), the equation (1.12) for X (Y), p, v and replace (1.2)
by the extended system of operator equations

FU,X,p,v,p,0) =0, F = (F1,F2, F3), (1.13)

where 7 and F» are defined by (1.3), (1.4), and F3 is defined by (1.12).

We find again for this extended system an approximate solution under
the form of a power series up to order |e|?V, and this constitutes the starting
point for the Newton iteration used in the Nash-Moser theorem. In particular
we obtain p = pan(€), v = van(€), where pany and vy are polynomials of
degree N of variables £2. Next we fix N and will consider p = pax and
v = von as given functions of the small parameter . In this framework,
relations (1.13) form a system of operator equations for the function U, the
diffeomorphism X, and parameters pu, u.

Section 7 studies the differential of the extended system with respect to
(U, X, u,u), which means that we consider, now for convenience, that the
scalars (p,v) are the bifurcation parameters. The last equation in (1.13) is
independent of the first two, and this system has a triangular form. There-
fore, in order to invert the derivative of the operator F we have to invert
separately the linear operator £, ., corresponding to the differential of F,
and the differential Dx F3. The last question merits a detailed consideration
here.

Equation (1.12) is a fully nonlinear system of PDE of indefinite type.
However we claim that it belongs to the class of conjugacy problems and
the invertibility of its linearization can be obtained by using Fourier anal-
ysis. In KAM theory the notion of conjugacy problems refers to a class of

equDiffeo

extenintro
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nonlinear equations in the form ¢(X,U) = 0 with a property (X o Z,F) =
D(Z,H(X,F)). It is easy to see that the operator & = X' 71| X/|*UoX has this
property and equation (1.12) can be regarded as a new example of conjugacy
problem. In Section 7 we show that the linearized equation Dx F3[X]d¢ = g
can be reduced to the equation

Dv — %(div v)e=X""tg+ O(Fs)v, (1.14)

where ¢ = (1,p), d¢ = X'v. In Section 7 we study the structure of the
extended equation in details, and reduce the inversion of the differential DF
to a system of truncated equation (7.17)-(7.19). In its turn the truncated
problem can be reduced to the system of decoupled equations (1.11)-(1.14).
Since an approximate (with accuracy up to the discrepancy) solution to (1.14)
can be derived by the Fourier method, our study focuses on equation (1.11).

Notice that the leading order terms in this equation have constant coefhi-
cients (this was the purpose in adding equation (1.12)), provided that the ro-
tation number p satisfies a suitable diophantine condition, which restricts the
choice of amplitudes (¢2,¢3) since we now consider (p,v) = pan(€), van(€)
as parameters connected to (¢7,¢3) via a diffeomorphism.

After some elements on pseudodifferential operators and an introduction
of useful operators in section 8, the section 9, which plays a fundamental
role in the paper, deals with the descent method. This consists in making a
succession of change of variables in (1.11). First of all we show (Proposition
1) that there is a linear operator &_; : HS — H; (odd functions) with a
bounded inverse such that

6,1{u92 4D+ 6, +®*} — L4 AD+B+F 1,

where §_; is a pseudodifferential operator of order —1, % and B are zero
order pseudodifferential operators, and the operator £ has the representation

L= —vD? 4 (—A)V2 where e X Ae®X = _Ak-k, k= (ki + pka, ko)

with a positive constant matrix A. Moreover, the norms of operators 2, B
and §_1 do not exceed ce. The main difficulty now is that the operator
D, in contrast to the case of symmetric waves, has an unbounded inverse.
In order to cope with this difficulty we introduce the projection I7 such
that the operator £ has a compact inverse £7! : (I — IT)H*(R?/(2nZ)?) —
(I —II)H*(R?/(27Z)?). Next we apply the descent method developed in [16]
to the operator IT(£ + AD + B + F_1). The descent method along with
estimates of commutators of IT and zero order pseudodifferential operators
leads to the representation (see Theorem 8)

S{L+AD+B+F 1| T=M(E+T+ I +(1- M)(E+F),

where the operators &, ¥ are bounded and have bounded inverses, U is a
bounded zero order pseudodifferential operator with small constant coeffi-
cients, B is a small bounded operator, and § is a pseudodifferential operator
of order —1. The operator in the right hand side is easily invertible once we

introducteq2
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control the invertibility of the main part, which is now with constant coef-
ficients. There is a serious difference between the descent method presented
here, and the one used in [16], since at some stage we need to split the Fourier
plane in two parts, to be able to control the inverse of the operator D on the
part of the Fourier plane where the full linear operator has an unbounded in-
verse. This means that the method used in this paper is more general that the
one used in [16], and far more general than the one used in [15]. This implies
a triangular final normal form for the operator and in section 9 we intro-
duce the diophantine estimate (Theorem 11) allowing to control its inverse,
estimated in section 10 (Theorems 12 and 13). Notice that this last estimate
is valid all along the successive points of the Newton iteration scheme, and
this provides a restriction on the choice of couples (p, v), which corresponds
to restrictions on the choice of amplitudes (¢2,€3) belonging to a set which
has 0 as a Lebesgue point in R*2,

Section 12 applies extensively the result proved in [15] concerning the
Nash-Moser Theorem with a parameter in a Cantor set. The existence of an
asymmetrical travelling wave seen as a perturbation of a specific approximate
solution, is the main result of the paper, as indicated in Theorem 2.

1.8.1 Directional Stokes drift

Knowing the rotation number of the velocity field V, which is the horizontal
projection of the velocity of fluid particles, allows us to give the asymptotic
direction of particles trajectories, and to compare them with the propagation
direction of the waves. It is a remarkable fact that these directions are slightly
different. We prove the following

Stokes drift| Lemma 3 (Directional Stokes drift) In the frame moving with the veloc-
ity of the waves, the horizontal projection of the asymptotic direction taken by
fluid particles makes an angle ~ 4(u;2){—m1e2+ N\ mae3} with the direction of
propagation of the waves. There is a special value of the ratio €% /€3 ~ \7o /7
for which both directions are identical.

2 Linearized equations at the origin and dispersion relation

The linearization at the origin of the system (1.2), (1.3), (1.4) with p = p.,
u = ug leads to

_(G9%—uo-Vn o) _ 1/2 -
LOU._<UO_W+#CH . where GO = (—A) 21)

is the Dirichlet-Neumann operator corresponding to a flat free surface. Now
expanding in Fourier series, the system (2.1) gives for any k € I/

k[t — i(k - o) = i(k - o)tk + Heific = 0.

Hence, the dispersion relation reads

A(K, e, u0) 2 pelk| — (k- ug)? = 0. (2.2)
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Without restricting the generality, we choose vectors K1 = (1,71) and Ko =
A(1, —72) and up = (1,0) (thanks to the invariance under rotations of the
system), satisfying the dispersion relation (2.2). This implies

cos 01 1 A2
— e = ) = — = 2.3
cosfy He T PN TR T TR (2:3)

where 7; = tan 6;. Notice that we still have two free parameters 11,75 in the

problem. We assume in the following

Hypothesis 3 The only solutions k € I'" of the dispersion relation (2.2) are
0,+£K;,+Ko.

Notice that we prove in particular at Theorem 10 that a stronger condition
than hypothesis 3 is verified for almost all (71, 72) in the positive quadrant
of the plane. For the linear operator £y we have now the 4-dim kernel

1 K- A s = .
CK1 = (27 ‘u_)e K X7 CKQ = (7’7 [L_)e K X7 C—Kj = CKj’ J= 172

3 Formal computation of asymmetrical 3-dimensional waves

In this section we state the following

Theorem 4 Assume that (11, 72) satisfies the non resonance Hypothesis 3
for the dispersion equation (2.2). Then, for fized (e1,e2) € R? | and any
v € R?, there is a formal expansion solution of the system (1.2), (1.8),

(1.4), of the form
U= (@)= >  A"A'B'B Upps,
p+q+r+s>1
fi = p— pe = ane] + azes + O{(e] +€3)%},
2
w
w=u-—uyy= (w17w2), w1 = —72 + O(W%)
wp = et + Bae + Of(e1 +€3)°},
with A = 11V, B = 552V v corresponds to an arbitrary horizontal
shift T, where Uly—o corresponds to A = &1, B = &4 both real,
Ui000 = Crys Uoo1o = Ckas Upgrs = Ugpsrs

and UQOQO, UOOQQ, U1010, U1001 given by (A6,A7,A8), and coeﬁcients Oéj,ﬂj
given by (A.13), (A.14) depend analytically on (71, 72). Bifurcation parame-
ters ji and w are expanded in powers of €3 and 3. For A = ¢1, B = &3, ¢
is odd, while n is even in X. Moreover, each formal solution U(X,e1,e3) is
imwvariant under the two symmetries S and So defined by

(SiU)(X,El, 82) = U(X + )\1/2, (—1)i€1, (—1)i+182).

Notice that for 1 = 2 we have ”diamond waves” only if |K;| = | K3/, i.e. if
A = 1. For wy = 0, the direction of propagation is along the x;— axis.

critical
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Proof The proof of Theorem 4 is given in Appendix A.

Remark 1 In the proof of Theorem 4, for the computation of the coefficients
Upgrs, We observe that at every successive increasing order in |e|, we need
to invert the linear operator £( in a subspace orthogonal to ker Ly. We have
then at each step a division by A(k, y.,ug) with k # 0,+K7,+K>5. Since
this quantity may be as close to 0 as we wish when |k| is large, we are faced
with a small divisor problem, leading to a possibly diverging series for U,
which is precisely the reason why we use below the Nash-Moser theorem.
This problem does not occur in the case with surface tension, since it adds
a term |k|? in A which would imply a regularizing property of the inverse
of Lo in {ker Lo}*. In our present case this operator is unbounded, and its
properties are made precise in section 10.

Remark 2 The set of formal solutions is defined up to an arbitrary horizontal
translation, which makes a torus of formal solutions for fixed (11, 72,€1,€2).
In fact we replace the initial bifurcation parameters 4 and u by ; = (U, Cx; )|,
j = 1,2, which is eligible as soon as a102 # as/31, which corresponds to the
condition

a1b2 - a2b1 7§ 0 (31)

where a;,b; are given in Appendix A. The left hand side of this condition
is a non trivial analytic function of 74 and 7o (as it can be checked easily
with the formulas giving a;,b;, = 1,2 in Appendix A), hence this condition
holds for all (71, 72) except maybe on a curve of the (71, 72) plane.

Remark 3 In [2] Craig and Nicholls were the first to obtain a formal asymp-
totic expansion of asymmetrical waves. However their result needs to be
corrected and simplified, because they do not use properly the symmetries of
the system, by fixing a priori real amplitudes for A and B before using the
translational invariance.

4 Linearized system in (¢,n) # 0

To avoid ambiguity in the proof of existence of a solution, because of the
torus family of formal solutions, we need to specify what solution we are
looking for. Indeed, from now on we restrict the study to solutions invariant
under the symmetry Sy, and such that A = e1, B = €5 are real positive.
Let us consider the nonlinear system (1.2). We define the horizontal pro-
jection V' of the velocity of fluid particles by
1

and it is shown in [16] that the differential of F with respect to U takes the
form

OuF (U, p,w)[0U] = L, w(U)[6¢, dn] + R(F,U)[U], (4.2)
where 6U = (6¢,0n) € H™(R?/I"),
5 = 1) — bom, (4.3)

‘ param condition

def deltaphi
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and where the linear symmetric operator £, 4(U) is defined by

e = (5%). (1)

J=V-V(), J9=-V-(V(-) a=V- -Vb+p. (4.5) [a]
The rest R has the form

R(F,U)[6U] = (R1(F,U)[6U],0),

R1(F,U)[0U] = G, (%) +V- <%W) ,

and cancels when U is a solution of F(U, u,u) = 0. For U € HE’;‘;)

Ve (HM YR/, be H' Y(R*/T), a € H" *(R/T),

where the indexes e or o means ”even” or "odd” with respect to X. Moreover
we have the following ”tame” estimates proved in [16]:

Lemma 4 Let U € Hz’g), m > 3. Then, there exists Mz > 0 such that for
[|U|ls < M3, one has

IV = ullm1 + [la = pllm—2 < em (M3)||U][m,

IR(F, U)[8U][|lm—2 < es(Ma){||F1l[2(/[nllm[0nll2+ 169 [m—1)+[F1 | lm—1l[6n]|2}-

The main difficulty in using the Nash Moser theorem, is to invert the ap-
proximate linearized system, i.e. invert the linear system

EH;U(U)[(S(ba 577] = (fu g)a

which leads to the scalar equation

—J*(%J(5¢>))+9n(5¢>)=h with hzf—J*(%g)eHj(N/F) (4.6)

and where we look for d¢ in some HS~"(R?/I'). In the Newton iteration
method, we linearize around some U(-, &) € H{), where & = (e1,€2), which
is not only invariant under Sy, but also invariant under the symmetries Sy
and Sp. It results that at each step of the iteration, S;h = h, and coeflicients
V,a,b are invariant under S;, and we expect to find d¢ invariant under Sj,
ji=12.

In the next section we find a formal diffeomorphism of the torus which
allows to transform the coefficients of leading derivatives in (4.6) into con-
stants. For avoiding to use infinitely many times the Nash-Moser implicit
function theorem in this paper, in an intricate way, this diffeomorphism will
constitute a part of the unknowns in the Nash-Moser theory which is used
here.
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5 Formal study of the change of variable

Rotation number. Let us derive the equation for the diffeomorphism of the
torus which brings equation (4.6) to a canonical form with constant coeffi-
cients in the leading part. The idea below is to find a diffeomorphism of the
form

X(Y)=T"'Y +W(Y,e) with T7'Y = 2i(y1)\17 Y2A2). (5.1)
s

The function W being (27Z)2- periodic, odd in Y, and invariant under the
symmetries

(SU)(Y,e1,e2) = (Y + ey, (—1)ey, (—1)Hes), i=1,2.

This diffeomorphism should be chosen in such a way that it transforms the
coefficients of the leading derivatives in (4.6) into constants. Since the second
order derivative contains twice a derivative along the direction V, let us look
for diffeomorphism (5.1) satisfying

- X)) where o= (Lp),  (5.2)

and f(X) is computed below for satisfying our purpose. It should be noticed
that the mapping X — Y (X) takes the torus R?/I" into the torus (R/27Z)?,
and the vector field V into a vector field with straight lines trajectories

Y = Vuf(X(Y))e.

Depending on the context, we use the following notations for the first order
differential operator D defined by

D:=09y, +pdy, =p0-V with DX =p-VX = X'p,
so that (5.2) reads
DX = v V2 (X (Y))'V(X(Y)). (5.3)

Let us now consider the second order derivative term —J*(1.7(5¢)) of the
linear equation (4.6), we see that it reads as

Vi - (L (V- Vx(39))) = % Ux(V - Vx(59)) + (V- Tx(66)Vx - (2)

and using the new coordinates Y, denoting from now on with a tilde the
functions of X expressed as functions of Y with X(Y), we obtain with
5o(X(Y)) = u(Y),

Vx - (= (Vx - V(69))) = v(a  f2)D%u + Vi[Vx - (@ V)] Du.  (5.4)

al<

equDiffeoX

equDiffeoXa

second order
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Leading first order derivative. Define the matrices Q and G = (g;5)2x2 of
the first fundamental form of the free surface, respectively in the parametric
representations {x = (X, n(X)} and {z = (X(Y),7(Y)} by

QX) =TI+ Vxn(X)® Vxn(X), GY)==X"1)QYV)X'(Y), (55)

and set J(Y) = — det X'(Y') > 0 because det T < 0. It is shown in [16], see
also Theorem 7 in Section 8, that the leading order of the Dirichlet-Neumann
operator G, in variable Y, is a first order pseudodifferential operator with
the symbol G given by (8.11). We obtain from (8.11)

1
G1(Y,k) = 7 {ga2(k1 + pk2)? — 2(g12 + pgo2) (k1 + pk2)ka+  (5.6)

+gn1 + 2pgra + pPg22)k2} 7

In this expression we specify the symbol (k1 +pkz) of the differential operator
D which appears already with degree 2 in the leading order derivative in (5.4).
So it is clear (because of the half power) that the next important coefficient
of the differential operator occuring in (4.6) is the coefficient of k3 in the
square root. This coefficient takes the following form:

1 1 . 1
7(911 +2pg12+ p7g22)'/* = j(X’ QX'0-0)'/? = j(@DX-DX)l/Q. (5.7)

We choose now the function f such that

(a=1f2) = J"HQDX - DX)'/2. (5.8)

It results that the expression of the symbol of the leading order terms of the
differential operator in (4.6), takes the form

X {—V(kl + pk2)2 + [G1711(/€1 + pk2)2 + 2G1)12(k1 + pko)ko + k%] 1/2}
(5.9)
with x(Y) = (a=1f2)(Y). Now replacing f by its value, we obtain from (5.3)
DX = JY2(va)"/2(QDX - DX) V4V,

Making the scalar product of both sides by QDX , we can eliminate the term
QDX - DX and rewrite this equation in the equivalent form

DX = |X| 3R (U,v, p,w)), (5.10)
where
F = —(va) V3V 4+ (V. Vxn)?) V5V (5.11)

V is defined by (4.1), and a by (4.5). Here we observe that the absolute value
J of the determinant of X’(Y) is at the power 1/3. Hence, with a change
of variables of the form (5.1), which satisfies (5.10), we succeed in putting
constant coefficients in front of the leading derivatives in (4.6). It remains to
find W(Y) in X(Y) (see (5.1)), and the scalars p and v.

symbolG_1lnew

second coef

mainSymbol
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6 Extended system. Problem formulation and approximate
solutions

Eztended system Note that the canonical diffeomorphism Y = Y (X) takes
the integral curves of the vector field V' onto lines yo» = py; + const., which
means that these curves form a foliation of R? /I" with the rotation number p.
Hence the topological restriction will be satisfied if we add equation (5.10) to
the basic operator equation (1.2). Thus we arrive at the following extended
problem

Problem 1 . For given positive 71, 72, find periodic functions R?/I" 3 X
U(X) = (¥(X), n(X)), adiffeomorphism R?/(27Z)? - R?/I": Y — X(Y) =
T-1Y + W(Y), parameters u, v, p , and a constant unit vector u satisfying
the system

.F1(U,U)ZO, FQ(Uv,UJau)Zov
Fs(U, X, p,v, p,u) =: DX — |X'|V3F(U, v, u,u)) = 0, (6.1)

Y(X +mAr+nA2) =¢(X), n(X +mAL+ nAz) =n(X),
W(Y + 2mme; + 2mnes) = W(Y), X(Y)=T"'Y + W(Y).
Here F; and F; are defined by (1.3), (1.4), and F is defined by (5.11).

We are looking for a solution of the extended Problem 1, i.e., for functions
U = (¢,n), a diffeomorphism X = X (Y), a constant vector u and a param-
eter p. The governing equations in Problem 1 depend also on parameters p,
v and on the lattice of periods. The lattice is completely determined by the
positive parameters 71 and 72, thanks to (2.3).

Approximate solutions. The extended problem also has a sequence of ap-
proximate solutions in the form of polynomials in the small parameter . In
particular, we state the following

Lemma 5 Under the conditions of Theorem 4 and assuming that A ¢ Q,
there is a function W, and scalars p and v > 0, formal solutions of the
equation (5.10), under the form of formal powers series in €1 and €3, such
that W is (2wZ)?- periodic, odd in'Y, and invariant under the symmetries

S;,7 =1,2, and the scalar power series for p and v take the form
p=ple? ed) = X+ p1e? + pac2 + O{(e2 + 2)?}

v =v(et,e3) = ve + vie] + 1085 + O{(e] +€3)7},

where py1, p2, v1,ve are given by (B.9), (B.10), (B.13), (B.14), and

ve = {peA(m +72)} .

Proof The proof of Lemma 5 is in Appendix B.

F(U,mu)3a
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Remark 4 Tt should be noticed that if A = r/s € Q, there is an obstruction in
the computation of W at order |€|"**, as seen in Appendix B. This means that
if we only need an approximate solution at order |e|®, it would be sufficient to
assume A # r/s for r + s < 8. However, in the following we need that A ¢ Q

to allow the diophantine condition (9.17) to hold uniformly as p approaches
A

By virtue of Theorem 4 and Lemma 5 for any fixed lattice of periods such
that A ¢ Q, and m > 3, the Problem 1 has an approximate solution

Un(e) = (Ym(€),mm(€)), Xml(e) = T'Y + Win(€),

un(e) =ug+wm(e), pm(€), pm(E), vm(e), (6.2)

which satisfies the equations of Problem 1 with an accuracy up to order
|€|m+1, and depends on the parameter € = (e1,¢e2). More precisely, the ap-
proximate solution is a polynomial of degree m in €.

We are looking for an explicit solution of the Problem 1 in the form

U = Usm(e) + |€|2mU7 X = Xum(e) + |5|2vaV7
u(e) = wim(e) +[el*" @, p = pam(e) + e, (6.3)
p = pim(€), v =rvm(e)

with new unknowns U, W, &, ji ~ o(|e|™). In this framework, p,.(¢) and
V4m (€) are considered as given functions completely determined by Lemma 5
where the series is truncated at order 4m. Notice that this modifies the former
definition of € = (e1,£2) (see Remark 2). Therefore, the natural bifurcation
parameter is (u,u) € RT x S* near (., ug). We expressed the formal family
of bifurcating solutions in terms of € = (e1,e2), by choosing & instead of
(1, u) which is valid as soon as the following condition holds (see Theorem
4) 182 — aef1 # 0 which is equivalent to condition (3.1). In the proof of
the existence theorem, we prefer to use the parameter (p,v) € Ri in the
neighborhood of (X, v.). This choice is eligible when the condition

pP1V2 — P21 7§ 0 (64)

holds, where p; and v; are given by (B.9), (B.10), (B.13), (B.14). The con-
ditions (3.1) and (6.4) are expressed as non zero values of two non trivial
analytic functions of (71,72). As it is easy to check for 71 ~ 79, these con-
ditions are non trivial by using the asymptotic values of p; and v; given in
Appendix B. It results that for all values of (71, 72) except maybe on two
curves of the plane, conditions (3.1) and (6.4) are satisfied. Choosing (p,v)
as new parameters, implies now that U, X, u and u are unknown functions
of p,v.

Moreover, with the assumption (6.4), the order |e|? is equivalent to order
O(lp — A + |v — v¢|), and we have the following

Lemma 6 Assume that Condition (6.4) holds, then there exists ¢ > 0
such that for 0 < € < o, there is an analytic diffeomorphism (£3,€3)
(p,v) from the triangular region of RT2 : 0 < &2 + €2 < ¢ onto an open

condnondegen?2
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Fig. 1 Diffeomorphism of Lemma 6 and domain w.

curved triangular domain w.of R? (see Figure 1) bounded by the following two
smooth curves originated in (A, ve) : {(pam(0,€2), vam (0,€2));0 < 2 < \/€},
{(pam(€1,0),v4m(£1,0));0 < &1 < \/€}, and the smooth curve

{(pam (Vecos,/esinh),v(y/ecos,/esinh)));0 < 6 < 7/2}.

More precisely, we can invert the diffeomorphism (by using the implicit
function theorem for ey small enough, which then leads to

2 vilp—A) = pi(v —ve) 2

ef = (—1) +0 —A+|v—re ,
e {p =X+ v - ve)?}

where i,j = 1,2, i # j. The domain w, is then obtained in expressing €2 > 0,

€3 > 0, €2 + €3 < ¢, and the boundaries of w, are at order
O{(lp— Al + v — ve])?} close to the lines

vilp=AN) —pilv—r.) =0,i=1,2
(2 =v1)(p = A) + (p1 — p2) (v — ve) = e(prva — par1).

pend(rho,nu) | Remark 5 Notice that piam (€), Uam (€), |€*™ = (¢2 +£3)™ are analytic func-
tions of (p,v) € we,.

7 Linearization

This section is devoted to the computation of the differential of the mapping
(U, X, p,v, p,u) — (F1, Fa, F3) and to state the strategy for inverting it in a
neighborhood of (0, T~ \, v, pc, ug), for fixed (p,v).

Conjugacy problem. In this paragraph we show that the nonlinear differential
operator Fs is related to the class of ”conjugacy problems”. Assume that
F : R? — R? is a smooth mapping, o € R? is a non-zero vector, « is an
arbitrary real number. For any vector field X : @ — R? defined on an open

set O C R?, we set
H(X) =:0-VX — | X'|*Fo X, (7.1)
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where X'(Y") is the Jacobian matrix of the mapping Y +— X (Y) and | X'(Y)| =
det X’(Y'). This relation determines the differential operator H which is
strongly nonlinear when « # 0 and weakly nonlinear when o = 0. We claim
that for any «, the linearization of the equation H = 0 can be reduced,
by a linear change of variables, to a standard canonical form with constant
coefficients, which does not depend on F. This results from the following
lemma.

Lemma 7 Let X € C?(0)?, |X'(Y)| # 0 in O, and the notation

DxH(X)5X] = lim %(H(X +15X) — H(X))

stands for the Gateauz derivative of H. Then, for any v € C*(O)?,

DxH(X)[X'v] = X' (eVv — o (divv) @) +v- VH(X) 4+ a(dive)H(X). (7.2)

Proof We have for X = X' v,

oVoX = X'oVu+ Y 00V, X and DxF(X)[0X] =) vF/(X)d,X.

| 79

Note that

Dx|X'(YV)|[6X] = | X' (Y)|div v+ Z 00y, | X' (V).

Combining this result with (7.3) and using the identity
Dx (|X'|F(X))[6X] = a|X'(Y)[*"{Dx (| X'|)0X]}F + | X'|*DxF[6 X]
we arrive at

DxH(X)[X'v] = X'(0- Vv) — adive | X'|*F+
+> vi(e- V9, X — |X[*F'9, X — alX'|""'9,,|X|F)

= X'(e- Vv) + vVH(X) — adiv v |X'|*F.
On the other hand, we have
IX'|1°FoX =9 - VX —H(X) = X'0—H(X).

Combining the results above leads to (7.2) and the lemma follows.
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Linearization of the operator F. In this paragraph we give the canonical
representation for the Gateaux derivative of the nonlinear operator F =
(F1, Fa, Fs) defined by (1.3), (1.4), (6.1). We shall consider F as an operator
over the space of I-periodic functions (¢, n), diffeomorphic mappings X :

R2/ (27TZ)2 — R2/I', parameters p, and unit vectors u. The following theorem
is the main result of this subsection, proved in Appendix D. Further we denote
systematically with a tilde the functions of X expressed as functions of Y with
X(Y).

rativetheorem | Theorem 5 Let functions U = (¥(X),n(X)) and §U = (6v(X),on(X))
be of class C3(R?/T"), a mapping Y — X(Y) = T'Y + W(Y), W €
{C3(R2/(2rZ)*)}2, be a diffeomorphism of R2, and a mapping v be of class
{C3(R2/(2rZ)*)}2. Let also du be a constant vector, and ép be a positive
number. Furthermore, assume that functions 6¢ € C*(R?/I"), u,s €
C%(R%/(2nZ)?) and the mapping 6X € {C3(R2/(2xZ)*)}2 are related to 6U

and v by
8¢ =06 —bdn, X (Y)=X'(YV)v(Y), (7.4) [variationformula |
u(Y)=56(Y), s(¥)=on(Y). (7.5)
Then

_ 1 _
(D(Um)]-'l(U, w)[oU, 5u])oxm:Kgu_ﬁpg_qlg_q2.5u+nl[u,g] (7.6)

1 ~ _ _
(D(U,;L,u)]:2(Uu p, w)[6U, o, 6u]) o X(Y) = 77 Dut0s+az-dutijdp+Ro [u],

)
X/(Y)_l(D(U,X,u,u)]:é(Uv Xv P I/,,LL,U)[(SU, 5X7 5:“35“])‘)(7)((},) =
- (78)

) N _
—Mg—i— T[X""6u+ Vu, <] + Rs[u,s,v,du, ul.

3a
Here the coefficients in identities (7.6), (7.7) are given by

1
=Dv — g(divv)g—i—

K= H(@f/ : 17)1/2 (@DX : DX)71/2,

e~

p=dNV, @i @ = (Grp- i, (19)

e~

= x| fa@v - )2} gu= (@,00)

The linear form T in identity (7.8) is given by

Ll — 1 . a—p
Tie. o) ={G (Nl + M) + e €+ [ 55 s e
— HG ¢ 4+ (D)G~'Vij — cHG'Vb.
(7.10) |bfT
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where

Nle) = D (X' -€) + G '€ Vb,

Ho A1+ g
~— 1 /92" Vxb 1 Dg -
Mic] = _7_)( — ) (7.11) -nphlmeta
2 H 1"’|C12|2§+Hl‘*’|<lz|2 i

+s (G—lvEVE) - %(G*Vﬁ- Vb).

The remainders R; are defined by the equalities

—~ 1 — — 1
Rilu,s] = Ri + E(X’—lﬁ)vg + (1 - K)Gu, TRau]= —E(X’—lﬁ)vu,

Rs 1
Rau, s, v, 0p,0u] = X'~ (v Vy Fy) + 5 (div v) X'~ Fyt

— S[X"*6u + Vu,s,0p) X'~ Fa+
+ Rs[X*0u+ Vu] (¢ — X' F3) — Rv ],

where
Rolé, o] = - (Rw[€] + Rarlc]) — ———— X'~17, . ¢ (7.12)
T 3a 3H(QV - V) ’
_ 1 / —1 /—1
Rl ==X )R V(X e w), ()
1, Q- -Vxb X'V
= __X'"1lF,.
R ls] i7i F3 V( [ S P )
1 ~ 1 1 X'~ 'Fy - Vg
—(X'LF “Iyp.Vij— —D(=2 I3 V& 14) [mm
+ (X' - VOGTIVE - Vi — =D (- — ) (7.14) [Ra]
and
Rvls] = (X'~ F3 - V)GV, (7.15)

the linear form S being defined by the equality

_ 1 — — a—pu

: ] 3a ) 3 3H(QV - V) 3QV -V
Remark 6 The remainders R1, Ra, R3, cancel identically as soon as F; =
Fo = F3 =0, as this results from the formula for R (see (4.2)) and from the
identity

1 _
73— 1= (HQV V)" QHQV - F5 + QFs - Fa). (7.16)
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Truncated equations. In order to apply the Implicit Function Theorem to our
problem, we have to prove the invertibility of the Gateaux derivative of the

nonlinear operator F, i.e. the solvability of the operator equation

D(U,X”u.,u)]:(Uu Xu PV, Wy u) [6U7 6Xa 6,“7 6u] = (f7 g, h)

By virtue of Theorem 5 this equation is equivalent to a system of linear
pseudodifferential equations for periodic functions u, ¢, v and parameters
ou, op

_ 1 _
Kgu—EDG—qlc—q2~5u+R1[u,€] =f

1 _ _

77 Du+ 08+ a3 dutnop+ Rofu] = g,

op

350 T T[X"*6u + Vu,s] +

1
Dv — g(divv)g +
+ Rs[u,s,v,0u,0ul = X'~ 'h.

In accordance to the Nash-Moser theory it is sufficient to invert the linear
operator which approximates the Gateaux derivative DF with accuracy up
to the discrepancy terms R;, i = 1,2, 3. Hence we can omit the operators R;
for the study of the inverse of the differential. Thus we come to the following
truncated system of operator equations

KGu—-H 'D¢ —qis—q-du=f (7.17)
H 'Du+ac+qs-du+ndu=g, (7.18)
1
Dv — 3 (divv) o + g—gg + T[X"*6u + Vu,s] = X' 'h. (7.19)

We show that these equations are equivalent to a second order pseudodif-
ferential equation with constant coefficients in the principal part. First we
eliminate ¢ and reduce the number of equations. For doing this, note that
equation (7.18) implies

1 1 n 1
=——Du—=q3-6u— =9 =g, 7.20
S 7 DU~ =ds - Su— =bu+ =g (7.20)
Substituting this expression into (7.17) and (7.19) gives the equations
— 1
KGu + H—QED2u+p1Du+p2 -du+ p3dp = F, (7.21)
1
Dv — 3 (divw) @ + Q[op] + Uldu] + Y[u] = G, (7.22)
Here the coefficients and right hand side of equation (7.21) are defined by
q1 1 1 1 1 q1
D1 H6+H (HH)’ b= (aQ3)+ aQs q2, (7.23)
Loy 1 L9y . 90 '
== —D = —_— F: —D = -
b= (a+a’ f+H (a)+a

basicsysteml

basicsystem2

basicsystem3

basicsystem2a

basicsystemla

basicsystem3a

| basicsystemlab
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The (2-components) linear forms Q, U, Y and right hand side of equation
(7.22) are defined by the equalities

Q] = Lo— 0, Lsu], Ulsu] = T[X'*5u, — ~qs - oul,
3a a a (724)

Y[u] = T[Vu, - ! Du], G =X'"'h-T, %].

Ha
Our next task is to eliminate du and du and to bring the system (7.17)-(7.19)
to a triangular form. Denote by u' a unit vector orthogonal to u. Since u is
a unit vector, we have u-du = 0 and we have to look for the unknown vector
du in the form

du=dwus.

Now set
€= U(ut)ay.

R2/(2n7)2

Q()dy, ¢=
R2/(27Z)2
Remark 7 We may notice that the two vectors € and ¢ are not colinear.
Indeed for v =n =0, pt = phe, vV = v, p = A we have
a=pe, H=1,ut =(0,1), X'=T"", Q=1, V =g

hence
1

3,“/0(1, A)v Uc(ul) = _TuDL = (_7-15 /\7—2)7

Q.(1)

and
[(1,A) x (=71, A\m2)| = A(11 + 72) # 0.

Since the vector field Dv — 371(div v)g in (7.22) has a zero average over
the period, the average of (7.22) leads to the equation

o€ + dw¢ = — Y[u]dY + GdY
R2/(27Z)2 R2/(2nZ)2
which gives
op=E1[u,G], dw=Es(u,Gl, (7.25)
where the linear functionals =; are defined by the equalities
1
Eilw Gl = o r ¢ (=Y[u] + G)aY,
2 T 2
X /e (7.26)
Zs[u, Gl = ——¢*- (—Y[u] + G)dY.
R2/(27Z)?

Substituting these relations into (7.21), (7.22) we obtain a triangular system
of operator equations

— 1
KGu + ﬁDQU + p1Du + E1[u, 0]ps + Es[u, 0]ps - ut

= F — 55[0,G]ps - ut — 210, G]ps, (7.27)

| basicsystemlac

basicsystemld



section7

26 Gérard ITooss & Pavel Plotnikov

Du — % (dive) o = G — B1[u, G]Q(1) — Zsfu, GIU(u) — Y[ul. (7.28)

Remark 8 By construction of the functionals =';, the right hand side of equa-
tion (7.28) has automatically zero mean value over the fundamental cell of
the periodic lattice.

Our further considerations are based on the analysis of system (7.27)-
(7.28). Notice that after solving the first equation (7.27) for the function u, we
can easily find the second unknown v inverting the operator D — 3~1(div-)p.
Hence, the main task is to prove the solvability of equation (7.27). It is now
sufficient to prove the solvability, in the Sobolev space of odd 27 -periodic
functions of the linear operator equation

_ 1
KGu + chlD?u +p1Du+H_ju=F, (7.29)

where
H_ju= E'l[u, 0]p3 + EQ[U, O]pz cut (730)

maps H? to H5t! for any s > 2, with a norm of order O(|e|). The proof
of the invertibility of (7.29) occupies sections 9 to 11. First of all we clarify
the structure of the linear operators involved in the main equation (7.29).
The most suitable tool for this is the theory of pseudodifferential operators
in Sobolev spaces, and in the next section we recall basic definitions and
results.

8 Pseudodifferential operators. Auxiliary propositions.

Pseudodifferential operators. Basic definitions. We deal with the class of
integro-differential operators on a two-dimensional torus having the repre-
sentation

1

T

Au(Y) > e Y AY k).

keZ?

The operator 2l is completely characterized by the function A(Y,k) - the
symbol of 2. We use Gothic capitals for pseudodifferential operators and Ro-
man capitals for their symbols. Recall that 2 is a pseudodifferential operator,
if its symbol satisfies the condition

Condition 6 There are integers | > 0, m > 0 and a real r named the order
of the operator 2 so that

A0 = [ACO)ller + sup  sup K| *ITOFAC B)ller < oo
keZ2\{0} |a|<m

The following lemma immediately follows from the definition and the
Parceval identity, see Proposition F.1 in [16].

basicsystem3d

lin0OPdiff
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Lemma 8 Let |Q[|t07l <ocoand 0 < s <1—3,s+t>0. Then there is a
constant c, depending on s, v and | only, so that for all u € H*™"

[20ells < (12651l + 1245 5]

ullets)- (8.1)
Ift <0, then the norm |lull; should be replaced with |lullo-

An important example of such operators is the first order pseudodiffer-
ential operator Qﬁgo) = (—A)'? with the symbol (see (9.6))

G(k) = (Ak-K)V/2 = |AV2K|, k = (ky + pka, ko), (8.2)

associated with a fixed positive symmetric matrix A, and the second order
pseudodifferential operator

£ =vD?+ (—A)Y2, where D =d,, + pd,,. (8.3)
The symbol of £ is determined by the equality
LK) := |[AY?K| — v(ky + pk2)>. (8.4)

We also define ”the inverse operators” (—A)~Y/2 and D~ by the equalities

(D) 2u) = |AVZK Vg for k#£0, ((—A)2u)o=0  (8.5)

—

(D—Tu)x = (iky +ipks) ' for k£0, (D-lu)o=0.  (8.6)

They are real inverses of (—A)/? and D on the subspace H° of all function
orthogonal to constants. It is important to note that the operator D! is not
pseudodifferential.

Further we deal with the special class of zero order pseudodifferential
operators 2 with symbols having the form of a composition A(Y, £(k)), where
the vector field £(k) is defined by

E=(4,8)= for k#£0 and £(0) =0. (8.7)

|AL/2K|
The metric properties of such operators are characterized by the norm

|Ali = sup  sup [[OgA(, )|t < o0, (8.8)
[a| <6 c=1<[€|<e

By abuse of notation, further we simply write £ instead of £(k).

11.2

15.3abc

103
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Dirichlet-Neumann operator. In our framework, the most important fact is
that the Dirichlet-Neumann operator is the sum of a pseudodifferential op-
erator and a smoothing remainder. This results from the following theorem,
which will be used throughout the paper (see [16] Theorem 3.5).

Theorem 7 Suppose that there is an integer r, with 10 < r, and a positive
e > 0, such that

I17ller (e jomzyzy + 11X = T lierme jonzy?) < €- (8.9)

Then there is €9 > 0 depending only on v such that for all 0 < & < ¢ and 27-
periodic sufficiently smooth function u, the operator G has the representation

Gu = Giu+ Gou+ G_qu. (8.10)
Here G1 is a first order pseudodifferential operator with the symbol

det G

1/2 —1 1/2
W) (G~ k- k)2, (8.11)

G1(Y.k) = (

Go is a zero order pseudodifferential operator with symbol

Go = Re Gy +iIm Gy (8.12)
~ det G 1 . i p—
Re Go = 5o~ [G—lk S PV k) + div (G'v)], (8.13)
5 1 det G \1/2 . -1 1/2

Here the quadratic form P(Y,-) is given by
P(Y,k) = %V(G‘lk k) - (GT'V)) -Gk - V(G k- V7). (8.15)

The symbol of the zero order operator Gy can also be written in the standard
form

Go(Y,€(k)) =: Go(Y; & — péa, &2), (8.16)

and the symbol Gy admits the estimate
|Golr_2 < ce, (8.17)
while the linear operator G_1 satisfies
1G—rulls < cellullos for 1< s<r—9. (8.18)

Moreover, if a function (Y') is even and the function X (Y) is odd in Y, Gu
is even for even u and odd for odd wu.

11.5

I

1.6

= = =
= =
© Q [o0)
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Commutators and Compositions. It is well known that the principal part of
the composition AB of pseudodifferential operators A and B is also a pseu-
dodifferential operator with the symbol AB, and the order of the commutator
AB — BA is less that the sum of orders of the operators 2 and 9. The fol-
lowing lemma, (see Proposition F.1 in [16]) gives the explicit formulation of
this result.

Lemma 9 Let A and 2 be zero order pseudodifferential operators so that
for some non-negative integer 1, |A|; + |W/|; < oo, where the norm |-|; of the
symbol A(Y, €) is determined by

|Ali = sup  sup [|[DgA(-, &)l
la]<6 c1<[g|<e

Then for any uw € H® with s € 0,1 — 5], we have
[Aulls < c(|Alsllulls + [Alillullo)- (8.19)

The composition of the operators 2 and 2 has the representation
AW = (AW), + D) = (AW), + (AW); + DL (8.20)
where the pseudodifferential operators (A20)o and (AW)1 have the symbols
AY, W (Y,€) and = —iVLAY,€) - VyW (Y, ). (8.21)

Here we adopt the convention that ViW (Y, €(k)) = 0 when k = 0. For any
s € (0,1 = 7], the remainders admit the estimates

A
1D s < el Alo| [Wls [[ulls + (1ALl [W]s + [Als [W]) Jullo- ~ (8:22)

The commutator [(—A)Y2,20] has the representation
(= A)/290 — (— A2 = [(—2A)Y2, 9m), + @[2(—A)1/27W], (8.23)
where the symbol of the operator [(—A)'/2,20], is equal to
—iVi(Ak - k)2 Vy W (Y,€),

when k # 0, and 0 otherwise. For s € [0,1 — 7], the remainder admits the
estimate

—A1/2,
DX P 1 < W ulls + e[ W] fJulo- (8.24)

15.150

15.1baa

(AW) j

15.16a

156.17a
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Resonance projection. For fixed positive v we denote by N' C Z2 the set
N ={k €Z%: (ki + pk2)? > (4v)"'|AV?K| }. (8.25)

Denote by IT the projection defined in terms of the Fourier transform by the
equalities

(ITu)x = G for ke N, (ITu)x =0 otherwise . (8.26)

An inherent characteristic of this projection which immediately follows from
its definition is that the operators £7!(I — IT) and D~'II are bounded and
admit the estimates

[£75T — Mulls41 < c(s)|julls forall uwe HS, 0<s< oo,

—1 s (8.27)
D™ ITu|| 5412 < c(s)||ulls forall uwe H®, 0<s< oo.

The operator II enjoys many remarkable properties the most important of
which are given by the following lemma proved in Appendix E.

Lemma 10 Let $ : HS — H be a zero order pseudodifferential operator
with an integer v > 5 such that |H|, < cge. Then for any s € [0,r — 5)
there are a constant c, depending only on s and cyg, and bounded operators

9,3 HS — H so that [I1, 9] = DL+ 3 and

1Dulls1 + [[3ullsta < cellulls for all we H. (8.28)

Contraction mapping principle. The following simple corollary of the con-
traction mapping principle will be used throughout the rest of the paper.

Lemma 11 Let 0 < s and for all w € H the operator U; satisfy the inequal-
ities
|Wiulls < crelulls, i=1,..,n. (8.29)

Then there is €9 > 0, depending only on ¢1 and n so that for all € € [0, &g
the operator

W, = [J@+)", ji==+L

i=1

satisfies the inequalities

105" = Dulls < ceflulls. (8.30)

resonance set

D42
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9 Normal form of the operator equation

This section occupies a highly important place in the paper. It is devoted to
the study of the pseudodifferential operator

_ 1
KG+ ——D? D _ 9.1
g'+'}{2a +piD+H_1 ( )

which forms the basic equation (7.29). The aim is to show that this operator
is similar, up to some lower-order unessential terms, to the linear operator
with ” constant coefficients” (£+0)I1+£(I—-1IT), where the pseudodifferential
operator £ and the resonance projection IT are defined by formulae (8.3) and
(8.26), U is a zero-order pseudodifferential operator with a symbol V' (£). This
result completed by estimates of the £- resolvent, displayed in next section,
makes it possible to reduce equation (7.29) to a Fredholm-type operator
equation.

Before to formulate the results we introduce notations which will be used
throughout this section. First of all we specify the matrix A in the definition
of £, and the symbol V(&). To this end we introduce the temporary notation
for differential operators

8=SVy, 8 =div(S*) where S= <é§’> 9.2)

In particular, we have k = Sk. Let us introduce the matrix G; with the
entries

—gi12 — Pg22 g22

Gioo=1,G112 = , G111 = ,
' ’ g11 + 2g12p + ga2p? ' 911 + 29120 + G22p?

(9.3)

where G = (g;j)2x2 is the first fundamental matrix of the free surface (see
(5.5)) in the parametrization z = (X (Y),n(X(Y))), and a function

a(Y) = [X' (V)3 (av @V - V)) P o X(Y), (9.4)
and introduce also pseudodifferential operators &;, i« = 1,0 with symbols
(YK = (Cik-K)V2 Jo(Y,€(K) = gKGo(Y.€), (9.5

where the symbol G (Y, €) is given by (8.16) and (8.12). We define the average
A of G1 and the deviation B as follows

1
A= (M), A= ye) / G1,45(Y)dY, (9.6)
R2/(277)2
B= (Bij)y,q Bij =Grij— Ay (9.7)

We introduce two complex-valued periodic functions A(Y') and W (Y))

A:=Re A+ilm A= gp (V) — iB2(Y),

N . . . 9.8
W:=Re W +ilm W =exp{(2v)"'D'A} — 1. 58)

smatrix

composida

mathfrakg

Dla

Dlaa

Dba



32 Gérard ITooss & Pavel Plotnikov

Introduce also two basic elementary pseudodifferential operators 2 and 20
with the symbols

A(Y,€) :=Re A+if&Tm A, W(Y,€) :=Re W +i&Im W, (9.9)
and a zero order operator 8 with the symbol
B(Y,€) = Qo(Y, &) (1 +i&A(Y,€) ) + Jo(Y, €). (9-10)
Here the symbol Qo (Y, &) is defined by

VQu(Y€) = 3B (Y) + Qu(Y8),
Qo1(Y,€) = —{(2B12(Y )& + B11(Y)&1)* } x

X {4 B (Y )16 + 2B (V)ER + 41+ 2Bis(V)Ers + By (V)] 2}

(9.11)

Next, introduce zero-order pseudodifferential operators Bg, B, and € with
the symbols

Bo(Y,€) = [L+ W(V,8)] ' [B(YV.€) + Bi(Y.6) + E(V.€)],  (9.12)
in which
By = vD*W + ADW + BW —i@W - Aé+ 0.13)
+E[VeA - AOW — (VA-AE) (W -AE)], ®.
B(Y,€) =v i Im Alm W (2416 + Aug ). (9.14)
Finally set
21 27
V©) =15 [ [ Bav.gay. (9.15)
0 0

Now we can formulate the main result of this section. Assume that the 27-
periodic function 77 and the mapping X (Y") satisfy the following conditions.

(H.1) There is an integer r > 26 and positive constants €, ¢y such that

' <v<e, ¢ <p<a, (0.16)
Inller@2/ry + 1¥ller@z/ry + 11X — T ler g2 j2nzy2) < /2, '

Here v and p are parameters occuring in the definitions of £ and D.
(H.2) The rotation number p satisfies the Diophantine condition

k1 4 pka| 1 < colk|*? for all k € Z2\ {0}. (9.17)
Note that this condition is fulfilled for a.e. p € R.

Remark 9 In the following, € is a shortcut notation for a small quantity of
order O(]p — A| + |v — v¢|), due to our choice of parameters.

Dbaa

D5b

Dbba

= = =

[¢,] o [¢,]

N o] a

= o O
o

15.8

12.5

diophantine
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Theorem 8 Let n, v, X, p, v, and exponent r satisfy conditions (H.1)-
(H.2). Furthermore, assume that

2<s<r-—24. (9.18)

Then there is g > 0, depending only on r, the lattice I', and on the constant

co > 0 in (H.1)-(H.2), with the following properties. For any ¢ € (0,¢€p),

there are bounded operators &, % : HS — HS, §: HS — HST, P HS — HE

so that

G{g(K§+ L ypin )}s:
H?%a ' -

=I(L+V+JI+ - I)(L+P).

Moreover, for any uw € H} the operators U, §, B, and &, T admit the esti-
mates

(9.19)

1Bulls < cellulls, [Bulls + [Fullsr < e |ulls, (9.20)

1S = Dyulls + (T = Dulls < e |ulls, (9.21)

where the symbol V (€) of the zero order operator U is given by formula (9.15).
If, in addition for 1 >0

Er = |nller+ire/ry + [¥ller+i@eyry + 1X = T~ lervimej2nzyzy,  (9:22)

then
1Bl ot + 1Fullsrrsr < ce?|ullorr, +cErluls, (9.23)

1(6*" = Dullssr + (T = Dullssr < e Jullsri+ cEollulls,  (9.24)

where the constant ¢ depends only on s and cq.

The proof of this theorem occupies the rest of the section. In order to
avoid repetitions we give the proof of the theorem only in the case [ = 0. It
follows from the tame estimates for compositions and commutators in Lemma
9 that the same proof works for [ > 0, see [16]. We split the proof into four
propositions and one technical lemma. First of all we prove the auxiliary
Lemma 12, which gives the estimates for the symbols A, B, By and V. Next
we prove the preliminary Proposition 1 and reduce the operator (9.1) to a
canonical form with the operator £+2AD+*B in the principal part. The proof
of these results occupies Subsection 9.1.

Next propositions correspond to three steps in the so called descent method
[16]. We use the scheme proposed in [16], to make the first step of the descend
method and eliminate the first order term AD in £+ AD + B. This result is
given by Proposition 2 in Subsection 9.2. The justification of the second and
third steps in the descent method uses explicitly, in the formulation of the
new linear operator, the inversion of the differential operator D which would
imply a loss of regularity. We cope with this difficulty by using Lemma 10
on the commutators of the resonance projection. The corresponding results
are given in Propositions 3 and 4. It is worthy to note that our proof is con-
ceptually algebraic. In particular, we do not require the existence of the £
resolvent. The only metric restriction is the diophantine condition (H.2).
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9.1 Preliminaries

Symbols estimates. Our first result is the following auxiliary lemma which
gives the estimates for coefficients of operator (9.1) and symbols (9.8)-(9.15).

Lemma 12 Under the assumptions of Theorem 8, there is ¢ > 0 and con-
stants c1, ag, depending only on the exponent r, the lattice I', and the con-

stant ¢o in (H.1)-(H.2), with the following properties. For any € € (0,¢€1),
the matriz A and the symbols (9.8)-(9.15) satisfy the inequalities

ag k| < (Ak - k)% < aglk| for all k € Z2, (9.25)

|Alr—s + [Wlr—6 < ce'/?, |Qoly—1 + |Blr—3 < ce'/?,

(9.26)
|Bily—s + |Elr—s < ce'/?, [V(&)] < ce'/?.
Moreover, for all s € [0, — 10] and u € HZ,
lg =@ lloers < et/ B rullssr < ce/?ulls, (9.27)

where g(0) = A +7m)™t 6 =KgG 1 +gH 1.

Proof Tt follows from formulae (7.9), (7.23) and (9.4) and formulae (4.1),
(4.5) for the vector field V(X) and the function a(X) that K, p; and g are
algebraic functions of 7, ¥, X’ and its derivatives up to the third order.
Moreover they are analytic at the point n = ¥ = 0 and X’ = T~! and
p1 vanishes at this point. On the other hand, the matrix G; and symbol
G, defined by (8.12)-(8.16) are rational functions of Vi and X’ which are
analytic at the point X’ = T~!, Vi = 0, and Gy vanishes at this point.
From this and formulae (9.6), (9.7), (9.9)-(9.11) we conclude that estimates
(9.25)-(9.26) for A, B, Qo and estimate (9.27) for g are a straightforward
consequence of the inequalities (9.16). Now we estimate the symbol W. It

follows from (H.2) that for every u € C*(R?/(27Z)%), and s > 3

1D~ ulles—s(r2(2nzy2) < e(8) 1D | says <

< e(s)l|u (9.28)

ls < c(s)llulles 2/ (272)2)

which leads to inequality (9.26) for the symbol W. Next note that by virtue
(9.12) -(9.14) the symbols B; and FE are rational functions of symbols W, A
and B and their derivatives up to second order. These functions are analytic
in the domain |W/| < 1. Hence estimates (9.26) for B; and E follow from
estimates (9.26) for A, W and B. Finally, estimate (9.27) is a consequence
of estimate (8.18) for the norm of G_; and of the form of H_; (7.30) with
p2 and p3 defined by (7.23), and =;(u,0) coming from T[Vu, —g=Du] in
(7.10).

15.1
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Canonical form. The second preliminary step is the reduction of operator
(9.1) to the canonical form with the operators 20 and 9% in the principal part.
The corresponding result is given by the following proposition.

Proposition 1 Under the assumptions of Theorem 8 , there are €y and ¢ >
0, depending only on v and on the constant ¢y in conditions (H.1)-(H.2),
such that for every € € (0,¢q), there are linear operators &_y : H — HZ,

F_1:HS — H:Y such that
— 1 9
S 1{a(KG+ =D + D+ H o) | =L+ AP+ B+F 1. (9:20)

For any exponents s € [0,r — 10] and any function w € HE, the operators
S&_1 and F_1 admit the estimates

lu — &= ulls < cePllulls,  I1F-1ullsr1 < ce'2ulls. (9-30)

Proof Using the identity g11 + 2pg12 + p?g22 = Go - @, we can rewrite the
expression for the symbol of the operator G; in the form

VGo-o0,. v =
G1(Y k) = s (G1k - k)'/?

where the elements of the matrix G1(Y") are given by (9.3). Recalling the for-
mula (7.9) for the coefficient K in Theorem 5 and the identity G = X"*QX’

we obtain K1/Gg- o = Hv/QV -V, which gives the expression
KG =—|X'|"'\/QV - VH &,.

Here &; is the pseudodifferential operator with the symbol J; defined by
(9.5). Tt follows from this, formulae (9.4) for g and (7.9) for H that the
principal terms in the operator (9.1) can be rewritten in the form

1 Vav v X'
Kglu + FDQU = —(Q;(ilH(ﬁl u — %DQU)
¢ X H3a\/QV -V
=g! ((’51 u+ I/DQU).
Substituting this expression in (9.1) gives

_ 1
a(KG + H—ZED2 +piD+Hoq) =vD* +pD+ B + &g+ Gy, (9.31)

where
Go=Kgbo 61 =KgG 1+gH-1, p=gp1. (9.32)

Next notice that by virtue of (9.5)-(9.7), the symbol of the operator &; has
the representation

_ 1/2
Jy = |AY%K] (1 +2B126162 + Bllé%) =

_ 1 _
= |AY%k| (1 + B126162 + 531155) + |AY K| Qo1 €7,

equchangel
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where the symbol Qo1 is given by (9.11). Next note that we have

Pov Ak )ALk

which yields
L(k)
|AL/2k|

J1 = |AY2K| — i& Byyi(ky + pka) + Qo(Y, &) — Qo(Y, €)

Recall that L(k) = |AY2k| — v(ky + pks)? is the symbol of the pseudodif-

ferential operator £, and |A/2k| is the symbol of the differential operator
(—A)Y/2. Tt follows from this that

PD+ G = (—A)V2 4+ AD + Q) — Qo(—A)"H2¢
which leads to the identity
VD u+pD + &1 + &g = (I —Qo(—A) V)8 +AD + Qo+ Bo.  (9.33)

Note that AD = DA — 2, where 2, is a zero order operator with the symbol
DA(Y,&). Thus we get

AD = (I - Qo(—A)"V/2)AD + Qo (—A) /2D — Qo (—A) /29,

The symbol of the operator (—A)_l/QD is simply &1, and the operator Qgs :=
Qo(—A)"Y2D is a zero order pseudo-differential operator with the symbol
Qo2 = i1Qo(Y, &)&1. It follows from this and identity (8.20) in Lemma 9 that
the operator Qo(—A)~'/?DA has the representation

Qo(—4)" /2D = Q0 = (Q0eM)g + DY

where the operator (922l)g has the symbol i; QpA. Combining these results
we arrive at the identity

AD = (I — Qo(—2)"2)(AD + (Qo2W)o) + F-1.0
where the linear operator §_1, is given by
F-1.0 = Q0(—2)7"?) (Qo2A)o + @P”Q‘) — Qo(—A)" V2.
Thus we get
AD + Qo+ G = (I - Qo(—A)—1/2)(Q[D + (Qo2A)o + Qo + &) +F-1.1
where
Fo11=Q0(=A)72(Q0 + G0 + (QueW)o — A1) + DFT=Y.

Since B = (Qo2A)o + Qo + B, we conclude from this that identity (9.29) is
fulfilled if we take

G_1=(I-00(-2)"*)7" and F_1=6_1(F-11+6_1).
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It remains to prove estimate (9.30). We begin with the observation that, by
virtue of inequality (9.26) for Qo and estimate (8.19) in Lemma 9, we have
1Qoul|s < ce'/?|ul|s for allu € HE, s € [0,7—6]. Hence for all such exponents
s, the operator 44 = &_; meets all requirements of Lemma 11 which gives
the desired estimates for &_;. Next, it follows from the equalities

Jo = KgGo, Qo2 =i€1Qo, A1 =DA
and estimates (9.26), (8.17) that

1Qo + Jo + QozAlr—a + |Ar]r—4s < et/
From this and Lemma 9 we conclude that for all u € HZ, s € [0,7 — 7],

1(90 + B0 + (Qo2W)o)ulls + [[Rrulls < ce'/?ulls. (9-34)

Obviously we have
(=AY 2u|s11 < c(s)||ulls for all s> 0.

Using inequalities (9.26) for Qo and estimate (8.19) in Lemma 9, we obtain
from this that for all w € HE, s € [0,r — §],

190(=A)?ulls41 < ce'/?|ulls. (9.35)

In its turn, inequalities (9.26) for Qo and A along with estimate (8.22) in
Lemma 9 for the remainder ®; imply for all u € HS, s € [0, — 10],

Do2A
Hgg 022) 1/2

ullosr < e/ lull,.

Combining this estimate with (9.34) and (9.35) we obtain that the inequality

I-11ullor1 < el
holds true for all uw € HE, s € [0, — 10]. This result along with the estimate
for 6_1, gives estimates (9.30) for F_; and the proposition follows.

9.2 Descent method

We split the rest of the proof into three propositions which correspond to
three steps in the so called descent method [16]. We can make the first step
of the descend method as in [16] in order to eliminate the first order term
AD in £+ AD + B + F_1. The corresponding result is given by the following

Proposition 2 Under the assumptions of Theorem 8, there exists €y depend-
ing only onr, and the constant ¢y in Condition (H.1) with the following prop-
erties. For any € € (0,¢€p), there are bounded operators &g, %y : H® — H?,
o : HS — H*1 so that

So(£+AD+ B +F_1)%To = £+ By + o, (9.36)

where By is a zero-order pseudodifferential operator with the symbol given by
formula (9.12). Moreover, for alluw € HS, s € [0,7 — 15],

IFoullssr < ce'?[lulls, (9.37)
185" = Dulls + I(T5" = Dulls < e |ulls. (9-38)
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Proof Let W (y) be an arbitrary smooth periodic function, and 20 be a pseu-

dodifferential operator associated with the symbol ReW(Y) + ifgImW(Y).
It is easy to see that

(£ + AD + B)W = WL+ (202, + AW)D+
V11 + AW, + BW + [(—A)Y/2, 2],

where the zero order differential operators 201, 2011 have the symbols
Wi = DW = (9, + pdy, )W, Wi = D*W.
It follows from representation (8.20) in Lemma 9 that
AW = (AW)o + (AW); + D,
AW, = (AW ) + DT, B = (BW), + D FW
where the zero order operators (2A20)o, (A2 )o, and (B20), have the symbols
W(Y,£A(Y,€), DW(Y,§) A(Y,§) and W(Y,£)B(Y,§).

Finally, using the representations (8.21) for the symbol of the operator (A207),
and (8.23) for the commutator we arrive at the identity

(£ +2AD + B)W = WL + 201D + (AW)oD + By + Jo.1, (9.39)
where ‘B, is a zero order operator with the symbol
B, = vD?*W + ADW + BW +
+ VA -VyW (ks + pks) — iVy W - Vi (Ak - k)2,
and the regularizing operator
Sou = DT p 4 plAEB] L (W) | 5 (BW),

Simple calculations show that B; depend on € and Y and satisfies equality
(9.13). Next we rearrange the expression for (A20)¢D. To this end note that
the symbol of this operator is equal to iAW (k1 + pk2). We have

AW =Re ARe W — &2Im A Im W + i&Im (WA) =
Re (WA) +i&Im (WA) +Im A Im W(1 — &3).
Combining this result with the identity
(1- ) = (Ak- k)™ (242 (ks + pha)kz + Ava (b + pks)?)
gives

iAW (k1 + pk2) = i(Re N + i&Im N ) (k1 + pko)+
+i(Im AIm W) (Ak - k)72 (ky + pko)? (24126 + A& ),
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where N = AW. Using the identity
(A - K)"V2(ky + pk2)? = —v 'L(k)(Ak - k)2 + 71,
we obtain
iAW (ky + pks) = iN (k1 + pko) + E — E(Ak - k)~ Y2 L(k).

Here N = Re N(Y) +i&Im N(Y) is the symbol of the elementary operator

N associated with the function N and the symbol E is determined by (9.14).
Thus we get
(AW)oD = ND + € — ¢(—A)"1/2¢,

where € is a zero-order differential operator with the symbol E. Substituting
this expression into (9.39) leads to
(L4 AD +B)W = (W — ¢(—A) Vg4
(2020, + 9D + (B + &) + Fo.1,

which gives the important identity

(L+AD +B)A+20) = 1+ W — ¢(—A) ") g+

(9.40)
+ (201 + N+ 2A)D + Bo,1 + Fo.1,

where B 1 is a zero order operator with the symbol By + B + E.

The next step is the key point of our method. We specify the operator
2 so that 20201 + N + 2 = 0. To this end, notice that this operator is an
elementary operator associated with the function 2vDW + AW + A which
leads to the equation

2wDW (Y) + W(Y)A(Y) + A(Y) = 0.

Since the function A(-,£) has a zero mean value over a period, we can take a
solution to this equation in the form (9.8). By choosing such 20, the identity
(9.40) becomes

(L+AD+B+F_)I+W) = (I+W—&(-A)" V) g+

(9.41)
+Bo1 + Fo,1 +F-1(I+20).

Next we introduce the zero order operator By with the symbol given by
(9.12). Notice that

(1+920)B, = (I +20)B0)o + Do),

By virtue of (8.20) and (9.12), we have ((I+ 20)%B¢)o = Bo,1 which leads to
the identity

B = (I+2)B — DB =
I+ 920 — €(—A)1/2)B, + ¢(—A) /28, — {1+ Bo),
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Hence we can rewrite identity (9.41) in the form (9.36) with
So= (I+W—- -2 T=1+W, Fo=60Fos (942)
where
Foo = Fo1 +F 1 (I+2) + &(—2) /28, — DB (9.43)

It remains to prove that the operators Fo, &g, and ¥y meet all requirements
of Proposition 2. Applying inequality (8.19) to the operator 20 and using
inequalities (9.26) for the symbol W we obtain for all uw € HE, s € [r — 11],

| 20| < ce/?||ulls. (9.44)

Let us estimate the remainder §o. Since r — 8 > 7, it follows from estimate
(8.22), with [ replaced by r — 6, and inequalities (9.26) that for all u € H?,
s €[0,r—13],

198 ull vz < ce 2 ulls.
Since the operator D : H* — H*~! is bounded, we obtain for all u € H?,
s€[l,r—12],

195 Dullss1 < ce' 2 Jull
It also follows from (8.22) and inequalities (9.26) that for all w € H¥, s €
[0,r — 14],
197 ulls + 107" ull s < el
%nequalit%es (9.26) along with estimate (8.24), imply for all u € HE, s €
0,r —13],

—A)Y/2 95
DXy < e/,

Combining these results with formula for §o ; we obtain that for all u € HJ,
s € [l,r—14],

IFoaulls+1 < ce?|fulls. (9.45)

Next combining inequalities (9.44) and (9.30) we obtain for all v € H,
s€0,r—11],
1§11+ W)ullor1 < c/2ful,. (9.46)
Applying estimates (9.26) and (8.19) to the operator €, we conclude that the
inequality
1€ulls < cet/?|luls (9.47)
holds true for allu € HE, s € [0,r —11]. In particular, we have for all u € H?,
s€0,r—12],
1E(=2) "2 ull s < ce'/?|lulls. (9.48)
Inequalities (9.26) for the symbols W and By along with estimate (8.22) with
A and 20 replaced by I+ 20 and B, imply that for all u € HS, s € [1,r — 15]

|‘@§(I+m)‘3o)

ullysr < ce?lul],. (9.49)

DDD7

DDD2

DDD8

DDD9

o
=}
o
=
N



Asymmetrical three-dimensional travelling gravity waves 41

Combining estimates (9.45)- (9.49) we finally obtain for all u € HE, s €
[1,r —15],

IFo.2ulls+1 < ce'/?|fulls. (9.50)

Now our task is to derive the estimates (9.38) for the norms of the operators
So and Tj. It follows from (9.44) and (9.48) that for all s € [0,r — 12], the
operators 4 = 20 and 4 = 2 — &(—A)~/2 meet all requirements of Lemma
11. Therefore there exists €y, depending only on s and on the constant ¢y in
conditions (H.1)-(H.2), such that for all € € [0, €9) the operators & and Ty
determined by formulae (9.42) have bounded inverses, and satisfy inequalities
(9.38). It remains to note that since Fo = S0Fo,2, estimate (9.37) for the
operator §o follows from inequality (9.50).

Second and third steps. The next steps in the descent method require again
the inversion of the differential operator D. The operator D~ stands explic-
itly in the new form of the operator, contrary to the result provided at the
end of the first step. The obstacle now is that the inverse D! is unbounded
in any Sobolev space of periodic functions. This is the principal distinction
in the descent method, between the asymmetric and the symmetric water
wave problem. We cope with this difficulty by using the projector I defined
by equalities (8.26). In particular, Lemma 10 plays the key role in the proof.
The following proposition represents the second step in the descent method.

Proposition 3 Assume that all assumptions of Theorem 8 are satisfied and
operators Bg, o meet all requirements of Proposition 2. Then there exists
€0, depending only on exponent s and on the constant ¢y in conditions (H.1)-
(H.2), with the following properties. For any € € (0,¢€), there are bounded
operators Go, Ty 1 H® +— H5, Fo : H® — H*! and a zero-order pseudodif-
ferential operator B2 so that

Go (L+Bo+F0) T = IT(L+V+BoD ™+ Fo) T+ (I—IT)(L£+P2). (9.51)

Here 0 is a zero order pseudodifferential operator with the symbol determined
by (9.15). The symbol Bao(Y, €) of the operator B satisfies the conditions

|Ba|,—15 < ce*/?, / By(Y,€)dY = 0. (9.52)
R2/(277Z)>

For all w € HE, s € [0,r — 37/2], operators Fa2, G2, Ta, and Po satisfy the
inequalities

IB2ullsr < ce2llulls,  [1Bzulls < ce'/?[lulls, (9.53)

185" = Dulls + (T3 = Dulls < e Julls, (9.54)

where ¢ depends only on s, and cg.
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Proof We split the proof into two parts. First we give the formal derivation
of identity (9.51) and next justify our construction by proving inequalities
(9.53)-(9.54). We begin with the reduction of the operator £+ By + Fo to a
triangular form. It is easy to check that

LI~ ) (L +Bo +Fo) = (I+ KA - 1)) (I - 1) + KIT, (9.55)
where & = £71(I — IT)(Bo + Jo). Let us introduce the linear operator
Qp = (Bo + o) (T+ KA — 1)~ £7 (T - 1T).
It follows from (9.55) that
Q(£ +Bo + Fo) = (Bo + Fo) (T~ 1T) + (Bo + Fo) (T + KA — 11)) "' RIL.
From this we obtain
(I —Q2)(L£+Bo + Fo) = (£ + Bo + F2,0) 11,

where
F2.0 =0 — (Bo +Jo)I+ KA - II)) ' A.

This identity also can be rewritten in the equivalent form

(I —ITQ:)(L+DBo +Fo) =

= I1(S + Bo + F2.0)11 + (- IT)(L + Bo + Fo), (9.56)

which can be regarded as the triangular form of the operator £ + B + §o.
Now our study should be focused on the first term in the right hand side
of (9.56). Choose an arbitrary zero order operator $ with a smooth symbol
H(Y,&). The only restriction is that this operator should protect the oddness
property. Since £ and D~! commute with IT , we have

HLIHD T = THD LI+ 2wl H T+vIIH1, D~ HT+IT[(—A)Y2, 9D,

which leads to the identity
II(L+ B+ F20) IHD T = IHD ' L1T + 20T H 1T+

9.57
T H(%OHF) +uH + [(—A)W,sa])p*ln ¥ [0 01D I. (9:57)

Here zero order differential operators $); and $11 have the symbols H; = DH
and Hy; = D?H. Now our task is to rearrange the operators in the right hand
side of identity (9.57) through the use of Lemmas 9 and 10. We begin with
the observation that by virtue of Lemma 10 we have

BolIlH = BoH II + Bo[II, H] = BoHIT + B 3+ BoY L.

On the other hand, the product B9 admits the representation (8.20), with

A and 20 replaced by By and $, which gives BoH = (Bo$H)o + D\ F°%). We
thus get

B IIHID™ = [I(BoH)oIID "+
+ I[P 4 83D 4 118, I £D .

(9.58)
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Next using the representation (8.23) for the commutator we obtain

I [(-A)"V2, 9| D' =1 [(-A)"Y2, 9], D '+

(9.59)

+ 11 DA rpL,

Recall that the operators (Bo$)o and [(—A)~/2, $]; have the symbols
H(Y,€)By(Y, &) and —iVy H -V, (Ak-k)'/2 = —i8H - A, where 8 is defined
by formula (9.2). Substituting (9.58) and (9.59) into (9.57) we arrive at the
identity

(&4 Bo +F2,0) IHD T = [IQ3£1T + 2v11$H, 11+
+ IIB3 1D~ + 1T 11,

(9.60)

where the zero order operator B3 has the symbol

By(Y,€) = vD*H(Y,€) + Bo(Y, ) H(Y,€) —id H(Y,£) - A, (9.61)

the remainder §2,1 and operator Q3 are equal to

Fo1 = HFooIHITD + H(%O:S + @5%“’) + @g(fA)il/z’m)HD_l,
Dg - H(f) + %02))H'D_1.
Identity (9.60) obviously implies

(£ +Bo + Fo0) I+ IHD )T = I1(2vH1 + Bo) 1+
+ (T4 ITQ3)LIT + B3 ID " + IT(Fa0 + F2.1) 1.

Next note that the symbol By(Y,€&) — V(&) has a zero mean value over a
period and we can take

H(Y,&) = —(2v)"' D™ (Bo(Y,€) - V(¢)) (9.62)
to obtain 2v$; + By = Y, which gives

(L + B + Fo0) I+ IHD )T = [IVI+
+ (T + ITQ3) LI + IB3IID + (a0 + Fo1) 1.

Next note that Q3 = ITQ3 = Q3I1, and U commutes with I7, which along
with the expression for Q3 gives

— Q3BT = —(1+ Q3)IHVIID ™ + QzIHVIID ' — [TBYVD 1.
This leads to the identity

(&4 Bo +F20) I+ IHD )T = (14 Q3)I(£+V+ (B3 — HV) D)1+
+ I (Fo,0 + Fo1) T + IT(Q39 — BeD)VD T — [1Q:3B:D 1.
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Now set
Foo = I (Fo0 +F21) 1 + (Q39 — %OQJ)QTD_UY — I[IQ3BsD I,
Fo= 1+ 119Q3) 'Fap2,
(9.63)

and By = B3 — HV. Thus we can rewrite the last identity in the equivalent
form

(L4 Bo + Fo0) ([T + ITHD ') =

9.64
= (I+Q3)1(L+ T+ BD '+ F2) 1T, 964

where B is a zero order operator with the symbol By. Our next task is to
define operators G2 and To. To do this we multiply (from the right) both
sides of identity (9.56) by the operator

1+ 109D ' =11+ 119D 1 + (I 1I).
By virtue of (9.64) and the trivial identity (I — I1)€11 = £(I — II)II = 0,

the result of this multiplication can be written in the form

(I - II192)(L + Bo + Fo)A + IHD ) =

= (I +ITQ)IT(L+ BV +BoD ™ + )T + (I — I1) (L + Pa),
where
PBo = (Bo + o)A+ IHD11T). (9.65)

Notice that (I+ Q3) (I — IT) = I — I since Q3 = I[1Q3I1. Thus we arrive
at the desired equality (9.51) with the operators

Gy = (I+ Q11 Y I - 19Q5), Fo=1+1IHD ). (9.66)

It remains to prove inequalities (9.52)- (9.54) and, by doing so, to jus-
tify the above algebraic construction. We begin with the observation that
estimate (9.26) with ¢ = 0 for the symbol By along with the tame estimate
(8.19) in Lemma 9 implies the inequality

1Boulls < ce'/?ulls, (9.67)

for all w € HE, s € [0,7 — 13]. It follows from this and inequalities (9.37) and
(8.27) that

[Rufls+1 < Cel/QHUH&
for all u € HS, s € [0,7 — 15]. Applying Lemma 11 we conclude that there is

€0 > 0, depending only on the constant ¢y in conditions (H.1)- (H.2) and
exponent s, so that

1T — &I - 1) ulls < cflulls,

for all € € [0,¢e0], w € HE, s € [0,7 — 15]. In particular we obtain from this,
(9.37), and (8.27) that

19zulls < ce?[lulls,  [F2o0ullst1 < ce'/?|lulls, (9.68)
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for all w € HS,s € [0, — 15]. Let us now estimate the operator §. Recalling
estimate (9.28) we obtain from formula (9.62) that

[Hlro11 < ce'/?, (9.69)
which along with Lemma 9 implies
[9ulls < ce'/?|ulls, (9.70)

forallu € HE, s € [0,r —16]. Moreover, estimate (8.22) for compositions and
estimate (8.24) for commutators in Lemma 9 along with estimates (9.26) and
(9.69) for the symbols By and H give
B 9 —A 71/27ﬁ
193 ullas + 105 ullagr < e Pulls, (971

for all w € HS, s € [0, — 18]. On the other hand, operator $ meets all
requirements of Lemma 10 with r replaced by r — 11. This leads to the
estimate for the operators ) and 3,

1Dl s1 + [ 3ullsr < ce/?ulls, (9.72)

for alluw € HE, s € [0,r — 16). Since ||D™ ' Tul| ;41,2 < ¢(s)||ul|s for all s > 0,
we conclude from this, estimates (9.68), (9.71), and formula for F2 1 that

182, 1ulls41 < ce'/?|lulls, (9.73)

forallu € HS, s € [0,r—18]. Similarly, formula for Q3 along with inequalities
(9.67) for By, (9.70) for H and (9.72) for Y implies that the inequality

HQ3U||5+1/2 < 061/2HU’H57 (9.74)

holds true for all uw € HZ, s € [0,7 — 33/2].
Applying Lemma 11 we conclude that there is ¢y > 0, depending only on
constant ¢y, and s, so that
(X —=93) Ml < ce'/Zulls, (9.75)

holds true for all u € HS, s € [0,7 —33/2], and € € [0, ). Formula (9.61) for
the symbol Bj along with estimate (9.69) lead to the inequality

|Bs|,—13 < ce'/?, (9.76)
which along with Lemma 9 implies the tame estimate
1Bzulls < ce'’?|lulls, (9.77)
for allu € HS, s € [0, — 18]. This gives
IB3ITD ™ a1 /2 < ce P ITD | gy1 /2 < ce'/?|fulls,

forallu € H, s € [0,7—37/2]. Combining this result with (9.74) we conclude
that for all w € HZ, s € [0,7 — 37/2],

1Q3B3ID |1 < 061/2||u||5. (9.78)
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Repeating these arguments and using tame estimate (9.70) for $ instead of
estimate (9.77) for B3 we obtain for all u € HS, s € [0,7 — 37/2]

Q391D |1 < ce/?||ulls. (9.79)

Recall that U is a zero order differential operator with constant symbol,
which gives
|BITD s < c(s)|ulls for all s> 0.

From this and (9.72), (9.67) we conclude that for all uw € HE, s € [0,r — 16],

B VIID )| g1 < cet/?|ulls. (9.80)

Substituting inequalities (9.68), (9.73), and (9.78)-(9.80) into (9.63) we ob-
tain for all w € HS, s € [0, — 37/2],

1/2|

182, 2wl s+1 < ce’“|Julls.

Combining this result with estimate (9.75) we obtain the desired inequality
(9.53). Next, Lemma 11 along with formulae (9.66) and inequalities (9.68),
(9.70), (9.74) implies estimate (9.54) for the operators G, and T. In its turn,
formula (9.65) for the operator Po along with inequalities (9.37), (9.67), and
(9.70) yields estimate (9.53) for 5. Finally notice that by virtue of (9.62) we
have By — V = —2vDH. Recalling the equality By = B3 — HV and formula
(9.61) we conclude from this that

Bs(Y,€) =vD (DH(Y,€) — H(Y,€)?) —id H(Y,£) - A€E.

Hence B; has a zero mean over a period. It remains to note that estimate
(9.52) is a straightforward consequence of inequality (9.69) and the proposi-
tion follows.

Now our task is to make the last step in the descend method to eliminate
the term BoD~! in the operator £+ B + BoyD ! 4 F» in Proposition 3. This
result is given by the following

Proposition 4 Let s € [0, — 24] and suppose that operators B Fo meet

all requirements of Proposition 3. Then there exists €y, depending only on
the constant co in Conditions (H.1)-(H.2) and on the exponent s, with
the following properties. For any ¢ € (0,¢€p), there are bounded operators
G4, T, Pu: HS — HE, Fy: HS — HEHL s0 that

Sy(II(L+ D+ BoD '+ Fo) I + (I —II)(£+P2)) Ty =
= I1(&+ D+ Fa)IT + (I - IT)(£ + Pa). (9.81)

For all w € HS, operators §a, G4, T4, and P4 satisfy the inequalities
1B aulls + [Fsulir < ce2llull, (9.82)
163" = Dulls + (5" = Dulls < ce'/?|fulls, (9.83)
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Proof The proof imitates the proof of Proposition 3 with essential simplifi-
cations. In order to avoid repetitions we give only the proof of the algebraic
part of the proposition. Choose as before an arbitrary zero order operator $)
with a smooth symbol H(Y,&). We have

ILIIHD %I = IHD2LIT + wIIH ID ™' + vIIH D 2T +
+ II[(-A)2, 9)D~211,

which gives
I(E+B+BoD ' +F2) IHD I = IHD LI +2vIT$H, D~ 1T + 4,011,
where the operator §4, is defined by
Fa0 = vIIH D2 + I[(—A)Y2, 9D 72T + I (D + BoD ! + Fo)HD 211
This leads to the identity

(&4 D+ BD ' +32)(II + IHD 21T =

=+ HD2I)(L + V)T + I1(By + 2vI1$H,) D T+

+ I (Fo + Fa0 — IHVD2)II.

Here we use the fact that 0 commutes with II. Setting H = —(2v) D1 By
we obtain

H(L+B+ByD 1+ ) (I + IHD M) = H(I+ IHD I )(E+ T+ Fa) 1.

where
o= A+ HOHD2I1) ' 11(F2 + Fao — HHIITD ?)II.

Thus we get
{T(L+B+BoD ' +Fo) I+ (I —I)(L+Po) A+ IIHD II) =
=HI+ 09D ) (L + B+ Fa)I + (I - I)(L + P2) } A + IHD21T).
Noting that for Py = Po(I + IHD2IT), we have
(T—I)(E+P2) A+ THD*IT) = (I — IT)(L + Pa),

and using the identity (I + IIHD~2I11)"Y(I — II) = I — II, we arrive at the
representation (9.81) with

Gy= A+ 09D )", Ty=1+IHD I

Next, by virtue of (9.52), we have |H|,_16 < ce'/2. Combining this result
with estimates (9.53)-(9.54) in Proposition 3 and arguing as in the proof of
this proposition we obtain (9.82)-(9.83).

Finally notice that if we define the operators &, ¥, § and P in theorem 8 by
the equalities

6 =646:606_1, T=T4%%, F=3F1, P=%Pa

then the assertion of Theorem 8 directly follows from Propositions 1-4.
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10 £ and D resolvents

Recall that our goal is to find a family of solutions in the form (6.3) to the
system of nonlinear equations (6.1), and we intend to obtain this result by
using the Nash-Moser iteration scheme. In this framework the main task
is to prove the solvability of the truncated equation (7.29). By virtue of
Theorem 8 this problem is equivalent to the problem of the invertibility
of the operator in the right hand side of relation (9.19). Notice that this
relation is an algebraic identity, and Theorem 8 alone does not provide the
invertibility of operators in (9.19). In this section we investigate in details
the question on the invertibility of the pseudodifferential operators

L=vD?*+(-A)Y2, £+, and D=9 -V
involved in (9.19). Recall that they have the symbols

L(k) = (Ak - kK)Y/2 — u(ky + pko)?, L(k) 4+ V(k) and D(k) = i(ky + pks)
(10.1)
which do not depend on Y, i. e., they are operators with constant coefficients.
Here the quantities p and v are given parameters, but the matrix A and sym-
bol V' depend on the point of linearization (U, X, u, u) and are determined by
formulae (9.6) and (9.15). With application to the implicit function Theorem
14 in mind we consider the question on the simultaneous invertibility of the
sequence of operators £, and £, +U,, ¢ > 1 corresponding to functions and
parameters (Uy, Xgq, p, v, lq, Uq) satisfying the following condition.

Condition 9 Functions (Uy, Xq) and parameters p, v, jiq, ug admit the rep-
resentation

Uy = Usm(€) + [l Uyg(p,v),  Xq = Xam(€) + [ Wey(p, v),
u,(e) = uam(e) + |€|2md’q(p= V), g = Ham(€) + |5|2mﬂq(p= V), (10.2)
p=pim(€), V=ram(€), (p,V) € we,
where (Ugm, Xam, Pams Vam, bam, Qam) 18 an approzimate solution of Problem
1 determined by Theorem 4 and Lemma 5, the domain we, is defined in

Lemma 6. By virtue of Lemma 5, we shall consider € as a fixed analytic
function of (p,v) defined in w,, and satisfying the inequalities

e < ellp = M+ [ = v)2, 10puel < cllo = Al + v —ve) ™2 (10.3)

Notice that €2, i = 1,2, are analytic functions of (p,v) defined in a vicinity

of (A\,v.). We assume that there are v > 26 and ¢ > 0 such that
”ﬁqHCT(RHF) + ||WZIHCT(]R2/(27TZ)2) + |&q| + |fiq] < e,
Hﬁq - [7(1+1HC7'(R2/F) + ||Wq - Wq+1|‘CT(R2/(2FZ)2)+ (104)
+ [@q = ©g1] + g — fig] < €279,
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and fOT every (pa V)v (p/a V) € Weg,

||Uq(p7 v) — ﬁq(ﬂla V)|lor®e/ry + ||Wq(p7 v) — Wq(ﬂla I/)HCT(R2/(271'Z)2)+
+10q(p, v) = (0, V)| + lig (s v) — fig(p's V)] < clp— 0.
(10.5)

Denote by A, and V; the matrices and symbols corresponding to
(Uq, Xq, p, v, g, uq). For € = 0 (equivalently p = A, v = v.) all matrices A,
coincide and are equal to the matrix A, = T*“'T~!, where T is determined
by (5.1). We shall use the following notations for their elements

— bqaq . _ bcac
b= (") == (%) s

q
It follows from formula (5.1) and the expressions for vectors A;, which gen-
erate the lattice I', that

ac = —mi(L+ )21+ 73) 2 ()7

be=(1+72)2(1+72) (r +72) % (10.7)

By virtue of (10.3) Uy, and Xy, as functions of parameters (p,v) have
a branching point at (A, v.). However, the following lemma shows that the
corresponding matrix A and symbol V are analytic at this point.

Lemma 13 In taking (U, X,u,pu) = (Usm, Xam, Wam, ptam)(€), and p =
pam(€), v = vam(€), the coefficients aq,by and the symbol Vy of U, take
the form

a2 (9,), 652 (p,1), V2 (p, v, )

which are analytic functions of (p,V) € we,.

Proof The coefficients g;; of the matrix G computed with the approximate
solution of order |e[*™ are invariant under the symmetries S;, as this results

from Theorem 4, and from Lemma 5. This gives coefficients G4 ;; in (9.3)
also invariants under gj, hence the matrix A defined by (9.6) is also invariant
under gg Since its coefficients (a, b) are independent of Y it results that these
coefficients are invariant under the changes €; — —e; and independently
€9 — —&g, which means that they only depend on (¢2,3). Then the Lemma

6 allows to conclude for afl%(p, v) and bfg}l(p, v).

Now, the invariance under S; of the functions p(Y") and B12(Y") (computed
with the approximate solution at order |e[*™), gives the same property for
A(Y,€), W(Y, &), B1(Y, &), E(Y, ) as defined by (9.9), (9.13) and (9.14). The
same property holds for Qo (Y, &) (see (9.11)) and Jo(Y, €) (see (9.5), hence it

holds for B(Y, &) defined by (9.10). It then results that V4(1?1) (p, v, k) which is
V(€) defined by (9.15) and computed with the approximate solution at order
le|*™ only depends on (¢2,£3). We conclude as for coefficients a and b.

Since, by virtue of (10.3), the function |e(p,v)|*™, m > 1, has a continuous
derivatives in we,, we arrive at the following
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Lemma 14 Let functions (Uy, X4) and parameters p, v, pq, ug meet all
requirements of Condition 9. Then for any (p,v) € we, and m > 1, the real
quantities aq, by admit the representation

ag = aln (p,v) + [€™ag(p,v), by = bion(p,v) + [™by(p,v),  (10.8)

such that ai%()\,l/c) = a. and bi%()\,l/c) = b.. Furthermore, the functions

aq, bg satisfy the inequalities

. < < c
agl + |bgl < ¢, ag — dge1| + by — bgr1] < —
|q| |q| |q q+| |q q+| 2q (10'9)

(6!, ) = g, ] + Bl ) = ba(ps )| < elif = pl.
The symbols V,(e,k) are homogeneous functions of order 0 in k € R? \ {0},

such that © .
‘/Q(e’ k) = V4m (pa v, k) + |€|2qu(Pa v, k)

Moreover, they are smooth in k and for any v > 0,
0% Va(e. k)| < clk| 77,
Vo (o v, X) = OV (p, v, k)| < k|7 |p" = pl, (10.10)
Vi (0 k) = Valp,v 30| < o

where ¢ does not depend on k and q.

Resolvent estimates for e = 0 We denote by £. and D, the operators £ and
D corresponding to parameters v = v, p = p. and A = A.. Recall that
critical parameters p. = A and v, are determined by Lemmas 2 and 5 and
can be represented as functions of the lattice parameter 7,

pe=A=Q+)V21 4+ v.=Q+m)A+7) "V +m)" L
(10.11)
Our task is to investigate the behavior of operators £. and D, as functions
of 7. In order to formulate the results we recall the following elementary
property from the theory of Diophantine approximations.

Lemma 15 . For any a > 0 and N > 0 there is a set Exy C [—N, N] of full
measure so that for all p € Ex and k € Z? \ {0}, there exists cy > 0 such
that

k1 + pha| > en k|71

Remark 10 The above diophantine property is compatible with Hypothesis
(H.2) made in previous section (with oo = 1/3).

Let Syriv be the set {k € {(0,0),(£1,0),(0,£1)}}, then the first result of
this section is the following

Theorem 10 Let a > 0. Then there is a set T C (RT)? with the following
properties:

(a) T is a set of full measure in (RT)2.

sd2

critical parameters
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(b) For any 7 € T, A = p.(1), v = v(7), and A = A.(T), the kernel of the

operator £ is a four dimensional space with the orthogonal basis
(2m) " texp(+ik - Y), k€ {(%£1,0),(0,%1)}. (10.12)

(c) For any T € T, there is N > 0 so that A = p.(7) € En. Moreover, p.(T)
1s a Lebesgue point of this set.

(d) For any T € T, there is ¢ > 0, depending only on T and «, such that for
allk € 72\ Siriv,

|Le(K)| > ¢|k|~Y/2, (10.13)
Proof The proof is based on the following auxiliary lemmas.

Lemma 16 The mapping T — (A(T),vc(T)) takes diffeomorphically the
quadrant {T; > 0} onto the domain w (see Figure 2) which consists of all
positive pairs (A, v.) satisfying the inequalities

0< v + %)\l/c(l A <1, 0< Azlyg —(1=2)?). (10.14)

The inverse mapping is defined by
n=0-22)"Y2% n=01-2)"120E24+N-1)V2 (10.15)
z= %[(/\Vc)_l + Are(1 = A?2)]. (10.16)

In particular, the symbol L. of the operator £. is a function of \,v. and k
given by the formula

1 1 1/2
Lo\, verk) = — (M k )+ [()\k2+k1)(/\3k2+k1)—Wklkg] (10.17)

Proof Substituting relations (10.15) into expression (10.11) for v, we obtain
24 (N2 —1)= ()t -2 (10.18)

Note that any solution of this equation satisfies the inequality z < 1/(\v).
Next we square both sides of (10.18) to obtain (10.16).

Obviously z in (10.16) satisfies (10.18) and inequalities 0 < z < 1 if and
only if A\, v, are positive and satisfy inequalities (10.14). Recalling (10.7) we
get (10.17) and the lemma follows. The set w is the domain bounded by the
curves indicated in Figure 2.

Lemma 17 For any a > 0 and o > 1, there exist N > 0 and a full measure
set 3 C [0~ 1, 0)% with the following property. Whenever (\,v.) € 3, the
inequality

|Le(\, ve, k)| > c[k|~@71/2

holds true for all k € Z? with |k;| > N. Here the positive constant ¢ depends
only on a, o, and (A, ).

striv
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Fig. 2 domain w

Proof The proof is given in Appendix F.

We are now in a position to complete the proof of Theorem 10. First we
prove assertion (b). It suffices to prove that for almost every positive (\, v.),
satisfying inequalities (10.14), the dispersion equation L.(\,v.,k) = 0 has
only five integer solutions (0,0), (+1,0), and (0,+1). It follows from formula
(10.17) that this equation can be written in the equivalent form

1 1/2
—(/\kz + k1)2 + [()\kg + kl)(/\gkz + kl) — —kiko =0. (10.19)

Obviously it has the trivial solutions which form the set St.i,,. Let us show
that for a. e. positive (A, v,), satisfying (10.14), equation (10.19) has only
trivial solutions. For each k € Z? denote by Oy the set of all admissible
(A, v¢) so that k is solution of (10.19). In this notation, the set of all points
(A, v¢) € w, for which (10.19) has a nontrivial solution is the union

o= J O

kGZQ\StMv

Assume, contrary to our claim, that O is a set of positive measure. Then
there exists k(©) € 72 \ Striv so that the set Oy has a positive measure.
Hence the analytic function L.(\, v, k(®)) vanishes on a set of positive mea-
sure, and L.()\, v, k(®)) = 0 on the set w. In particular, we have on this set
Oy Le(\, ve, k) = 0, hence

1 1/2

D+ KOYORO 4 10 — L K040

0)4.(0
v KOk =0

Note that, by virtue of Lemma 16, the form in the square brackets is positive
on Z?\ {0}. Hence we have k;o)kéo) = 0 which along with the equation
L.(\ v, k(O)) =0 yields k(9 € S;y4,. This proves (b).

Next notice that the set £ = UnyEnN, where Ey is defined by Lemma 15, is a
set of full measure in RT. Without loss of generality we can assume that £
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consists only of Lebesgue points. Therefore the set (£ x RT) N (w \ O) is a
set of full measure in w. Since the mapping (A, v.) — 7 defined by (10.15)
is a diffeomorphism, the set

I=7((ExRT)N(w\0O)) (10.20)

is a set of full measure in R*>, which proves (c).

It remains to prove (d). For each [ > 1 denote by Z; the square [[71,1]? C R+2,
Further the notation 7°(IV) stands for the set of all points k € Z? satisfying
the inequalities |k;| > N, i = 1,2. Its complement Z2 \ T(N) is the cross
obtained by union of the strips {|k;| < N}.

It follows from Lemma 16 that the mapping 7 — (A(7),v(7)) takes diffeo-
morphically the square Z; onto a compact set which belongs to some square
o] v 01)?. Next applying Lemma 17 we conclude that there exists a number
N; > 0 and a set of full measure 3J; C [0, ! 1] with the following property:
whenever (A, v.) € J;, we have

|Le(\ v, K)| > e\, ve, 1)K 7Y27% for all k € T(Ny).
On the other hand, we have
|Le(A\ve, k)| — 00 as [k| — oo, k€ Z2\ T(V),
uniformly with respect to (A, v.) € J;. Hence we can choose N; so large that
|Le(\, ve, K)| > e\, ve, 1) K| Y272 for all |k| > N, (10.21)

uniformly in (A, v.) € J;. Since the set of all k in the disc D = {|k| < N,} is
finite, there exists a constant c¢(\, v, 1) such that for any I > 3 and (\,v.) €
3N (EXxRY)N(w)\ O) inequality (10.21) holds true for all k € Z?2 \ Sjyiv-

Denote by F; the set of all 7 € 7; C R+? which consists of all points
7 such that (A(7),v(7)) € J;. Obviously inequality (10.21) holds true for
all (\(1),v(r)) with 7 € F; N Z. Since the mapping T — (A(T),v(7)) is a
diffeomorphism and J; is a set of full measure in [0, L oy]?, the set F is a
set of full measure in Z;. Therefore, the set

T = U]:lﬂi
1>3

meets all requirements of Theorem 10, which completes the proof.

Resolvent estimates for € # 0. Now we consider the general case when the
parameters p, v, elements of the matrices A, and symbols V,; depend on the
small parameter € = (g1, e3). The following theorem is the main result of this
section.

Theorem 11 LetT €T, and 0 < a < 1/2, and assume that condition (6.4)
holds true. Then, there exists g > 0, such that for any eligible v for having
non empty (p,v) € we,, there exists a set E'(v) with &' (v) x {v} C we, with
the following property.
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(a) The set E'(v) is dense at A,

meas(w,|,) meas E'(W)N{|A\—p| < e} =1 as e— 0, uniformly in v.
(10.22)
(b) If p € E'(v), then for any k € Z* \ Siriv,

|pka + k1| > colk| 771, (10.23)
W(pks + k1) — (Agk - K)% = Vy(e, k)| > colk| 2. (10.24)
Proof The proof imitates the proof of assertion (d) in Theorem 10 and is
based on the following proposition, which proof is given in Appendix F.

Proposition 5 Under the assumptions of Theorem 11, there exist N > 0
and a set Ex (V) such that i (v) satisfies the condition (10.22). Furthermore,
if p € En(v), then inequality (10.24) holds true for any k € Z* with |k;| > N.

Let us turn to the proof of Theorem 11. By virtue of Proposition 5,
whenever p € & (v), inequality (10.24) holds true for all k € (), where
the notation 7'(IV) stands for the set of all points k satisfying |k;| > N. On
the other hand, we have

lw(pks + k1)% — (Agk-k) " = Vy(e,k)| — oo as [k| — o0, k € Z2\ T(N),

uniformly in (p,v) € we,. It follows from this that we can choose N so large
such for all |k| > N,

1/2

1/2

[w(pks + k1)? — (Agk - k)" = Vy(e, k)| > colk| /27 (10.25)

uniformly in p € £4 (). Next note that by choice of 7, we have for all k € Z2,
e(T)Hk|? < Ak -k < e(T) k[

where the positive constant ¢ depends only on the choice of 7 € 7. Since
the set of all k in the disc D = {|k| < N} is finite, it follows from this and
Lemma 14 that for all k € D \ Sipio,

[(Agk k)2 — (AKk-K)V2| < O(N,7)[ef%.
From this we conclude that for every such Kk,
w(pka + k1) = (Agk - K) " = V(e k) + Le(pe, ve. K)| < C(N, 7)e*

Since T € 7, it follows from this and estimate (10.13) in Theorem 10 that

1/2

_inf w(pka + k1) — (Agk - k)~ = Vy(e, k)| >

triv
co(r)N~V2=2 _ (N, 7)|e|?.
Hence there is €9 > 0, depending only on 7, N and the constant ¢ in Lemma
14 so that the inequality

W(phs + k)2 — (Agk-K)/?

1 — —o
V(e 2 seo(r)N Y2
holds true for all k € D\ S;,4,, and eligible (p, ) € we,. It remains to note that
by virtue of (10.25) the set £'(v) = £ N E\ (V) Nwe, |, meets all requirements
of Theorem 11.

dioph
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11 Inversion of the differential of operator F

In this section we complete the inversion of the approximate differential given
by the system (7.17), (7.18), (7.19). First we invert the scalar equation (7.29)
in using the results of Theorems 8 and 11. For this we need to compute 4
scalar coefficients, which are analytic functions of 7, allowing to solve the
reduced linear system in ker £.. Once a simple non degeneracy condition is
verified, which holds for 7 in a full measure set of RT2 the equation (7.29)
is inverted, and it remains to solve the two-component equation (7.28) with
respect to v (which has a zero average), and solve (7.18) with respect to <.

Inversion of the operator in normal form. Here we solve the linear equation

(S + D +3) T+ (I )&+ P)a =7 (11.1)

where 7 € H, and where we look for w € H(f_l with 1 < s < r — 25 as
assumed in Hypothesis H.1 and H.2.

Let us define the orthogonal projection Py on the two-dimensional sub-
space ker £, = {sinyi,sinys} (notice that the 4-dimensional kernel becomes
2-dimensional once restricted to odd functions of Y'). We have the following
decomposition in all spaces H;

el =l

= ug + uy + ug, IIa = ug + uq,
=u

(I—1m) 2, P =up, QoU=uy.

Equation (11.1) is decomposed into the following system

(L4 B+ PoF)uo + Pogur = P f, (11.2)
(L4 T+ Qo¥)ur + QoTuo = Qof, (11.3)
(L= 1) (£ + Pluz + (I = I)P(uo +u1) = ([ - 1)f. (11.4)

By using Theorem 11 and (8.27) we solve (11.3), (11.4) with respect to
(u1,u2) in function of ug and f, as

uy = I+ (£+ D) Qo) (£ + V) {—QoFuo + Qo f}, (11.5)
up = [[+ (L= 1)) P] (I — M) L)~{(I — ) f — (I — I)P(uo + ua)}.
We observe that the linear operator (I+(£+%)1Qo¥) has a bounded inverse
in H:=1 and [[+ ((I— I7)£)~'P] has a bounded inverse in H$, and since ug
is in H? for any p, we then obtain the estimates

lurlls—1 < el|Qoflls + ce/|luol|

_ _ (11.6)
lutlls—141 < €| Qoflls+i + cE(1Qofls + [luoll),

and

llualls < €| — IT)flls—1 + ce /2 (|Juo|| + ||urlls—1),
Juglls4r < el (L= II) flls—141 + cE (L= IT) flls—1 + lluoll + [lualls—1),

| linearNormalForm

equKerL_c

equQ_0
equl-Pi

expr u_1

I

u_l
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where Ej is determined by (9.22) and denotes C'*" norm of functions U and
X. This leads to

lluzlls < e(||(T=IT)Flls—1 + 1Qofls) + ce'/*||uol, (11.7)
lluzllsri < (@ = ) flls-141 + [1Qoflls+0)+
cE([|(T =) flls—1 + Qo flls + lluoll )-

Now replacing u; by (11.5) in (11.2), we obtain the following two-dimensional
linear equation

(£ + D+ Po)uo — PoS[I+ (£ + V) 'QoF] (L + V) ' QoFuo
= Pof — PF(I+ (£ 4+ D)1 Q0F) (L + V) Qof. (11.8)

Our aim is now to study the structure of the left hand side of this two-
dimensional system.

Since £.ug = 0, and recalling that O(e) = O(¢? + £3), we have by con-
struction, ||(£ + D)uo|] < ce||ug||- Moreover, we have the estimate (9.20) for
Fu which shows that

IPoS[I+ (£ +2)" Qo8] ™" (£ + V)~ Qouol| < celluo||.

To show that PySuo is also of order €l[ug||, we use the fact that the terms of or-
der €!/2 in the operator § only originate from the first harmonics e, e*2
appearing in the first order terms in (e1,e2) of U. Let us now decompose ug

in the basis of ker £, as
up = 1 8iny1 + Y2 sinye, (11.9)

then in §ug at order 1 in (e1,e2) we only have second harmonics. It then
results that the projection Py cancels these terms. This proves that the lowest
order terms on the left hand side of (11.8) are of order €||ug]||. For identifying
the 2x2 matrix of order € giving the principal part of equation (11.8), let
us introduce the formal expansion in powers of €1, 5 of the linear operator
occuring in (11.1):

H(E+D+F) T+ (I I)(L+P) =L+ £+ 23 + £
where

el =g g0 L o@D - 2@ — 2020 4o 00D 4 2002 (11.10)

and £3) = O(|e|?). Here operators £("7) are independent of €. Then we have
the following

-educedlinear | Lemma 18 The lowest order terms on the left hand side of the two-dimensional
equation (11.8) have the form

(P02(2)P0 — Poﬂ(l)ﬂc_lﬂ(l)Po)uo. (11.11) | order2in linearbifurc

With the representation (11.9) of ug, the two-components of these terms take
the form a1e3y1 + bic1€272 and ase1e2y1 + bacdye, where coefficients aj, bj
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are analytic functions of T = (11,72) given explicitly by (G.18) in Appendix
G. Moreover, if (6.4), and

G1by — daby # 0 (11.12)

hold, and 6 < e1/e2 < 1/8, where 0 is arbitrary such that 0 < § < 1, we have
a unique solution ug in ker £, of (11.8), with the estimate

C, —
ol < 17

Proof We have formally

RSO 4.2 1 £+ +00) = BT,
Le(ur +uz) + (€1 + €2 + @) (ug + ur +ug) = (1— Ry)F,

which leads to
ur +ug = =L £Wug + O(le]?|[uo||) + {£1 (I — Po) + O(le)HI - Py).

We now observe that Py£M) Py = 0 for the reason invoqued above (integral
of harmonics of odd order), hence it is clear that the term of order |e|? in
the left hand side of (11.8) is given by (11.11). Due to the form (11.10) of
operators £) it is clear by a simple examination of harmonics, that the two
components of (PyL£?) Py — Po£M £-120 Py)ug take the form

{ (a1€3 + aje3)m1 + biereays
Gze162m1 + (bae3 + bhed) 2.

Now, the fact that a} = b5 = 0 results from a subtle argument resulting
from the form of the bifurcation system (A.9). This is proved in Appendix

G, as well as the explicit expressions giving the coefficients ay, as, b1, bo. Now
the inverse of the 2x2 matrix is easily bounded by c¢/|e|? in the region § <
€1/e2 < 1/§, which ends the proof of Lemma 18.

Let us define a new full measure set in R*2 by

;Z: =T7TnN {p1V2 — pon # 0} N {5152 — aggl #* 0}

Then, collecting the estimates (11.6), (11.7), and the result of Lemma 18 we
have now the following

Theorem 12 Assume that Hypothesis H.1 and H.2 hold, that T € T, p €
E'(v) with o = 1/3, and f € HE, with 1 < s < r — 25, and assume that
d < e1/ea <1/6,0 < 6 < 1 being fizred and E; determined by (9.22), then
the linear equation (11.1) has a unique solution W € H:~* with the following
estimate

— C = _ C /= —
1@l < ZllFlls; Illssi-1 < = (W Flls+i + ErllFls)

where ¢ only depends on T ,r, § and s,1.

condnondegen3
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Inversion of system (7.17)-(7.19). We consider here the full system (7.17)-
(7.19), and we prove the following
Theorem 13 Assume that Hypothesis H.1 and H.2 hold with 9 < s <

r—25, that T € T, p € &' (v) with a = 1/3, and assume that § < &1 /ey < 1/,
0 <0 <1 being fixred and . Then for any

(f.g,h) € H3' x HIP x (H3H)?,

there is a unique solution (u,s,v,du, 6w) € H3H=2 x H5H=3 x (H5H=9)2 x
R? of the linear system (7.17)-(7.19) where du = utéw, and the following
estimates hold

[lulls—2 + [[vlls—o] + I¢|ls=3 < c(€) 7 [I£, g, hlls, (11.13)
[lulls—241 + [[0lls—o11] + Islls—341 < e(€) T (£, g, hlls+1 + Eillf, g, hlls),
|6l + [dut| < e(e) " 2| f[]s + llglls + [hll3)- (11.14)

Proof From (7.23), (7.27), the right hand side of (7.29) is in fact

1 g q1 —_ 1 = —17F
—D(= = — =5]0,G . — =10, G =
f+H (a)+ga 2[0,G]p2 - u 1[0,Glps = 67 f,

with G given by (7.24). After a careful examination of the 0-order (in €) part
of T[Vu, —z=Du] which has a zero average, we have casily

|1Z[u, G| < c(lIGllo + "2 (Y [u][lo), (11.15)
IGlls—s < c(llglls + [Ihlls), [[Y[ullls—s < cffulls,
|Glls—s+1 < c(llglls+1 + [[b]ls21) + cEa(llglls + [[hlls),
Y Tullls—s11 < cllullsti + cEillulls.
Hence, from the properties (9.21) of operators & and ¥ given in Theorem 8,
and from (9.27) for g, we have easily from Theorem 12 the estimate (11.13)
for u = Tu. We arrive to equation (7.28) for the two components of v which

has a zero average by construction. The right hand side of (7.28) is bounded
as

G — Z1[u, GIQ(1) — Ealu, GIU(ub) — Yu]l[+-
< ellfull—2 + llglls—2 + Ihll—2) < Z(1£1ls + llgll. + I1bll.).
and accordingly
1G - =1[u, GIQ(L) — Safu, GU(u") = Yull|s-54: <
=(Ifloe + llgllse + llss) + ZE(1£1ls + llglls + [BIL.)-

Now by inverting the matrix symbol of the differential operator acting on v,
we have 2/3(k1 + pk2)? at the denominator, and a first order term in k at
the numerator, hence taking into account of the assumption H.2 for p, we
have a loss of 4 derivatives in inverting D — £div. The estimate (11.13) for
v follows. The estimate (11.13) for ¢ follows from formula (7.20), from the
estimate (11.15) of =, and from the estimate (11.13) for u. The estimates
(11.14) on 6p, and dw given by (7.25), (7.26) are obtained by using (11.15).

estim u

| estim delta mu|
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12 Nonlinear problem. Proof of Theorem 2

In this section we complete the proof of the main Theorem 2 on the existence
of asymmetrical waves of finite amplitude. To this end we exploit the general
version of the Nash-Moser Implicit Function Theorem proved in Appendix
N of [15]. This result concerns the solvability of the operator equation

2(17,7) =0 (12.1)

in scales of Banach spaces E; and Fy parametrized by s € Ny = NU{0}, and
supplemented with the norms || - ||s and |-|s. It is supposed that they satisfy
the following conditions.

(A1) For t < s there exists c(t, s) such that

lle < et s)ll-llss |- e < et )]s

(A2) For A € [0,1] with A\t + (1 — A\)s € N,
e+ a-ns S eI Flaa-ns < et )R

(A3) There exists a family of smoothing operators S, defined over the first
scale such that for p > 0 and ¢ < s,

1SeWle < c(t. )IWlls, || SeWlls < et s)p" [ Wi,
1SeW = Wt < c(t. s)p™ | W],

and, if |y| — p(|y]) is a smooth, increasing, convex function on [0, c0)
with p(0) = 0, then, for 0 < 11 < 7o,

I (Spra) = Sora))Wlls < c(t, )l = 22l (v2)p(y1) = W]l

(B1) Operators &(-,v), depend on a small parameter v € [—7, 70, and map a
neighborhood of 0 in E, into F. Suppose that there exist

USQST—I, O.aq’TGNOv

and, for all I € Ny, numbers ¢(I) > 0 and y(I) € [—70,70] with the
following properties for all W, U, W;, U; € B and v, v; € [—70,70], ¢ =
1, 2, where B = {W € E, : |W|, < Ry} for some Ry > 0:

(B2) The operator @ : B x [—70,70] — Fy is twice continuously differentiable,

|P(W,¥) gt < c(D)(1 4 [|[Wlrqa) (12.2)
and, for W, U € E,qq, v € [-v(1),7(1)],

IDW,U, )1 < )@+ Wyt + 1Ull) [W = UJPZ +
) [W = U [W = U4, (12.3)

where
D(W,U,7) = ®(W,v) — (U, 7) — Py (U,7)(W —U).
Moreover,
|D(Wy1,Ur,m1) — D(Wa, Uz, 72)lg < c(Im — el + W1 — Wal,)

(IWr = Uil + [Wa — Us||,J12.4)
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(B3)

(B4)

There exists a family of bounded linear operators A(W,v) : E,. — Fy,
depending on (W, v) € B x [—70,70], with

AW, NUlq < cO)|Ulr, U € E, (12.5)

that approximates the Fréchet derivative @y;, as follows. For W € E, ;N
B,y e[=y(1),y()] and U € Eyyy,

(AW, U = @ (W, 1)Ul g1 < ()1 + [Wlr )| 2(W, ) 1Tl +
+eIPW, )+ |Ulr + cOI@W, ) [U ||r41- (12.6)

When W; € BN E,4q, v € [—v(),v(D)], i = 1,2,

|B(W1,71) = P(Wa,¥2) g4t < c(l) (1 + Wi llrr + [Wallpa)  (12.7)
(I =72l + W1 = Wally) + c(D)|W1 = Wal|ra,

(P (Wi, 71) — Py (W, 72))U g1 + [(AW1,71) — AW, 72))U g1 <
< C(l)(le = Wallrr + (Iv1 = 2| + W1 — W) -

Wl + ||W2||r+l)) 1Ulr + e@) (Iv2 = 72l + W1 = Wall) [ Ulr41,

Recall that a set £ C R is dense at 0 if meas(EN[—r,r]/2r — 1 asr — 0.
If a set £ C [—v(1),v(1)] is dense at 0 and a mapping ¥ : € —» BN E,4; is
Lipschitz in the sense that for vy, v2 € &,

19(y1) = F(y2)|l» < Cly1 — 2] with C = C(¥9) constant,

then there is a set £(¢#) C &, which is also dense at 0, such that, for any
v € W) and f € F,qy, the equation A(Y¥(y),v)dW = f has a unique
solution satisfying

1
[0Wllg—o+1 < mc(l)(|f|q+l I 42l flq)- (12.8)

Suppose that ¥ : & — B N E.y; and mappings 9 : ﬂf;olé'(ﬁi) —
BN E,; satisfy, for a constant C' independent of k£ € N sufficiently large,

[9k(71) = Ik(y2)llr < Cly —72l, 71, 72 € NEZHEW;),
1
k1) = O6 Nl < 57 7 € M=oE(9;).

Then N32,E(V;) is dense at 0, where the sets £(1J;) are defined in (B5).

Theorem 14 Suppose (A1)-(B6) hold and, for N € N with N > 2, equation
(12.1) has approzimate solution W = W () € Nsen, Es, with, for a constant
k(N s),

IWn s < kN, )], 1@WN (7),7)]s < B(N,5)]y[N (12.9)

and

IWx (1) = W (2)lls < k(N,8)|71 — 72| (12.10)
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Then there is a set £, which is dense at 0, and a family
{(W=49():ve&}CE,

of solutions to (12.1) with ||9(y1) — I(y2)|l» < ¢|y1 — 72| for some constant
c.

_ In order to apply Theorem 14 to the resolution of the extended system
FU, X, p,v,u,u) =0, let us choose 7 € T and define

s 5\2 2 s—1 s—1\2
B, =Hjg x (H)? xRxR?, F,=Hj' x (B:7)°,

and consider the perturbation W = (U, W, ji, 1) defined as in (6.3), and &
defined by

P(W,v) = F(Usm + U, Xam + [ W,

|€|2m
A+, pam + €, U + [€]PM1)

in which we replace the parameter € = (e1,e2) by (p,v) by using the diffeo-
morphism (g2, e3) — (pam(€), vam(€)) from a neighborhood of 0 in R into
a neighborhood of (), 7.) in R?. This is possible thanks to condition (6.4)
which is satisfied for 7 € 7. The loss of regularity at the origin in v, due to
the square roots, is not a problem here, because the scaling we made gives
a perturbation of order |y|™, and we only need the perturbation to be Lips-
chitz in . Then for v fixed close enough to v., and «y close to 0, the function
&(-,v) maps smoothly F to Fs_1 for s > 4, and @ is Lipschitz in v near 0.
A smoothing operator with the required properties can be defined as

S 2 o
kel

where v : Rt — R™ is a smooth function which equals 1 on [0,1] and 0 on
[2, +00).

By construction Wi (y) = 0 with N = 2m. Hence (12.9) and (12.10) are
satisfied. Applying the same arguments as in section 9 of [15], we conclude
from the smoothness of @, that for 10 < ¢ < r — 24, the operator @ satisfies
Conditions (B1) and (B2), and inequality (12.7) from Condition (B4). Let
us denote by A(W,~) the approximate differential for which the inversion
corresponds to invert the system (7.17), (7.18), (7.19). The estimates (12.5)
and (12.7) are verified for ¢ <r — 1 and the rest of the differential, given by

RW,Y)[6W] = (Ri[u, <], Ra[u], X' Rs[u,s,v,0,d0u, du))

satisfies (12.6) as may be easily proved in following the same lines as for prov-
ing Lemma 4 (roughly speaking we loose 2 derivatives in W, one derivative
in @, and two derivatives in §W which is OK with ¢ < r —1). So Conditions
(B3) and (B4) are satisfied. Now, taking into account the result of Theo-
rem 13, it appears that Condition (B5) with (12.8) hold with o = 10 and
r > q+ 24, ¢ > 10. Condition (B6) is trivially satisfied here since the set
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E'(v), defined in Theorem 11, is independent of the iteration point, which
means that all £(¢;) are identical. Hence Theorem 14 applies, leading to the
existence of a solution of #(W,v) = 0 in E,. Coming back to the variables
U, u,u, and coming back to the parameters (e1,e2) instead of (p,v), gives

Theorem 2 after the change of notation 7 into 7.

12.1 Directional Stokes drift - Proof of Lemma 3

The diffeomorphism (5.1) transforms the family of lines parallel to the direc-
tion g into integral curves of the vector field V. Hence these integral curves
are given in parametric form by (for any fixed ¢ € R)

X =T 'Ys(s) + W(Ys(s),€), Ys(s)=(s+0d,ps), s €R,
hence

A5+ 0) + pr1s
o )\(Tl +T2)

A(s +0) — ps
EIEEE R

Z1 +’(U1(}/§(S),€), xT2 =

where w; and wy are odd periodic functions of Y. It is then clear that these
curves oscillate around lines of slope

A—p __ piei £ pacs
ATy + pTy A7+ 72)
= (163 + Boes — 47y (pe) "2 + AN 1o (o) 23 + O(le]*) (12.11)

+0(le)

by using (B.9) and (B.10). Now consider the direction of propagation u of
the travelling waves, which corresponds to the direction of the velocity of
particles as 3 — —oo. We have, thanks to Theorem 4, u = (1 4 wy,ws) with
w1 = O(|e|*). The slope of u is then

wo(1 +wy) ™t = B1ed + Bocl + O(le|h). (12.12)

Comparing (12.11) and (12.12), this proves Lemma 3, since we proved the
existence of the travelling waves and diffeomorphism X which correspond
to the previous asymptotic expansions. Expressing the difference between
(12.11) and (12.12) in terms of (p — A\, v — v.), then for a fixed eligible v,
we can use a fixed point argument to find p as a function of v which cancels
this difference (expression analytic in (p — A) plus a small Lipschitz term).
Then coming back to the (g1, 3) plane this proves the claim of Lemma 3 on
the special ratio £1 /5 in fact function of €3 at higher orders. Notice that the
angle is 0 in the case 1 = 7 (A = 1) of a diamond pattern, and e; = &9
(symmetric waves as in [16]).

| trajecDirection

waveDirection
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A Formal computation of asymmetrical waves

Let us write formally the nonlinear system (1.2), (1.3), (1.4) under the form
LoU+LiU+La(w,U)+N2(U, U)+N3(U, U, U)+O(||U||* +|w|||U]]?) = 0, (A.1)
with U = (¢, n), i = 1t — fe, w = U — Ug

LU =(0,n), Low,U)=(-w-Vnw-Vy),

(1) (2)
No(U,U) = <§v52 _{g%?@_ﬁ)z), No(U,U,U) = (_597,71(@;7’?}3’1@) . (A2)

where (see [16])

GVt = =G0 (g V) = V- (nVy),
G,k = GO0 G )) + 560 (1 Av) + S AGPG ).

Notice that operators Lo, L1, L2(w, ), N2, N3 commute with the symmetries 7, and
So.

Formal Fredholm alternative Let us consider the formal resolution of the linear
system LoU = F = (f,g), with

1 ~ ik EN ~ -~
U=|Q|—1/2 ZUkekX7 Uk:(¢k7ﬂk)7 o =0,
ker’

1 5 ik = T o~ "
F= |_(2|—1/2 ZerkX7 Fe = (fi,; 9x), fo=0.
ker’

Then, we have for {k - uo}? # uc|k| i.e. by assumption for k # 0, £K1, K>, this
leads to
_ pefic +i(k - u0)gic i(k - o) fic — [k[gi

= T w0 k] ™ T (K w0)® — pelk]

(A.3)

and Yo = 0, no = ,ucflgo for k = 0, while for k = +K;, £ K>, we need to satisfy
the compatibility conditions

(F7CK1) = (szKl) = (F7CK2) = (F7ZK2) =0

which gives

pefrr, £igir, =0,  pefik, £idgix, = 0.
To insure the uniqueness of the definition of the pseudo-inverse Eg ! we fix U such
that

(U7 CKl) = (U7 CKl) = (U7 CKz) = (U7 CK2) =0,

hence this leads to

1 i i
ZZJKJ' = mﬁ%: Nk, = meu NK, = mﬁﬁ-

fredholm?2
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Bifurcation equation Now coming back to (A.1), we use a formal Lyapunov -
Schmidt method and decompose U as U = H + M, where M € ker L3 and

H = Alk, + ACk, + BCk, + Bk, = PoU € ker Lo.

We can solve formally with respect to M the part of equ. (A.1) orthogonal to
the 4-dimensional kernel of Lo, as a uniquely determined formal power series in

w, ji, A, A, B, B, which we write as
M = M(ji,w, A, A, B, B).

The uniqueness of the series, the symmetries of our system and the action of the
symmetries on the eigenvectors, lead to the following identities

TwM(ji,w, A, A, B,B) = /\/l(ﬁ,w,AeiKl"'7Z(fiKl"'7 B(aiKz"'7Eeiisz)7
SoM(ji,w, A, A, B,B) = M(ji,w, A, A, B, B). (A4)
The principal part of M is given by
M = =Ly ' No(H, H) + O{(|iil + lw|)||H|| + || H||*}, (A.5)
_251N2(H7 H) = A%Us00 + |A|2U1100 + ZQUozoo + ABUi010 + ABUo110 +
+ABU1001 + ABUoi01 + B*Uoozo + |B|2U0011 +§2U0002

where we observe, because of the non resonance assumption (ker Lo is only 4-
dimensional), that PoN2(H, H) = 0. Using (A.2) we find

No(H,H) = A*Vaooo + |A*Vitoo + AVia00 + ABVioio + ABVorio +
+ABVioo1 + ABVoio1 + B*Voozo + |B*Voor1 + B’ Voooz

with
_ 1 2k, . x N ik, x
Vaooo = (0, —)e s Voozo = (0, —)e
2 2

Vitoo = 0, Voo1r =0, Vo200 = V2000, Voooz = Voo20

AN+ 1 AN -A+1 |Ki+K
VlOlOZ{M<1_TlT2+ _ K 2|)7

e /’Lg He

A1 =772+ %} L) X))

(&

iA(1— A N4+ A+1 |Kh—-K
V1001:{M<1—T172+ +2+ _| - 2|)7
Me He e

A (K1 — o)
A1 =712 — —2} eHFK1—K2) X),
1

c

Vo101 = V1010, Vicor = Vorio.

Now, thanks to (A.3) we obtain —ZglNz(H, H) as follows

Uzo00 = (é, %) X Ugono = (Z:—; 2—;) 2, (A.6)
Urio0 = 0, Uoo11 =0, Uo200 = Uz000, Uoooz = Uogozo,

Uoto = (iai010, Bro10) e T, (A7)
Uioo1 = (iOé1001751001)62‘(1{17}{2)'}(7 (A.8)

Uoio1 = U1o10, U001 = Uo11o,
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where
= 202 4 PR  mn ),
Prowo = _% <1 B %AT++1)2> (1—7im2 — %) %7
Froor = _i <1 N Q(ATily> (1—-—mm2+ %) + %7

Dy = (1+\)? — p|K1 + Kaf.

Replacing M by M(ji,w, A, A, B, B) in the compatibility conditions, i.e. the com-
ponents of (A.1) on ker Lo,

(BLr(H + M)+ Lo(w, H+ M)+ No(H+ M, H+ M)+ ...,Cx;) =0,

for j = 1,2, and noticing that the complex conjugate equations are automatically
satisfied, lead to two complex equations of the form

f(/]’7w7sz7B7§) = 07 g(ﬂaw7Aasz7§) = 07

for which the equivariance of the system (A.1) with respect to symmetries 7., and
So, lead to the following properties

f(/],w,AeiKl'v,ZeiiKl‘v,BeiK}v,EeiiK?v) — eiKl'vf(ﬂ,w,A,Z,B,F)

g(ﬁyw,Ataﬂ(l"'7ZeiiKl‘v7 BeiK2‘v7§67iK2‘v) = 6iK2'Vg(;17w7A7Z7B,§)
f(ﬁ7w7Z7A7§7B) = T(ﬂ,w,A,Z7B,§)
g(fi,w,A, A, B,B) = g(ji,w, A, A, B, B).

Since the wave vectors K; and K> are linearly independent, it results that f and
g take formally the form

fit,w, A, A, B,B) = A¢r (fi,w, |A]*,|B|?)
9(i,w, A, A, B,B) = Boa(ji,w, |A]*,|B|?),

where functions ¢1 and ¢2 are real valued. It results immediately that we have the
following (formal) solutions of our system (in addition to the trivial solution 0):

i) B =0, |A| satisfying ¢1(ji, w, |A|?,0) = 0, which is the 2-dimensional travel-
ling wave with basic wave vector K1, and where, with no loss of generality, we can
choose the velocity ¢ in the direction of Kj;.

ii) A = 0, |B| satisfying ¢2(ji,w,0,|B|?) = 0, which is the 2-dimensional
travelling wave with basic wave vector K2, and where, with no loss of generality,
we can choose the velocity ¢ in the direction of Ks.

iii) |A| and |B| such that

é1(fw, AP |IBI*) =0, da(ft, w, |A]% | B]*) =0, (A.9)

which gives a family of asymmetrical 3-dimensional travelling waves. This system
has the following form for leading terms

0=pc'fi = 2(Ky - w) + a1| AP + b B + O{(|f| + |w| + |A]* +|B[*)*},

0=pg'fi = 227 (K2 - w) + a2 A* + ba| BI” + O{(il + w| + |A]* + |B[*)*}.
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Indeed, the leading terms of ¢1 and ¢2 independent of |A| and |B| come from

(BL1Cr, + L2(w,Cry), Cry) = |*Q|(:U‘C)71 (/:L(P'C)71 —2w- Kl) ,
(AL1Cry + La(w, Crz)y Crez) = [2](1e) ™" (W fape) ™ = 20w - Ka)

The coefficients aj, b; given by

a1 = pe| 27 (2N (C e, Uzo00) + 3N3(Ciy s Cieys Gy ) Gy ) (A.10)
b1 = p1e| 2|7 (2N2(Crey, Uroon) + 2N2(Crey Unono) + 6N5(Cky , Cia C ey )y G )

as = pe(\*[22))H(2N2 (Crey, Uonno) + 2N3(C e, » Uro10) + 6N3(Ciey s Crea S,y )y S )
by = pe(N22]) T (2N2(C e, Uoozo) + BN3(Crey s Cras Cicy ) Cia) s

are computed in the next paragraph. We can formally solve the system of equations
(A.9) with respect to i and

w2 = (11 +72) 'w- (K1 — A\ 'K>). (A.11)
Indeed, we obtain respectively in adding and subtracting the two equations, a

system easy to solve, in taking into account the fact that u = (1 + wi,w2) has a
unit length, and by using €1 = |A|, €2 = |B|. We then obtain at main order

/:L (Tlaz + 7'2(11) 2 (T1b2 + szl) 2 2 2\2
B _ 10
Me PR i 2T {ei +e2)7}
2
w = (wr,wa), w1 = —“;—2 + O(wd), (A.12)
- b —b
wp= 1= 2) 2y 1=be) 2 g2y 2y

20 +12) " 2(m + 1)

The phases of A and B may be changed independently in using the shift 7. Thanks
to (A.4), in choosing A and B real we have SoM = M, hence SoU = U. Then, for
any fixed pair (e1,£2) we have a torus of solutions, which is generated by acting
the operator 7y on the particular solution obtained with A and B real. This two-
parameter family of tori of 3-dimensional waves connects with the 2-dimensional
travelling waves respectively of wave vectors K; and Ks. This ends the proof of
theorem 4 with

b b
a = —p 2ot ne -, T b2 (A.13)

1+ T2 1+ T2

ai — az by — b2
Bl =——" f[o=——". Al4
D TE 2 2(11 + 72) ( )

Computation of coefficients a;,b;. Using (A.2) and the expressions of Upgrs
found in (A.6,A.7,A.8), we easily compute the scalar products occuring in (A.10).
It then results that .
4 4\

al—E, bz_ /Lﬁ 5 bl—)\zaz,
4(1 + N)? Ao 4(1—=N)? 9
az = D: (1_7-1T2_E) R (1—7'17'2-1-—2) +
8(A% 41 62
+ ( /1/2 )(1—7'17'2)— /1/4 —2(1—7’17'2)
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B Computation of p and v in Lemma 5

Computation of p. We start with equation (5.10) where the unknown are the
diffeomorphism X (Y'), and scalars p and v. With the notation

Y(X)=TX +V(X,e), V= (v1,v2), vz =02 — pu1, (B.1)

for the inverse diffeomorphism, this equation may be written as
VVxY = Y (X)) Qv - V) Vo (B.2)

where VxY is transpose of the Jacobi matrix Y’. Note that the rotation number
o is a topological invariant. It depends only on the vector field V' and does not
depend on the multiplier in front of g in the right hand side of (B.2). Hence p

can be determined from the relation V - VY - g = 0. Recalling (B.1) and noting
that the lines of the matrix T coinside with the wave vectors K; we can write this
relation in the equivalent form

V~(K2—pK1)+V-VXv3:O. (B3)
Let us define new coordinates X' = (Ki - X, K> - X) and set
W:(K1~‘/,K2~V)(X(Xl)), Ué(K1~X,K2~X):v3(X), W():WQ/Wl.

The functions v5 and Wy are 27 periodic in x;. Moreover Wy is even and is invariant
under the symmetries S;, j = 1, 2. In this notation equation (B.3) reads

axllvé + Wo axlzvé =p— Wo. (B.4)

and let us now compute the principal part of Wy. From Theorem 4 we have for the
components (¢, n) of U

4 -
Vi = —2K 161 cos ) — 2Kae3 cos xh — — €1 cos 2zh +
c

3

A
2 £3 cos 2z} + 162V 4+ Oc(fe]?)

where O, (|e|?) (resp. O,(|e|P)) means terms even (resp. odd) in (x7,z5) of order
le|P, and

V(D = (K1 + K2)aio10 cos(ah + ah) +

—2(K1 — K2)a001 cos(x) — x5)

and
2 5_2
Vn Vi = 2631 sin 2z7 + 2\ 362 sin 2x5 +
He ¢
2 A 1 - . ! !/ . / /
+M {()\ + 1) sin(zy + z2) + (1 — A) sin(z; — :CQ)} + Oo(|€|3).

He

Hence we obtain the main orders of b (odd inX):

261 . ’ 2)\262
sinx] —
e e

sinzh + O, (le]?), (B.5)

equ ro,nu,Y

parallel V
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where O,(|e|?) means a linear combination of odd functions e sin 2, €3 sin 225,
e1€9 sin(z} £ x5) plus higher order terms. In using w2 given by Theorem 4

2¢2 2e2 )\
Vi=1-2¢g cos:c’l — 2)\ea cos:c’z - =l 2

Vo = —9 / / 211 2 22y o ' 9
> = —2T1€1 c0Ss X1 + 2ATeE2 COS T + (B — F)El + (B2 + 1z )es + OL(le|”),
(& (&

where OL(|€|?) means a linear combination of even functions €3 cos 2z}, €3 cos 2z5,
e1€2 cos(z) £ x5) (hence with 0 average), plus higher order terms. Hence we obtain

2e1
HE

Wi=K  -V=1-

coszh — 2Xe2(1 — T172) cos x4 +

2¢2 B 2\1e2
1

+71B167 + 718285 — 5
T p

(1 —7i7m) + OL(lel?),

Wod ™' = \'Ky - V=1— 261 (1 — T172) cos x; — 2)\362u;2 cos Th +

—Tafre} — Tafael — 261 ps 2(1 — Tima) — 2X°es st + OL(le]?),

Wor™ =1+ 51W0(1’0) cos T + EQWO(O’D cos T5 + (B.7)
+6%(W0(2’0’0) + WO(Q’O’I) cos 2z) + &5 (Wo(o,z,o) + Wo(o’z’l) cos 2w5) +
+eie2 {W()(l’l’+) cos(zy + x5) + Wo(l’l’f) cos(xy — :c'g)} + O (le]*),

with w0 o.1
WO 0) :27'1(7'1 —‘y—7’2)7 WO - —2\To (7’1-|-7'2)7

W00 = (71 + 1) 61 + drip > (11 + ),
WO(O’Z’O) =—(ri+7)B2 — A%t + 2)\2(1 - 7'17'2)2.

We then obtain for Wy an expansion in powers of €1, €2, even in X', and invariant

under the symmetries S;. Let us look for a formal solution of (B.4), v5 being odd
in X', (v, p) being invariant under the above symmetries, and in the form

(1,0) 27(2,0)

. ~(0,1) . 1 2~(0,2
sin +52u( ’ )smmz—i—sl u( 2

’ ~ . / . ’
V3 = €1U sin 2x7 + €5 sin 2x4 +

teres {a“vl’*) sin(x’l+x’2)+a<1’1v*)sin(x’1—xg)}+o,,(|e|3)7 (B.8)

p =X+ piel + pacs + O(4).
Then, in identifying the powers of (¢1,£2) in (B.4), for A # 1 we obtain

~ ~ ~ A
u(l)o) — _)\WO(1)0)7 u(o)l) — _I/VO(OJ)7 p1L = )‘W()(2y0’0)7 U(Q’O) — WO(2»0;1)

2
FALE) _ _L(Wo(l,l,:t) B EWO(I,O)WO(O,I))
1+ A 2
po = )\Wo(o,z,o) B %(Wo(o,l))z 702 _ _%Wo(o,z,l) I i(WO(O’l))?
Hence, we can write
p1 = —A(11 + 72)B1 4+ AATipg 2 (11 + T2), (B.9) |ro_

-0l (B

1

p2 = —A(11 + 12)0B2 — 4)\572,u;2(7'1 + 72). (B.10) |ro_2
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It is clear that when A\ ¢ Q, the coefficients T of ehes sin(rz} 4 sxh), a0 of
€37 sin 2rz’, W92 of £2° sin 2sx), p(2r,0) of g2, P(0,25) Of 2% can be easily computed.
This shows that we obtain vs and p, unique formal solution of (B.4), invariant
under the symmetries ‘SN'] In particular, this implies that the power series for p
only contains powers of (e%, s%) In the case where A = r/s € Q, an obstruction in

the computation of #(™* ™) arises because of a division by 0. In using the relations
(A.14), this ends the proof of the first part of Lemma 5.

Computation of v. In order to compute v we solve formally with respect to v;
and v the P.D.E. given by the first component of (B.2):

Ki-V +Vxo -V = —wa) B)Y'(X)]3(QV - V)¢, (B.11)

where we notice that the unknown also occurs on the right hand side in |Y’(X)].
Indeed, since |Y'(X)| = |T||Dx/Y|, where Dx, denotes the Jacobi matrix of the
mapping Y (X (X’)), we have

[Y'(X)| = det Tdet(I+ Dx/V') = —=A(11 + 72) (1 4+ divx/V' + det(Dx/ V")) .
In using the notation as in (B.4), it results that
é)x/lv'l + Woaxévi (B.12)

= W (WA (1 4+ 72)a)2(QV - V)8 (1 4+ divy/ V' + det(Dx V)P —

1,
which we solve in the same way as (B.4). We set

V=v.+ 1/15% + ugsg + h.o.t.

From (B.5) and (B.6) we get the following representation for the function a =
V-Vb+ p,

2
a=fc— u—{sl cos ) + g2 cos x'g} +a® 4 h.o.t.,
C

0 = & (a1 +211°) + &3 (a2 + 2°°) + OL(Jel?).
Hence ve = (peA(1 + 72)) 7%, and

(AT +72)a)® =1 —2(3u2) ' {e1 cos ) + e2A’ cos b} + agz)

/3’
@ _2fo 4 m), afa A w0 o
a1/3_51<3uc+9/f3+ 3)+52<3uc+9/f3+ 5 ) T Oc(lel).
We also have
2
wrt=1+ 1 cos ) + 2xea(1 — T172) cos ah + W,

It

4
W@ = <F — 7’151) el +

c

2% !
+ { < 2 +20%(1 - 7172)) (1—m1m2) — Tlﬂz} g5+ OL(lel*)

and

(QV-V)=V?+(V-Vxn)® =1—4e; cosa| — 4Xea cos x5 + OL(|e[*).

equ v_1,nu
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Finally
_ 2
WA + Tz)a)1/3(QV . V)1/6W1 =14 3 (1 + 27'12) g1 cosxy +
2
+§)\ (1 S - 37'17'2) £2COSTh + 162 + coc + O;(|e|2)7
with
o ve1 | 2 2 2y O
c1 = — 7161+ +=-(14+7m)A54+1717) — -,
c 3 9 9
2)2
c2:3:c : 3 5 (1+73)(3+273) +
2)? 52
+2)\2(1 — 7'17'2) + T(l + 2T2)(1 — 7'17'2) — T
Let us define the expansion of the solution v} (X', €) as
v = Elv(l’o) sin ] + Ezv(o’l) sin x5 + El’U(2 ) sin 2z + 521)(0 D sin 2xh +

terea{v™ ) sin(a) + ab) + v sin(@) — 25)} + O(le]?),
with unknown coefficients v(*?). Then combining this expansion with expansion
(B.8) for vy = vy — pv] we obtain

(1,0

divy V' =10 cos ) + Mo ™Y + 270 (71 + 72) Yoo cos wh + OL(e]?),

det(Dx/V') = k1162 cos(z) + x5) + ko2 cos(z) — x5) 4+ O (le]?)
and
A
(1+divx V' + det(DX/V’))l/3 =1+ —{U(O’l) + 279(71 + T2) }ea cos xH+-
L0
ElT Cosxy —
Identifying powers of €1, 2 in (B.12) leads to

1
e {v<0 4273 (m1 + 7)) + OL(le]?).

(1 D=1+ 271, vgo'l) =1- 27171,
c ——i(1+272)2 c ’\2(1+2 )2 —/\—2(1+2T Y(1— 75 — 3mi7e)+
T8 LT 9 2 2 1
)2 To(T1 + 12)(1 — 211 72),
hence

V1 3

— = ———|—3T151+——2(1+71)(5+67'1) (B.13)

Ve Le 2

322
? = _u_ +37102 + 5= = 2X°(1 4 7)(5 — 6mim), (B.14)

where a;; and (; are given by (A.13) and (A.14). The functions v(z 0) v§0’2)7 v§1’1’+)7

vgl'l’f) may be computed in the same way as u’ in Appendix B, and the necessary
condition A ¢ Q is valid here again for being able to compute v1 up to an arbitrary
order. The same uniqueness argument as for (v3, p) works here for (v1, ) leading to
unique expansions of v}, v, solution of (B.12), and invariant under the symmetries

T It results that the expansion of v is only with powers of (51752) Lemma 5 is
then proved.
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Remark 11 Notice that for A close to 1, we have 71 ~ 72 ~ 7, a1 ~ b2, az ~ b1,
a1 ~ a2, f1 ~ =02, and p1 + p2 = o(1) with

3274

p1 ~ 4 — 8’7’2 — 207'4 + ; He = (1 +T2)71/27
2 — pe
1 274 474
v M g gyt 3B 2 T gyt BT
Ve 2 Q_Nc Ve 2 2_/146

which shows that the sign of p1 and v; depends on 7. We should notice that for

71 = T2 we have a diamond lattice and when €% = £3 the rotation number is A = 1,
as this results from [16], by symmetry arguments.

Diffeomorphism X. We are now able to give the principal parts of the diffeo-
morphism X. Indeed, from the form of u’ obtained in Appendix B and the form
of v} found above, we deduce that V(X,e) = (v1,v2) with (expressed with X' =
(K1 - X, K- X) instead of X)

o] = (14 2r)ersinz] + (1 — 21 72)ea sinzh 4 O, (le]?),

vh = u' + pvy = A1 — 2mim)er sina) + A(1 + 273 )ea sinzh 4+ O, (le[?),

where O, (|e|?) terms are linear combinations of odd functions €7 sin 2z}, €3 sin 2z5,
e1e2 sin(z} £ 5) plus odd higher order terms. It results that

X =T"'Y +W(Y,e), W(Y,e) = (w1, ws)

with
w1 = —e1sinyr —e2sinys + efwgz’o) sin 2y1 + sgwgo’z) sin 2y2 +
+6162{w§1’1’+) sin(y1 + y2) + wgl’l’f) sin(yr —y2)} + O(le]?),  (B.15)
wo = —2T1€18In Y1 + 272e2 sin Yo + efwéz’o) sin 2y1 + egwéo’z) sin 2y2 +

+ereafwi " sin(ys +y2) +wi 7 sin(yn — o)} + O(e’). (B.16)

C Computation of the matrix G and coefficient H

Coefficients g¢;; are defined in (5.5). We have

1+75 2 . ) )
e (7—1+T2)2+T1 +7’287“W. 1)+ @)™+ (Vxn- 0, X)",

147t 2 - ) )
922 = N2(11 + 72)2 + )\(71+7—2)892W <_1 + (0 W)™ + (Vxn - 0y, X)”,

_ mme—1 1 N 1 (n
gi2 = NCRESE + p +T28y2W ( 1 ) + 7)\(7_1 +7_2)3y1W (_1) +
+(ay1W) : (8y2w)+ (VXU : 8y1X) (VXU : asz) )

and from Theorem 4 and the expression of X in (B.15), (B.16)

—92¢ —2)e2

m ! sin y1 +Oo(|€|2)7 Vxn: 0y, X =

C C

Vxn-0y,X = sinya 4+ O, (|e]?).

1

E E
| |
N
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We then obtain

1473 2(211 + 12) £ 2 L2

= — —(5+8 O

9= oy i, creosy 5 (5+877) + Oc(lel),
14 7% 2(71 + 272) €2 2 PR

= — —=(5+8 0]

923 A2(11+72)2 AT+ T2) €2c08y2 + 2 (5 +872) + Oc(le]"),
-1

g2 = 72 + T cicosyr + —2—eycosys + OL(el?),

AN+ 72)2 0 A1+ 72) L+ T2

where the terms O.(|e|*) are linear combinations of even functions &3 cos2yi,
5% cos 2y2, €162 cos(y1 £ y2) plus higher order even terms. It results

gi1 + 2pgi2 + p2922 =1-—2e1cosy1 — 2Aezcosyz + (C.1)

2]5 2 2p1711 } 2{5 2 2p271 } / 2
el = +4m + ——— 7 + 59 =+ 415 + ———— > + O (|e]”).
1{2 1 )\(Tl+7'2) 2 2 2 )\(Tl+7'2) (| | )

From (7.9), we have H(@f} V)2 = K(Gg - ¢)"/? and from
QV -V =1—4e; cosyr — 4heacosya — 2(1 4 272)e? — 202 (1 + 273)ea 4 OL(lel?),
and (C.1), we obtain

Go- o 17 2 20171 2
—— =1+2 2\ - ST
G + 2e1 cosy1 + 52cosy2—|—<2 +87'1—|—)\(7_1+7_2) €1+
5 2 2 2 2p2m1 2 o (a2
— 4+ 6A 45 (1 + A O .
+<2 + +4r (1 + A7) + N+ ) e2 4+ Oc(lel)

From (7.16) and the decomposition (6.3) we have K = 1 + Oc(|e|*™ "), hence

H =1+c¢e1cosyr + Aeacosyz + <4(1—|—7’12)+ ﬁ) Ef—&—
1 2

E E 2 2 9 pP2T1 2 / 2
+<4+ g T+ A )+)\(T1+7'2))62+O€(|€| )

i.e. from (B.9), (B.10)

H =1+c¢e1cosyr + Aeacosyz + (4(1 + 7'12)2 — 7'151) E% + (C.2)

+ <4A2(1 +73)(1 = mime) + (1= A3)(275 + Z) — ﬁﬂz) &5+ Ou(le”).

D Proof of Theorem 5

We split the proof into two parts and begin with the calculation of the variation of
Fs. It directly acts on the mapping X (Y), and depends implicitly on functions v,
7, parameters v, u, p, and on the unit vector u. Our goal is to deduce the expression
for the Gateaux derivative Dy, x,,,u)F3. The result is given by the following

lerivativeF_3| Lemma 19 Under the assumptions of Theorem 5,

Dw.x,uwF3[6U, 6 X, 6p,0u] = X' ( o Vv — % divv Q)—

0.1

HV[5U, 6u + V¢ + X' (S[6U7 su, (m]g) +Rs,
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with the remainder
Rz =wv-VF3+ %divv Fs — S[0U, du, o] Fs,
and the (2-components) linear form S is defined by the equality

S =% (((m +N(6u + Vie) + M(5n)) %+

5 5 5 1 (D.2)
in which the linear forms N and M are defined by
1 -1
N =V. — N .
© =V V{i gt Y} +Q'Veg,
—yv.ovi L : : (D.3)
M(6n) = V V{1+ o [9(Ve Vi) 4V o] }+

+Q 'Vb - (6nVb — (V - Vén)Vn).
The linear form V is given by the formula
V[0, 0u+ Vig] = Q' (du+ Vi) + Q" ( —(V-Von)Vn + (5an). (D.4)

The matriz Q is defined in (5.5) and function H by (7.9).

Proof By abuse of notation, further we simply write J F' instead of
D, u,w) F[0U, 61, u]. We set in what follows

Ho = —(wa) (V2 +(V-Vxn)?) Y = |X'|"/*H. (D.5)
It follows from QV = u+ Vx4 and (5.5) that we have
QéV =6u+Viy —6QV =du+ Voy — (V- Vn)Vén — (V- Vén)Vn.
Recalling the relation 69 = d¢ + (V - Vn)dn we get
5V = Q*1(5u+v5¢— (V- van)vn+5nw). (D.6)
Next we have V2 + (V- Vn)? = QV - V, which yields

S(V24+(V-Vn)?) =2Q6V -V +6QV .-V =
26u-V +2Vdg -V +20n(V - Vb).

Recalling the notation of the function a we conclude from this that
5(QV V) =2(V-Vdgp+ (a— p)dn) +20u- V. (D.7)
Next we have to calculate the variation of the coefficient a. Note that
0b =0V -Vn+V . -Véon=
(bu+ Vg — (V- Von)Vn+nVb) -Q 'Vn+V - Von.

Since Q7*Vn = (1 + |Vn|*)"*Vn, we conclude from this that

5b = (1+ |V~ ((6u + V8¢ + onVb) - V4 V- van).
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From this and the equality da = dV - Vb + V - Véb + dp we obtain
da = N(du+ Vi¢p) + M(dn) + op, (D.8)

where the linear form N and linear differential form M are defined by (D.3). Next
we have 0os 5QV V)
SH, = 2o roa 0V - V)
0 3 ( a ' 2(QV- V))’

and by substituting (D.7) and (D.8), this leads to the identity

§Ho = _%(((m +N(du + V6o) + M(én))§+

+ (V- (bu+ V) + (a — 1)dn) QVl- V) = —HoS[oU, 6u, 541 —
Next we have
6F = 6HoV + HodV = (|X'| "/ Hy "6 Ho)| X'|"/*F + HodV (D.10)
= (|X'|7Y3H; ' 6Ho) (DX — F3) 4+ HobV,
thus we get
6F = —|X'|7Y3S[6U, 6, 6u)(DX — F3) + HodV. (D.11)

Finally note that
D, x o) F30U, 6 X, 8, 6u] = Dx F3[6X] — |X'['* Dy .y FI1OU, S, Su).

It follows from (5.10) that the operator X — F3(X) meets all requirements of
Lemma 7 with d = 2, o = (1,p), and a = 1/3. Thus we get for 6X = X'v,

Ox Fs[X'v] = X' (Dv — % (div) @) + v - VFs + %(dm) Fs. (D.12)

Combining (D.11), (D.12), and the identity V[én, du+ Vd¢] = 6V we obtain (D.1),
which completes the proof.

Proof of Theorem 5. By virtue of (4.2), (4.4) and Lemma 19 this relation can be
written in the form

Gndgp —div x(6nV) — Vxn - du = §F1 — R1[§U], (D.13)
V-Vxdp+adn+ (Vxp —bVn) - du+ndp = dFs, '

Dv — 2 (dive) @ + SIOU, bu, ule — X'~ HV[5n,u + Vog] = (D.14)

X'7N6Fs — X TV Rs[0U, 6 X, 6y, u).
Note that X is the independent variable in equations (D.13), and Y is the inde-
pendent variable in (D.14). In order to take advantage of the special choice of the

diffeomorphism X (Y), it is convenient to change the independent variable X into
Y in equations (D.13). To this end we set

w(Y) =66(Y), <(Y)=6n(Y), Gu(Y)=G,d6(Y). (D.15)
It follows from (5.10) that

1

V. Vxdp=(X""V) Vyu= E(Q—X’*lfg) - Vyu. (D.16)

deltahe

deltafe

deltafel

| linearization F_3a

lenearizedfel

linearizedfe?2

yvariable

ygradient



Asymmetrical three-dimensional travelling gravity waves 75

Using this relation we can rewrite equations (D.13) in the equivalent form (7.6)-
(7.7). It remains to prove (7.8). We begin with the change of variables in the linear
forms M, N and V. Recalling equality (5.5) and expressions (D.3) we obtain

reN—1g1 ’ —1%7 1 r—1 -1
N[(X) 7] = (X)) Oy (o X e €) +67'VB €
Using the identity
17— Ly Ly
X (YY) v= HQ HX YY) "Fs (D.17)
we can rewrite this relation in the form
N[(X")7"€¢] = N[¢] + R (€], (D.18)

where N and Ry are defined by (7.11) and (7.12). Arguing as before we obtain
from (D.3)

M[én] = Mls] 4+ Ra[s], (D.19)

where M and Ry are defined by (7.11) and (7.14). Finally repeating these argu-
ments, gives the expression for the linear form V,

HX'~'V[on,du+ Vig] = V[€,¢] + Rvs], (D.20)

where
€ =X"(6u+Vxdp) = (X""du+ Vu), (D.21)
V¢, ] = HG ¢ — (Do)G ™' Vij+ cHG ' Vb, (D.22)

and Ry is given by (7.15). Now we can change the variables in the linear form S.
To this end note that

S[6U, 6w, 611 = S[(66,0), 6u,0] + S[(637, 61),0,0] + S[0,0,80).  (D.23)
Using representations (D.15) and identity (D.17) we get

1

S[(d¢,0),0u,0] = %N[ﬁ] + 3H@T(Q - X'"T'F8) + %RNE]- (D.24)

Next we have from (D.19)

Ry a—p 1
S[(bdm, o), 0,0] = =MIs] + [3@? ; v] <+ 3=Ruls], (D.25)
and 1
S[0,0,0u] = ﬁtm. (D.26)
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Combining (D.24), (D.25), and (D.26) we finally obtain the expression for S[6U, du, § ]

in terms of v and ¢:

3%(6u+ﬁ[£]+ﬁ[<])+ L] ¢+ Rsle ),

a
e+ |t

1
SH@V -V

where € and Rgs are given by (D.21) and (7.12). Combining this result with (D.19),
(D.22) and recalling the notation in Theorem 5 we obtain

S[6U, 6u, dule — HX'~'V[on, du + Vig] = T[X"*6u + Vu, ]+

1 *
350me + Rs[X""ou+ Vu,cJo = Rv[d].

Substituting this expression into (D.14) completes the proof of Theorem 5.
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E Proof of Lemma 10
Using the definition (8.25) of the resonance set A/, we first prove that the inequal-
ities
3 . 1/2x1/2 T i1/2=
< —|A d L(p) > —|A E.1
|p1+ppz|74\/l7| Bl and L(p) 2 £|A7B| (E.1)
hold true for all p € Z?\ {0} with the following property. There exists k € Z?\ { 0}

such that Lj2n1/2
Ip — k| < o] AV7p|7, (E2)

ke Z*\N when peN, and keN when peZ*\N. (E.3)

The constant c2 independent on p, k will be specified below. To do this we note
that by virtue of (E.3), the continuous function

|1/2

' |z + po| — |AVR]V? where % = (21 + pa2, 72)

changes its sign when a point x runs along the segment [p, k]. Hence there exists
x € [p, K] such that

W'z + pxa| = |AY 2|2

Now assume that |p — k| <, where ¢ will be specified below. We have |p — x| <
|p — k| < 4, hence

[Py + pp2| < |z1 + px2| + [(p1 — 21) + p(P2 — @2)| < |z1 + px2| + (1 + p)0.
Because of the choice of x we have
202 py + ppa| < [AY2R)V? + 2012 (1 + p)é.
On the other hand, we have
|A1/2)~(|1/2 < |A1/213|1/2 + |A1/2()~( _ 13)| /2 < |A1/213|1/2 + ||A||1/4(1 _|_p)1/251/27
which leads to the inequality
20 [py + ppal < |AV2BIY? + 202 (1 + )3 + A1 (1 + p)/2V5.

Now choose § > 0 so that

1 -
(1+p)3 + V)G < a2l (E.4)

1
— A
L
Note that \/5 [S [,217 zz], where z; are the roots of the polynomial

2 1 1/4 1 1/2.211/2
2 ibz—d=0, b=—— JAMY, d=-——_|A .
S0 ey A IS NoA

Since z1 < 0 we can choose any § satisfying the inequality

0< V3o <z=(20)""(\/1+4d/b? - 1).

Next note that since p is an integer # 0 (because we consider operators in the
space of odd functions which are invariant with respect to the action of $ and IT)

we have [A'/2p| > Ao > 0, hence
4d/b* > 4/vAo/||A]] := co independent on p.

Noting that for all z > co,

V1+2z—1>ci+/z with 61:\/14—651—661,

D56

D55

D53
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we obtain from this that

22 > 27 'bei\/4d /0% = eV d.
From this and the expression for d we conclude that (E.4) is fulfilled for all §
satisfying the inequality
5 < 6%471(1 + p)71U71/2|A1/213|1/2 — C2|A1/213|1/2,

which completes the proof of (E.1).

For each p € Z*\ {0} we denote by K(p) C Z?\ {0}, the set of all points k
satisfying the inequality (E.2). Now define the operators 2) and 3 by the equalities

Dup = —— 3 H(p -k £K) (en(p) — xv ()i, p#0,
L(p) Mol
Gue= >, Hp-kEK)owp) —xvk)ie p#o0,

keZ2\K(p)u{0}

(E.5)

where y v is a characteristic function of the resonance set N. It is clear that IT § —
HIT =YL + 3. Let us estimate the norms of operators 2 and 3. By hypothesis on
9 we have R
|H(p —k,&(k))| < ce(1+|p— k)™,
hence
(1+[p])°*
|L(p)]

Note that x~(p) # x~ (k) if and only if k satisfies (E.3). It follows from this and
the definition of K(p) that we can apply (E.1) to obtain

(1+ P (Duw)p| < ce > 1+ Ip = k)T (p) — xv (k) [l

keK(p)

<1+|p|>®|mp>—mk>| <e for ke K(p),

which gives for any integer ¢t > 0

(1+[p)™!
|L(p)|

where c is a generic constant only depending on ¢. This yields

A+ 1D @uwel <ce D (A +Ip—K) T (1+ k) + 1+ |p — k) [l
keK(p)

v (P) = xw (k)| < e(1+[p — k)" +c(1+[k|)* for k € K(p),

for p # 0. By using Cauchy-Schwarz inequality on each sum on the right hand side,
we are faced with estimating the sum

Z Z _|_ |p k|)2(7“ s)”

pez?\{0} keK(p)

By using a comparison with the integral

dl’ldl’gdyldyg ’ d:C1dCCz
2 = ¢ Y
xeR2 Jx—y|<c(i4xpt/2 (1 +[x—yl) xer2 (1 +[x[)

we conclude that for 0 < s <r — 3,

ST+ )T Quel <ee® Y (1 KD,

pEZ2\{0} kez2\{0}
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which yields the desired estimate (8.28) for 9). In order to estimate 3 we note that

(Gupl <ee Y. (L4 p—k) 7T

keZ?\K(p)U{0}
Since for k € Z%\ K(p) U {0} and p # 0,
[P — K| > ca AY2B[" > (1 + [p])"?
and using again (1 + |p|)’ < ¢(1 + |p — k|)* + ¢(1 + |k|)!, we have

(I+p) Bwel <ee D (1+p=k) T (1+[k) +(L+Hp—k|) 7).
KEZ2\K(p)

Using again Cauchy-Schwarz on each sum on the right hand side, and
(L+p—k) > <c(l+[p— k) T4 pl) 5O,
then for 0 < s<r—5
Yo ARGl <ee® > (4K
peZ2\{0} kez?\{0}

which yields the required estimate (8.28) for 3.

F Proof of Lemma 17 and Proposition 5

smalldivisors

The symbol Ly + V, of £, + U, may be written as

—v(ky + pk2)” + {k3 + 2aqkz (k1 + pha) + by (k1 + pks2)*}/* + V,(Kk),

where ag, bg, Vg satisfy Lemma 14. The aim is now to find where are the "bad” p's,
for a given v, and this, uniformly with respect to iteration points (for ¢ — o0).
First, let us consider the solutions p of the equation L, + V; = w where w is chosen
later, tending to 0 as k2 — oco. We observe that this equation is equivalent to

1/2
ki 1 ki ki Vy —w
) = — {142 )+ Uit .
(o) o e (o 2) o (o)) e

For |k2] > N, N being large enough, and p € (0, N), it is clear that ‘p—&— ]Iz—;

O(1/|k2|*?), and |k1| < 2N|ks|. Since p > 0, we have ki/ks < 0, and without loss
of generality, we assume that k2 > 0, k1 < 0. Then we have two equations for p :

is

b Ll (o B ]
P+ = ko (uk2)1/2 Qq \ P£ s q | P+ o2 T2 )

which may be solved by using the implicit function theorem for N large enough.
We then obtain p+ as a smooth function of (v, aq, by, V4, w) defining

P+ :Zi(yvk17k27w7GQ7bQ7VQ)' (Fl)
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Moreover the functions A+ have the following representations:

- ke 1 a (2bg —a2)  (Vy—w)) 1
N = ——= 74 q q L
+ ko 7 (vko)Y/2  2uko ( Su3/2 2u1/2 kg/z +
1
+ER(G’Q7bq7Vq7w7k2)7 (FQ)

2

where R is bounded and smooth in w and in a4,b; and V; which are Lipschitz
functions of p+ as shown by Lemma 14. For fixed ¢ and w, the equations p+ =
Ax (v, k1, k2,w, aq,bq, Vq) may be solved in pi by using a contraction mapping
argument, which defines the two functions p+ = Agq+ (v, k1, k2,w), which are con-
tinuously differentiable with respect to w. This defines a denumerable number of
curves in the (p,v) plane, where we are only interested in (p,v) € we,. From (F.2)
it is clear that 50
Bullgr = F(1/2/ ")k > + O(k7 )
which means that for N large enough, A,+ are monotonous functions of w, with

a bounded derivative of order O(k;g/z). Now for a certain o > 0, we consider the
family of curves such that

w| < dka| 2. (F.3)
From the expansion (F.2), it results that for a fixed (g, k1, k2) the curves p+ =
Aq+ (v, k1, k2, w) in the (p, v) plane, are contained in a curved narrow strip, centered
on the curve obtained for w = 0, of thickness §p~ bounded uniformly for (p, v) € we,
by

|6p+| < cd|ka| 27, (F.4)
where ¢ is a constant not depending on (g, k1, k2) provided that |k2| > N. Consider
now the influence of the iterations (varying ¢). Thanks to Lemma 14 on successive
iterates and (F.2), we obtain (notice that the main influence comes from 2522) for
a fixed (kl, kz, w)

[Ag+1y+ — Agz| < 2™ el™ kgl

where c is independent of (g, k1, k2, v, w), provided that v is near v, and |ka| > N.

Now denote by Kk, = (1 + a)lnkz/In2, then for a fixed (k1,k2) the total
width of the curved strip containing the curves p+ = Aq+ (v, k1, k2, w) for ¢ > K,
is bounded by

m m m
le]

clel™ _ _ el

Z 20 ko - Ck 2Kk2 - Ck22+a'
4> Ky 2

It results that for ¢ > Ki, = go and for w satisfying (F.3) and fixed (ki, k2), all
the curves p+ = Aq+ (v, k1, k2, w) lie in a narrow curved region of the (p,v) plane,
of thickness cky2~%/(d + |e|™), and containing the curve py = Agy+ (v, k1, k2,0).
For ¢ < K, = qo we may estimate the total thickness of the strips containing the
strips associated with the rest of the curves, by

cdKpy k2|27 = (1 + @)ed(In2) " ky > In ka.

We obtain for fixed (k1, k2), the total thickness of the ”bad” strips centered on the
curves p+ = Agy+ (v, k1, k2,0) plus a finite number of strips centered on the curves
p+ = Ag+ (v, k1,k2,0), ¢ < qo : ¢ In|ka||k2| 727, Notice that this thickness is
independent of v in the neighborhood of v.. Now we consider the total set of bad
strips for (ki,k2) € Z2, |k2| > N, not forgetting that |k1| < 2N|kz|. In fact, since
we consider the domain we, for (p,v), we may observe, thanks to (F.2), that for
o+ — A + |[v — ve| < 7, the relevant values of ks giving eligible "bad” p’s in this
square of the plane, are such that (from (F.4)) for N large enough k3T > ¢/r.
Moreover, thanks to (F.2) we also have, for N large en