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Ramanujan summation of divergent series

B.Candelpergher

Abstract

In Chapter VI of his second Notebook Ramanujan introduce the Euler-MacLaurin formula to
define the ”constant ” of a series. When the series is divergent he uses this ”constant” like a
sum of the series. We give a rigorous definition of Ramanujan summation and some properties
and applications of it. These properties of the summation seems very unusual so in the last
chapter we give a general algebraic view on summation of series that unify Ramanujan
summation with the classical summations procedures.
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Introduction

It is possible to give a meaning to the sum

+oo
Zn:1+2+3—|—4+5—|—6+7—|—8+9+...

n=1
which appears in the study of Casimir effect, by the analytic continuation of the Riemann zeta function defined
for Re(s) > 1 by ¢ : s+ :ﬁi = This function has an analytic continuation to C\{1} and thus we can set
for example Z:z n = ((—1). But this strategy does not work with the series

SLIER IS UL 0 VTS SO
~n 2 3 4 5 6 7 8 9 7
since the zeta function has a pole at s = 1.
These series are examples of divergent series. The classical definition of convergence of a series Zn21 an by

—+oo n
Z an = limy, 100 Z aj (when this limit is finite)
n=1 k=1

was introduced by Cauchy in order to avoid frequent mistakes in working with series.

But non convergent series that is ”divergent series” appear elsewhere in analysis. Thus some other methods
of summation of series have been introduced by several mathematicians such that Cesaro, Euler, Abel, Borel
and others, in particular Ramanujan. These methods of summation assign to a series ) ., a, a number S
obtained by taking the limit of some means of the partial sums S,, = > ;'_; a.

In the last chapter of his book ”Divergent series” Hardy introduced the method employed by Ramanujan.
This method is based on the Euler-MacLaurin summation formula which is an asymptotic expansion when
n — +oo of the partial sum S, = >, _, f(k) where f is a sufficiently regular function. For Ramanujan we
can always find, in this expansion, a natural constant (not depending on n) which he call "the constant of the
series” and treats like a sort of sum of the series.

The precise definition of this summation is not given xplicitely by Ramanujan who uses intuitive and formal
calculations. We define this summation in limiting us with the series ) -, f(n) when f is a function not too
increasing.

The coherence of our definition constrains us to deal, in the case of convergence of the series Y -, f(n),
with an integral term which is the difference between the Ramanujan-sum and the classical Cauchy-sum of
the series. There is also the apparition of an integral when we compare the sums of the series ) -, f(n) and
ot S0 +1).

If we account for these properties we can give a precise meaning to some formal manipulations and obtain
rigorous results in applying Ramanujan summation to some divergent series.

These properties of the summation seems very unusual so in the last chapter we give a general algebraic
view on summation of series that unify Ramanujan summation with the classical summations procedures.

In appendix we give the classical Euler-MacLaurin and Euler-Boole formula.

Evidently we can not claim that our version of the Ramanujan summation is exactly the summation pro-
cedure that Ramanujan had in his powerful mind, so we give an exact copy of the Chapter VI of the second
notebook in which Ramanujan introduce the ”constant of a series”.

My warmest thanks to M.A. Coppo, E.Delabaere, H.Gopalkrishna Gadiyar and R.Padma for their interest
and contributions to the study of Ramanujan summation.
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Chapter 1

Ramanujan summation

1.1 The Ramanujan constant of a series

Let f a smooth function defined for real > 0. In the beginning of Chapter VI of his Notebook 2, Ramanujan
introduce the sum

JO+ )+ fB)+ f(4) + o+ (@) = 0(2),
which is solution of
p(z) — ¢(x — 1) = f(z) with ¢(0) =0
Let the numbers B, are defined when r = 2,4, 6, ... by (second notebook chapter V, entry 9)
sz 2k
—1 =1-3 Jr Z

k>1

then Ramanujan writes the Euler-McLaurin series

By
|2

By

: PV +

6 8
and he said about the constant c: The algebraic constant of a series is the constant obtained by completing the
remaining part in the above theorem. We can substitute this constant which is like the centre of gravity of a
body instead of its divergent infinite series.

oz —c+/f Yo+ 3 f(w) + T2 @) — 2 ) + @)+

In Ramanujan notation Ba, = (—1)""!By,, where the B, are the usual Bernoulli numbers given by B,, =
B, (0) defined by
ze* Z B, (z)

Thus we can write the above Euler-McLaurin series in the form

—c+/f )dz + f +ZB% ()

=2 (20!

Unfortunately in this last formula the series Ek>2 ZE £ 9F=1 f(x) can be a divergent series and in the integral of
f the low limit of integration is not precisely defined. Thus we must replace this series by the finite sum and
give a precise meaning to the integral. Then we get the Euler-MacLaurin formula (cf. appendix):

m 400 .
f(l) + ...+ f(n) = Cpn+ / f dCC + Z ) /n m827n+1f($)d17

where

e bom+1(T) nom1
(1)+ /1 (2m++(1))!8 T @)da

_f0) ¥
’m—T Z

k:l



2 CHAPTER 1. RAMANUJAN SUMMATION

and the b, are the periodic Bernoulli functions defined by b, (z) = By (z — [z]), In this formula it is assumed
that the function f is an infinitely differentiable function and that the integral ffoo bomi1(x)0*™ L f(x)dx is
convergent. If it is convergent for all m > M then by integration by parts we verify that the constant C,, does
not depend on m if m > M thus we set C,,, = C.

We use the notation

R m
f 1 ‘BQ — +d}b%n 1T 2m—+1
c(f) = n;f(n) = % - ; (%’;! (1) +/1 (2m++(1))!a Hf(2)dx

and call the constant C(f) the Ramanujan sum of the series.

Example
If f is a constant function then df = 0 thus Zn>1 f(n) = Q Thus

R
-
n>1

If f(x) = z then 93 f = 0 thus

i 1 By, 5
n—=—-—-——=—= —

2 2 12
n>1

The case of convergence
Assume that the integrals fl (x)0" f(x)dx are convergent for n > 1.
Then the Euler-MacLaurin formula is valid for m = 0 and we get

10+t s =0+ [ s+ 190 - [ n@oras

Since f (2)0f(x)dz — 0 when n — +oo we get
R n)
> s =00 = tm (f0)+t S0 - [ fns - L)
n>1

Note that if the series > f(n) and the integral f;roo f(z)dz are convergent we get

R e}
S Hw =3 ) / f(@)de (1.1)

n>1 n>1

Remark: Since by (x) =z — [¢] — 1/2 we have also the integral formula

R 400
S s =L [l - 125
n>1 1
Examples
1) If f(x) = 2= with Re(z) > 1 then [0f ()| = |2| zzt=pr thus f |0f(z)|dz < +o0 and
=1 1
Sy [T e
n>1 n>1 n>1

thus for Re(z) > 1 we have




1.1. THE RAMANUJAN CONSTANT OF A SERIES

2) If f(x) = < then

21 "1 1 "1
S = tim (31 Log(n) — o) = lim (31~ Log(n))
n>1 k=1 =1
Thus
L]
LR
n
n>1
where 7 is the Euler constant.
3) If f(x) = Log(x) then by Euler-MacLaurin
Z Log(n) = lim Z Log(k) — (nLog(n) —n+ 1+ 1Log(n))
1 n—-+oo 2
Thus the Stirling formula we have
1
nggloo Z Log(k) — (nLog(n) — n + §Log(n)) = Log(V2m)
is equivalent to
R
Z Log(n) = Log(v2r) — 1
n>1
4) We have by Euler-MacLaurin
R n 2 2
. n n 1 n 1
%nLog(n) = ngr-ir-loo (;kLog(k‘) — Log(n)(— 5 T3t 12) + Z) ~3

Thus

R
Z nLog(n) = Log(A) — =

n>1

where A is the Glaisher-Kinkelin constant (cf. Srivastava and Choi p.39).

Remark

Note that if the derivatives 0™ f(z) are sufficiently decreasing at infinity for m > M so that
+o0 bm(w

1 O™ f(x)dx is convergent, then for all a > 0 we can write

fO+...+fln)=

fl dCC-i— f(l) Zk_ BZIC 82k lf f+°° b(221;xn+i§96 an—i—lf( )

Ja f@)de + B ST B0t ) — [ P f (w)da

n

thus we see that the constant C(f) = 2321 f(n) is replaced by

/ f(z d:v—f—Zf

n>1
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It seems that Ramanujan let the possibility for the constant on the series that the choice of a is on the series
in consideration:

* If the series Y f(n) and the integral f;roo f(z)dz are convergent then with a = +o00 we get

+oo R
Cnclf) = / f@ydz+ 3 )

n>1

and with our preceding formula (1.1) we get

+oo
H=>fmn)

n=1

This is compatible with an affirmation of Ramanujan in Chapter 6 p.62 of Notebook2:
PIff (1) + f(2) + ... + [ (x) be a convergent series then its constant is the sum of the series.”

* If for example f(x) = x then Coo(f) is not defined but

0 R B,
Co(f) _/1 wdr+ Y n= -5
n>1

To get simple properties of Ramanujan summation we fix the parameter a in the integral, we make the choice
a =1 in order to have

With the use of Euler-Maclaurin formula we have the definition of the constant of a series by

- : ) ~ Bor ooy
> fn) = tim (P4t flo) = flade+ L0457 2 51 ) (12)
n>1 k=1 .

this needs convergence of the integral f1+°o bom+1(2)0*m T f(z)dx

This hypothesis is not always satisfied, for example by a simple series like > e™. Thus we need to avoid the
systematic use of Euler-McLaurin formula and define in another way the Ramanujan summation.

Remark

A nice example of this Ramanujan’s flexibility in the choice of a is the following derivation of the functional
equation for the zeta function by Ramanujan.

For r = 2,4,6, ... we have the classical Euler formula

+oo

1 1)

1
nt 2 ! T
n=1

thus (second notebook chapter V, entry 25 ) Ramanujan define B, for r > 1 by

1), X1
2 7l BT_;W_C(T)

Let r a positive integer the Euler-MacLaurin formula gives for f(z) = "

¢( _/x r L k IBQk N o B r—(2k—1)
z) = 0tdt+C(] )+ 2 +Z rr—1)..(r — (2k — 2))x

k>1

where the series in the right side is a finite sum.
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If r = 2m + 1 the value at x = 0 of the right side is

_1Vk—1
$(0) =Co(2m+1) + (1<)2k)'82k7’(7’ —1)..(r—2k+2)withk=m+1
thus it is (1B
_ 9 1 - 2m—+42
8(0) = Cofem +1) 4 =) Comi2
The equation ¢(0) = 0 gives for r = 2m + 1
_ (DFB  (C)FBya B r+l
Colr) = S T S S
Thus for r = 2m 5
T _ _ r—1
- cos(wi) = Cp(r — 1) = constant of Z:,E

In Chapter V entry 4 Ramanujan extend this formula and replace r by 1 — r this gives

Bl—r 1—r =T
cos(wT) = constant of Zz

1—1r

and Ramanujan note that for » > 1 we have

+o00o
. 1 1(2m)"
constant of Zm = vl R B,

n=1
(note that the constant is now Co(z7")) thus he obtain

Bi_» IL—r  1(27)"
1—7“008(7T 2 )_5 7l

B,

With this formal derivation Ramanujan get the functional equation

Blf'r’ 1n(7rt) — 1(27r)r

S
1—r 2 2 7!

r

With % (2:! TBT = ((r) this gives the classical functional equation for the zeta function

C(1—r)20(1 — 7)(2m) ! sin(ﬂg) = ¢(r)

We shall give later a more rigorous proof of the functional equation.

1.2 Ramanujan summation

1.2.1 The functions ¢y and R;

In his notebooks Ramanujan use the function ¢(z) = f(1) + ...+ f(x), it seems he has in mind a sort of unique
interpolation function s of the partial sums of the series associated to f. This function must verifiy

pr(x) —pp(z—1) = f(z)

and Ramanujan gives the additional condition ¢¢(0) = 0.
This gives for n integer > 1

er(n) —f(0) = F(1) + f(2) + ... + f(n)
thus if the series ) f(n) is convergent we must have lim,, o ¢s(n) = +°‘i (n).
Our usual Euler-Mclaurin formula

FO) + o+ f(n) = C(F) + f F)de + L5204 S| B 921 f(n) — [F°° bamsr @ p2meL £ (1) d
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writes
[pr(n) = C(f) + f(n) — Ry () |
with ) . . ®
f n B2 _ o b2m 1 t m-+1 "
Rf(n):?f; <2k’;!a% 1f(n)+/n my + f(t)dtf/l f(t)dt (1.3)
and

m +o0 T
o(f) = O > Bor OPF=1r(1) +/1 Mam“ﬂx)dw = Ry(1)

The relations ¢r(n) = C(f) + f(

3

— Rf(n) and f(n+1) = ¢¢(n+1) — ps(n) gives the difference equation
Ry(n) = Ry(n+1) = f(n)

1.2.2 A difference equation

By the preceding section it seems natural to define Ramanujan summation of the series > -, f(n) by

where the function R is solution of the difference equation
R(z) = R(z +1) = f(z)

But clearly that this equation is not sufficient to determine the function R, we need other conditions on the
function R. Let us try to find these conditions.

We see by the preceding definition of R = Ry (eq. 1.3) that if f and his derivatives are sufficiently decreasing
at +o00, we have

+oo
lim R(n)= —/1 f(z)dx

n—-+o0o

This condition involves the integral f1+oo f(z)dz which in the general case can be divergent thus we translated
it in another form. Suppose we have a smooth function R; solution of the difference equation

Ry(z) — Rf(z+1) = f(z) forallz >0

Integrating between k and k + 1 for all integer £ > 1, and and summing on k we get

+oo 2
dr = R de — 1 R
| t@de= [ Ry@is =t Ry(@)
Thus the condition

r——+00

“+oo

lim Ry(z) = —/ f(z)dz
1

is equivalent for Ry to the condition

/12 Ry(x)dz =0

Thus we can try to define the function Ry by the difference equation Ry(x) — Ry(x + 1) = f() with the
preceeding condition. Unfortunately this does not specify the function R; because we can add to Ry any
combination of periodic functions z ~ €2™**. To avoid this we add the hypothesis that Ry is analytic for
Re(z) > 0 of exponential type < 2.

Definition
A function g analytic for Re(x) > a is of exponential type < « (v > 0) if there exist 8 < a such that

lg(z)| < CePll for Re(z) > a

We define O the space of functions g analytic for Re(z) > a with some a < 1 and of exponential type < .
We say that f is of moderate growth if f € O¢ for all € > 0.
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Lemma 1
Let R € O™ solution of R(z) — R(z + 1) = 0 with ff R(x)dx =0, then R =0.

Proof
By the condition R(xz) — R(z + 1) = 0, we see that R can be extended to an entire function. And we can
write

R(I) _ }20(621'71'1)7
with Ry is the analytic funtion given in C — {0} defined by Ro(z) = R(5%Log(z)) (where Log is defined by

) 2im
Log(re®®) = In(r) + i0 with 0 < 6 < 27). '

The Laurent expansion Ro(z) = ), .z cn2" gives

R(l’) _ Z Cne2i7rnm ,

nez

where

L[ po(retyeints — /QﬂR( Loy L n))eitat for r> 0
Cn = re'’)e = — 4+ —In(r))e or r .
2mrm J 0 2mr™ J 2r 2w

The condition that R is of exponential type < 27 gives
Lo e i &
len] < —=Clez= with — < 1.
rm 27

If we let r — 0 we get ¢,, = 0 for n < 0 and if we let r — 400 then we get ¢, = 0 for n > 0. The condition
f12 R(z)dx = 0 then gives c¢g = 0.
O

Theorem 1 If f € O™ with o < 27 there exist a unique function Ry € O% such that Ry(x) — Ry(z+1) = f(x)
with ff Ry(x)dx = 0. This function is

f(z) ./+°° flx+it) — fla —it)
T+

Rf(x):f/l fwde+ == +i | S dt (1.4)

Proof

a) The unicity is given by the preceding lemma.

b) The function Ry defined by (2.3) is clearly in O%.

c) Let us prove that Ry(z)—Ry(z+1) = f(x) , by analyticity it is sufficient to prove this for real z. Consider
the integral

/ f(z)%l cot(m(z — x))dz

with v the path

M

X x+1
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By the residue theorem we have fv f(2)5 cot(m(z — x))dz = f(x). To evaluate the different contributions of
the integral we use the formulas:

1 1 1
ZCOt(ﬂ'(Z — 1')) = —5 — W when Im(Z) >0
and
1 1

1 cot(m(z —x)) = when I'm(z) < 0.

2i 2t @ _1
Let us examine the different contributions of the integral:
* the semicircular path at x and z + 1 gives when ¢ — 0

1 1
SH@) = 51+ 1)

* the horizontal lines gives

1

z+1 xz+1
-4—5X/ f@+ﬁQMﬁ+%/i F(t —iy)dt

and two other terms which — 0 when y — 400 by the hypothesis that f of exponential type < 27.
* the vertical lines gives

Y f(x+it) Y f(x+1+i4dt)— f(z+1—1it)

eQTrt e27rt 1 dt

and 1 [y 1 /Y 1 [y 1 [y
5/)ﬂx+ﬁmﬁ—§/)ﬂx—ﬁmﬁ—§/)ﬂx+1+ﬁmﬁ+§/)ﬂx+l—MMt

If we add this term with the contributions of the horizontal lines we obtain the sum of the integrals of f on the
paths

el
—LE X x+1

By Cauchy theorem this sum is

1

z+1 z+1
§L f@+mm+%é £t —ie)dt

which gives the contribution [ ' f(t)dt when € — 0.
Finally we get when ¢ — 0 and y — +o00

f@) = 3f@ - )
; oo fa 4-it) — f(x —it)
i it

627rt -1

_i/“’o flz+1+it)— f(z+1—it)
0

eQTrt —1
x+1
+/' F(t)dt
T
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This is f(z) = Ry(z) — Ry(x + 1) with Ry given by (1.3).

d) Tt remains to prove that f12 R¢(x)dxz = 0. By Fubini’s theorem

oo flo+i T —1 e

We have for 1 <z < 2

/12 o +it)dz — /12 fo—it)de = F2+it)— F2—it)— (F(1+it) — F(1 —it))

where F(x) = [" f | f(t)dt. Thus

/ /+°° f(z+it) — f(z —it) i — /+°O F(2 +it) — F(2 —it) s /+°° F(1 +it) — F(1 —it) "
0 0

627rt 1 6271'25 -1 627Tt -1

By the preceding result (applied with F' in place of f) we have

1 1
F(z) = §F(m)—7F(x—|—1)
/+°°Fm+zt F(xfit)dt
0 e2nt _ 1
T Pz 4+ 14it) — Fz+1—it)
Z 627Tt_1
0

rx+1
+/ F(t)dt

With x =1 we get

/ /mf x“etm fg it)dtdmz—iF(l);—FQ) +/12F(t)dt
/1 Rf(x)dm:—/l F(x)dx—i—%/l f(x)dx—(F(l);—F@))—i-/l Flt)dt =

This gives

O

Remark: the Plana formula
The relation Ry(x) — Ry(z + 1) = f(x) gives

pr(n) = f(1) + ... + f(n) = Ry (1) + f(n) = Ry(n)
thus by (1.4) we get the Plana formula

e i — i
or(n) = f(;)ﬂ/ f(”e?ﬂfﬁl Jai

/ ‘o /+°° fntit) = fn—it)

627rt —1
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1.3 The summation

1.3.1 Definition and examples

Let f € O™ by the preceding theorem we can try to define the Ramanujan summation of the series Y -, f(n)
by a

R
> f(n) = Ry(1)

n>1

where Ry is the unique solution in O*" of

2
Rf(x)—Rf(:c+1):Owith/ Ry(2)dz = 0.
1

With this definition let us look at the sum

R
Z sin(nm)

n>1

Let f(x) = sin(nz) then
sin(mz) — sin(n(z + 1)) = 2sin(nz)

thus

. 2 . .
sin(7x sin(mwx sin(7x 1
Rf(.l?)z (2 )—/1 (2 )dl‘z (2 )“r;

and we get the surprising result

& 1
Z sin(mn) = -

n>1

On the other hand we have sin(rn) = 0 = g(n) with the function g = 0. And we have R, = 0 which gives

R
Zo:o

n>1

Thus we see that with the preceding definition the summation of )~ -, f(n) not only on the values f(n)
for integers n > 1 but specially of the interpolation function f. To avoid this phenomenon we set the condition
that f is in O™, with this condition we can apply Carlson’s theorem which gives that the interpolation function
f is uniquely determined by values f(n) for integers n > 1. Note that in this case the function R given by
theorem 1 is also in O™.

Definition
If f € O™, then there exist a unique solution Ry € OT of

Ry(x) — Rp(x +1) = f() with /1 Ry(2)da =0

and we set »
> f(n) = Re(1)
n>1
‘We have
S sy = 10 [T s,
ey e2mt — |

o1 0

We call this procedure, the Ramanujan summation of series >~ -, f(n).
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Linearity
Note that if ¢ and b are complex numbers and f and g are in O™, then we verify Ramanujan summation
has the property of linearity

R R R
> af(n)+bg(n)=a)_ f(n)+b>_ g(n)
n>1 n>1 n>1

Real and imaginary

Let g € OT is such that g(z) e Rif z € R.

Then for all ¢ > 0 we have by the reflection principle g(1 — it) = g(1 + it) thus i(g(1 +it) — g(1 — it)) € R
and we get

R
Zg(n) €R

For f € O let the functions Rf : © — Re(f(x)) and If : x — Im(f(z)) defined for = € R. If the functions
Rf and If have an analytic continuations that are in O™ then we can define the sums 2521 Re(f(n)) and

2521 Im(f(n)) by

By linearity we have

R R R R R R
S )= Rfm)+ilf(n)) =Y Rf(n)+iy If(n)=>_ Re(f(n)+i»_ Im(f(n))
n>1 n>1 n>1 n>1 n>1 n>1

Since Rf(x) and If(z) are real for € R then we get

R R
Re()_ f(n)) =Y Re(f(n))

n>1 n>1
Remark B B
Note that generally we can not write 2521 f(n) = 2521 f(n) since the function f is not analytic (if f is
non constant). For example if f(z) = Z%ﬂ then f(z) = %ﬂ is not analytic but Rf(2) = 7 and If(z) = Z;—jl
are analytic functions in O™. Thus
X ®oon
R} =) =2
nzln—kz nZln +1

Examples
1) If f(z) = e*® with a # 0 we have

ax 2 ea®

thus Ry(z) = 1

—ea  J1 1T—e°

dx this gives
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IfaeRand a <7oraé€C and |a] <7 we get fora#0

R a a
an e e
— i 1
Z € 1—e® + a (15)
n>1
Note that for a = 0 we have
R R o o
e e
Z ¢ Z 2 alg%(l —ea a )
n>1 n>1
Then if |t] < 1 we get
i int _ }Z ei%tt eiwt
= 2 sin(%) mt
Thusif -1 <t<1
sm( t) 1
Zcos ﬂ'nt -
)
n>1
t t
Z sin(mnt) = = cot(7T ) — cos(t)
2 Tt
n>1

2) By the definition ), B"T(!x)z” = :fizl we verify that the Bernoulli polynomials are solution of

Biii(@+1)  Bryi(z) 4
k+1 k+1

/2Bk+1(x)dx: 1Bk+1(x—|—1)dx:/1xkdm: 1
1 k+1 0 k+1 0 k+1

and we have

Thus if f(z) = ¥ where k is an integer > 0 then

- 1—Bk+1($)
By(@) = =371
Thus

R R

1-B 1

k _ k+1 . _

E’I’L—ﬁlkalandEl—i
n>1 n>1

Thus 2521 f(n) can be evaluated in terms of Bernoulli numbers for any polynomial f.

3) Let f(z) = L for Re(z) > 1 then

+OO 2 400
R =
@W=3 [

The series S is uniformly convergent for = € [1, 2] then

n=0 (n+ac)z

2 400 +o00o 1 +oo 1 1
/Z (n+x)? Z/ (n+x x:z—lgz:o((n—kl)z—l_(n—|—2)z—1)

n=0
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thus N
=< 1 1 1
R = _ — _
0= ey = -

with (z,z) — ((z,z) the Hurwitz zeta function.
Note that for all z # 1 the Hurwitz zeta function (z, z) — ((z, ) is defined and we have

()~ ez +1) =

and f12 ((z,2)dz = 5. Thus
1
Rl/;ﬂz (I) - C(Z,l‘) - -1

and for all z #£ 1

R

1 1
Z n® - C(z) 21
n>1

4) If f(z) = % then

R =S Y
fx_n:0n+x n+1 1 gt n+1 o

This last integral is
+oo N

1 1
L 1)—L — )= lim Log(N+1)—-S ==
n§:1( og(n +1) — Log(n) n) N og(N +1) n§:1” ¥
Thus
= 1 1
R — _
f(m) ;(n+x n#—l)—i_’y
and
R
S ==y
n
n>1

Note that the function ¥ = T"/T" verify

with ff VU (z)dr = 0. Thus

Ri =-Y(x)
If f(x) = —&r with k integer > 0 then
1
k k _ k
O"V(x+1)—9"V(x) = (—1) Ic!karl
with )
[ 0 u@)ds =0 1u(2) - o) = (<1 k- 1)
1
Thus ( )k .
Dt
Rwarl = " — z

5) If f(x) = Log(z) then Ry = —Log T' + ff Log T'(t)dt and ff Log T'(t)dt = —1 4 Log(+/2) thus
Rpog(x) = —Log(T'(x)) + Log(v2m) — 1

and

Z Log(n) = Log(vV/2m) — 1

n>1
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1.3.2 The ¢y function
Let f € O™ and a function ¢ analytic for Re(z) > a with —1 < a < 0 and of exponential type < 7 solution of
o(@) — ple — 1) = f(z) with 4(0) =0
If we set

R(z) = —p(x —1) +/0 o(x)dx

then R is an analytic function for Re(z) > a+ 1 and of exponential type < 7 solution of R(z) — R(z+1) = f(x)
with [ R(z)dz = 0, thus R = Ry and we get

o) = [ plarie — Ryta+ 1)
The condition ¢(0) = 0 gives fol p(x)dx = Ry(1). Conversely if f € O™ and if we set
pr(x) = Re(1) — Rp(z +1)
then ¢y is analytic for Re(z) > ¢ with —1 < a < 0 and of exponential type < 7 and is solution of
pr() —pp(x—1) = f(z) with ¢;(0) =0

Thus we get the

Equivalent definition of Ramanujan summation:
If f € O then there exist a unique analytic function z — ¢¢(z) for Re(z) > a with —1 < a < 0 and of
exponential type < 7 solution of

of(x) — @z — 1) = f(x) with @7(0) =0

And we set
R 1
> )= [ esa)ds
n>1 0
Remark

The relation ¢¢(z) = R¢(1) — Ry(x + 1) gives

We have
pr(n) = Rs(1) = Rp(n+1) = f(1) + f(2) + ... + f(n)

Thus the function ¢ ¢(x) is an interpolation function of the partial sums of the series ) -, f(n), Ramanujan
write N

[or(@) = FO) + F2) + -+ f()]

The sum ZnR>1 f(n) is then the constant term C(f) in the MacLaurin expansion

pr(@) = CU) + [ F@dt + L2 + S0 G0 () — [ s 0P f (1)t

Examples
1) For z # 1 we have
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thus

For z =1 we have

1 1
1+...+;=<p;(:c)zzﬁ—R%(x—Fl):v—I—\I/(x—f—l)

z
n>1

2) We have Log(I'(z + 1)) — Log(I'(x)) = Log(z) and Log(I'(1)) = 0 thus
Prog(x) = Log(T'(z + 1))

1.3.3 Relation to usual summation.

By the definition of Ry we have Rf(1) — R¢(n) = ZZ;; f(k). Thus the series > -, f(n) is convergent if and
only if Ry(n) has a finite limit when n — 400 and in this case -

R [eS)
S S =3 fm)+ lim Ry(n)

In some cases lim, 4~ Ry(n) is simply related to the integral of the function f. We have

" oo it) — f(n—1
Ry =10 [ gas [T IO TS0,

eZﬂ't -1

If f(z) — 0 when Re(z) — 400 then by the dominated convergence theorem we see that

oo f(n4it) — f(n —it)

ngrfoo | T dt =0 (1.6)
If the integral fl t)dt is convergent then Ry(n) has a finite limit when n — +oo
+o0
Jim Ry == [ e

Conclusion
Let f € O™ with f(z) — 0 when Re(z) — +oo. If the integral f1+°o f(t)dt is convergent then the series
> n>1 f(n) is convergent and we have

R [e%S)
> fn Zf / f(a)dz (17)

Remark
This relation can be obtained with other hypothesis on f:
if the series -, f(z +n) is convergent for Re(z) > 0 we have

S fl@+n) =) fle+1+n)=f(z)

n>0 n>0

thus if  — Y03, f(z +n) is in O we get

Zf +n) / Zf(x—i—n)dac

n>0 n>0

If

oo

/Zfz+ndx—2/fx+ndx_/ f(z)da

n>0 n>0
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then - e
Ry(x) = Z flz+n)— / f(x)dx. (1.8)
n>0 1
In this case we have .
pp(x) = Re(1) = Rp(x+1) =Y _(f(n) — f(n+=))

Note that if this last series is convergent and if lim, _, f(z) = 0 then we get

“+o0 “+o0
D (f) = fn+a) =Y (f(n) = fln+x—1)) = f(x)

and :;(f(n) — f(n+0)) = 0 thus we get

pr(@) = (f(n) - f(n+x))
n>1
a formula that Ramanujan uses in some places.
Example
We have
=1 1
Y6 - ) @) = e+ 1) 47
n>1
Thus
00 x
Log(T(z+1)) = —yz — » (Log(1 + =)
n=1
that is
1 = x
— oz 14+ e n
I(z+1) ¢ H( +n)e



Chapter 2

Properties of the Ramanujan
summation

2.1 Some elementary properties

2.1.1 The unusual property of the shift.
Let f € O™ by linearity we have

R R R
Y1) =3 fn) = > (f(n) = f(n+1))

Let g(x) = f(z) — f(z + 1) then Ry(z) = f(z) — ff f(z)dx thus

R 2
D (f(n) = f(n+1)) = f(1) - | f(@)de
We get,
R R 2
> fn+1) = 3 ) = 1)+ [ fa)ds

We see that the usual properties of summation of convergent series
+oo —+o0
Y fn+1) = f(n) = f(1)
n=1 n=1

s not satisfied by Ramanujan summation.

Let f € O™ and = > 0 if g(u) = f(u + x) then we verify immediately that

x+2
Ry(w) = Ry(u+a) = [ Ryu)du
z+1
thus
R R 42
S gm) =Y fln+a) = Ry(z+1) - / R, (u)du
n>1 n>1 z+1

Integrating the equation Ry(u) — Ry(u+ 1) = f(u) between 1 and x + 1 we find that

[ - Fu)du = — / o Ry(u)du (2.1)

+1

thus without any hypothesis of convergence we have

17
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R

41 x+1
Zf(n—i—x) :Rf(x—i-l)—i—/l f(u)du:Rf(x)—f(x)—l—/l ft)de (2.2)

n>1

For a positive integer = m we have Ry(m + 1) = Rp(1) — >/, f(n) thus

R m m-+1
S fmm) = R =Y+ [ fwd
n>1 n=1 1

Conclusion
If m is a positive integer we have the shift property

R R m m—+1
S fmm) =Yg =S fw+ [ fa)ds (2.3)
n>1 n>1 n=1 1
Examples
1) Let f(z) =1 and H,, =>_;"; ; we have
koo R m+l g
S S [ e e
n—+m n 1 T
n>1 n>1
Since R1 = —¥(z) the formula (2.2) gives more generally
2o
=-VY(z+1)+L +1 2.4
> iy =¥l D+ Loote 1) (24

If 0 < p < q are integers then

R

1
Zip :f\I/(E)ngrLog(EJrl)
1ty q p q

Thus by Gauss formula (c.f. Lehmer) we get

R
1 1 1 2 k 1 1
Z =—v+ fLog(g) + 21 cot(wg) - - Z cos(27rk]3)Log(sin(7rf)) -—+ fLog(]3 +1)
n21p+”q q q q q q0<k<q/2 q q p q q
2) For z # 1 the formula (2.2) gives
R
1 1 1 1
— = ((zx)— — - -
7%:1 (n+x)* ¢z2) ¥ z—1(x+1)=1

where ( is the Hurwitz zeta function.

3) For f(x) = Log(x) we get by (2.2)

R
Z Log(n + ) = —Log(T'(z)) + Log(v/27) — 1 — Log(x) + (x 4+ 1)Log(x + 1) — =

n>1

This gives

R
Log(T'(z)) = — Z Log(1 + g) - %Log(x) + Log(V/27) + xLog(z) —  + (x 4+ 1) Log(1 + %) -1
n>1
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thus we get the Stirling formula
1
Log(T(z+1)) = iLog(x) + Log(V27) + xzLog(x) — x + R(x)

with
R(z) = (z + 1) Log( 1+ —1—2Log (1+ )
n>1

Remark
The relation ps(x) = Ry(1) — Ry(z + 1) gives

R R x+1
or@) =3 f) = 3 fln+ ) + / £ (u)du

2.1.2 Functional relations for ¢y
Theorem 2 Let f € O™ and an integer N > 1 then

N—-1 iL’-’-k 1
Ry/n (2 Z Ry ( -N fz)dz
0 1/N
We get
R n N-1 R 1 N-1 .k/N 1
f(=)= fln—— / flx)de — N flx)dx
Z (§) kzo[g (n— )] - g @ 1@
Proof
The function
= z+k x+1 z+N-1
R(z) = ) Ri(——) = Bs(5) + Byl )+t Ry ()
k=0
satisfies . . .
R(z) ~ Rz +1) = Ry(5) ~ Ryl +1) = f(5)
thus N-1 N-1
— z+k ? z+k
Ryg)(@) = ) By(—~) — > Ryl )dx
k=0 L k=0
but we have from (2.1)
o N—1 141 1
k N
/ S R e = N Ri(x)dz =N [ f(z)dz
1 =) N * 1/N
Thus Vot
— T+ k !
Rf(gE/N)(l‘) = Rf(T) — N f(x)dm
k=0 /N
and o Nt
n - E+1 L
D) =Y Ri(—) =N [ flx)
N N /N
n>1 k=0

We have by (2.2)

19
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thus we get

R -1 R Bl =l opwN 1
S IG = d 1+ B = 3 [ e N [ s
n>1 k=0 n>1 k=1
which is
R . NIR o N=L kN 1
S IG = dm )= X [ e N [ s
n>1 k=0 n>1 k=1
0
Remark
If g € O™/N then with f : x + g(Nz) we have
R N-1 R N1, /N N
Soam =3 [S o=+ 3 1 [ g@is- [ gla)ds
n>1 k=0 n>1 k=1 k 1
Thus if f € O™/2 then we get
R R R 1 /2
S =3 fem)+ 3 fen-1 -5 [ fa)ds (27)
n>1 n>1 n>1 1
For f(z) =1 we get
R R R
1 1 1 1 1
ISP IR BE e L)
n>1 n>1 n>1
thus Y0 ) 57 = % + 2 Log(2).
Theorem 3 Let f € O™ and an integer N > 1 then
Nl R R 1
eram (@) = 3 oD+ G =N Y )+ N [ s
7=0 n>1 n>1 1/N

which is the entry 7 Ch VI of Ramanujan Notebook corrected with the integral term.

Proof
We can write eq (2.5) in the form
rz+1 T+ 2 rz+ N !
1) = —_— - N d
Rytagofa 1) = Ry () 4 By () 4ot Ry ) = [ g
with Rf(I/N)(:E + 1) = Z?Zl f(%) — wf(I/N)(x) we get
R R 1
n r+1—N r+2-—N r+ N-—-N
— )=y =N - ——)|—-N d
n;f(N) ra/v) () ;f(n) [or (e ()t ()] L )
|
Corollary

Since @ (z/ny(0) = 0 and ¢y (0) = 0 then we get

=2

_k R R n
pr()=NY_F) =Y f5) =N [ fla)da

1 n>1 n>1 /N

b
Il

a formula that Ramanujan gives without the correcting integral term.
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Examples
1) If f(z) = % we have ¢s(z) = v+ ¥(z + 1) and in this case we have also f(z/N) = Nf(z) thus
/Ny () = Nog(x) and the preceding theorem gives

z+1
NHy+9¥(z+1)) = v+\I/( +1)+.. +7+\If( I )+ Nvy— Nvy+ NLog(N)
thus +1 LN
N\If(m+1)=\11($N )+...+\I/($N ) + NLog(N)
we get the well known formula
1 N-—-1
<> v (N)

k=0
2) If f(x) = Log(z) then ¢¢(x) = Log(I'(x + 1)) and f(«/N) = Log(x) — Log(N) thus

Pr(a/N)(T) = PLog(T) = PLog(v) () = Log(I'(z + 1)) — xLog(N)
With the preceding theorem we get

Log(T Z Log

+ (@ + 5)Log(N) + Log(v27)

taking the exponential we get the Gauss formula for the Gamma function.
3) If f(z) = 2299 then f(x/N) = NE2@) _ NLog(N)L, thus
Pr(a/N)(€) = Nog(x) = NLog(N)(y + ¥(x + 1))
and we get

N—-1 . 1
Neg¢(z) — NLog(N)¥(z +1) =

=0

this gives

) + Log(N)¥(z +1) —  Log*(N)

N—
@Lom) g

7=0

which is entry 17 of chapter 8.
4) If f(x) = Log?(x) then f(x/N) = Log?(x) — 2Log(x)Log(N) + Log*(N), thus

Qf(e/n) (@) = @y (x) — 2Log(N)Log(T'(x + 1)) + zLog*(N)

and we get
N-—1 r_ i
¢1(@) = 2Log(N)Log(D(x +1) +xLog®(N) = >~ s (=)
§=0
R
+ (1=N)>_ Log*(n) — 2Log(N)(Log(v2r) — 1) + %LogZ(N)
+ N 1 f(z)dz
1/N
this gives
) Log"E D) (L) Log () — (V< 1) Log*m)
2 og \/ﬁ 5 x)Log 2 og°(n

this is entry 18(ii) of chapter 8 with C = 2521 Log?(n) —2 (note that the constant C' in entry 18 of Ramanujan
is Co(f) and that 2521 Log*(n) is C1(f) and C1(f) — Co(f) = fol Log?(z)dz = 2)
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2.1.3 Summation on 7Z

Let f € O™ such that the function z — f(—x + 1) is also in O™. Then we can try to define Zfez f(n) by
breaking the sum in two parts

R R R
S fm) =S fm)+ 3 fen+1)
ne”Z n>1 n>1

But to get a coherent definition this sum must be independent on the breaking point, thus we must have

) =>"fn+m)+ > f(-n+1+m)

neL n>1 n>1

Now by the shift property we find easily that

R R ma1 R R 1
S fntm)+ > fen+1+m) —/ f@yde =3 fm)+ 3 f-n+1) —/O F(@)dz

Thus we get the following definition:

Definition
Let f € O™ such that the function z — f(—x + 1) is also in O7. Then we define Zfez f(n) by

R R R 1
> ) =3 S+ 3 fn+1) = [ s

nez n>1 n>1

Remark
With this definition in a case of convergence we have

+oo

R “+00 400
S =Y f)+ S fn+1) - / f(x)dz

neZ —0o0

Examples
1) Let a € C and |a| < m and a # 0. Let f(x) = €** then the divergent calculation

an an a —an ¢ 1
D= e et Y e = o g =0

nez n>1 n>1

is perfectly rigorous if we take our preceding definition since

R R R 1
Z e = Z e’ + e Z e " — / e*dx
nez n>1 n>1 0

e? e 1 1 e —1
l—ea+;)+(1—e—” a a

(
=0

2.2 Summation and derivation
Let f € O™ there is a very simple relation between 0R; and Ryy. This is a consequence of the fact that
ORf(xz) — ORs(x + 1) = 0f(x)

thus Rypy = ORy — ff ORy(x)dz by ff ORs(x)dxr = —f(1) we get

| Rog(x) = 0Rs(2) + (1) (2.8)




2.2. SUMMATION AND DERIVATION

The relation ¢s(x) = 2321 f(n) — Ry(x + 1) gives also

R
or(x) = Ops(x) — f(1) + Y 0f(n)
n>1
Theorem 4 Let f € OT then
=z = Bi i1 e B (1)
Zf(n) = *Zﬁa f(1) + (=)™ / Rom ¢ (t + 1)7dt
n>1 k=1 0 '

Thus if F(z) = Fy(z) = [ f(t)dt and for k > 2 let Fy(z) = [" Fr_1(t)dt, then we have

R 1
ZFm(n):(—l)m“/o Rf(t+1)BZ(!t)dt

For m =1 we have

S F(n) = /1 LR (1)t

Proof
We have B (t) =t — 3 thus

o:/0 Rf(t+1)dt:/0 Ry(t+ 1)OBy (1)t

integrating by parts we get with the relation (2.8)

Ry() = 510+ [ Rost+ DB 2y

If we continue integration by parts we find

R
S fm) = = 30 Pear et pa) 4 1y /1 Romp(t + 1) 228 gy
0 m!:

n>1 k=1

Remark
If f is a polynomial of degree N then OVN+!f = 0 thus

N

X Bri1
S5 = =3 o)

n>1 k=0

Example

Let f(x) = 1/x. We have Fy(z) = Log(x), F»(x) = xLog(z) — x + 1, F3(x) = %Log(x) -

more generally we have

k=1
Fi(z) = mLog(fﬂ) + Py (z)
where the Py are the polynomials defined by P, = 0 and
k=2
Py(z) = Pra(z) - =11 ifk>2

P(1) = 0

23

(2.10)

3.2 _1
127 +T — 3

and
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Thus
R 1
Z Log(n) = —/ Y(t+ 1)By(t)dt
n>1 0
ZnLog Z 1
n>1 n>1 n>1
R
Z—Log /1/)t+ 42 Zn+ Zl
n>1 n>1 n>1 n>1
and
1 & Bk+1
k k 1
HZTL Log(n) = /1/)15—|—1 i+ 1)) dt—ZPk_H

T n>1

Theorem 5 Let f € OT then

R n 3 R R R @
SN =5 > fm) = Do nf(n) ~ > F(o) with (o) = [ fie)as
n>1k=1 n>1 n>1 n>1 1

Proof
We use

zRf(xz) —(x+1)Rs(x+ 1) =af(z) — Ry(z + 1)
thus

R 2

S nf(m) = Ry +1) = 1Ry (1) = [ aRy(o)da

R R R 9 R R
S nf(n) =3 Re(n+1) =3 fo) = [ aRyla)da =3 fm) = > Fo
With Ry(n+1) (1) =gy f(k) we get
R R R n R R
donftn) =Y R+ > Y f) =) Fn)
n>1 n>1 n>1k= n>1 n>1

since ZZ}Zl Ry(1) = 5Rs(1) = %Zle f(n) we get our assertion.
O

Example
‘We have for all s

n

R
n>1k

w\oo
\VMR)
3=
\\/M?\)
\i/MR)
o

N

Y

:1

For Re(s) > 2 we have

&1 301 1 1
D N R e i e B DI




2.3. THE CASE OF AN ENTIRE FUNCTION

Let HYY = 77, L then

For s = 1 we have

n>1k=1 n>1 n>1 n>1
thus
S 1
S H, =2y Log(vam)
n>1

For s = 2 we have

n>1k=1 n>1 n>1 n>1
thus
S 3
> = 3o -2
n>1

Remark. We can write the result of the theorem in the form

R R

R 3 2
> s = 5 30 fn) = Sonsn) = [ aRy@yte

n>1 n>1 n>1

This can be generalized to the sums 2521 f(n)g(n) where f and g are of moderate growth. We have

Ry(2)Ry(x) = Ry(z + 1) Ry(2 + 1) = Ry (2)g(x) + f(x)(

and we get
R R R R
S prmgln) + 3 eamfm = 3 1) S g + 3 S
n>1 n>1 n>1 n>1 n>1

For g = 0f we have

2 2 1
[ Ry Ras@ys = [ Ry@0Rs (@) = Ry~ Ry1)) =
1 1

thus we get
R R R R
Y ermaf(n)+ Y wor(n)f(n) = f(n)> of +Zf
n>1 n>1 n>1 n>1 n>1

2.3 The case of an entire function

Theorem 6 Let f an entire function defined by

+oo
flx) = Z ]jxk with, |ci| < COT"
k=0

Ry(z) - g(x))

+ /1 Ry(z)Ry(z)dx

f()

SF0? — FOR,(1)
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where T < . Then
OO

B
n>1 /f x_ico_zkk"i‘l

By the fact that Baopy1 =0 for k > 1 we have

/ flz f**f Zc2k 132’C

Thus in a case of convergence we have

Zf / f()fﬂ—*f ZC2k12k

n>1

Proof

Let us evaluate Ry. We have

1 — Bk+1(x)

Ry=——7-—-
ot k+1

thus we consider the function
OO

Bit1(z
xHZ k+1 Z CES k+1

By - te“ = ano Bu(2) ;n and the Cauchy integral formula we have for 0 < r < 27

n!

Bry1(x) _ 1 /zﬂ e%mll okt gy
(k+1)!  27rk ere’ —1

thus for Re(z) > 0 we get

Bk‘Jrl( ) 1 | |/2ﬂ ]. —k
r|x - dt=0C, r|z|
| (k+1)! < 2k o e —1| "o
Brya(z) -

For 7 < r < 27 this prove that the series Z k=0 Ck (h 1)1 is uniformly convergent and define an analytic function

of exponential type < 27 for Re(x) > 0. By

2+oo
1— Byia(z) 1= Bpp(x) ,
/1 (k+1)! ZC’“/ (k+1)! S as o
we have N
=~ 1= Bi(z)
Ry(e) =D ee—g 1y
k=0
Thus N .
= 1-Bpn(l) = ~—  Bra(l)
R¢(1) = =
s(1) kZ:O )] I;J(IH—I)' coBi(1) ; (k+ 1)
this gives
S ) - / e - by - 3 o Bt
27" (k+1)!
n>1 k=1
Thus
S ! 1 X Bin
nglﬂn): f(z)do:fgf(mf]; T
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Remarks
1) If we write f(z) = :O?J o f(o) x* the preceding theorem is nothing else than

R +o0

9 £(0) &
5 k|< ) S

n>1 k=0 Ton>1

If we use the expansion of f at 1 then we find

R +00 Ak R +oo

2) The preceding theorem is not valid if f is not entire: take f(x) = 1 +x2 = then if we apply the preceding
result we find

400 +00

1 1 T 1 1 T 1 1
—  dr—->=2_2 whichisnot S —— =~ _ ;T -
/0 T+ o22%0 79 T g WHERBHO ;1+n2t2 9 2 T teri_1

Example

With p integer > 0 and 0 < ¢ < w/p let f(z) = mz# for x # 0 and f(0) = t?. This fonction is entire and
even thus

i sin? (nt) _ /1 sin? (xt) dp — ltp
0

np xP 2
n>1

We are in a case of convergence thus

+oo . p R . p 400 s p +oo s p

sin? (nt) sin? (nt) / sin? (xt) / sin® (xt) 1
S - S g = S g —
Z + ; T ; T

— tp
P xP 2

this gives

+oo . 0o .
Z sin? (nt) _ -1 /+ sin? () d — lt”
n 0 2

p xP
n=1
With p=1we get for 0 <t <7
+oo +00
t
Z sin(nt) :/ sm(a:)d _ L
— n 0 L
n=1

Note that for t = I we find easily the value of f+°° S‘“(x)d

7|'

Hoeo sin(x) = 5 e R D L
/ ; R

Remark

The preceding theorem gives easily the sum of some trigonometric series.
Let 0 <t <1 and f the entire function

too 2k 42k 2k—2
cos(mwt) —1 e T x
/(@) PP ;( 2k (2k — 1) (2k — 2)!
This function is even and we have f(0) = —#.

Then by the preceding theorem we have

R cos(mnt) — 1 ! cos(mat) — 1 22
LR R
= n 0 x 4
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thus
R R 1 242
cos(mnt) 1 cos(mat) — 1 Tt
) T:E —+/O Sl (2.11)
n>1 n>1

Since we are in a case of convergence then

+oo +o00 1 +o00 2,2

cos(mnt) 1 cos(maxt) — 1 cos(mat) w4t
Y=Y e [ e [ a1 T
n>1 n>1 0 1

Integrating by parts we have

/1 cos(mxt) — 1dx n /+°° cos(mxt) de = 1wt /+°° sin(mwat) dp =1 17r2t
0 1 0 x 2

2 2
Thus
+oo 2
cos(mnt) 7w 1 5 1 5,
—_— = — — —mt+ -7t 2.12
; n2 6 2" tq” (2.12)

2.3.1 Expression of Catalan’s constant

The Catalan’s constant G is defined by

> n=1 IR gin(Ip
G:Zizz (3n)

— (2n —1)2 — n?
Let the entire function
—+o0 2k —
_ TN_ T _ vk T\2k+1 T
fl@) = 5sin(52) - o (=1*(35) k1)
k=1

We have by the preceding theorem

jus

R . 1 (T too
sin(gn) 7w sin(5t) 7 k(Tyok+1_ D2k
Yo [ G - e ™ gy

n
n>1 k=1

Since we are in a case of convergence then

f: sin(5n) _ -i:.o sin(gn) B /+oo sin(5t) g — G /+oo sin(5t) it
1 1

n? n? t2 t2
n>1 n>1
thus
1 : T +00 o1 T +oo
T sin(Zt) 7 sin(Zt) T Boy,
G——-y= 22— )t 2odt— Y (—1)F(z)R =
5" /O (— %) +/1 2 ;( ST ek 1)
With
Lsin(Zt) o sin(Zt) T oow T,
22— —)dt / 2odt = — ~Log(-) — =
/0( 2 o)+ | 2 3 alo5) -5
we get
T T T, X 7T By,
G=2_°2p, R -1 ki \2k+1 2k
3~ 3ke3) 1;1( VO a1
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R —zn
2.3.2 The sum ) =, “~—
For 0 < z < 7 let the entire function
—zz +oo k+1 k+1
-1 -1
R G =
X =0 ! +
We have »
| 1 —zx 1 1 +oo k+1 B
)P / A T ) st o
=on 0 x 2 = E+1(k+1)!
Thus
R —zn 1 —zx +oo k
e e —1 1 (=1)* . By
Z =7+/ 7dx+fz—z 2 -
= 0 T 2 = k! k
Since Boji+q = 0 for j > 1 this last sum is Z i kizk% and his derivative is
+oo +°° k —z
1 Bk z 1 e 1 1
0 P - (14 =_—" T4z
(k2 Zk' zez—l +2Z) 1—e* z+2
which gives
+oo k
-1 B 1
Z ( k:!) szk = Log(l — e~ %) — Log(z) + 27
k=2
Finally we get for 0 < z <7
R —zn 1 —zx
e e —1 _
> =7+ / C  — —dz— Log(1 — e ?) + Log(2) (2.13)
n 0 X
n>1
Since we are in a case of convergence then
R e~ 00 —zx +oo [ —zzx
Z = Z / C dr= —Log(1—e™?) — / € dx
T 1 T
n>1
thus we get
+o0 e~ 37T 1 e~ _ 1
dx + | ———dz = —v— Log(z) (2.14)
1 T 0 T
Remark

Let Z:ﬁ e with 0 < o <1 and 0 < £ < 7. Then we have

+oo R 400

« [e3 [e3
d et = et +/ e " da
n=1 n>1 1

With

and Ryar(z) = ((—ak,z) + (with (z, z) — ((z, ) the Hurwitz zeta function) we get

_1
ak+1
+o0 -1 kik
Re—t:c"‘ (.f) = Z ( k)' t (C(—Oék,l‘) +
k=0 )

ak—i—l)
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Thus . N N
= —tn® __ = (_1)ktk _ = (_1)ktk 1 /-‘rOO —tx™
d e =D e+ ) St e
n=1 k=0 k=0
and we get
+oo too kik +o00 +oo kik
—tn® __ (_1) t —tx® _ (_1) t 1 1,1
;e _kzzo Dok + /0 e dx_; (o) + ()

Note that this formula is not valid for o = 2 since it gives

=, 1.1 .
D e =((0) + ST(5)t 2
P 279

but the true formula is known to involves exponentially small terms when ¢ — 0 (cf. Bellman)
S e )+ byt + R h Y e
n=1 ‘ - 2 2 " n=1 ’

2.4 A surprising relation

Let f of moderate growth then for 0 < z < 7 then we prove the ”surprising relation”

R 1 R e—? R R n
Do epn) = g e ) = = Y () ey e / e (1)t
n>1 n>1 n>1 n>1

Proof
By the shift property we can write for |z| < 7

R R R
Z e—nz(pf(n) = 7 Z e—(n+1)z¢f(n + 1) — Z e—(n+1)2f(n + 1)

n>1 n>1 n>1
R 2

= X e -+ [ e
n>1 1

R 2
—e Ze fn)+ f(1) —e /1 e * f(z)dx

n>1
Thus
R o? 2 e? R
S o) = 1 [T e - fade - 150> e )
n>1 1 n>1
e? 2 R e? R
= 5 [ e p) - Ryande - 52 Y e )
1 n>1 n>1
We get
R oz R e R o 2
S ey = =3 ) - T e ) - 7 [ e R
n>1 n>1 n>1 1

It remains to prove that

2z

R n e 2
Z en? / e P f(t)dt = / e 'Ry (t)dt
1 I1—e* )y




2.4. A SURPRISING RELATION

Let G the function defined by

G(z,z) = €** /I e FLf(t)dt
1
We can evaluate EnRZI G(n, z) by observing that the function G is the solution of the differential equation
0.G — 2G = f with G(1) =
The condition G(1) = 0 gives Ry, ¢ = 0, R¢ thus the function R is the solution of the differential equation
0. Ra — 2Rg = Ry
This gives

Re(x,2) = Ke*® + e”/ e "' Ry(t)dt
1

With the condition fl Rg(z)dz = 0 and integration by parts we get gives

z 2
(&
K=- “FRy(t)dt
ez—1/16 Ry (1)

thus R (1, 2) = Ke* gives
R 2z

1—e*

2
/ e 'Ry (t)dt
1

Q)
3
I3
—
3
[
|
IS4
=+
=
—~
~
=
U
Y
|
@

O

Remark
Let Fy = f and for k > 1 let Fi(z) = [" Fi_1(t)dt we have

S rwH =3 [T = e [

k>1 k>0

thus
Zenz/ ztf Z Z Fk
n>1 k>1 n>1

and we the ”surprising relation” is simply

R 1 R
> ey n) = s 3 e f )
n>1 n>1 k>0 n>1

that gives a relation between the sums 277321 nFor(n), ZnRZl n*f(n), and Cj, = EZSZl Fy.(n):

R 3 R R
doesn) = 5D fn) =Y nfn) - C
n>1 n>1 n>1
R 5 R 1 R
neg(n) = =) fln)+5 -s>.n —C1+Cy
2 52 [ +35 nf Z
n>1 n>1 n>1 n>1

R
> nPpy(n)

n>1 n>1

R
1
3 > ndf(n) = Cy +2C, — 2Cy

n>1 n>1

I
W =
NE
~
=
|
|~
\i/Mx)
3
kh
=
+
[\&}
N
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Example
For f(x) = 1/x we have Fy(z) = Log(x), Fo(x) = xLog(xz) —x+ 1, F3(z) = %ZLog(x) — 32242 — 1 and we
get the sums Zzlik n*H, in terms of the constants v and ¢’(—j)

Lis 3001
n>1
s 5 7
D nHy = v+ 5= Log(vam) = ¢'(=1)
n>1
R 117
anHn = 3713 — Log(V2m) — 2¢'(—1) + ¢'(-2)
n>1

More generally we have (Cf. Candelpergher, Gadiyar, Padma)

R P
1-B
E mPH,, = Tpl—“'y + E (—l)kC’;fC/(fk) — Log(V2m) 4+ rp with r, € Q
m>1 k=1

2.5 The case of a Laplace transform
Theorem 7 Let f is a continuous function on [0,+oo[ such that
1£(€)] < Ce with a < 1
and f his Laplace transform defined for Re(x) > a by
+oo R
fo = [ e o
0

Then f is analytic for Re(x) > a and is of moderate growth, we have

R 400 R
> =Ry = [ e - p e

n>1

Proof
The function f is analytic for Re(z) > a and | f(z)] < Cﬁ7 thus f is of moderate growth. Now we have

To prove this assertion write

x+1 “+oo R
Ry(x) - Ry +1) = / f(t)dt + / (1 — e ) (L —%)f(é)df

x

thus
z+1 +oo o 675 R
Ry(x) - Ry(a+1) = f(2) + / F(t)dt / e L ey

€T

but we have by Fubini’s theorem

x+1 “+o0 r+1 . “+o0 ¢ .
/ f(tydt = /0 / e f(e)dt de = /O e‘zfl%f(ﬁ)dﬁ

Thus Ry(xz) — Ry(z + 1) = f(z) and we can verify that f12 Ry(x)dz =0, then

R 400 R
> =Ry = [ e - p e,

n>1
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(]
Example
Let f(x) = =5 for k > 0 then f(z) = f+oo e ¢ (k 1),df and we get for k # 1
R +oo k—1
1 1 1 1. ¢
kE)— —— = — = —¢ — =) —=——=dE£.
BT 4w [ e P
and
R 1 +oo 1
= Z = - d
D L
n>1
Theorem 8 Let Y, cxz® a power series with radius p > 1 and let f(z) = :Ocl Cr a:k then the function f is

analytic in {Re(z) > 1/p} and is the Laplace transform of the entire function

R +o00
§)=;<Jk(k

k—1

We have
R 1
3 i) = e+ 3 - )
n>1
Proof

By hypothesis we have |cx| < MrF with 0 < r = p—ia < 1. The series Zk21 ckh is convergent for all

£ € C and the function
. too k—1
§) = ; o

is an entire function with R
|£(€)] < Cerlé!

For Re(z) > r we have

+o0 R Foo £ k-1 +o0 k-1 I
[ o= [ S e e =3 e / T = o

the permutation is justified by

400 +00 400 +00 f 400
/ Z lex|e™ Re( m)f d§ M/ Zr e~ Re(@)¢ 1)' < M?“/ e_(RC(m)_T)Edﬁ < 400
0 : 0

Thus by the preceding theorem

0o 3 1 1 . “+o0 1 £k1
N / e — ) f(ds = / 1_65772

n>1

interchanging f et > we get

R 0 +o0 1 1 fk 1
—£ -
ngl %Cké € (1—65 é-)(k_l) dE
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Remark

Since
R oq R
E:E:wwde:EE:q@fk_lﬁnk¢l
n>1 n>1

the preceding theorem can be stated in the form of the result of a permutation of signs an and E;r:{

R +oco 1 +oo R 1

E g Cp— = E Ck E —
nk nk

n>1k=1 k=1 n>1

Examples
1) We have
S EDF R 1 R (-DF 1
k=2 n>1 n>1k=2
But
+oo k
(-1 !
> P _ —Log(l 4 g) + = = Log(n) — Log(n-l— 1) + =
Thus
Rxengpr1r &
Z p 7}6:Z(Log(n)—Log(n—ﬁ-l))-i-’yz_21/09(2)"’_1+7
n>1k=2 " n>1
this gives
+00 k
-1 1
( k) (C(k) — m) =—2Log(2) + 1+~
k=2
With
+oo E 400 k +o0 k
(-DF 1 (-1 (=1
_ _ =2Log(2) — 1
Pa D D k o9(2)
k=2 k=2 k=2

we get finally

k=2 k
2) Let z € C we have
Blemrn BIR(—kk 1 X (—)F G 1
n Z k! pktl Z k! Z nk+1
n>1 n>1 k=0 k=0 n>1
thus
R —z/n —1)k 1
£ =7+ Z ( k') (C(k+1) - E)zk (2.15)
n>1 n E>1 :
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2.6 Analyticity with respect to a parameter

2.6.1 The theorem of analyticity

It is well known that the simple convergence of a series ) -, f(n,2) of functions z — f(n,z) analytic in a

domain U does not imply that the sum Z:g f(n, 2) is analytic in U. A very important property of Ramanujan
summation is that analyticity of the terms imply analyticity of the sum. We have an illustration of this fact
with

where we see that the pole of zeta is removed.

Definition

Let (x,2) — f(z,z) a function defined for Re(x) > 0 and z € U C C such that z — f(z, z) is analytic for
z € U. We say that f is locally uniformly in O™ if

a) for all z € U the function z — f(x, 2) is analytic for Re(x) > 0

b) for any K compact of U there exist o < 7w and C' > 0 such that for Re(z) >0 and z € K

|f (@, 2)| < Cel!

By Cauchy formula there is the same type of inequality for the derivatives 8% f thus 9% f is locally uniformly
in O™.

Theorem 9 Analyticity of z — ZnR>1 f(n,z)

Let (z,2) = f(z,2) a function defined for Re(x) > 0 and z € U C C such that z — f(z,2) is analytic for
z €U and f is locally uniformly in OT. Then the function

s analytic in U and

Thus if zo € U and

Zak )(z = 20)* for |z — 2| < p andn > 1

then
R 40 R
D fm2) =3 1> arm)(z— 20)"
n>1 k=0 n>1
Proof
Let z € K C U then we have
f(l,2) [T fA+it,2) — f(1—it, 2
s IRy (CUE B (LD
n>1 0 et —1

The function
f(A+it,z) — f(1—it,2)

h:z— r—

is analytic in U for all ¢ €]0, +oo[ and if z € K

f(1+it,z) — f(1 —it, 2) Ae®t
| <
627rt -1 627Tt -1
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—9Ff(1 =4

then by the analyticity theorem of an integral depending on a parameter we get the analyticity of A in U and

Tk (1 +it, 2)

for t > 1 we have
k _ z
a (Z> - /0 6271'15 -1

Thus the function z — Z;,zazl f(n, 2) is analytic in U and
R
=Y 0Ff(n,z)

Ffor |z — 2| < pand n >1

For zg € U let
Zak (z — 20)
then ax(n) = 0% f(n, 20) and
R “+o0 1 R +oc0o R 4o R
> ) = D D e = 33 )G 0 = 0 sz — o)
n>1 k=0 n>1 k=0n>1 k=0 n>1
|
Examples
1) Let f(z,2) = z+a: and U = {]z] < 1} we have for z € U and = > 1
+00 k
11 1 (1),
[z, z) = T+ ;*;WZ
thus
R 1 +oo
= DRk +1) — 2)2*
> (~1F(CE+1) = )2
n>1 k=1
By 2521 24%” =—U(z+ 1)+ Log(z + 1) we get
U(z + f77+2 DF1¢(k +1)2F
Integrating we get
+o00 Zk
Log(T(z+1)) = —yz+ > (= =
k=2
Note that on the other hand we have formally
PEESIEES SR N o SR
- [ ) R+t
21n+z z >11+Z n>1k>0 z
thus
R
1 1 1 1— By
= — —F—
Zn+z 22+kz>1( )z’““( kE+1 )
By 1
+Z 5% 22k

n>1
1
_27 + LOg ]. +

k>1
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This gives the asymptotic expansion
By, 1

2k 22k

U(z+1) = Log(z )—l—?lz—z
k>1

the last series is divergent but the sum can be defined by the Borel summation procedure

2) Let the function f(z,s) = L

have seen in chapter 1 that ZnR>1 L =((s)- (s) > 1 thus by analytic continuation we get

37

the preceding theorem the function s — ZnR>1 7% is an entire function. We

1
ZE:C(S)_ lfors;«él
n>1
If s = —k with k integer > 1 we get
R
1 1—Biq1 .
k)4 — = k fk>1
(=R 7;" k1 S0 F
thus B
k1
—k)=— fk>1
(K ==L itk >
for k=0 we get ¢(0) = —1+ 7% 1=—1.
By derivation we get -
R R
1 Log(n)
9 o
P D Dl
n>1 n>1
this gives
R
L
Z og(n) =—('(s) for s # 1
n>1 n’ ( )
'(=1) — 1 but we have

=4—Zﬁﬁm()—hwﬁﬁmMZﬁwMM)=%(

Thus for example ¢’(0)
Log(A) — % where A is the Glaisher-Kinkelin constant, thus we get

seen that ), nLog(n) =
, 1
—('(-1)— = = Log(A) — =

More generally
R
Log"(n) k ok k!
Z s (_1) 8 C(S) - m for S 7é 1.
n>1
For s = 1 we have the sums ) ., Long(") which are related to the Stieltjes constants 7y, defined by the
Laurent expansion of ¢ at 1 -
C(s+1)= - + Z %S
n>0
We have ”
1 1
Do =) - ¢
n>1
and the expansion
1~ (5D* j Logh(n)
nstl Z k! n
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gives
R R
1 —1)F Log"*
N
ns k! n
n>1 k>0 n>1
thus
R
Log*(n
=3 Lo (2.16)
n>1

3) With f(x,z) = Log*(z + x) we get

R R R
Log? -NL 25" Log(n)Log(1 Log?(1+ =
Y Log’(z+n) =) Log*(n) + Z og(n) Log( + )+ Log*(1+ )

n>1 n>1 n>1 n>1
We have
R ') R
- Log(n) 1 .
ZLog( )Log(1 + Z o = 1)2)2
n>1 k=1 n>1
and
S 2 1 = 1 2
2 _ k koo _ _
Z Log™(1 + ﬁ) = Z(_l) (C(k) — T — l)UkZ with o), = Z m = %Hk—l
n>1 k=2 =1
By the shift property we have if z is an integer
ZL092(2+7L ZLog ZLog (z+1)Log*(z + 1) — 2(z + 1) Log(z + 1) + 2=z

n>1 n>1

The function ¢reg2,(2) = > 5_; Log?(k) is introduced by Ramanujan in his notebooks (chapter 8 entry 18).
Since

(z+1)Log*(z + 1) — 2(z + 1) Log(z + 1) zz: ) 2k — kzﬁ(_l)kk — %Hk,lzk
we get for z integer
o~ (—DF Eoon (CDF ’
PLoga(2) = —2mz —2) (' (k)s" =23 (k) Hi-12 (2.17)
= k=2
Since dLog?*x = ZL%(C”) and using the relation
vof(z) = 0ps(x) + Z of(n
n>1
we get
) o0 R LOng
Prosn (2) = = = 3 (-1 2 DR T D
¢ k=2 —2 o1
thus
oo
P Loate) ( Z C(k+1)2F +Z C(k+1)Hyz*

k=1
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4) Let f € O and 0 < z < m, since we are in a case of convergence for the series Y ons1€ 7" f(n) we have
R +oo +o00
Yo =Y e - [ e pa)ds
n=1 1

n>1

Let F(z) = [ f(t)dt, if e **F(z) = O(-%) with > 1, we have by integration by parts

+oo +oo
/ e **f(x)dx = z/ e **F(x)dx
1 1

With
“+o0 R +00
Z e *"F(n) = Z e *"F(n) + / e **F(x)dx
n=1 n>1 1
we get
+00 R 1 “+00
—znp — —znp - —zx d
nz::le (n) ;e (n)—I—Z/1 e ** f(x)dx

If f(z) = L ans 0 < z < 7 then

foo R 1 +oo e~
Z e *"Log(n) = Z e *"Log(n) + / dx
n=1 1

z xT
n>1

R +oo k k—1
—zn (71) z ’Y+LOg(Z)
= E e *"Log(n) — E P ~
n>1 k=1 :

But we have by the theorem of analyticity

= = (=DF = k = (-DFt 1
—znr — L — Z _
>~ e " Log(n) e 2 ntLog(n) a2 R+ )
n>1 k=0 n>1 k=0
thus
+oo too k—1
zn _ (_1) k ~1 Y + LOg(Z)
n=1 k=0
Corollary
As a consequence of the preceding theorem and
R x+1
n>1 1
R R z+1
Pr(@) = D f02) = Y a4 [ flus)du
n>1 n>1 1

we have with the same hypothesis as in the preceding theorem the analyticity of these functions of z and by
derivation with respect to z we get

0:Ry(2,2) () = Ro_f(a,)(2)

020¢(2,2) () = Qo f(z,2)(T)
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Example If f(z,z) = - with z # 1 then

1
@Logz(m) = - z@x% = _CI(Z) + azC(Zax) - 8z;
we get
og(x
praser = ~C'(2) + 0. (2, 7) + 2L
For z = 0 then

$Log(r) = =¢'(0) + 0:¢(0, %) + Log(x)
but we know that ¢r.4(z) = Log(I'(x + 1)) thus we get the Lerch formula (c.f Berndt)

Log(T'(z)) = —¢'(0) + 0:¢(0, )

2.6.2 Analytic continuation of Dirichlet series

Let x — ¢(x) a function analytic for Re(z) > 0 such that we have the asymptotic expansion at infinity
- Yo
k>0

where Re(jo) <Re(j1) <Re(j2) < ... <Re(ji) <... Then let

R I

n>1

this function is analytic for Re(s) > 1—Re(jo) and we have

ns
n>1

R e(n too
h(s) = Z (n) +/1 c(x)z™%dx

The function s — S/, 07(1’2) i
integral term B

400 400 N-1 N-1 1
c(x)x™*de = / xS L Oz IN) ) de = ar——— + Ry (s)
/1 1 ( kz>0 ) ,;) s+jr—1
Thus we get simple poles for the function h at the points s = 1 — ji with residues ay.
Examples
1) Let h(s) = 3272 (nﬂ)ng for Re(s) > 1 then

+o0 R 400

1
T ITdY / . N
—(n+1 =~ n—|—1 1 (@4 1)as

The function s +— Z§>1 ﬁ is an entire function, thus the singularities of the (analytic continuation of the)

function h are the singularities of the function s — f dz. Since for x > 1 we have

w-i—l)xg

(z + 1)z* - P pstk+1

we get by the dominated convergence

e 1 T k1, (D)
/1 7(m+1)xsdx:z:(—1)k/ x5k dx:Zs—i—k

k=0 1 k=0
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Thus the function A has simple poles at s = —k,k =0,1,2,... and

_1\k R +oo _1\j
h(s) = +271 S+Z—( Dk

s+k 7121(n+1)n st
We observe that
i (h(s) - Sy =3~ SRCL
im (h(s) — = -
s=—k s+k n21n+1 #kj—k

2) Let ¢(z) = ¥(x + 1) + v then ¥(n) = H,, and for Re(s) > 1 let h(s) = too Hy

n=1 ns
We have for Re(s) > 1
+oo
Z / (x+1)+v)z °de
nb

n>1

The asymptotic expansion at infinity

1 By, 1
\I/(a?—&-l)—i-’y:Log(a?)—i—v-i-%—Z%ﬁ

E>1
gives
+o00 N
¥ 1 Boy, 1
L x~°%d _—t = = ———— +R
;ns / og(x x+s—1+2s §12k s+2k—1+ n(s)

The integral term

+oo 1
L e = ———
/1 o) e = 1y

gives for h a pole of order 2 at s=1 with residue v. We have a simple pole at s = 0 with residue 1/2 and

simple poles at s = 1 — 2k with residues — B;;f

2.6.3 The zeta function associated to Laplacian on the sphere S?

Let A = —A the Laplacian on the sphere S? the zeta function associated to this operator is (cf. Birmingham
and Sen)
+oo

2n+1
CA(S):ZETLS(?L*—H)S

we have
R

2n +1 too 2x 41
= B ——— 7d
Cals) Z ns(n+1)° +/1 zs(z +1)° v

n>1

The function s — Zn>1 nz(Zii) is an entire function, thus the singularities of (4 are the singularities of the

%dw. Since for x > 1 we have

function s — f1

+<>o
g s(s+1)(s+k—1)z 257k
S S |
x+1 T = k

we get by the dominated convergence

oo 9p 41 X (=1)kH1
1 k—1
[ A S k)

Thus the function (4 has only a simple pole at s = 1. By Mellin inversion we have with ¢ > 1

ct+ioo
Tr(e=4t) = L/ Ca(s)T(s)t™%ds

2 Joioo
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and by the residues theorem we get the asymptotic expansion

Tr( p)tP

p>0

The evaluation of {4(—p) is easily done by the Ramanujan summation

R P k+1
CA(_p):;(%H)np(nH +kZ:0 k+1 P (=p+1)(—p+k—1)
We find for example
R
Ca(0)=>"(@2n+1)—2=-3
n>1
= 1
CA(_l):Z(2n+1)n(n+1)_2:_ﬁ
n>1

We see that Ramanujan summation gives a simple alternative way to the way of Mellin summation technique
proposed by Birmingham an Sen.

2.6.4 Zeta regularization of divergent products

Let a function = — a(z) such that z — Log(a(z)) is a function of moderate growth, we can use the Ramanujan
summation to give the following definition of the Ramanujan product

R
I] a(n) = eXnz=1 Log(a(n))
n>1
Thus we get for example
R
[ n = €5 Loat) — LoaVom—1 _ V2
e

n>1

Note that with this definition of the Ramanujan product we have for any positive constant C

R R
H (a(n)C) = en=1 Log(a(n)+log(C) _ 307, Log(a(n)) ;35705 Log(C) _ ( H a(n)>e%Log(0)
n>1 n>1

thus we get the strange relation

R R
[[(@amc)=ve ] am)
n>1 n>1

There is a well-known procedure to define infinite divergent products which avoid such strange property. That
is the zeta-regularization of divergents products (cf. Quine Heydari Song), defined by

reg +o0o
! 1
H a(n) = e~ %) with Z, defined analytic continuation of s — E @)
a(n))®
n>1 n>1

it is assumed that s — Zn>1 a(n)) is defined for Re(s) > « and Z, is defined near 0 by analytic continuation.

There is a simple relation of this Ramaujan product with the zeta-regularization of divergents products.
For Re(s) > o we have
+o00 1 R

1 oo
2 Gy = 2 () +/1 (a(0) ™

n>1 n>1
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The function — ZZ?N W is an entire function, we assume that the function

+oo 1
Y,:s— /1 (a(x))sdx

has an analytic continuation near 0. Thus

and we get
reg R
[T aln) = e %® = X0 Loalalm) =0 = =YiO) [T a(n)
n>1 n>1

Thus we can use Ramanujan summation to evaluate zeta-regularized products.

Example
We have for Re(z) > 0

R
_ ZZ} Log(n+z) __ 27 z+1,—(z+1)
R S

n>1

and for Re(s) > 1

[t _(z+ 1)t
Y(s)_/1 : do —

x4+ z)* s—1
thus
Y'(0) = (= +1)Log(z +1) — (= + 1)

and we get

reg R \/27

— Y0 - il
H(n+z)—e H(n+z)—r(z+1)
n>1 n>1

2.7 Integration with respect to a parameter

2.7.1 Interchanging 2521 and [,

Theorem 10 Let (x,u) — f(z,u) defined for Re(x) > 0 and u € I where I is an interval I C R. We suppose
that

a) for all Re(x) > 0 the function u — f(z,u) is integrable on I

b) f is in O™ uniformly in the parameter u € I in an interval I C R:

there is a < w such that

|f(z,u)| < Ce?® for all Re(z) > 0 and allu € I

Then
R R
fln,u)du = fn,u)du
Proof
‘We have ”
o fu) T f( it u) — f(1— it u)
;f(n,u)— 2 +Z[) 627Tt—1 dt

It suffices to prove that
/(/+°° F(L+it,u) — f(1 —it, u) ity du = too [ f(1+it,u)du — [, f(1 —it,u)dudt
1Jo

627rt -1 0 627rt -1
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This is a consequence of the Fubini theorem since

: _ _ at
(it ) — (1= itw)] _ e
627rt -1 — e27rt —-1

O

Examples
1) We use the equation

t 1
Z cos(mnt) sm( ) _ 3 for t € [0, 1[.

and

1/2 1 2sin 27mn ™
2 - _ 2
/0 (t = 3)% cos(mnt)dt = —— 25— + g

Thus we have

R 1/2 1., R sin %wn R 1
g ; (t— 5) cos(mnt)dt = —2 E 3,5 + E 5,2
n>1 n>1 n>1

Since we are in a case of convergence

R . . . .
Z sin $7n JFZOO sin %7‘(‘71 T2 gin %ﬂ'l‘d 1 < (=)t T gin %ﬂ'dfd
= — xr = — - X
303 303 . 7323 3 2: (2 E .

w33
n>1 n>1 n=1

By the preceding theorem

1/2 1 1/2 1 /2 1., sin(nt) 1
_1\2 _ _1\2 _ _ 12 _
nil/o (t 2) cos(mnt)dt = /0 (t 2) nil cos(mnt)dt = /0 (t 2) ( : 2)dt

Integrating by part we have

0 sin %mc 1 1 (7 sin %mg
1 X 2 8y ™

Thus we get
1
I
n:1 (2n —1)3 32
2) We use the equation
(4 1 4
Z sin(mnt) _ cos(mt) + = cot(ﬂ—) for t € [0,1].
t 2 2
n>1
and
1/2 cos +mn  sin(imn
/ tsin(mnt)dt = — —2 (22 5 )
0 2mn m4n
Thus

Roor/2 R cosimn  sin(imn) 1 & (—1)n ! +%0 cos L
tsin(mnt)dt = Y (——2 2 =—) — / 2 —d
S [ sntmnnae = S2-STEE+ T = L3 s [ S

2mn m2n2
n>1 n>1 n=
1 &, (—1)n ! 0 gin Lz
LS e,
2 (2n —1)2 1 w22
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By the preceding theorem this is

1/2 R 1/2 + 1 +
/ > tsin(rnt)dt = / (—M + Steot(Z0))dt
0 0

s 2 2
n>1

Finally after an integration by parts we get
7T/2 1
/ xcot( Ydz = 2G + 7TLog(2)
0

where G = Y1 (271)71)2 is the Catalan’s constant.

And by same type of calculation

/2 35
/ x cot( Ydx = 27G + 7r2Log( ) — §C(3)
0

3) By the shift property we have for © > 0 and x # 1

R
9—(z—1)

e

e n+1 z—1

if x = 1 then this formula is extended analytically by 23321 %ﬂ =~ — 14 Log(2). Since

+o0 R
/0 Z o dz—Z/ e—wLog(n+1) dxiZLogn—l—l

We get,
9—(z—1)

R 1 +o0
7glLog(nJrl):/O () —1- xfl]dm

2.7.2 The functional equation for zeta

R oo it) — f(1—i
> s = H i [T LTIy

n>1

we get with x > 0 and f(u) =1/(u— 1+ x)

By the formula

R

21:1”/*“ V(e +it) =1/ (@ —it)
0

_ 2t _
nZln 1+ 2z em 1

and with the shift property we get

R +oo 2 2
1 1 1 t/(x” + 1
sntew x 2z 0 et —1

this gives

R 400
1 1 1 1 t
— Log(1+ —) +2 S S S
Zn+x e +x)+ /0 (627”5—1 27rt)x2+t2
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Taking the Mellin transform we get for 0 < s < 1
a) for the left side

oo LA oo o0 1 &
1‘3_1 dr = ns~ 1/ xs—l dr = ns—l
/0 nzanrac Z/ n+x Z 1+ sin7rsTZ:1

n>1

b) for the right side

/+OC s=hp (1+1)+2/+0o 51/%0( ! 1) L atd
€T 0 - T -y T
0 g X 0 0 627rt — 1 27Tt :L'2 + t2

since
+oo
1 1
/ 5 Log(1 + ) AR
0 sinws s
and
+o0 +o0 +oo Foo
1 1 1 1
s—1 s—1
dt dv = _ ——dzx dt
/0 . /0 (62’”571 27rt)m2+t2 * /0 (627”:71 27rt) 0 v 2+t2 .
B +°°( 1 1 o1 /2
) et —1  2mt sinms/2
(2m) T () ()
= T s)C(s
sins/2
Thus we get
/2 ™

Zn = 2(2m) T (s)¢(s)

. + =
sin s sinws/2  sinws

since ZnRzl n' Tl — 1 =((1-s) we get

(1 s) = 22m)T()C(s) L2

sinms sin(mws/2)

this is the Riemann functional equation.

2.7.3 The Muntz formula

Let a function f integrable on [0, +oo[ such that f(z) = O(1z) with a > 1, then for 0 <Re(s) < 1. Then by

]
interchanging [, 3 n>1 Z§>1 J; we get

+oo R R “+oo
/ 1 Z flnx)dx = Z/ ¥ f(na)dx
0 7170

n>1

thus

n>1

T . | T e
/0 x Z f(nx)dx = (nzzzl TLS>/0 2°7 f(x)dx

Then since we are in a case of convergence we have

R 400
Zf(n;l: Zf nx) — 7/ ft)de

n>1 n>1

thus

nx—f/f t)dt = an:c—/+oof(t)dt

n>1 n>1
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We get
400 . +0oo 1 400 B R 1 400 o +o0 o 1 z
/0 z (T;f(nx)f; /0 f(tydt) = (; o) /0 2 f () de /0 r (= /O F()dt) da

For 0 <Re(s) < 1 we get by integration by parts

—+o0 1 xT 1 +oo
/0 ms_l(g/o f(t)dt)dx = o1 257 f(z)dx

Since ZHRZI 4 =((s) — 737 we obtain the Muntz formula (cf. E.C.Titchmarsh and D.R. Heath-Brown p.28)

+oo 400 1 +oo +oo
A nr) — — r = ((s 27 f(2)dx
| () =1 [ pwi) de =) [ a s

Remark

Let a function f such that (z,t) — x®f(xt) satisfies the hypothesis of the preceding theorem with I =]0, 1|
then

/Zn“fntdt Z/ flnt)dt = Zno‘ 1/f

n>1 n>1 n>1

thus if Fo(z) = [ f(t)dt then

Zno‘ LEy(n / Zno‘f(nt)dt

n>1 n>1
Withaz()andf(x):ﬁweget
L 1) ITE +2° Log(1 —o(1
S0l [1S L [4 pa [ Rt mu e,
n>1 1+nt Otn>ln+% 1 u

With @ =1 and f(z) = 14-% we get

1 R 1 R n
S dretg(n) /ZHW - [ B
n>1

n>1
since
R n 1 R R 1
—— == = Log(v/1 2) — —(U(1+1 U(l—1
r;fﬂ-i-az 2Zn+m Zn—m 0g(V1+a?) 2( (1+ia) +¥(1 —ia))
we get

+oo
Z Arctg(n / Log(\/1+u?) — %(\Il(l +iu) + U(1 —du)) du

n>1
Note that the same calculations with I =]0, +o0o[ gives

400 R R

/0 > nf(nt)dt = [ n*'] /;Oo f(t)dt

n>1 n>1
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2.8 Heat equation

Let x = (x1,72) € R? and t > 0, the function

1 2|2
Ulx.t) = ~InFD
() =3 e
n>1
is solution of heat equation
2 2

oU =0 ,,U+0;,,,U

Let
R oo k
1 _: 1.z
Zﬁ ":'H'Z(_l ) k)kl
n>1 k=1

then

) 1 e

f(T) = Z o€ m =U(z,0)
n>1
With the heat kernel we get
Uln,t) = / =2 17y, 0)d
’ o R2 47Tt ¥ 4
= e 412 / Lty@_%f(%)dy
4t 4

Let z = (r,0) with polar coordinates we get

[z]

2 ] +oo  p2m
U(x,t) =€ 2 / / e””’cos(‘g)pe @ f( )dpd9
4art J, 0

We have for ¢t > 0

2
g(rp/2t) = / e2e7P0s(0) g — 2rly(rp/2t)
0

where I is the Bessel function In(z) = > 45, (k%)Z (2/2)%k
Thus
2 1 Foo 2 p2
Utet) = om [ Dalrp/200e % 15 )dp
dmt 0 4
this gives
R +o0 R
i 2 1 0> 1 .2
It — ¢ 4t — T M) pe T ZeE)d
2 w5y e g | Dolro/20pe” () e i)dp
nz1 n>1
Withz:é andu:p;weget
LI 1 R
TRFE = A/t / Io(2 te ZemEVd
L it ), Va0 ey
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with ¢ = 1 we get the integral equation

2 +o0
1
f(2) =6_Z—/ ;e_z/zdﬂﬂre‘z/ Io(2y/zu)e™" f(u)du (2.18)
1 0
Note that
R z +oo _ =z 400 —z
e n — e n —1 et —1
= = - dt
HOEDYS +y =7+, /1 ,
n>1 n>1
Let
Xei-1
9(z) =7+
n>1 n

this function is the exponential generating function of the zeta values

ok
=7+ ) (k+ 1D

k>1

Since f(z) = g(z) — f;roo 571_1 dt it is easy to prove that the integral equation (2.19) gives now a simpler
integral equation for this generating function g that is

g(z)=e " +e*? /0Oc e "“Io(2v/zu)g(u)du

2.9 Link with Borel summation

2.9.1 Ramanujan summation in term of Bernoulli numbers

Let a function f given by the Borel sum
B
x) = Z gz’
k>0
that is for Re(z) > 0

+o0
f(z) :/0 e_f(Zakmk%)df

k>0

We assume that the function (x,&) — Zkzo akxk% satisfies the hypothesis of theorem 9.
Then we have

R 400
Srm = 3 [Tt
n>1 n>1 k>0
_ +oo ¢ kg
e Z Z apn X d€
0 n>1k>0

Now we assume that
Z Sawntsr =Y as; i Z n
n>1k>0 k>0 n>1

then

400 R 5
/0 e_gzaankydé

n>1 k>0 n>1

oo 1—Bk+1f
/0 PR 1w ®

k>1

(]

~

S
|
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thus we get by definition of Borel summation

s o 5 1-B
— Bg1
S ) = 2204 Y (A e (2.19)
2 k+1
n>1 E>1
Note that this formula is nothing else than
R B B R
> Yot =33 ot
n>1k>1 E>1n>1
which we recall is valid under the strong hypothesis: 2521 > k>0 aknk% = k>0 ak% 23321 nk.
Example
Let f(z) = 5 fzo(fl)kxk that is for Re(z) > 0 we have f(z) = f+°o ~Se~*¢d¢. We have
R k R —¢ r R
_ kki_ —ng _ € 1—Bk+1§ _ _ ki k
Z ( 1)”k!—26 _1_675 +Z k41 )k!_z( 1) MZ“
n>1k>0 n>1 k>1 k>0 n>1
thus

R 1 B
Znﬂ 3+ V)

) and Zk>1 (e g Log(2) — 1 thus we get

R
but ZnZI%HZW—l—i—Log( )

More generally we have

R LR R B b
_ _ 2
Db Dk w3 G Vi e
> n>1 z p>1k>0
thus
R B B
1 11— Bpn 1 1 By 1
= _1)k STk 4 Log(14 - 22k
Zn-l—z Z( )zk+1( k+1 ) 22+ o9( +z)+z 2k 22k
> E>1 E>1
this gives by (2.4)
B
1 By, 1
U(z4+1) =1L SN 22k
(2+1) = Log(2) + o kZN of 27

Note that we cannot make the same calculation for Zn>1 1+ ——. We have 1+ — ZEM(—I)’%% but

R k R _p2 .
2on>1 Zkzo(—l)kn%% =" ¢ is not defined.

Remark
The formula (2 19) is not always valid.
Let f(z) = %5 for Re(z) > 0 and y > 0. We have f(z) = Zk>0 T

thus if we apply (2.19) then

i ig L= Bun
e —1 RS y

n>1
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Since BkBlc+1 =0if k > 2 we get

R B
R R v
eny —1- 21y ! 5 Y
n>1 k>1
this gives
i ny 1 /y t gy _1_BiB:
=0 bt T 5 Y
= e —1 yJ, et—1 2 2
Since we are in a case of convergence we get
+o00 +o0
= 5 Y
= ew—1 yJ, e—1 2 2
that is
f ny 7r2 1 n Y
o e —1 6y 2 24

but unfortunately this formula is not true.

2.9.2 An integral formula

Let a function f given by the Borel sum f(z) = Zfzo apz® that is for Re(z) > 0

+oo —u/w/\
f(x):/ (Y kS d£ / flu
0 k>0
with
= Zaku
k
k>0
Then by interchange of [ and ) <, we get
R +oo R e—u/n/\
i = [ Y S Fuda
n>1 0 n>1
But we have
R —u/n —1)k 1
e
S e E -
n>1 k>1
thus
R +oo (_1)k 1 vl =
> fn) = T+ o (k1) = )u” | f(u)du
n>1 0 k>1
Example

Let f:xz+— x%rz with z > 0 and z > 0 this function is given by the Borel sum f(z) =

x zkt1l k! z
k>0

fz)= /0+°° e flu)du with fu) = Z (Gl = le_"/z

Zk>0 Zkﬂ w then

o1
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thus

= 7+ [(-D*C(k+1)] 2" + Log(1 + 2)

k>1

Since Zn>1 o = — V(2 +1) + Log(z + 1) we get for 2 >0

U(z+1) —*7+Z DEFC(k+ 1)) 2F
k>1

2.10 Double Ramanujan sums

2.10.1 Definitions and properties

We study iterate Ramanujan summation

Theorem 11 Let a function (x,y) — f(z,y) analytic for Re(x) > 0 and Re(y) > 0 with
x> f(z,y) in O for all Re(y) >0

y— f(z,y) in O for all Re(x) > 0
If there exist a function W analytic for Re(x) > 0 and Re(y) > 0 such that

W(z,y) —W(z,y+1) =W+ 1,y)+ Wx+1,y+1) = f(z,y)

with x — W(x,y) in OT(P) for all Re(y) > 0 and y — W(x,y) in O™ (P) for all Re(x) > 0 then we have

R R R R
2> fmm) =3 > f(m.n)
n>1m>1 m>1n>1

Proof
Let R(z,y) = W(z,y) — W(z,y + 1) then

R(x’y) - R(.’E + 1;?/) = f(xvy)

thus

R 2 2
> fmg) = Ry~ ([ Weada = [ Wia,y+ 1)

For x =1 the equation W(1,y) — W(l,y + 1) = R(1,y) gives

R

> R(1,n) =W(1,1) /le

n>1
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thus

R R 2 R 2 R 2
ZZf(mm) = W(l,l)—/1 W(l,y)dy—z:/1 W(w,n)dw—i—z‘/l W(z,n+ 1)dx

n>1m>1 n>1 n>1

W(1,1>_/12 W(l,y)dy—/12W(x,1)d:c+/12 /12 W (x, y)dady

Evaluation of 2221 2521 f(m,n)

We have
W(z,y) =W +1y) - Wr,y+1) - W+ 1y+1)) = f(z,y)
R 2 2
Z f(m,n)=W((m,1) —W(m+1,1) — (/1 W(m,y)dy — /1 W(m+1,y)dy)
thus .

R R R R 2 2
SN fmn) = ZW(m,l)—W(m+1,1)—Z(/1 W(m,y)dy_/1 W(m + 1,y)dy)

m21nz1 m2>1 m>1

R R 2
= Y W(m,1) = (> W(m,1)-W(,1) +/1 W (z,1)dz)

m>1 m>1

2 2 2
—/ W(17y)dy+/ / W (z,y)dydx
1 1 1

_ W(l,l)/12 W(x,l)dx/12W(1,y)dy+/12 /12W(x,y)dydx

Conclusion

S5 fimn) = W(l,l)—/12 W(l,y)dy—/jW(w, 1)dx+/12 /12 W (z,y)dedy

R R 2 > 2 2
ZZf(m,n) = W(l,l)—/1 W(x,l)dm—/l I/V(l,y)dy—i—/1 /1 W (x,y)dydx

By Fubini’s theorem we have

2 2 2 2
[ wewdsay= [ [ Wi pyas
1 1 1 1

donc ZnRZl 2221 f(m,n) = 2221 22321 f(m,n).
O

Examples
1) We have by the shift property

R R 1 R R R
2D i = 27 X Hnt ) Loglm+1)
m>1n>1 m>1 m>1 m>1
1 3 1
= 37373t Log(v2r) + Log(vV2rm) — 1+ 2Log2 — 1

This gives

Z Z T —v 4+ 3Log(2) + Log(m) — 3
m>1n>1
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2) We have Zn 1 (n+7m)2 =((2) - 72 thus
R oo

R
ZZ 2 e
m>ln>1 m>1n=1 m>1
R
2

R

1
= Y K@-HD) - —
m>1 m>1 m+1
Thus
R R
ZZ rmE = 37 ¢@) — 7= Log(2)
m>1n>1
Remark

By the same method we get more generally

ZZf(n—&-m)zZ(n—l +2ZF / (y)dy

m>1n>1 n>1 n>1

This is obtained by

R R R R m+1
S fmm) = S s - Sulf)+ [ faldo)
m>1n>1 m>1 n>1 1
1 R R R m+1
= I3 fm - Y S+ / f()ds
n>1 m>1 m>171
1 R 3 R R R m+1
= Y - (Y f) - Yo Z/ #(z)dz) / f(@)de
n>1 n>1 n>1 n>1 m>1"71
R m+1
= = fn +an +Z/f dx-i—Z/
nZ n>1 n>1 m>1
= Z(nfl +22/ fla dx+//f )dady
n>1 n>1
R
= Z(n—l +22F / (y)dy
n>1 n>1
]
Example
R R R 2
Z Z og (n+m) Z(n —1)Log(n) + 2 Z nLog(n) — 1 +/ (yLog(y) — y)dy
m>1n>1 n>1 n>1 1
2.10.2 The case of convergence
Like in one dimension we have a formula that link 3275 ST%_ 4o $7F29 oo |
We have B -

3 ) =33 s ¢ /m/m (e, y)didy — Z/mf(x,n)dxzflmf(m,y)dy

n>1m>1 n=1m=1 n=1
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Examples
1) For Re(s) > 2 we have

R R 1 . 3 »
mzxngl(n+m)s:571C(S—1)+(571)(572)4-571—(((5)_571

Note that
+oo +oo R Hoo 1 400 00
'rnzlnzl (n+m)s - %;(n+m)s+/ Z (n+ x)s
R ®) +oo 1 1
= g(C(S)—Hm)‘F;S_lW

This gives the relation
Z Z =((s =1) = ¢(s)
=1ln=1 n + m

Independently this relation is easily deduced from the summation by packets
+oo 400 1

Zzn—Fm Z Z m

m:ln:l k=1 m+n=k+1

This type of summation cannot be applied to ZEN 2521 m

2) With f(z,y) = m we know that
+oo +oo
> flmon) =2¢(3)
n=1m=1
thus we get
R R “+o0
1 Log(n+1)
—— =2¢(3)+2Log(2) — 2 _—
nzz:l w; mn(m + n) ; n?
But

1 1 1

mn(m+n)  n?m  n2(m+n)

and by the shift property

L
Z =~—H, + Log(n+1)
m>1m+n

we get
ZZ o P Zn— Zn— ~v—H, + Log(n+ 1))
n>1m>1 n>1 n>1

After some simplifications this gives

+oo =L 1
/ ‘I’($+1)+7d$22 og(n+1)
1

2 n2
n>1

%)
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R Hy
nZl npbP

2.10.3 The sums )
We have by the shift property

CHAPTER 2. PROPERTIES OF THE RAMANUJAN SUMMATION

X
> =7 — Hy, + Log(m + 1)
m+n
n>1
this gives
&1 1 1 & 1 L
il = - = —(y - H, L 1
Sy S s tagn 1)
m>1n>1 m>1 n>1 m>1
thus
RE 11 9 = H, s Log(m + 1)
S
mm-+n m
m>1n>1 m>1 m>1
On the other side
R R | 1 R 1 R 1 R
PP DI SET) DI DR AN
n>1m>1 n>1 m>1 n>1
thus
SRR T8 e
mm+n m m
n>1m>1 m>1 m>1
By the preceding theorem we get
zR: Log(m+1) iﬁ_f
m N m 2
m>1 m>1
The sum Yoo, 224D g simply related to 31+, Lofrgm):
s Log(m + 1) X Log(m + 1) S Log(m+1) 1
Soeme - lelne) g Lol )
m m-+1 m+1 m
m>1 m>1 m>1
R 2 R
Log(m Log(x Log(m+1) 1
:Z 9()+/ 9()dm+z 9(1)7
m>1 m 1 v m>1 m+ m
R R
Log(m) 1_ Logim+1) 1
= AN T 2 il
Z m + 9% (2)+ Z m+1 m
m>1 m2>1
But the last series > -, %% is convergent and thus we have
i Log(m+1) 1 i" Log(m+1) /+°° Log(z +1)
= omt 1 m = m(m+1) 1 x(x+1)
+oo 2
L 1 1
= Z M _T _ ~Log?(2)
= m(m+1) 12 2
Finally we get
R +oo R 2
= m 12 5~ m(m+1) = m 2

thus



2.10. DOUBLE RAMANUJAN SUMS

R
H,, Log(m +1
Z;—%—*+*+Z e
Remark
We can obtain directly the sums Zﬁx LOQT(W) by
s 1 1
S e Loyt
m+n—1 m
n>1
this gives
R R R R
1 ) H,, Log(m)
il — A2 2) — 1 2PN
D B R D D T
m>1n>1 m>1 m>1
Now consider the sum Zm>1 L m We have if n =1
N R i 1
mm+n—1 m?
m2>1 m>1
and if n > 1
L 1 i’" 1 /+°° 1 ;
_—— = _— —_—axr
S mm+n—1 = m(m+n—1) 1 z(z+n-1)
_ Hn—l LOg(?’l)
- on-—1 n—1

. R
Thus the sum Zn>1 Zm>1 e is Y5y f(n) where

R

1 .
fln) = Zmlfnzl
m>1
= anl—LOg(n) ifn>1
n—1 n—1

The function f is given by f(z) = 25 (v + ¢ (z) — Log(x)) and we have

R R
S = S fm+ )+ /f

thus

With the preceding results, after some simplifications we get

1 +oo
/ ’y-l-\I/(x—i-l)dx:ZLog(m—i-l)
0

x — m(m+1)

We have for an integer ¢ > 1

2q—1
I I 1 1

— nkm2a—k  m24-1(m + n) + n24=1(m +n)

o7
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thus if (R (k) = 3%,

ﬁ then

2q—-1 R R
R R -
2q — — =2
> R e S
k=1 n>1m>1
With
L
Z — H,, + Log(m + 1)
m-+n
n>1
we get
Log(m+1)— H
— 29¢R(2g — m
zzzm2q1m+n) 2v¢R(2g 1+22 e
m>1n>1 m>1
thus
R Log(m + 1) R 1°82
_ R (k) CR( k—1
Z m2a—1 _Zqu 1 ZC k)™ (29 — k)(=1)
m>1 m>1
For ¢ = 2 we get
Log m—|— 1) s H,, 9
Z =) =5
m>1 m>1

2.10.4 The sums Zn>1 Zm>1 m

We begin with the sum Zm>1 En>1 - We have
m—+n RE n 1 LA n
ZZ +n—ZZm+n DID Dtk Sl DD Dl
m>1n>1 m>1n>1 m>1n>1 m>1n>1
thus we get
Syl
m>1n>1 m+n
Remark

Since Zn>1 e =

m(y — H,,, + Log(m + 1)), we get

R R
5
:Z m(y — Hp + Log(m + 1)) = 37~ ZmH +ZmLogm+1)
m>1 n>1 m>1 m>1 m>1
thus we find
5 S 1
ZmHm: ’Y+ZmLogm+1)—§
m>1 m>1
Since
R R
Z mLog(m+1) = Z (m 4 1)Log(m + 1) Z Log(m + 1
m>1 m>1 m>1
= —¢/(~1) - Log(v2m) + 1

we have another proof of the relation

R
> mH 12

m>1

> = (1) ~ Log(vam) +
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A general relation
Let an integer p > 2 and

p—1
1 1
_ E p—k—1
‘/P(Xamvn) - (mknp_k + nkmp_k )X
p—1 1 1
= p—k—1
Wy (X, m,n) ;(mk R i e e )X

The partial fraction decomposition of T gives the relation

1 1
m+n)P—Fk + nk(m+n)r—F
W,(1+ X,m,n) + XP72W,(1+ 1/X,m,n) = V,(X,m,n)

With R— summation on m and n, we get

R R R R R R

53 W0 Xoman) 4 X725 Y W11/ X = 3 3 V(Ko
n>1m>1 n>1m>1 n>1m>1

If we set
poy L
m
m>1
and

R R 1
Z Z mk(m_;'_n)pfk = CR(k7p_ k)

n>1m>1

then the polynomials

p—1
=> (Rlk,p—k)xP 1

satisfies the relation (cf. Zagier)

S,(1+X) + XP28,(1+1/X) = ZgR )R (p — k)XPF-1
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Chapter 3

Ramanujan summation of alternating
series.

3.1 Definition

The sum fo(—l)” is not defined in the preceding sections. This is a consequence of the fact that for the
sequence n — (—1)™ there is no interpolation function f € OT.

To define the summation of alternating series we begin to use the Euler-Boole summation formula

O~ F@) ot () = S

which we can write on the form
_ _1\n—1 _ 1 - k & 1/+OO i m—+1
JO =k GO m) = 5> WG+ 5 [ em (00T () dt

+ iakf(n—&-l)Ek—l/oo ! (t) O™ f (t) dt

K2 m

We see that we have the same structure like in the Euler-MacLaurin formula. By integration by parts we verify
that the constant term

m

+o0o
ClP =50 W +5 [ en O™ 1)

is independent on m for m > M.

We can define a summation for an alternating series Y, ,(—1)¥=!f(k), like the preceding Ramanujan
summation, by defining B

R ~ m 400
SO ) = O = 5 M 5 [ men 00
E>1 k=0 ’ ’

We get for example:
SR () = 1By = 1/2 and SR, (<1)F k= 1By + 15 =

N[ =
=
N

61
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To obtain a definition not directly dependent on the Euler-Boole summation formula, we note

7y = S S ot B - L [T L ot @
k=0 ) " ’

then we have _
FQ) =+ ()" () = C(f) + Tr(n +1)
thus
(=1 f(n) = Ty(n +1) = Ty(n)

If we define Af(n) = (—1)"Ty(n) we get

and

The equation Af(z) + Ap(x + 1) = f(x) does not specify an unique function Ay we must avoid the the
solutions of A(z) + A(z 4+ 1) = 0, that are combinations of the functions e(2k+1)imz

Lemma 2
If f € O™ then there exist a unique solution Ay € O™ of

Af(d)) + Af(l‘ + 1) = f(:l))
We have

z+1
2

Ap() = Ry (5) = Byo (). (3.1)

Proof
The function = +— f(2x) is in O?™ and by the theorem 1 there is a function R € O?™ which is solution of
R(z) — R(z +1) = f(2) with [ R(z)dz = 0. And let

Aw) = R(3) ~ R(Z)
then we have
AW+ A+ =BG+ 0+ROTH - RCETH 1 RG)
- —R(%+1)+R(g)
= f(=)

Unicity of the solution: if a function A € OT is a solution of A(x) + A(x + 1) = 0 then the function
R(z) = A(z)e'™ is a solution of R(xz) — R(xz + 1) = 0 of exponential type < 2m, thus by the Lemma 1 the
function R is a constant C' and we have A(z) = Ce'™, and A € O™ implies C' = 0.

]

Definition
If f € O™ there exist a unique function Ay € O™ solution of Af(z) + Af(z + 1) = f(z) and we define

R

D (=1 (n) = Ap(1)

n>1
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Remarks
1) This definition does not contradict the preceding definition, because if f € O™ there is no function g € or
such that g(n) = (=1)"f(n). The condition g € OT is essential since in the case f = 1 if we take g(z) = '™

iTx

then Ry(z) = S5~ — L thus

i iTn 1 1
e = —= — —
e 2 am
And if we take g(z) = e then R,(z) = 67;” + -= thus
i efiwn 1 + i
2 dn
n>1

2) If f € O™ then z — f(x)e'™ is in O*" and by theorem 1 there is a unique function Ry ,)eir= solution of
R(z) — R(z + 1) = f(x)e'™. Then the function A(x) = e "™ Ry(y)cixs is solution of A(z) + A(x + 1) = f(x),
but A is not Ay since it is not of exponential type < .

3) We have f;“ A¢(z)dz + f;;rf Ag(z)dx = f;“ f(z)dx thus by the preceding definition

R

ot |

n>1 n

n+1 2
f(ac)dgc:/1 Af(x)dx

Examples
1) The Euler polynomials Ex(x) given by
Ep(x) , 2%

k! i T e+ 1

k>0
are solution of
Ey(2) + E(z + 1) = 22*
thus A« = 2Ej(z) By Lemma 2 we have

ok rx+1 T

(Bk+1(T) — Bry1(3))

Agr 5

* T h+1
By the properties of Bernoulli polynomials we deduce that for k integer > 0

R
Z(_l)n—1n2k — 0
n>1
thus
= 1, 2k—1 22k
S (=) = T (Ba(1) - Bai(3))
n>1
this gives
R 22k:
Z(—l)n71n2k71 _ E(BQIC _ sz(2174k _ 1))
n>1

2) If f(z) = Log(z) then Ry(z) = —Log(T'(x)) + Log(v/2m) — 1 thus

Ripog(2z) = Rrog(2) — Log(I'(x)) + Log(V2m) — 1 = (% — 2)Log(2) — Log(T'(z)) + Log(V2m) — 1

By Lemma 2 we get .
Ag(z) = 5Log(2) — Log(T'(z/2)) + Log(I'((z +1)/2))
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and Ag(1) = $Log(2) — Log(I'(1/2)) thus

R 1 1
(=) Log(n) = 5 Log(2) - 5 Log(x)
n>1
3) We have for |z] <7
eixz + ei(z+1)z — eixZ(l + ez’z)
thus Agirs = 15 and
R e’LZ
Z(_l)n—leinz _ -
et 1+e
We deduce that for —m <t <=
R
Z(—l)"‘1 cos(nt) = =
n>1
R
> (=)™ 'sin(nt) = - tan(;)
n>1
4) The function ¥ =TI"/T" satisfies
U(x)+V(z+1)=2¥(z)+ —
thus
S 1 o ()
2 nrTw =v(1
S oo+ 3 S )

We know that ZZ}Zl o In(2), this gives

n

R
2) (=)™ '¥(n) +1In(2) = —y

n>1

With ¥(n) 4+ + +~ = H,, we find that
R

1
Z(—1)”*1Hn = 51n2

n>1

In the same manner )
2U(x)+ (x+ D)W (z+1) =22V(z) + ¥(z) + 1+ -

gives

3.2 Relation to usual summation.

Let f € O™ from the equation Af(z) + Af(z+ 1) = f(z) we get

n—1

Ap() + ()" Ap(n) = Y (=D f(R)

k=1
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If the alternating series -, (—1)""! f(n) is convergent then (—1)"Af(n) must have a limit when n — oo but
with the oscillation of (—1)™ and the fact that Ay € OT then it seems that this limit is 0. Thus in the case the
series > o, (=1)""! f(n) is a convergent series we expect that

R o
DY) =Y (=) ()
n>1 n=1

To prove this we note that if the series > . ,(—1)" f(x 4 n) is convergent for all Re(z) > 0 and if the function

:E'—)Z(—

is in O7, this sum is the unique solution of A(z) + A(z + 1) = f(z). Thus we get

Ap(x) = ()" f(z+n)
n=0
and
R [e's)
DD ) = (=D f(n+1)
n>1 n=0
Remark

The fact that for alternating series there is not a corrective integral term is also clear if we note that for f
sufficiently decreasing when Re(z) — 400 we have

+1
Agp(e) = wa)( )~ Rf(h)(x )
400 > +oo
= Zf + 2n) / f@2)dr = flz+n+1) +/ f(2z)dx
n>0 n>0 1
= Zf(:c+2n)—2f(x+n+1)
n>0 n>0
= > (-D"f(x+n)
n=0
3.3 Properties of the summation
We have immediately the property of linearity
R R R
D (=DM af(n) +bg(n) =ad (=) f(n) +b) (=1)"g(n)
n>1 n>1 n>1
3.3.1 The shift property
Let f € O™ we have for any integer p > 1
Af(xz+p)+Af(x+p+1) = flz+p)
thus if we note f(+p): x — f(x +p) then A () = Ay(z + p) and
R
DY) () = Ap(p+ 1) = (1P AL p“Z ) (k)

n>1
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This gives the usual property for the shift

R R

YD T p) = f0) = fp— 1) e+ (1P + (CD)P Y (=D ()

n>1 n>1

thus for the special case p = 1 we get

R
S (=) fn+1 )+ Z )" f(n
n>1 n>1
Remark
Let f € O™ and F(x f1 t)dt as a consequence of the shift property we have
R 1 /2
> (=)' F(n) = 75/ Ag(z)da
n>1 1
Proof

Let f € O™ we have

z+1 z+2 z+1
/ Af(a:)dx—l—/ Af(z)dx :/ f(z)dx

+1

thus by the preceding definition

With F(z) = [} f(t)dt this gives

/ Ap()da = ( DU Em+1) - Fn) = = 3 (—1)"F(n+1) = 3 (=1)" " F(n)

n>1 n>1 n>1

and by the shift property this gives f12 Af(z)dr = -2 Z§>1(—1)"’1F(n).
0 >

3.3.2 Summation of even and odd terms.

The classical properties

+oo +oo +oo
=1+ f2n) =) f(n)

and
“+oo “+o0
Y (=0 () =Y (f(2n—1) = f(2n))

are not satisfied by Ramanujan sums.

Theorem 12 Let f € O™ we have

R

S fn-1) = £ fm) 45 D) )

T = = e
Sofen) = 53 fm) g Sy g [ fw
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Proof
It is equivalent to prove the following assertions
R R R 1 2
S -1+ Y sen =3 f+ g [ s
n>1 n>1 n>1 1
and
R R R 1 /2
p— i — . n—1 R
SFCEDED SCOED WOy IO
n>1 n>1 n>1

The first assertion is simply (2.7). For the second assertion let g(z) = f(2z) thus

x rz+1
Ap(@) = Ry(3) = Ry()
and
R R
D (D)) = Re(5) = > 9(n)
n>1 n>1
But we know by eq(10) that
1, & 1 !
Ry(=) = gn—f—&-/ g(t)dt
) =23 |
Then
R R 1 R 1
S D) = Y gtn = 5) =D gt+ [ gt
n>1 n>1 n>1 1/2
thus we obtain
R R R 2
D=0y =D f@n—1) =Y f@n)+ 5 [ f(t)dt
n>1 n>1 n>1 1
g
Remark
From the preceding theorem we have
R R R 1 /2
Yo fn) =) fn—1)+> f(2n) - 3/, f(t)dt
n>1 n>1 n>1
R R R 2
DD ) =Y fen-1) =Y @)+ | fb)dt
n>1 n>1 n>1 1
Examples
1) Let f(x) = %
R R R
1 1 1 1 1
—— - - -1 n—1
Z 2n—1 2 Z n + Z( ) n
n>1 n>1 n>1
thus
R
1 1
25,1 =30ty
n>1

2) Let f(z) = In(z) then
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R R 2
Z( )" Log(n) ZLog —QZLog(Zn)—l—/ Log(t)dt
n>1 n>1 n>1 1
With
R R R 1
Z Log(2n) = Z Log(2) + Z In(n) = §Log(2) + Log(v2m) — 1
n>1 n>1 n>1
we get
R
1 2
_1\n—1 _ - “
S (-1 Log(n) = 5 Log(2)
n>1
And we have also
s 1 1. 2
Log(2n —1) Log( —1)" 'Log(n) = = (Lo 27) — 1) + — Log(—
;g ;g n%:l() 9(n) = 5 (Log(v2r) — 1) + 4 Log(>)

thus

> Log(2n—1) = %(Log(Q) —1)

n>1

and by the shift property

R
Z Log(2n+1) = %(Log(2) +3Log(3)) — 1

n>1
3) Let f(z) = LO%(GE) then
Log(2n) 1 s Log(n) 1 s (=1)"1Log(n) 1 /2 Log(x)
2; on 2 Z n 2 Z n + 2 1 z de
n>1 n>1 n>1
but
R R R R
Log(2n) Log(2) Log(n)  Log(2) 1 Log(n)
Z 2n 72 2n Jrz 2n 2 7+§Z n
n>1 n>1 n>1 n>1
thus
Log(2) 1<~ (=1)""'Log(n) | Log*(2)
2 T3 n 4
n>1
this gives
R/ 1yn—-1 2
3 0T o) _ L)
n>1 n
3.3.3 Derivation and integration
Let f € O™ we have by theorem 8
R R R R 2
YD) =Y 2f@n—1) = f(n) = Y (=) f(n) = > (f(n) - 2f(2n)) +/ ft)dt
n>1 n>1 n>1 n>1 1

Thus if f depend on an extra parameter z or ¢t then the theorems of analyticity en integration of chapter 2
remains valid.
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Examples
1) We know that for Re(z) <0

Z(_l)nfl = In (6 + 1)
=1 e +1
Thus expanding in powers of z we obtain
R
Z(—l)n_lHn _ 1H2(2)
n>1
and »
n—1 _ 1 In (2)
n>1
1
Z(_l)n_anHn = —7z
n>1 16
2) For Re(s) >0
R
DD = = (1 =20)(s)
n>1
thus
S 1
D (=D = (1-21¢(0) = ¢(0) = —
n>1
By derivation, for s # 1 we have
R In(n)
SR < 9t (2 ¢ (s) - (1-21) ¢ (s)
n
n>1
thus
R
d ()" ) = —2(In2)¢(0) +¢ (0)
n>1
= In2+¢(0)
R
D> (=)’ In(n) = — (1-2%) ¢ (=2) = =7¢(3)/(27)°
n>1
R
> (=1 'nFIn(n) = —2M (In2) ¢ (=k) — (1 - 25T ' (—k)
n>1
3) We have for —m <t <
R it it/2
Cqyn—lgint _ € ¢ _i ot
;( Ve = 1w = e — g TighG)
Thus for — T <t <
S 1
z:(—l)”*1 cos(nt) = 3
n>1
and
R
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3.4 Application: Expression of the Stieltjes constants

Theorem 13 All the Stieltjes constants v, = 2521 w can be expressed in terms linear combinations of

the constants vy given by the convergent series

o= S0 20 og ()

n
n=1

More precisely we have
Bii1Log'(2) 7
= —mt 3 Bii1Log (2) Tk

| !
Ry (+1)! K
1>—1,k>0
Proof
By the preceding theorem we have
N I | 1R(f1)n*1121d
2 2n)=+1 ~ 2 2 nitl 2 2 ntl Tg )
m>1 m>1 m2>1

thus

o1 1 & (=)t
Z nztl 1 -9z Z n#tl - ;

m>1 m>1

But we can expand all the terms

R R —zLog(n) too k:
1 e g (-1) Lk Log
Do = X =D Z
m>1 m>1 k=0 m>1
R n— R n—1,—zLog(n + R n—
Z (=y~* Z (—1)ntem=lestm) i (_l)kzk Z (=1)""'Log"(n)
n=tl o n o k! n
m2>1 m>1 k=0 m2>1
+oo
L1 alog®  REEVB g e
1-2-= zLog(2) e=#Log(2) —1 =k

This gives

]
m=o n>1 "
too I+1 +°° - 1
(=)™ By l l ) Lk LOQ (n) 1
- | E e e S Gy -
!
l=—1 (l + 1) k=0 n>1 o
too 1 k 1—1
(=)™ Biy1 ;o (1) (=1)""'Log*(n) 1
— m L 2 _
. > iy L@ ) . ;
m=—1 k+l=m n>1
the coefficient of z~! in the sum is Log=*(2) 2521 % = 1 thus we have
= D" Log BML 1oy (CLF = (Z1)" " Log (n)
> & yo L) 5 0g'(2)*77= 2 .
m=0 n>1 m=0 k+l=m n>1

By identification we get

1 72Lomn Byi1Logt (2 lR —1)" 1Log*(n
IR g"(n) _ 5 Bit1Log (2) ZM

] k!
" n>1 k+l=m (l + 1) k! n>1 n
1>—1,k>0
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O
Examples
For m =20
1 L= (=) Log(n) (=1
;ﬁ - _Log(2) L;l n - B =~ n
thus
S~ (=1)"~"Log(n) L
Y =—1Loy(2) + ;Log*(2)
n=1
Form=1
R R ,
Log) 1 [1& () Log(n)
HZZl n - Log(2) [2; n ]
—31 i(—l)”-;Logm)]
n>1
B3Log(2) | g~ (=)~
- 2! [7; n ]
thus
~ Log(n) 1 1< (—=1)""1Log?(n) 1.,
> =~ Tog@) 5. - + 5[=7Log(2)] + £ Log?(2)
n>1 n=1
For m =2
1 & Log*(n) 1 1 & (—=1)""1Log3(n)
5;;1 n T Log(2) [3'”2;1 n
L o~ ()" Log*(n)
-B 5; nog n
ByLog(2) |~ (—1)"~'Log(n)
By 20!9 [; _ Ogn]
3.5 Other alternate sums
Theorem 14 Let f € O™ then
R n 1 R
DN fR) =5 D (1) ()
n>1 k=1 n>1

Proof
We write

(=1)" ' Ry(n) — (=1)" "' Ry(n+ 1) = (=1)" "' f(n)
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then o o o
S(=D"Re(n) + > ()" Rp(n+1) = > (=1)" " f(n)
but . : :
R R
S (=D)"Rp(n+1) =Y (-1)""'Ry(n) + Rp(1)
thus : .
R R R
23 (=)™ 'Ry(n) = > ()" () + > f(n)
_ > > >
Example
‘We have
R R
> (=1)"'Log(n) =2 (~=1)""'Log(T'(n + 1))
n>1 n>1
thus
R
> (=1)""'Log(n!) = £ Log(>)

Theorem 15 Let We now study series of type

=SS

k=1

If f is of moderate growth then

R 3 R R

PEAGE 52(*1)”’5‘(”) =Y (=) 'nf(n)

n>1 n>1 n>1
R R R T
DY) = 5 Y (F) T () = Y (=) E(n) with F(x) f(u)du
n>1 n>1 n>1 1

Proof
We have SZH(f) = Af(1) + (=1)"A¢(n) + (—1)"~1 f(n) thus the sums

Z ) and Z ) 1SA

n>1 n>1

are well defined if f is of moderate growth and it is equivalent to prove that

R R

D (D" Ay (n) = (1) nf(n)

n>1 n>1

R R

> Arn) = 33+ Y s -5 [ At
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We have
zAp(z)+ (z+ DAz +1) =Ap(z+ 1) + 2 f(x)
thus
R R
Ap(1) =Y (1) M Apn+ 1)+ (1) 'nf(n)

but Ap(1) + (=1)""tAs(n + 1) = SA(f) this gives the first assertion.
For the second assertion we use
Ap(z) — Ap(z +1) = 2A¢(z) — f(z)

and the function R(z) = Ay(z) — ff Ay (z)dx is solution of

R(z) —R(z+1) = 2A4As(x)— f(x)
/ R(z)dx = 0
thus
2 R R
A = [ Ag@dr =230 A = 3 s
i.e. » , » »
S (1) () - / Ap(ayde =23 Apn) = 3 f(n)
n>1 1 n>1 n>1

We have ff Ag(z)dx = Z?Zl(fl)”*l(F(n +1) = F(n)) with F(z) = [} f(u)du

2 R
/1 Ap(z)dzr = =2 (=1)""'F(n)

n>1

Finaly we note that
(—1)" " Ap(n) = Ay (1) = SR () + (1" f(n)
thus
Ag(n) = Ap(1) = )" = ()" 1SN + f(n)
O

Example
For f(z) =1/x let H => 7 _;(—~1)F~'1 then

Theorem 16 If f and g are of modeate growth then

R R R R R

D f@)SH9) + Y (=1 rg()Sa(f) = Do (=) ()g(n) + Y f(n) Y (=

n>1 n>1 n>1 n>1 n>1

Proof
Multiplying by R;(x) the equation A4(x) + Ag(xz + 1) = g(x) we get

Ag(x)Ry(z) + Ag(z + 1) Ry (x) = g(x)Ry(x)

73
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or

Ag(@)Ry(x) + Ag(z + 1)(Ryp(z + 1) + f(2)) = g(2) Ry ()

This gives
Ag(2)Ry(x) + Ag(x + 1) Ry(x +1) = g(x) Ry (x) — f(2)Ag(x +1)
We obtain
R
AfDRs(1) = Y (=1)" ! (g(n)Rs(n) — f(n)Ag(n+ 1))
= ®
= > ()" lgm)Rs(n) = Y (=1)" " f(n)Ag(n+1)
n>1 n>1
R R
= > 0" g Q] f(n) + f(n) = Sulf))
n - n> -
=Y D)) (=DM g) — (D) Y (=1 g(n)
Finaly
R R R R R
0="> (=1)" f(n)g(n) = > _(=1)"'g(n)Su(f) = D_ F)Si(g)+ > f(n) > (—=1)""g(n)
n>1 n>1 n>1 n>1 n>1
O
Example

With f = g the preceding theorem gives

R R R R R
oSS+ D DTS () = DD T W)+ Y f() Y (=) ()

For f(x) = 1/x we have

R R 4 R
H H 1 1
D (NI D S =24 ) (1) G =2+ 50(2)
n>1 " n>1 n n>1 "
We have (cf. Srivastava and Choi p.357 (40))
R
o H, 1 1
D (=D =R = S((2) - 5(Log(2))”
n 2 2
n>1

We get a formula that generalize a formula of Sitaramachandrarao ([4] A formula of Ramanujan, th 3.5).

R
HA 1
E — —yIn2+ = (In2)?
n 2
n>1

where HZ' = Y7 (—1)k1

Bl
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3.6 Generalization

Let N integer > 1 and w a root of unity w = e*™/N m =1, ..., N—1, we can define the Ramanujan summation

of the series
> W f(n)
n>1

Let N integer > 1 we note simply f(Nz) the function
cx = f(Nax)
Lemma
Let w a root of unity w = e2™/N m;m =1,..., N — 1. Let f € O*"/N then the equation
R(z) - wR(z +1) = f(x)

has a unique solution Rf € O?7/N We have

RU;(JJ) = kaf(Nx)(i

Proof
The function R defined by (5.3) verify

Rj(z) — Rf(z +1) = Rf(Nm)(%) - Rf(Nm)(% +1) = f()

For the unicity we note that if R € O?*/N is solution of
R(z) —wR(x+1)=0
then
W R(z) —w T Rz +1) =0
and T : z — w®R(x) is in O?™ and is solution of T'(z) — T'(x + 1) = 0. Thus T is constant and
R(z)=Cw™"

With R € O**/N this implies C' = 0.
O

Definition

Let w a root of unity w = e2™™/N m =1,..,N — 1. Let f € O*/N we define
R
> W' f(n) = R3(1)
n>1

where R} € O?7/N is the unique solution of

R(z) —wR(z +1) = f(x)

Theorem 17 We have for w = e>™/N m=1,..,N —1

X NoL R L V=1 N
n—1 . k 7 1 .

Zw f(n)—Zw Zf(Nn+k+l N)JrNZw /kJrlf(x)dx

n>1 k=0  n>1 P

Fork=1,..,N

R 1R N R
Nn“l‘k_N = J— n _;'_7 e—%k e%” n

2 S DICES DI AP

k
+%/1 f(z)dx
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Proof
‘We have

which is true for w = e

2imrm/N

CHAPTER 3. RAMANUJAN SUMMATION OF ALTERNATING SERIES.

If w =1 the function R given by

is solution of

R N—1
n— k+1
Zw Yf(n) = kaf(Nm)(T)
n>1 k=0
,m=1,.., N —1.
N—1
r+k
R@) = Y Ryva(TE)
k=0

Th
us N-1 T4k o N—1 ok
Ry(x) = Z Ryva) (— )—/ > Ryvay (——)de
L k=0
2 N1 1+1/N
/ ZRf(Nx)( _N/ (x)dx =N fNa:dx—/ f(z

L k=0 1/N

and

N-1 N
=Y R - [ f(wyis
k=0 1

S = kE+1 N
S = Y Rewa(* )= [ sa)ds
n>1 k=0 1
The system of equations
N-1 R N
k+1
> Rivo(3) = s+ [ s
k=0 n>1 1
N-1 R
imm :l’v' + 1 _ 2imm 2imm ),
62 k f(N$)(T) = ¢ K 262N f(n)7m:177N_1
k=0 n>1
is of type ZkN:_Ol bre ¥"% = a,, and can be solved by and by, = + EN Le=#%"kg, thus
kE+1
Riwa)(——) = N / f(x)dx)
n>1
+ iN_ P L P o Zewnf(n)
N
m=1 n>1
With
R 14k
k+1 N
Riov(3) = S fVn=N+148) = [T fVapts
n>1
R 1 N
= Zf(Nn+k+1fN)+—/ f(x)dx
N Jrs1
n>1

we get for k=0,....N —1

n>1

= 1 s 1 pls 2“rm R 2iwm
Zf(Nn+k‘+1—N) = NZf(n)Jrﬁz (k+1) ZeTnf(n)

n>1

k+1
+%/1 f(z)dx

n>1
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d

Remark. Relation with the usual summation
Let w a root of unity w = e2™™/N m =1,...,N — 1.
Let f € O?>™/N_1If the series don>1 w' L f(n+ 2 —1) is convergent for Re(z) > 0 then the function

+oo
R(z) = Zw"ilf(n—ka: -1
n>1

is solution of

R(x) - wR(x +1) = f(x)
If R € O*/N then by unicity of the solution we obtain

+oo
Rf(x) = Zw"ilf(n—kx -1

n>1
thus
R +oo
S ) = 3w f(n)
n>1 n>1
Examples
1)N=2
R 1 R AR
S Hen-1) = LY fm -t 3 Y )
n>1 n>1 m=1n>1
R 1R 1R . 1 2
DIEn) = S fm 45 (D) 45 | fa)de
n>1 n>1 n>1 1
2) N=3
LS 1 & 1 s 2ix 1 ain N im
D fBn=2) = 2D f)+ge Ty e T )+ e Y ()
n>1 n>1 n>1 n>1
R 1 R 4im R 247 247 R 4im
D fBn=1) = 2D f) e Y e ) +ge Y e f(n)
n>1 n>1 n>1 n>1
12 p
+§ : f(x)dx
s 1 & 1 &N i 1 &N i
D fBr) = D f) Y e )+ 5D e f(n)
n>1 n>1 n>1 n>1
1 3
—|—§ : f(z)dz
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Chapter 4

Formal transforms and numerical
evaluations

4.1 Formal transforms

We know that the Ramanujan summation is related to the series — >, %8’“_1 f(1) by the formulas

R m 1
St =-3 %a’“—lf(m + (1)L /0 Rom (1 + 1)3%(!%

n>1 k=1
or .
o~ Bi i 2 b1 (2) o
> s ==Y gttty + [ o s
n>1 k=1
The relation with the series — ), +; %8k_1f(1) can also be viewed in an operator setting.

Let E the shift operator defined by
Eg(z) =g(z+1)

by Taylor formula we have formally E = e?, and the equation R(z) — R(z + 1) = f(x) is

(I — ea)R =f
and we have / 5 B
_ _ | k ok—1
R= I—Ef__ea—fa f=-0 f_zﬁa !
E>1
With 071 f(x) = [;" f(t)dt we get formally
R B,
_ 1 ok
n>1 k>0

Unfortunately this last series is often divergent for the usual Cauchy summation. A more useful formula is
obtained if we work wiyh the difference operator

Ag(x) = g(z +1) — g(x)
Thus we write A = E — I, and translate the equation R(z) — R(z + 1) = f(z) in the form
—AR=f
I

To get an expansion of é we use that og(ITA) — % can be expanded in powers of A and that formally we

have
I I

log(I + A) B log(e?)

=9t

79
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Thus define the modified Bernoulli numbers 3, by

ﬁn 6n+1 +1
n_l n
log 1+t Z +Z (n+1)!

>0
We get

I I Brt1  an
log(I+A) A 77;)(71—1—1)!

Thus

:_7 J— 1f+z 5n+1 A" f

This gives formally

> rm=% AP (41)

Remark
The modified Bernoulli numbers 3,41 are given by

t B
= Z Enyn
log(1 +1) = n!

Thus they are given by Sy = 1 and the relation

gn'n—k—kl_o

this gives
863

1 1 1 19 3
Bl - QaﬁQ - 75)53 - ﬂ,ﬂll - 7%765 - ﬁaﬂﬁ - 7%7

We can give an integral expression of these numbers if we write

t ! ! ! —1)...(x — 1
) :/ exLog(H»t)dz :/ (1—|—t)zd$ — Ztn/ 517(13 ) (-T n -+ )dZC
0

log(1+¢ 0 = Jo n!

thus we get

Bn = /0 x(x—1)...(r—n+1)dz

This formula and the sum ) -, (i”_ﬂl), (A™f)(1) in (4.1) show that Ramanujan summation can be related
to Newton interpolation series.

4.2 Newton interpolation series

The Newton interpolation series are series of type

z—1)...(z—n
St S el

n>0

(z—1)...(z—n)

n!

with the convention =1 si n = 0. They have the following property:

If for zp € R\N the series ) -, anw is convergent then the series ) -, anw

uniformly convergent on every compact of the half plane {Re(z) > zo} thus defining an analytic function

is

X (z=1).(z=n)
Z an—. for z € {Re(z) > zo} (4.2)
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(wofl).‘.'(:vofn)

If for zg < 1 the series Zn>0 an is convergent then the coefficients a,, are related to the values

f(1), f(2), ... of the fonction f by

f(k+1)zza7Lk(k_1) (k_n+1 Zanck

a relation that we can invert to get an expression of the coefficients a,
an = A" f( kaﬂck 1)k

Thus for z € {Re(z) > xo} we get the Newton interpolation formula

+o0
£(2) = Z AT F(1) (z=1)...(z—n)

|
ne0 n:

Remark: Ramanujan interpolation formula
To get the expansion of a function f in Newton series we have to evaluate the terms A™f(1), this can be
done by the generating function

n 141
ZA”f(l)% _ ZkaHk' =3 s Z( le)t

n>0 n>0 k=0 k>0 >0

thus

n k
S Al — e sl

n>0 ) k>0

Now if we write
1 Foo
(z=1)...(z—k) = (—1)1“7/ et dt
I'(— ) Jo

then we have

k k(A K 400

k!
k>0

and interchanging »,~, and f0+oo we get

k k
Z (A k'};>(1>(2’—1)(2—l{3): 1 / 17 —tz A f)( )tkdt

E>0 [(=2+1) k>0

But

ey EVAINW 5~ EV gy

k>0 : k>0

thus the Newton interpolation formula become the Ramanujan interpolation formula

+007 i
f&) = ¢ Z+1/ Z k, f(k + 1)tkat

k>0
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4.3 Another formula for Ramanujan summation

Let f be given by the Newton interpolation formula, then for any integer n > 1

too k
f(n) = %(n —1)(n—k)

To evaluate the sum ZnR>1 f(n) we thus evaluate the sums fo(n —1)...(n — k) and try to prove that

R +o0 k R
3 fn) = %Z(nfl)m(nfk)
n>1 k=0 n>1

We first note that

(z—1.(x—(k+1)—z(@-1.(z—k)=—k+1)(z—1)...(x — k)

thus
Riomtytomty =~ @ = Dla = (k4 1)+ 57 [ @ Do = (k1))
and we get
R 1 2
> (n=1).(n—k) = 1, (= 1).(z — (k+1))da

We verify that

2 1
ﬁ/l (@ —1) (:c—(k—f—l))dxz%ﬂ/o 2z —1)o(z — k)da = f’i:ll
Thus
= Br+1
gl(n_ 1)..(n— k)= P
and the formula (4.1) is simply
R Ak R
Sty =3 ]f,)(l) S (n—1).(n— k)
n>1 k>0 ’ n>

Theorem 18 Let f analytic for Re(z) > x¢ with
If(2)| < Clel#1Log(2)
Let
1
Br+1 = / z(x—1)...(z — k)dx
0
and

AFF(L) = f(5+ DO (~1)F

-

Il
o

J

then the series >~ %(Akf)(l) is convergent and

R )

> fn) = 3 (k)

n>1 k=0
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Proof

83

This is a consequence of the following theorems of Norlund (Sur les series d’interpolation, Gauthier-Villars,

1926):

Theorem 1 of Norlund
Let zg < 1.

If the series 3, - a,, Fo=1)--(@o—n)

= is convergent then the function

+oo

f&) =3 a, Em B2
n=0 :

is analytic for Re(z) > xo and
F(2)] < CelIF ||t

Theorem 2 of Norlund
If a function f is analytic for Re(z) > xo and verify
If(2)] < Clel?1109(2)

then for Re(z) > sup(zg,1/2) we have

= (z—=1)...(2 —n)

flz) =Y A"f(1)

n=0

n!
this expansion is uniformly convergent for Re(z) > sup(zg,1/2) +¢

By the Theorem 2 of Norlund we have

k
fa) =Y %(:ﬁ 1)z — k)

k>0

this expansion being uniformly convergent in every compact of Re(z) > sup(zo,1/2). The series

(A1)
Z;<k+n!@—4y4x—%+1»

is also convergent for Re(x) > sup(zg,1/2). This can be proved by

(A" f)(1) (A*f)(@)

G @ Dol = (b 1) = =55 = Dl =kt 1)

E+1

and applying the classical summation by part. Thus this series define an analytic function

+o00 k
R(z)=-Y_ m(x —1).(z— (k+1))
k=0

for Re(x) > oo = sup(zg, 1/2). This function verify

R(z) — R(z+1) = f(z)
and by the Theorem 1 of Norlund we have

[R(z)| < Cell% [|+3

Thus R is in O7, it suffices now to define Ry by

Ry(x) = R(z) /1 R(t)dt
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By uniform convergence of the series defining R on the interval [1,2] we get the result.
O

Example
If f(z) = 2 then

N L th e 1—et
2 AN =e tz(k+1)! ==

n>0 ’ k>0
thus 1y
A" F(1) = ~—

F) n+1

and »
L=yt :i (=D* Brr
n21n — E+1 (kE+1)
Remark

Note that for any integer m > 1 we have if g(z) = f(z + m)

Amg }:fk+m+1mw D"k = A" f(m+1)
k=0

and by the shift property

R R m m-1
St =S g+ > fn) - / f(2)de
n>1 n>1 n=1 1

thus for any integer m > 1 we get

=z — Bk - m
k
3 fln) = X2 e AMn 41+ 300 - | @

This can be used in some cases to get numerical evaluations of the Ramanujan sums, for example if we set
_ 1 . _
f(x) = @ D Logat1) We get with m = 20

= 0.42816572487123...

R
z; n+1) Log (n+1)

The case of alternating series
For the use of A in the case of summation of alternating series we write the equation A(x)+ A(z+1) = f(z)
in the form

I+ ANA=f
Thus 17
A=
2[+%Af
This gives formally
S (-1"
PCHEIOEDYS gt (A")(1)
n>1 n>0

and we see that the Ramanujan summation of alternating series is simply the classical Euler summation which
is defined by

Euler

D Z o ZC’“%

n>0




Chapter 5

A general algebraic view on summation
of series

5.1 Introduction

The Ramanujan summation differs of the classical summations methods by the fact that for convergent series
the Ramanujan summation does not give the usual sum. And also there is the shift property which seems
very strange for a summation procedure. Thus it is necessary to give a general algebraic formalism to unify
Ramanujan summation and the classical methods of summation of series.

To introduce this formalism we begin with the analysis of the example of Borel summation.
The Borel summation is formally given by the interversion formula

+00 “+o0 tn +oo 400 tn
—t —t
g anzg an/ e jdt:/ e (g an—) dt
n>0 n=0 0 n: 0 n=0 n

More precisely let a complex sequence (a,,), then if the series

+oo n
J@) =Y ants
n=0
is convergent for x near 0 then the function f is analytic near 0 and such that for all n > 0
a, = 90" f(0)
And formally we get

Doan=_ 9"f(0)=(>_9"f)(0) = (-9 f)(0)

n>0 n>0 n>0
Thus >, a, = R(0) with R solution of the equation
(I-9)R=f

Assume that f has an analytic continuation near [0, +o00[ and take the solution

+oo
R(z) = e”/ e tf(t)dt

if this integral is convergent, thus we get formally
“+o0
S 4, = R(0) = / e F ()t
0

n>0

The problem is that the differential equation (I —9)R = f has an infinity of solutions thus we must introduce
a condition to get a unique solution.
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Let E the space of complex analytic functions f near [0, +oo[ such that e™® f(x) has a finite limit when
T — +00.

And let
D@ = Tw)=0sw)
w(f) = £0)
vlf) = lim )

A sequence (a,,) has the generating function f € E' if
a, = 9" f(0)

Since f is analytic near 0 then in a small disk D(0, p) we have

—+oo

n xn
fla)=2 0"f(0)
n=0
The differential equation
R—0R=f

gives the general solution

R(z) = —€° /Oz et f(t)dt + Ke*

The condition R € FE is equivalent to the convergence of the integral f:oo e~ tf(t)dt and the condition
Voo (R) = 0 gives

K= /m e tf(t)dt

Finally we see that the equation R — D(R) = f with the condition v, (Rs) = 0 gives the unique solution
+o00o
R(z) = e’”/ e tf(t)dt
x

Thus the series ), - @y is Borel-summable if the the series ) - an% is convergent for « near 0 and define
by analytic continuation a function f € E then a

B 400
Zan:vo(R):/o et f(t)dt

n>0

5.2 An algebraic formalism

Let a C-vector space E with a linear operator D : E — E and two linear operators vy, vs : . — C such that :
(*) The solutions of Dg = g form a one dimensional subspace of E generated by a € E with
vo(@) = Vo) =1
(**) If vg(D™g) =0 forall n >0 then g=0
Remark

By the property (*) we have
If Dg =g and v (g) = 0 then g =0
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Definition
If (a,) is a complex sequence then we say that (a,) is generated by f € F if

an =vo(D"f) for all n >0
then by (**) this element f is unique.

Formally the sum ano an is defined by

D an =Y v(D"f)=w0(d>_ D"f)=wvo((I-D)"f)

n>0 n>0 n>0

thus
3" ay = v(R) with (I — D)R = f

n>0
If Ry and Ry are solutions of the equation R — DR = f then g = R; — R» is solution of Dg = ¢ thus to get
unicity we use the preceeding remark and we add to the equation R — DR = f the condition v (R) = 0.

Definition
Let T =(E, D,vp,v) as above. Let (a,,) a complex sequence generated by f € E and assume that there is
Ry € E solution of
Ry — DRy = f with Uoo(Rf) =0

then this Ry is unique and we define

.
> an = vo(Ry)

n>0

Remark
Since Ry — DRy = f we have for any positive integer k

D¥Ry — DRy = DFf
thus we get for any integer N > 1

Ry —DVRy=> DFf

This gives
N—
IV SR
n>0 =0
and also
N-1
(D™ Ry) Voo (DF f)
k=0
Examples

1) The usual Cauchy summation
Let E the vector space of convergent complex sequences u = (uy)n>0. Let the operators

D : (un) v (u1,u9,us,...)
vo : (un) > ug
Voo (un) nll}r_sr_loo Up,

Since vo(D™f) = f,, a complex sequence (a,) € F has the generating element

f=(an)
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The equation R — D(R) = f is
(Ro, Rl, RQ, ) — (Rl, RQ, Rg, ) = (ao, ai, as, )
this gives R,, — R,+1 = a,, thus

n
Ry =Rg— Z ay
k=0

and the condition vo (R) = 0 gives R,,+1 — 0 thus

Zak — R() = ’U()(R)
k=0

We see that the series ), - an is Cauchy-summable if > h_oak has a finite limit when n — +oo and we
write

+oo n
g an = vo(R) = limy,— 1 0o E ay
n=0 k=0

we said simply that the series >~ - ay is convergent.

2) The Ramanujan summation.

We have defined the Ramanujan summation for series fo an, indexed by n > 1, these can be seen series
indexed by n > 0 if we let -

R R
D an = by with by = ap 41
n>1 n>0
Let the space F = O™ and the operators
Df(x) = flz+1)
vo(f) = [f(1)
2
vl = [ s
1

The condition (*) is simply that a function f € O™ which is 1-periodic is constant and we get a = 1. The
condition (**) is a consequence of Carlson theorem’s.

A complex sequence (ay)n>1 = (bn)n>0 has the generating element f € OT if for all integer n > 0 we have
bn =vo(D"f) = f(n+1)
that is for all integer n > 1 we have
an = f(n)

The equation
Ry —DRy=f

is simply our difference equation

Ry(x) = Rp(z + 1) = f(x)

and the condition ve(Ry) = 0 is simply the condition ff Ry(t)dt = 0 that we have in the Ramanujan
summation.
We write as usual

R
Y an =vo(Ry) = Ry(1)

n>1
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Properties

1) The linearity property
We have clearly for C € C

T T T
Zan+Cbn,:Zan+Can

n>0 n>0 n>0

2) The shift property
If (ay,) is generated by f, for any integer N > 1 we have the shift property

T T N-—-1 N—-1
D_anin =D an— ) ant ) ve(D'f)
n=0 k=0

n>0 n>0

Proof
If (a,,) is generated by f € E then for any integer N > 1

ansn = vo(D" N f) = vo(D"(DV f))

thus the sequence (a, ) is generated by DV f € E.
The equation Ry — DRy = f gives

DVR; — D(DNRy)=D"f

but generally we don’t have vo (DN Ry) = 0.
If we add —voo (DY Ry)a to DY Ry we get

[DVRf — veo (DY Ry)a] — DIDY(Ry) — voo (DY Ry)a] = DY f
Voo [DV R + 0o (DY Rp)a] = 0
Thus

.
> anin = vo[DV (Ry) — voo (DY Ry)a] = vo(DN (Ry)) — voo (DN Ryy)
n>0

Since and by the preceeding remark we have
N-1
0o (DVNRy) = > veo(DFf)
k=0

this gives the shift property

T T N-1 N—-1
D anin = n =} ant Y veo(DYS)
n>0 n>0 n=0 k=0

O

In the special case N = 1 we get

T T
Zan—l-l - Zan *a0+voo(f)
n>0 n>0

Note that if we have the additional property:
(***) If veo(g) =0 then v, (Dg) =0
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then voo (Ry) = 0 gives ’UOO(DNRf) = 0 for all positive integer thus the shift property is the usual property

T T N-1
Zan+N :Zan_ Zan
n=0

n>0 n>0

This is the case for most summations but not for the Ramanujan summation.

Remark: Generalized limit
If we define the generalized limit of a sequence (a,) by

T

Z(an — Qpy1) = ag — li7r_nan
n>0

then the shift property gives
li7r_n ap, = Voo (f)

Thus the generalized limit associated to the summation is nothing else than v.
To see that the summation is related to the partial sums by this generalized limit let the sequence (r,)
defined by

T
ro = Z (07%%
n>0
n—1
Tn = rO—Zak forn>1
k=0

Since we have 19 = vg(Ry) and (by the preceding remark) for any integer n > 1
rn =vo(D"Ry)
we see that the sequence (), is generated by R thus
1171’117% =Uoo(Rf) =0

and finally we get

|
_

lim(ro — ~0
l}n(?“o Oak)

=
Il

5.3 Examples

1) Cesaro summation
Let E the vector space of complex sequences u = (uy)n>0 such that

Uuo + ...+ Up—1

lim is finite
n—-+o0o n
And let the operators
D : (un) > (ur,u2,us,...)
vo : (un) g
U e Uy
veo ¢ (un) = lim Uo + . A Un1
n——+o0o n

A sequence (a,) € F is generated by

f=(an)
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The equation R — DR = f is Ry, — Ri4+1 = ay, thus

n—1
R()*Rn = Zak :Sn—l
k=0

this gives
RO — R1 = Qag = SO
Ry—Ry = ag+a; =5
n—1
Ry—R, = Z ar = Sp_1
k=0
thus

CRit ..+ Ry SottSna
n N n

We see that R = (R,,) € E if and only if % has a finite limit when n — +o00. Since

Ry

So+ ... +S-1 . So+...+S,_an—1 n Sh_1

n n—1 n n
this implies that % has a finite limit when n — +o00. Thus automatically we get f € E.
The condition v (R) = 0 is lim,, 4o w = 0 this gives
So+ ...+ Sn—
Ry = lim 90+ -+ 501
n—-+oo n

(W) has a finite limit when n — 400 and

Thus series ano ay, is Cesaro-summable if the sequence
we write

C

So+ ... +Sn—
S an = vp(R) = Ry = lim 20 ot
n=0

n—-+oo n

Remark
This can be generalized to Toeplitz summations in this case we let

where (a¢n)nen @ family of sequences indexed by ¢ € N such that:

a) For all t € N the series ), - |as,,| is convergent. There is M > 0 such that S Jagn| < M for all
teN.

b) limt_)a Z:i% at,n =1.

c) limy_,4a, = 0 for all n.

2) Euler summation

Let E the vector space of complex sequences u = (u,) with lim,,_, ;o 52 is finite. And let the operators

D : (up)— (Unt1 — un)
vo : (un) = ug
. Unp
Voo ° lim —

n—-+oo 2N
We have for all n >0

w(D"f) =Y CEfe(=1)"*
k=0

thus we get
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fo =Y vo(D*f)C
k=0

Let a complex sequence (a,,) and the sequence f = (f,,) defined by

Jn = Xn: akcs
k=0

Assume that f € E, we have vy(D" f) = a,, thus the sequence (a,) is generated by f.
The equation R — DR = f is
2Ry, — Rpy1 = fa

this gives
1 1
Ry = =-Ri+=
0 51t + 2fo
1 1 1
R = —Roi —
51t 92 112 + 22f1
1 1 1
2732 = ?R3+2*3f2
we get
1 1 1 1
Ry = ifo + ﬁfl +..t an - 27Rn

We have R € F if and only if the sequence (};:;) has a finite limit, in this case the series )~ -, zn% fn is

convergent and this implies that lim,,_, oo % fn = 0 thus we have automaticaly f € F.

The condition 1

0=vx(R)= lim —R,
gives
R 1 1 1
0= Hm §f0 + ?fl +...+ an
Finally the series ano ay, is Euler-summable if the series
1 n
k
D gt (D aCr)
k>0 k=0
is convergent and we write
£ +o00 1 n
Z an = UO(R) = RO = Z on+1 (Zakcn)
n=0 k=0 k=0
3) Abel summation
Let E the vector space of analytic functions on | — 1, 1] such that

lim (1 — ) f(z) is finite

r—1

Let the operators

vo(f) = f(0)

Voo ( )

~
|
8
—
I
&
~
~
8
~—
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Since f € E is analytic on ] — 1, 1] we can write
+oo
o™ f(0)
— m m 'th m —
f(x) mZ:Oa 2™ with « -

and we have N
Df(m) = Z Q1™
m=0
thus for all n > 0

“+o0
D" f(x) = Z Qg™
m=0

and we get
9" f(0)

n!

vo(D"f) = ap, =
Let a sequence (a,) and assume that the series

+o0o
flx) = Z anx”

n=0

is convergent for x €] — 1,1 and define a function f € E.

Then o £(0)
nT T vo(D" f)
and the sequence (a,) is generated by f.
The equation R — DR = f gives
1

R(z) = 37— (R(0) - 2f(2))
Thus R is analytic on | — 1,1[ and R € F if and only if lim,_,; f(z) is finite then automatically f € FE.
The condition ve (R) = 0 gives

R(0) = lim f(z)

rz—1

n

Finally if the series ) ., a,2" is convergent for all € [—1,1[ and if lim,_; Z;Z% a,x" is finite, then

f€FEand} .;a, is Abel-summable

A
Z an =vo(R) = R(0) = llim Z anz"”
n=0
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Chapter 7

Appendix

7.1 FEuler-MacLaurin and Euler-Boole formulas

7.1.1 A Taylor formula

The classical Taylor formula

Y () LA AL L
f(x)—z f( )H"’ . f(t)
k=0
can be generalized if we replace the polynomial %]: by other polynomials.
Définition
Let u a linear form on C°(R) such that u(1) = 1, we define the polynomials (P,) by:
P o= 1
OP, = P,_1,u(P,)=0forn>1

Generating function for the P,
We have formaly
81(2 Pp(z)2") = Z Pp_1(2)2" =2 Z Py(z)2"
k>0 k>1 k>0

thus

Z Pp(x)2* = Ce®*

k>0

and

(3 Pu(@)2) = 3 pa(Pile)F =1

k>0 k>0
pe (Y Pre(@)2%) = pa(Ce™) = Cpg(e™)
k>0

this gives C' = ﬁ Thus the generating function of the sequence (P,) is

D Pu(a)z" = €™ /M, (2)

where the function M), is defined by M, (z) = pz(e"?).

Examples ;
1) p(f) = f(0), Pu(z) = &5, Mu(2) =1, 3 Py(x)2" = e*?
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n

2) u(f) = fy F@®)dt , Po(x) = 222 M, (2) = 3 [y Gendt = Y 2y = L(e? = 1)

Tz

By(z) ,,  ze
zn: nl o T e —1
The B, (z) are the Bernoulli polynomials and the B,, = B,,(0) the Bernoulli numbers. With the generating
function we verify that By =1, B; = —1/2,Bo, 11 =0if n > 1, B,(1 —2) = (—=1)"B,(z).

3) u(f) = L(f(0) + f(1)) , Pulw) = Enl)
Z E,(z) ,  2e%

n! i e? +1

n

The E,(x) are the Euler polynomials and we call E,, = E,,(0) the Euler numbers.
With the generating function we verify that Eg = 1, F; = —-1/2ifn > 1, E,(1 —2z) = —1)"E,(z).

Taylor formula
Let f be a C*°(R) function, then we have

F@) = f)+ [ oPiGe+y - 00r@

and by integration by parts we get for every m > 1

(0) = F0) + 3 (P S0) ~ Pely)0 @) + " Pty — O™ (1)t

k=1

Applying p at this function as a function of y this gives a general Taylor formula: for every m > 0

£@) = Yy (O F@PL) + ([ Pl = 00" F(e)a
k=0 y
7.1.2 Euler-MacLaurin formula

We can transform the Taylor formula to get a summation formula. Taking z = 0 we get
m Y
£O) =Y 1y (@ FOPLO) =y | Py = 00" (00t
k=0 0

In the case of p: f fol f(t)dt we have

m

10 =3 Fror - [ B o ayanay

k=0
Replacing m by 2m and with B; = —1/2 and Baj1 = 0, we get

1 1 ry —
1= [ s 500 - 10+ 3 e - [ Pl Do (o)) y

The last integral can easily be evaluated by Fubini, we obtain

' Bopny1(t)

m + 1)!82m+1f(t)dt (7.1)

1 m
10)= [ f0at+ 500 - 1)+ Y o+ |

Let j be a positive integer, by replacing f by x — f(j + ) in the last formula we obtain

J+1 m , J+1
1O = [ fOde+ 506 - 16+ )+ Y o [ e e
J k=1 : J :
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where b2m+1(t) = Bgm_H (t — [t])

Summing these relations on j from 1 to n — 1, we get for f € C'°°(]0, 00[) the Euler-MacLaurin formula

)+t f(n) = /nf(:c)dx—i—w (7.2)
+Z ng [0 1Y (7.3)
+[ ?22;;;1_(1))' 62m+1 f(.’L‘)d:L‘ (74)

7.1.3 Euler-Boole formula

In the case of the Euler polynomials, the formula
m Yy
0) = Y n @ F@IPO) ~ (| Pty — 00" (1)t
k=0 0

gives

ok L [0 g

l\D\»—l

Let j be a positive integer, by replacing f by x — f(j + «) in the last formula we obtain

1) = Z%(a’“f(j)Jr@’“f(jH))%
k=0 ’
[T E o)

Define
em(t) = (_1)[t](_1)mE’m (t—1[t])

we obtain by summation on j, the Euler-Boole summation formula

FO) = F@) 4t () = )
k=0 )

+(_1;n_12m:8’“f( +1)%
k=0
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Chapter 8

The chapter VI of the second
Ramanujan Notebook

In the chapter VI of his second notebook Ramanujan gives the defintion of the constant of a series. We give
here an exact copy of this chapter.
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p-99
CHAPTER VI

Let f(1)+ f(2)+ f(3) + f(4) + ... + f(x) = ¢(x), then
o(x) = c+ [ fla)de + 5 f(x) + Ff' (@) = 1" (2)+
%f‘/(az) + %fvn(a:) + &c

sol. ¢(z) — p(x — 1) = f(z) ; apply V 1. (¥)

N.B. By giving any value to x, ¢ can be found.
R.S. is not a terminating series except in some
special cases. Consequently no constant can be

found in 1 f(x) + %f’(x) — %f’”(m) + &c except

in those special cases. If R.S. be a terminating
series, it must be some integral function of

x. In this case there is no possibility of a constant
(according to the ordinary sense) in ¢(z) ; for

o(1) = f(1) + ¢(0) : But ¢(1) = f(1) .. #(0) is always 0

whether ¢(x) is rational or irrational. ... When
o(x) is a rational integral function of (z) it
must be divisible and hence no constant but

0 can exist. The algebraic constant of a se

-ries 1S the constant obtained by completing

the remaining part in the above theorem. We can
substitute this constant which is like the cen

-tre of gravity of a body instead of its di-

vergent infinite series.

(*) V L.If f(x+h)— f(z) = he'(z), then

F(z) = 6(o) — b6/ (2) + B2 120" (z) - BhioHY (z) + &e

If f(x+h)+ f(x) = ho'(z), then

f(@) = 56/ (2) - (22 — ) E2h2" () + (2 — 1) B4 6!V () — &e
Sol. If we write €* for ¢(z), we see that the coeff*® in

R.S. are the same as those in the expansion of ﬁ

and respectively.

_h
eh 41



p.60

E.G. The constant of the series 1 +14+ 1+ &c = —%; for

the sum to x terms :x:c—I—fldx—l—%,'_c:_%
We may also find the constant thus
c=14+2+3+4+&c

40—4—|—8+&c

FST

.-C:_ﬁ

Ola) + iy B fr () cos T = 0

Sol. Let %gb(n) be the coefft. of [ () then we

see ¥(0) =1,

w( ) =0, ¥(5)
P(1) = 0. Agam by V 26 cor 2. (*) we have

(n o 1) =1 whenn=1 . Bnip(n) — m(n—1)B, ¥(n)

() —1,v(4) =1, ¥(6) = —1 &c
=0, (1) =0, (1) = 5 but Br =

n [n “m(n—1)
W?ﬁ)l) L whenn=1 .

:% when n =1, i.e

" p(n) = — cos 7.

3. The sum to a negative number of terms is
the sum with the sign changed, calcula-

ted backwards from the term previous to the
first to the given number of terms with
positive sign instead of negative.

Sol. ¢(x) = f(1)+ f2)+ ...+ f(n+x)
—f(l4+2)—f2+2z)—...— f(n+x)

(*) V 26 cor 2. mnBp+1 =1 when n =0

Sol. nSp41 = ﬁﬂ? ™ Bni1 =1 when n =0

i.e. ™Bn+1 =1 when n approaches 0.
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p-61

change x to —x and put n = x, then we have

¢(—x) = ¢(0) = {f(O) + f(=1) + f(=2) + .. + f(=z + D};

but ¢(0) = 0.
EG 1+2+4+3+ &c to =5 terms
— (0-1-2-3—4)=10

4.1. For finding the sum to a fractional num

-ber of terms assume the sum to be true al

~ways and if there is any difficulty in find

-ing ¢(x), take n any integer you choose,

find ¢(n + x) and then subtract {f(1+ x)+
fC+z)+ fB+x)+ ...+ f(n+x)} from the result.

ii. ¢(h) = ¢(n) —{f(1 2—1— h)+ f2+h)+...+ f(n+h)}
+hf(n)+ % '(n) + %f”(n) + &c where n
1S any integer or infinity.

EG1 1+1+3+ .3
=43+ D) — (e o + k) when n =
= co+logen — (g + 533 + - + 713;) when n = oo

where cy 1s the constant of E%

nh —
2. |h= EEa[EE Gy when n = 00.

|h = lnth |nlh _ n"(4+L)(1+2). (141)

50L. [n etk T (142)(14+5).(14+0)

h

. . 1 2 h - e
ShE1+ )0+ (1+F2) = (+2)(1+5)..(1+E)
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p.62

iii. ¢(h) = xf(1) — 2" f(1+h) +22f(2) — 22f(2+ h) + &c

5. Def. A series is said to be corrected when its
constant is subtracted from it.
The differential coeﬁt. of a series is a corrected series.

i e U +e(2 )+ Ao = ¢'(1) + ¢'(2) +
+¢'(z) — where c is the constant of ¢'(1) + ¢'(2)
+¢'(3) + ... + ¢ (x).

Sol. In the diff'. coefft. of ¢(1)+ ¢(2) + ... + ¢(x)

there can’t be any constant. Therefore it
should be corrected.

N.B. If f(1)+ f(2)+ ...+ f(x) be a convergent
series then its constant is the sum of the series

dii+i+.4+Y) g 1 1
E.G.1. o = e T e T e e
v 1 1 1
e LA A A

1 1
= @z T e T &ee

2. If ¢y be the constant of E%, then
dle _ Lx(Z— — )

Sol. U = |p@8lr — | (51 — )
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3. [, Tidx =log, |z + zcp.

4 [y(AP+28+ 4 aP)de = (1M + 29 + 42t -

5, A2 tedrl) — 10(19 4+ 2° + ...+ 2%) + 2.
6. [T (VI+V2+ .+ Va)de =21V +2V2 + ... + 2y/7)
T 1 1
_E(l\_ﬁ + 2\—@—}— &C)

6. If f"(z) stands for the n th derivative of f(z)
and ¢, be the constant of {f™(1) 4+ f*(2) + ... + f"(z)}
then ¢(x) = —c1x — 02”["—; - c;ff—; — C4T—i — &c

Sol. ¢(x) = (0) + £¢'(0) + 56" (0) + &
But from VI 5 we have ¢(0) =0, ¢'(0) = —cy, ¢"(0) =
—co &c

E.g. 1. loge|x = —S1x + %:UQ — %az?’ + &c where S,

is the constant of (1= + 5+ + 37 + &c).

2. E% = Sox — Ss2% + Syx’ — &c where S,, = %n + 2% + &c
N.B. This is very useful in finding ¢(x) for

fractional values of x.

7. If ¢ be the constant of
FE A+ L+ TG+ SR, then



z H(EL) 4 4 (e "+1) then
) = Eb(ﬁ) —o(51) = f(%)

some constant; hence if these be cow’ected

they must be equal. 1(x) contains n terms each
each of which is of the form ¢(y) whose constant
is c. The constant of ¥(x) is nc & the con-
stant of f(2)+ f(2) + ...+ f(£) is ¢, by our
supposition.

Cor. 1. ¢(—=1)+¢(=2) + ...+ ¢(—=L) = nc— ¢,
Sol. Put x = 0 in the above theorem.

2.4. ¢(—3) =2c— ¢,
. c=cy=dc.

iii. ¢(—3) + d(—3) =3c—

w. ¢(—1) + ¢(—2) =2c+ ) — ¢}

c+ [ fla)dr — (1= DB f () + (1 -
—tee = 0 {1 ) B ) cos 2

1
23

" (2)

107
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Sol. Put n = 2, change x to 2x and apply VI 1.

9.i. S(a1 + as + az + &c) means that the series is a conver
gent series and its sum to infinity is required

ii. C(ay + ag + as + &c) means that the series is a di-
vergent series and its constant is req®.

iii. G(a1 + ag + ag + &c) means that the series is oscil-
lating or divergent and the value of its genera-

ting function is required.

N.B. Hereafter the series will only be given omit

-ting S,C or G and from the nature of the series
we should infer whether C,S or G is req’; more

over if a series appear to be equal to a finite qua

-ntity we must select S,C or G from the nature

of the series.

10.1. The value of an oscillating series is only true
when the series is deduced from a reqular series.

For ezample the series 1 —1+1—1+ &c = % only
when it 1s deduced from a reqular series of

the form ¢(1) — ¢(2) + ¢(3) — &c. Again if

we take an irreqular series a” — b" 4+ ¢ — d"

+&c we get the same series 1 — 1+ 1 — 14 &c when
r becomes 0 ; yet its value is not % in this case

1. a1 — as + ag — ag + &c is not equal to the series
(a1 — ag) + (a3 — aq) + (a5 — ag) + &c or to the series
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a; — (a2 —as) — (ag — as) — (ag — a7) — &c ; but to the
series a; — (as — ag + ag — &)

e.g. 1 =243 —4+ &cis not equal to (1 —2) + (3 —4)
+(5—6)+&cortol —(2—3)—(4—5) - &c

21. (a1 — a9 —|—CL3 —&C) + (b1 — bQ +bg - &C)
= (a1 :Ebl) — (agibg) + (a3:|:b3) — &c

Ez.i.shew that (a1 — as + az — &c) + (by — by + &c)
:a1+(61—ag)—(bg—a3)+(b3—a4)—&c

Sol. L.S = aj + (by — by + b — &c) — (ay — ag + &c)
= a1 + (b — ag) — (by — a3) + &c

2. a1 —as+ag —as + &c =% + 3{(a1 — az) — (a» — a3) + &c}
3. =3 4 H(aq) — 2ay + a3) — (az — 2a3 + aq) + &c}

4. = W - %{(al — 3ay + 3az — ay) — (ag — 3az + 3ay
—CL5) + (a3 - 3@4 + 3@5 - CL6) - &C}

il. a; —as + as — aq + &c

_ a1 ai1—as a1 —2as+as
=0 9o | < + &ec

= za; — v2as + 22as — xtay + &c

— ZL’% _ $2a1;a2 + x3a1—2§2+a3 + &C

when x approaches unity.
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12. If Z—; lies between Z—; & Z—i, then

2
ay — as + az — ay + &c lies between al(ilaz & ay —

a3

0,2+CL3

e.qg. 1—2+3 4+ &c lies bet'weeng&g and its

values is 1. |0 — [1+ [2 — |3 + &c lies between

1 & 2 zts value 18 % very nearly.

But2—21+31—41+5 — &c cannot lie

1
&2— 2;)° a52—5isn0t

between 5 +21

1
lying between 221 & i? .1.e 1t cannot

lie between 889 & 929 as its value 1s 1.193

13. ¢1(x) + Pa(x) + ¢3(x) + &c can be expanded in
ascending powers of x , say Ay + Az + Ayz? + &c
where each of A1, Ao, &c is a series.

Case I When A, is a convergent series

(1) If Ag+ Az + Asx® + &ec be a rapidly conver
-gent series what is required is got.

(2) But if it is a slowly convergent or an
oscillating series, convergent or divergent (at
least for some values of = )

(a).Change x into a suitable function of y so
that the new series in ascending powers



p.68

of y may be a rapidly convergent series;
3

e.g. letﬁ:y, thenx—f”;—i—%—zf—i—&c

3 5 7
Yy
= sttt &e

(b) or convert it into a continued fraction
2
e.q. $—%+%x3—£x4+&c: Ttz

315 1+ 34 5+&ec
1_p 2 3 _ z
T z+x x+&c_x+1_ 122
e

(c) or transform it into another series by ap-
plying 111 8; e.q. % — % + % — L+ &
1 1 1 e

T z+l (24D (z+2) + (x+1)(x+2)(z+3)

(d) or take the reciprocal of the series and try to
make it a rapidly convergent series in anyway

Case II When A, is an oscillating (convergent
or divergent) or a pure divergent series

(1) Let C,, be the constant or the value of its
generating function. Then the given series

= U(x) + co + 17 + cx® + c32° + &c where U(x)
can be found in special cases.

(2) But if ¢y + c12 + cox® + &c be a divergent series

find some function of n (say P,) such that
the value of Py+ Pix + Pyx? + &c may be easily

111
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found and c, — P, may be rapidly diminish as n
increases. Then the given series =
F(x)+ (co— By) + (c1 — Pz + (ca — Po)x® + &c

egl —g— 5 +z—&e=1(1-141-&c)

—L(1-2+43—&c) =5 — = + &

2. 12ix2 + 22ix2 + 32i$2 + &c = —é(l +14+1+ &C)
—L (12422 + 32+ &c) — H(1H 4+ 24 4+ 30 + &) = U(2)
1 1 weotg(mx)

222 T 22 2x

3.+ &+ +&e=(1+1+1+&c)
—z(logl 4 log2 + &c = —%—xlog\/Q_—&c
:ﬁ+1+x+x2+&c—%—xlog\/2_—&c
=L 414 (1-.91804)z — &c

=L 4+ 1+ 8106z — &c

3 X €T €T
14.1 €$+1 + 62;5—"-1 —|— e3g;+1 + &C

—log2 — £ 4 (B2 221 | (B2 Uy

oS ) 2|2 4(4
(BG) 616 + &C

x x T T
sol. e*+1 + e?r+1 + e3741 + etr41 + &

=21+ 1+1+&) - B (1 +2+ 3+ ko)

+B (1 4 28 4 30 + &) — e
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= \IJ(CC) — ﬁ + (BQ)Zm (22|_2_1) + (B4)2x (QL + &C

Now it is req? to find V(x)
The given series = =5 — =i + =g — &c
= log2+ terms involving x & higher powers

of ... ¥(x) = log,2.

X x x x
U & + e?r—1 + e3r—1 + 6493 1 + &C

=C —log.x + % (Bg)”T B2t L Bg% — &

Sol. Proceedind as in the previous theorem
we have the series = V(z)+C+ %

_322% — B42% &c
But we know =9 T eng + 396 —|— &e

= (ezz:x_,l + 62”” 1 + &C) (eﬁxfl + 64‘” 1 + &C)
L U(x) — ¥(2x) =log2 ; hence ¥(x) = —log.x

Ex.1.shew that the constant in the series
W14+ W2+ W3+ WaA+ .+ W
18 — 4969100

log, 2
2. ﬁ + 22+1 + gy &= § + % nearly
3. g + 4+ 4 &c — 6.331009 .

1+ 1+(5)3

1+(5)”

113



114 CHAPTER 8. THE CHAPTER VI OF THE SECOND RAMANUJAN NOTEBOOK

ma g + &c = 27 nearly
(3)

15. 1 L+ S 4+ e+ &e

_ lat 12241 | 1 2341
_xai—l—i_ f 2— _*—lx9x3 1+&C
1. R x4 7+ &
_ laz*41 1 z'41 12%+1 g0

za2—1 4 xt—1 29 26—-1

x x6(a3-1)

+
1 _ 1
im_i{m‘l—{_ +x12 +x12(a:4 1)}

Adding up all the terms we can get the results.

=+ &c to n terms

16. . +1 ax2+

l—ax 1 aac

arz (arz?)? (arz3)3
= 1=+ + 5 + &c to n terms

S s S

re 1—rz?
to n terms.

T _ arxr
sol. ==t

2 2\2
r? ) 2 22,

l—az? = 1—ax?
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1_72$3 = (fii); + 73 + ardzd + a’r3a5.
&c&eckec

Adding up all the terms in the n rows we can get the results.
Cor. —/— + TQmQ + 1_7’;63 + &c

l—ax 1—a 59

(arz?)

1—ax3 + &c
a®(ra?)? a®(ra®)t

1—rz? 1—rz3

N N oS + &e

1-rzx

2 3
17, i+ G 4 ) B

— .a.—(l_lrg)’&”_n) + (a +b) —(1_177;;7)18”3_%) (mnz)

+(a +2b); L’ )(mnx2)2 + (a+3b); Lmna®

1—-ma?)(1—nax? 1—ma3)(1—na?)
2

+&C+ %{(1@5)2 + ((17717:1?)2 + ((Wimj ))2 + &c

(a+b)n (a+2b)n?

Cor 1. 1fn + 1-nx + 1—na? + & ,
= a1 + (a + b))t (n%z) + (a + 2b) 2L (n?2?)?

3,.2 5,.6 7,12
tH{T5E + oo T e T ey T &)

2. If A, denotes the no. of factores in n including
1 & n then %%—%—i—%#—&c:%—kxf_l—l—&c
and hence deduce VI 15 1




