T. M. Apostol and T. H. Vu, Dirichlet series related to the Riemann zeta function, Journal of Number Theory, vol.19, issue.1, pp.85-102, 1984.
DOI : 10.1016/0022-314X(84)90094-5

URL : http://doi.org/10.1016/0022-314x(84)90094-5

R. Bellman, A brief introduction to theta functions, 1961.

D. Birmingham and S. Sen, A Mellin transform summation technique, Journal of Physics A: Mathematical and General, vol.20, issue.13, pp.4557-4560, 1987.
DOI : 10.1088/0305-4470/20/13/054

B. C. Berndt, Ramanujan's Notebooks I,II,III,IV

G. Boole, A treatise on the Calculus of Finite Differences, 1960.
DOI : 10.1017/CBO9780511693014

J. M. Borwein, P. B. Borwein, K. Dilcher, and . Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, issue.96, 1989.
DOI : 10.1007/978-1-4757-2736-4_65

J. M. Borwein, D. M. Bradley, and R. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics, vol.121, issue.1-2, 2000.
DOI : 10.1016/S0377-0427(00)00336-8

URL : http://doi.org/10.1016/s0377-0427(00)00336-8

N. Bourbaki, Algebre Chapitre VI Dveloppements Tayloriens gneralises . Formule sommatoire d, 1959.

K. N. Boyadzhiev, H. G. Gadiyar, and R. Padma, Alternating Euler sums at the negative integers
URL : https://hal.archives-ouvertes.fr/hal-01112352

P. L. Butzer, P. J. Ferreira, G. Schmeisser, and R. L. Stens, The Summation Formulae of Euler???Maclaurin, Abel???Plana, Poisson, and their Interconnections with the Approximate Sampling Formula of Signal Analysis, Results in Mathematics, vol.10, issue.4, 2011.
DOI : 10.1007/s00025-010-0083-8

B. Candelpergher, Développements de Taylor et sommation des series, Expositiones Mathematicae, vol.13, 1995.

B. Candelpergher, H. G. Gadiyar, and R. Padma, Ramanujan summation and the exponential generating function ? k=0 z k k ? (k)
DOI : 10.1007/s11139-009-9166-0

URL : http://arxiv.org/abs/0901.3452

P. Cartier, Mathemagics (A Tribute to L.Euler and R.Feynman)

M. A. Coppo, Sur les sommes d'Euler divergentes, Expositiones Mathematicae, vol.18, pp.297-308, 2000.

M. A. Coppo and P. T. Young, On shifted Mascheroni series and hyperharmonic numbers, Journal of Number Theory, vol.169, 2016.
DOI : 10.1016/j.jnt.2016.04.028

URL : https://hal.archives-ouvertes.fr/hal-01277623

P. Flajolet and B. Salvy, Euler sums and Contour Integral Represen- tations, Experimental Mathematics, vol.7, issue.1, 1998.
DOI : 10.1080/10586458.1998.10504356

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Freitag and R. Busam, Complex Analysis, 2009.
DOI : 10.1007/978-3-642-20554-5

E. Grosswald, Comments on some formulae of Ramanujan, Acta Arithmetica XXI, 1972.

G. H. Hardy, Divergent series, Clarendon. Oxford, 1949.

D. H. Lehmer, Euler constants for arithmetical progressions

B. Malgrange, Sommation des séries divergentes, Expositiones Math, vol.13, 1995.

J. Ramis, Séries divergentes et théories asymptotiques, Bull.Soc.Math. France. Panoramas et Synthses, vol.121, issue.74, 1993.

R. Sitaramachandrarao, A formula of S. Ramanujan, Journal of Number Theory, vol.25, issue.1, 1987.
DOI : 10.1016/0022-314X(87)90012-6

B. Randé, Les carnets indiens de Srinivasa Ramanujan

R. J. Singh and D. P. Verma, Some series involving Riemann zeta function, Yokohama Math. Journal, p.31, 1983.

J. Sondow, Double integrals for Euler's constant and ln( 4 ? )) and an analogue of Hadjicostas's formula, Amer. Math. Monthly. Vol, vol.112, p.1, 2005.

H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions an Associated Series and Integrals, 2012.

T. Tao, The Euler-MacLaurin formula, Bernoulli numbers, the zeta function, and real variable analytic continuation. terrytao.wordpress.comthe-euler-maclaurin-formula-bernoulli- number 33) E. C. Titchmarsh and D. R. Heath-Brown. The theory of the Riemann Zeta-function, 2010.

V. S. Varadarajan, Euler and his work on infinite series, 35) I. Vardi. Computational Recreations in Mathematica, 2007.
DOI : 10.1090/S0273-0979-07-01175-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. V. Viskov, A non commutative approach to classical problems of Analysis, Proceedings of the Steklov Institute of Mathematics, 1988.

K. Yoshino, Difference equation in the space of holomorphic functions of exponential type and Ramanujan summation. ams.org.epr.uca/ma/mathscinet/search 38) D. Zagier. Values of zeta functions and their applications

D. Zagier, Valeurs des fonctions zéta des corps quadratiques réels aux entiers négatifs. Société Mathématique de France, pp.41-42, 1977.

N. Y. Zhang and K. Williams, Some results on the generalized Stieltjes constants, Analysis, vol.14, 1994.