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Ramanujan summation of divergent series

B.Candelpergher

Abstract

In Chapter VI of his second Notebook Ramanujan introduce the Euler-MacLaurin formula to
define the ”constant ” of a series. When the series is divergent he uses this ”constant” like a

sum of the series. We give a rigorous definition of Ramanujan summation and some properties
and applications of it. These properties of the summation seems very unusual so in the last

chapter we give a general algebraic view on summation of series that unify Ramanujan
summation with the classical summations procedures.
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Introduction

It is possible to give a meaning to the sum

+∞∑
n=1

n = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ...

which appears in the study of Casimir effect, by the analytic continuation of the Riemann zeta function defined
for Re(s) > 1 by ζ : s 7→

∑+∞
n≥1

1
ns . This function has an analytic continuation to C\{1} and thus we can set

for example
∑+∞
n=1 n = ζ(−1). But this strategy does not work with the series

+∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ ...

since the zeta function has a pole at s = 1.
These series are examples of divergent series. The classical definition of convergence of a series

∑
n≥1 an by

+∞∑
n=1

an = limn→+∞

n∑
k=1

ak (when this limit is finite)

was introduced by Cauchy in order to avoid frequent mistakes in working with series.
But non convergent series that is ”divergent series” appear elsewhere in analysis. Thus some other methods

of summation of series have been introduced by several mathematicians such that Cesaro, Euler, Abel, Borel
and others, in particular Ramanujan. These methods of summation assign to a series

∑
n≥1 an a number S

obtained by taking the limit of some means of the partial sums Sn =
∑n
k=1 ak.

In the last chapter of his book ”Divergent series” Hardy introduced the method employed by Ramanujan.
This method is based on the Euler-MacLaurin summation formula which is an asymptotic expansion when
n → +∞ of the partial sum Sn =

∑n
k=1 f(k) where f is a sufficiently regular function. For Ramanujan we

can always find, in this expansion, a natural constant (not depending on n) which he call ”the constant of the
series” and treats like a sort of sum of the series.

The precise definition of this summation is not given xplicitely by Ramanujan who uses intuitive and formal
calculations. We define this summation in limiting us with the series

∑
n≥1 f(n) when f is a function not too

increasing.
The coherence of our definition constrains us to deal, in the case of convergence of the series

∑
n≥1 f(n),

with an integral term which is the difference between the Ramanujan-sum and the classical Cauchy-sum of
the series. There is also the apparition of an integral when we compare the sums of the series

∑
n≥1 f(n) and∑

n≥1 f(n+ 1).
If we account for these properties we can give a precise meaning to some formal manipulations and obtain

rigorous results in applying Ramanujan summation to some divergent series.
These properties of the summation seems very unusual so in the last chapter we give a general algebraic

view on summation of series that unify Ramanujan summation with the classical summations procedures.
In appendix we give the classical Euler-MacLaurin and Euler-Boole formula.
Evidently we can not claim that our version of the Ramanujan summation is exactly the summation pro-

cedure that Ramanujan had in his powerful mind, so we give an exact copy of the Chapter VI of the second
notebook in which Ramanujan introduce the ”constant of a series”.

My warmest thanks to M.A. Coppo, E.Delabaere, H.Gopalkrishna Gadiyar and R.Padma for their interest
and contributions to the study of Ramanujan summation.

iii



iv INTRODUCTION



Chapter 1

Ramanujan summation

1.1 The Ramanujan constant of a series

Let f a smooth function defined for real x > 0. In the beginning of Chapter VI of his Notebook 2, Ramanujan
introduce the sum

f(1) + f(2) + f(3) + f(4) + .....+ f(x) = φ(x),

which is solution of
φ(x)− φ(x− 1) = f(x) with φ(0) = 0

Let the numbers Br are defined when r = 2, 4, 6, ... by (second notebook chapter V, entry 9)

x

ex − 1
= 1− x

2
+
∑
k≥1

(−1)k−1B2k

(2k)!
x2k

then Ramanujan writes the Euler-McLaurin series

φ(x) = c+

∫
f(x)dx+

1

2
f(x) +

B2

b2
f ′(x)− B4

b4
f ′′′(x) +

B6

b6
fV (x) +

B8

b8
fV II(x) + ...

and he said about the constant c: The algebraic constant of a series is the constant obtained by completing the
remaining part in the above theorem. We can substitute this constant which is like the centre of gravity of a
body instead of its divergent infinite series.

In Ramanujan notation B2n = (−1)n−1B2n, where the Bn are the usual Bernoulli numbers given by Bn =
Bn(0) defined by

zezx

ez − 1
=
∑
n≥0

Bn(x)

n!

Thus we can write the above Euler-McLaurin series in the form

ϕ(x) = c+

∫
f(x)dx+

1

2
f(x) +

∑
k≥2

B2k

(2k)!
∂2k−1f(x)

Unfortunately in this last formula the series
∑
k≥2

Bk
k! ∂

k−1f(x) can be a divergent series and in the integral of
f the low limit of integration is not precisely defined. Thus we must replace this series by the finite sum and
give a precise meaning to the integral. Then we get the Euler-MacLaurin formula (cf. appendix):

f(1) + ...+ f(n) = Cm +

∫ n

1

f(x)dx+
f(n)

2
+

m∑
k=1

B2k

(2k)!
∂2k−1f(n)−

∫ +∞

n

b2m+1(x)

(2m+ 1)!
∂2m+1f(x)dx

where

Cm =
f(1)

2
−

m∑
k=1

B2k

(2k)!
∂2k−1f(1) +

∫ +∞

1

b2m+1(x)

(2m+ 1)!
∂2m+1f(x)dx

1



2 CHAPTER 1. RAMANUJAN SUMMATION

and the bn are the periodic Bernoulli functions defined by bn(x) = Bn(x − [x]), In this formula it is assumed

that the function f is an infinitely differentiable function and that the integral
∫ +∞

1
b2m+1(x)∂2m+1f(x)dx is

convergent. If it is convergent for all m ≥M then by integration by parts we verify that the constant Cm does
not depend on m if m ≥M thus we set Cm = C.

We use the notation

C(f) =

R∑
n≥1

f(n) =
f(1)

2
−

m∑
k=1

B2k

(2k)!
∂2k−1f(1) +

∫ +∞

1

b2m+1(x)

(2m+ 1)!
∂2m+1f(x)dx

and call the constant C(f) the Ramanujan sum of the series.

Example

If f is a constant function then ∂f = 0 thus
∑R
n≥1 f(n) = f(1)

2 . Thus

R∑
n≥1

1 =
1

2

.
If f(x) = x then ∂3f = 0 thus

R∑
n≥1

n =
1

2
− B2

2
=

5

12

The case of convergence
Assume that the integrals

∫ +∞
1

bn(x)∂nf(x)dx are convergent for n ≥ 1.
Then the Euler-MacLaurin formula is valid for m = 0 and we get

f(1) + ...+ f(n) = C(f) +

∫ n

1

f(x)dx+
f(n)

2
−
∫ +∞

n

b1(x)∂f(x)dx

Since
∫ +∞
n

b1(x)∂f(x)dx→ 0 when n→ +∞ we get

R∑
n≥1

f(n) = C(f) = lim
n→+∞

(
f(1) + ...+ f(n)−

∫ n

1

f(x)dx− f(n)

2

)
Note that if the series

∑
f(n) and the integral

∫ +∞
1

f(x)dx are convergent we get

R∑
n≥1

f(n) =

+∞∑
n≥1

f(n)−
∫ +∞

1

f(x)dx (1.1)

Remark: Since b1(x) = x− [x]− 1/2 we have also the integral formula

R∑
n≥1

f(n) =
f(1)

2
+

∫ +∞

1

(x− [x]− 1/2)f(x)dx

Examples
1) If f(x) = 1

xz with Re(z) > 1 then |∂f(x)| = |z| 1
xRe(z)+1 thus

∫ +∞
1
|∂f(x)|dx < +∞ and

R∑
n≥1

1

nz
=

+∞∑
n≥1

1

nz
−
∫ +∞

1

1

xz
dx =

+∞∑
n≥1

1

nz
− 1

z − 1

thus for Re(z) > 1 we have

R∑
n≥1

1

nz
= ζ(z)− 1

z − 1
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2) If f(x) = 1
x then

R∑
n≥1

1

n
= lim
n→+∞

(

n∑
k=1

1

k
− Log(n)− 1

2n
) = lim

n→+∞
(

n∑
k=1

1

k
− Log(n))

Thus
R∑
n≥1

1

n
= γ

where γ is the Euler constant.

3) If f(x) = Log(x) then by Euler-MacLaurin

R∑
n≥1

Log(n) = lim
n→+∞

(

n∑
k=1

Log(k)− (nLog(n)− n+ 1 +
1

2
Log(n))

Thus the Stirling formula we have

lim
n→+∞

n∑
k=1

Log(k)− (nLog(n)− n+
1

2
Log(n)) = Log(

√
2π)

is equivalent to

R∑
n≥1

Log(n) = Log(
√

2π)− 1

4) We have by Euler-MacLaurin

R∑
n≥1

nLog(n) = lim
n→+∞

( n∑
k=1

kLog(k)− Log(n)(
n2

2
+
n

2
+

1

12
) +

n2

4

)
− 1

3

Thus
R∑
n≥1

nLog(n) = Log(A)− 1

3

where A is the Glaisher-Kinkelin constant (cf. Srivastava and Choi p.39).

Remark

Note that if the derivatives ∂mf(x) are sufficiently decreasing at infinity for m ≥M so that∫ +∞
1

bm(x)
m! ∂mf(x)dx is convergent, then for all a > 0 we can write

f(1) + ...+ f(n) =∫ a
1
f(x)dx+ f(1)

2 −
∑m
k=1

B2k

(2k)!∂
2k−1f(1) +

∫ +∞
1

b2m+1(x)
(2m+1)! ∂

2m+1f(x)dx

+
∫ n
a
f(x)dx+ f(n)

2 +
∑m
k=1

B2k

(2k)!∂
2k−1f(n)−

∫ +∞
n

b2m+1(x)
(2m+1)! ∂

2m+1f(x)dx

thus we see that the constant C(f) =
∑R
n≥1 f(n) is replaced by

Ca(f) =

∫ a

1

f(x)dx+

R∑
n≥1

f(n)
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It seems that Ramanujan let the possibility for the constant on the series that the choice of a is on the series
in consideration:

* If the series
∑
f(n) and the integral

∫ +∞
1

f(x)dx are convergent then with a = +∞ we get

C∞(f) =

∫ +∞

1

f(x)dx+

R∑
n≥1

f(n)

and with our preceding formula (1.1) we get

C∞(f) =

+∞∑
n=1

f(n)

This is compatible with an affirmation of Ramanujan in Chapter 6 p.62 of Notebook2:
”If f (1) + f (2) + ... + f (x) be a convergent series then its constant is the sum of the series.”

* If for example f(x) = x then C∞(f) is not defined but

C0(f) =

∫ 0

1

xdx+

R∑
n≥1

n = −B2

2

To get simple properties of Ramanujan summation we fix the parameter a in the integral, we make the choice
a = 1 in order to have

R∑
n≥1

1

n
= γ

With the use of Euler-Maclaurin formula we have the definition of the constant of a series by

R∑
n≥1

f(n) = lim
n→+∞

(f(1) + ...+ f(n)− [

∫ n

1

f(x)dx+
f(n)

2
+

m∑
k=1

B2k

(2k)!
∂2k−1f(n)] (1.2)

this needs convergence of the integral
∫ +∞

1
b2m+1(x)∂2m+1f(x)dx.

This hypothesis is not always satisfied, for example by a simple series like
∑
en. Thus we need to avoid the

systematic use of Euler-McLaurin formula and define in another way the Ramanujan summation.

Remark
A nice example of this Ramanujan’s flexibility in the choice of a is the following derivation of the functional

equation for the zeta function by Ramanujan.
For r = 2, 4, 6, ... we have the classical Euler formula

+∞∑
n=1

1

nr
=

1

2

(2π)r

r!
Br

thus (second notebook chapter V, entry 25 ) Ramanujan define Br for r > 1 by

1

2

(2π)r

r!
Br =

+∞∑
n=1

1

nr
= ζ(r)

Let r a positive integer the Euler-MacLaurin formula gives for f(x) = xr

φ(x) =

∫ x

0

trdt+ C0(r) +
xr

2
+
∑
k≥1

(−1)k−1B2k

(2k)!
r(r − 1)...(r − (2k − 2))xr−(2k−1)

where the series in the right side is a finite sum.
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If r = 2m+ 1 the value at x = 0 of the right side is

φ(0) = C0(2m+ 1) +
(−1)k−1B2k

(2k)!
r(r − 1)...(r − 2k + 2) with k = m+ 1

thus it is

φ(0) = C0(2m+ 1) +
(−1)mB2m+2

2m+ 2

The equation φ(0) = 0 gives for r = 2m+ 1

C0(r) = − (−1)
r−1
2 Br+1

r + 1
=

(−1)
r+1
2 Br+1

r + 1
=
Br+1

r + 1
cos(π

r + 1

2
)

Thus for r = 2m
Br
r

cos(π
r

2
) = C0(r − 1) = constant of

∑
xr−1

In Chapter V entry 4 Ramanujan extend this formula and replace r by 1− r this gives

B1−r

1− r
cos(π

1− r
2

) = constant of
∑

x−r

and Ramanujan note that for r > 1 we have

constant of
∑

x−r =

+∞∑
n=1

1

nr
=

1

2

(2π)r

r!
Br

(note that the constant is now C∞(x−r)) thus he obtain

B1−r

1− r
cos(π

1− r
2

) =
1

2

(2π)r

r!
Br

With this formal derivation Ramanujan get the functional equation

B1−r

1− r
sin(π

r

2
) =

1

2

(2π)r

r!
Br

With 1
2

(2π)r

r! Br = ζ(r) this gives the classical functional equation for the zeta function

ζ(1− r)2Γ(1− r)(2π)r−1 sin(π
r

2
) = ζ(r)

We shall give later a more rigorous proof of the functional equation.

1.2 Ramanujan summation

1.2.1 The functions ϕf and Rf

In his notebooks Ramanujan use the function ϕ(x) = f(1) + ...+ f(x), it seems he has in mind a sort of unique
interpolation function ϕf of the partial sums of the series associated to f . This function must verifiy

ϕf (x)− ϕf (x− 1) = f(x)

and Ramanujan gives the additional condition ϕf (0) = 0.
This gives for n integer ≥ 1

ϕf (n)− ϕf (0) = f(1) + f(2) + ...+ f(n)

thus if the series
∑
f(n) is convergent we must have limn→+∞ ϕf (n) =

∑+∞
n=1 f(n).

Our usual Euler-Mclaurin formula

f(1) + ...+ f(n) = C(f) +
∫ n

1
f(t)dt+ f(n)

2 +
∑m
k=1

B2k

(2k)!∂
2k−1f(n)−

∫ +∞
n

b2m+1(t)
(2m+1)! ∂

2m+1f(t)dt
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writes
ϕf (n) = C(f) + f(n)−Rf (n)

with

Rf (n) =
f(n)

2
−

m∑
k=1

B2k

(2k)!
∂2k−1f(n) +

∫ +∞

n

b2m+1(t)

(2m+ 1)!
∂2m+1f(t)dt−

∫ n

1

f(t)dt (1.3)

and

C(f) =
f(1)

2
−

m∑
k=1

B2k

(2k)!
∂2k−1f(1) +

∫ +∞

1

b2m+1(x)

(2m+ 1)!
∂2m+1f(x)dx = Rf (1)

The relations ϕf (n) = C(f) + f(n)−Rf (n) and f(n+ 1) = ϕf (n+ 1)− ϕf (n) gives the difference equation

Rf (n)−Rf (n+ 1) = f(n)

1.2.2 A difference equation

By the preceding section it seems natural to define Ramanujan summation of the series
∑
n≥1 f(n) by

R∑
n≥1

f(n) = R(1)

where the function R is solution of the difference equation

R(x)−R(x+ 1) = f(x)

But clearly that this equation is not sufficient to determine the function R, we need other conditions on the
function R. Let us try to find these conditions.

We see by the preceding definition of R = Rf (eq. 1.3) that if f and his derivatives are sufficiently decreasing
at +∞, we have

lim
n→+∞

R(n) = −
∫ +∞

1

f(x)dx

This condition involves the integral
∫ +∞

1
f(x)dx which in the general case can be divergent thus we translated

it in another form. Suppose we have a smooth function Rf solution of the difference equation

Rf (x)−Rf (x+ 1) = f(x) for all x > 0

Integrating between k and k + 1 for all integer k ≥ 1, and and summing on k we get∫ +∞

1

f(x)dx =

∫ 2

1

Rf (x)dx− lim
x→+∞

Rf (x)

Thus the condition

lim
x→+∞

Rf (x) = −
∫ +∞

1

f(x)dx

is equivalent for Rf to the condition ∫ 2

1

Rf (x)dx = 0

Thus we can try to define the function Rf by the difference equation Rf (x) − Rf (x + 1) = f(x) with the
preceeding condition. Unfortunately this does not specify the function Rf because we can add to Rf any
combination of periodic functions x 7→ e2iπkx. To avoid this we add the hypothesis that Rf is analytic for
Re(x) > 0 of exponential type < 2π.

Definition
A function g analytic for Re(x) > a is of exponential type < α (α > 0) if there exist β < α such that

|g(x)| ≤ Ceβ|x| for Re(x) > a

We define Oα the space of functions g analytic for Re(x) > a with some a < 1 and of exponential type < α.
We say that f is of moderate growth if f ∈ Oε for all ε > 0.
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Lemma 1
Let R ∈ O2π solution of R(x)−R(x+ 1) = 0 with

∫ 2

1
R(x)dx = 0, then R = 0.

Proof
By the condition R(x) − R(x + 1) = 0, we see that R can be extended to an entire function. And we can

write

R(x) = R0(e2iπx) ,

with R0 is the analytic funtion given in C − {0} defined by R0(z) = R( 1
2iπLog(z)) (where Log is defined by

Log(reiθ) = ln(r) + iθ with 0 ≤ θ < 2π).
The Laurent expansion R0(z) =

∑
n∈Z cnz

n gives

R(x) =
∑
n∈Z

cne
2iπnx ,

where

cn =
1

2πrn

∫ 2π

0

R0(reit)e−intdt =
1

2πrn

∫ 2π

0

R(
t

2π
+

1

2iπ
ln(r))e−intdt for r > 0 .

The condition that R is of exponential type < 2π gives

|cn| ≤
1

rn
Ce

α
2π | ln(r)| with

α

2π
< 1 .

If we let r → 0 we get cn = 0 for n < 0 and if we let r → +∞ then we get cn = 0 for n > 0. The condition∫ 2

1
R(x)dx = 0 then gives c0 = 0.
�

Theorem 1 If f ∈ Oα with α ≤ 2π there exist a unique function Rf ∈ Oα such that Rf (x)−Rf (x+ 1) = f(x)

with
∫ 2

1
Rf (x)dx = 0. This function is

Rf (x) = −
∫ x

1

f(t)dt+
f(x)

2
+ i

∫ +∞

0

f(x+ it)− f(x− it)
e2πt − 1

dt (1.4)

Proof
a) The unicity is given by the preceding lemma.
b) The function Rf defined by (2.3) is clearly in Oα.
c) Let us prove that Rf (x)−Rf (x+1) = f(x) , by analyticity it is sufficient to prove this for real x. Consider

the integral ∫
γ

f(z)
1

2i
cot(π(z − x))dz

with γ the path

x+1x

iy

-iy
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By the residue theorem we have
∫
γ
f(z) 1

2i cot(π(z−x))dz = f(x). To evaluate the different contributions of
the integral we use the formulas:

1

2i
cot(π(z − x)) = −1

2
− 1

e−2iπ(z−x) − 1
when Im(z) > 0

and
1

2i
cot(π(z − x)) =

1

2
+

1

e2iπ(z−x) − 1
when Im(z) < 0.

Let us examine the different contributions of the integral:
* the semicircular path at x and x+ 1 gives when ε→ 0

1

2
f(x)− 1

2
f(x+ 1)

* the horizontal lines gives

−(−1

2
)

∫ x+1

x

f(t+ iy)dt+
1

2

∫ x+1

x

f(t− iy)dt

and two other terms which → 0 when y → +∞ by the hypothesis that f of exponential type < 2π.
* the vertical lines gives

i

∫ y

ε

f(x+ it)− f(x− it)
e2πt − 1

dt− i
∫ y

ε

f(x+ 1 + it)− f(x+ 1− it)
e2πt − 1

dt

and
1

2

∫ y

ε

f(x+ it)idt− 1

2

∫ y

ε

f(x− it)idt− 1

2

∫ y

ε

f(x+ 1 + it)idt+
1

2

∫ y

ε

f(x+ 1− it)idt

If we add this term with the contributions of the horizontal lines we obtain the sum of the integrals of f on the
paths

x+1x

iy

-iy

ιε
−ιε

By Cauchy theorem this sum is

1

2

∫ x+1

x

f(t+ iε)dt+
1

2

∫ x+1

x

f(t− iε)dt

which gives the contribution
∫ x+1

x
f(t)dt when ε→ 0.

Finally we get when ε→ 0 and y → +∞

f(x) =
1

2
f(x)− 1

2
f(x+ 1)

+i

∫ +∞

0

f(x+ it)− f(x− it)
e2πt − 1

dt

−i
∫ +∞

0

f(x+ 1 + it)− f(x+ 1− it)
e2πt − 1

+

∫ x+1

x

f(t)dt
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This is f(x) = Rf (x)−Rf (x+ 1) with Rf given by (1.3).

d) It remains to prove that
∫ 2

1
Rf (x)dx = 0. By Fubini’s theorem

∫ 2

1

∫ +∞

0

f(x+ it)− f(x− it)
e2πt − 1

dtdx =

∫ +∞

0

∫ 2

1

(f(x+ it)− f(x− it))dx 1

e2πt − 1
dt

We have for 1 < x < 2∫ 2

1

f(x+ it)dx−
∫ 2

1

f(x− it)dx = F (2 + it)− F (2− it)− (F (1 + it)− F (1− it))

where F (x) =
∫ x

1
f(t)dt. Thus

∫ 2

1

∫ +∞

0

f(x+ it)− f(x− it)
e2πt − 1

dtdx =

∫ +∞

0

F (2 + it)− F (2− it)
e2πt − 1

dt−
∫ +∞

0

F (1 + it)− F (1− it)
e2πt − 1

dt

By the preceding result (applied with F in place of f) we have

F (x) =
1

2
F (x)− 1

2
F (x+ 1)

+i

∫ +∞

0

F (x+ it)− F (x− it)
e2πt − 1

dt

−i
∫ +∞

0

F (x+ 1 + it)− F (x+ 1− it)
e2πt − 1

+

∫ x+1

x

F (t)dt

With x = 1 we get

i

∫ 2

1

∫ +∞

0

f(x+ it)− f(x− it)
e2πt − 1

dtdx = −F (1) + F (2)

2
+

∫ 2

1

F (t)dt

This gives ∫ 2

1

Rf (x)dx = −
∫ 2

1

F (x)dx+
1

2

∫ 2

1

f(x)dx− (
F (1) + F (2)

2
) +

∫ 2

1

F (t)dt = 0

�

Remark: the Plana formula

The relation Rf (x)−Rf (x+ 1) = f(x) gives

ϕf (n) = f(1) + ...+ f(n) = Rf (1) + f(n)−Rf (n)

thus by (1.4) we get the Plana formula

ϕf (n) =
f(1)

2
+ i

∫ +∞

0

f(1 + it)− f(1− it)
e2πt − 1

dt

+
f(n)

2
+

∫ n

1

f(t)dt− i
∫ +∞

0

f(n+ it)− f(n− it)
e2πt − 1

dt
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1.3 The summation

1.3.1 Definition and examples

Let f ∈ O2π by the preceding theorem we can try to define the Ramanujan summation of the series
∑
n≥1 f(n)

by
R∑
n≥1

f(n) = Rf (1)

where Rf is the unique solution in O2π of

Rf (x)−Rf (x+ 1) = 0 with

∫ 2

1

Rf (x)dx = 0.

With this definition let us look at the sum

R∑
n≥1

sin(nπ)

Let f(x) = sin(πx) then
sin(πx)− sin(π(x+ 1)) = 2 sin(πx)

thus

Rf (x) =
sin(πx)

2
−
∫ 2

1

sin(πx)

2
dx =

sin(πx)

2
+

1

π

and we get the surprising result

R∑
n≥1

sin(πn) =
1

π

On the other hand we have sin(πn) = 0 = g(n) with the function g = 0. And we have Rg = 0 which gives

R∑
n≥1

0 = 0

Thus we see that with the preceding definition the summation of
∑
n≥1 f(n) not only on the values f(n)

for integers n ≥ 1 but specially of the interpolation function f . To avoid this phenomenon we set the condition
that f is in Oπ, with this condition we can apply Carlson’s theorem which gives that the interpolation function
f is uniquely determined by values f(n) for integers n ≥ 1. Note that in this case the function Rf given by
theorem 1 is also in Oπ.

Definition
If f ∈ Oπ, then there exist a unique solution Rf ∈ Oπ of

Rf (x)−Rf (x+ 1) = f(x) with

∫ 2

1

Rf (x)dx = 0

and we set
R∑
n≥1

f(n) = Rf (1)

We have
R∑
n≥1

f(n) =
f(1)

2
+ i

∫ +∞

0

f(1 + it)− f(1− it)
e2πt − 1

dt

We call this procedure, the Ramanujan summation of series
∑
n≥1 f(n).
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Linearity
Note that if a and b are complex numbers and f and g are in Oπ, then we verify Ramanujan summation

has the property of linearity
R∑
n≥1

af(n) + bg(n) = a

R∑
n≥1

f(n) + b

R∑
n≥1

g(n)

Real and imaginary
Let g ∈ Oπ is such that g(x) ∈ R if x ∈ R.
Then for all t > 0 we have by the reflection principle g(1− it) = g(1 + it) thus i(g(1 + it)− g(1− it)) ∈ R

and we get
R∑
n≥1

g(n) ∈ R

For f ∈ Oπ let the functions Rf : x 7→ Re(f(x)) and If : x 7→ Im(f(x)) defined for x ∈ R. If the functions

Rf and If have an analytic continuations that are in Oπ then we can define the sums
∑R
n≥1Re(f(n)) and∑R

n≥1 Im(f(n)) by

R∑
n≥1

Re(f(n)) =

R∑
n≥1

Rf(n)

R∑
n≥1

Im(f(n)) =

R∑
n≥1

If(n)

By linearity we have

R∑
n≥1

f(n) =

R∑
n≥1

Rf(n)) + i If(n)) =

R∑
n≥1

Rf(n) + i

R∑
n≥1

If(n) =

R∑
n≥1

Re(f(n)) + i

R∑
n≥1

Im(f(n))

Since Rf(x) and If(x) are real for x ∈ R then we get

Re(

R∑
n≥1

f(n)) =

R∑
n≥1

Re(f(n))

Im(

R∑
n≥1

f(n)) =

R∑
n≥1

Im(f(n))

Remark
Note that generally we can not write

∑R
n≥1 f(n) =

∑R
n≥1 f(n) since the function f is not analytic (if f is

non constant). For example if f(z) = 1
z+i then f(z) = 1

z+i is not analytic but Rf(z) = z
z2+1 and If(z) = −1

z2+1
are analytic functions in Oπ. Thus

Re(

R∑
n≥1

1

n+ i
) =

R∑
n≥1

n

n2 + 1

Im(

R∑
n≥1

1

n+ i
) =

R∑
n≥1

−1

n2 + 1

Examples
1) If f(x) = eax with a 6= 0 we have

eax

1− ea
− ea(x+1)

1− ea
= eax

thus Rf (x) = eax

1−ea −
∫ 2

1
eax

1−ea dx this gives

Rf (x) =
eax

1− ea
+
ea

a
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If a ∈ R and a < π or a ∈ C and |a| < π we get for a 6= 0

R∑
n≥1

ean =
ea

1− ea
+
ea

a
(1.5)

Note that for a = 0 we have

R∑
n≥1

ean =

R∑
n≥1

1 =
1

2
= lim
a→0

(
ea

1− ea
+
ea

a
)

Then if |t| < 1 we get
R∑
n≥1

eiπnt =
1

2
i
ei
πt
2

sin(πt2 )
− ie

iπt

πt

Thus if −1 < t < 1
R∑
n≥1

cos(πnt) =
sin(πt)

πt
− 1

2

R∑
n≥1

sin(πnt) =
1

2
cot(

πt

2
)− cos(πt)

πt

2) By the definition
∑
n
Bn(x)
n! zn = zexz

ez−1 we verify that the Bernoulli polynomials are solution of

Bk+1(x+ 1)

k + 1
− Bk+1(x)

k + 1
= xk

and we have ∫ 2

1

Bk+1(x)

k + 1
dx =

∫ 1

0

Bk+1(x+ 1)

k + 1
dx =

∫ 1

0

xkdx =
1

k + 1

Thus if f(x) = xk where k is an integer ≥ 0 then

Rf (x) =
1−Bk+1(x)

k + 1

Thus
R∑
n≥1

nk =
1−Bk+1

k + 1
if k ≥ 1 and

R∑
n≥1

1 =
1

2

Thus
∑R
n≥1 f(n) can be evaluated in terms of Bernoulli numbers for any polynomial f .

3) Let f(x) = 1
xz for Re(z) > 1 then

Rf (x) =

+∞∑
n=0

1

(n+ x)z
−
∫ 2

1

+∞∑
n=0

1

(n+ x)z
dx

The series
∑+∞
n=0

1
(n+x)z is uniformly convergent for x ∈ [1, 2] then

∫ 2

1

+∞∑
n=0

1

(n+ x)z
dx =

+∞∑
n=0

∫ 2

1

1

(n+ x)z
dx =

1

z − 1

+∞∑
n=0

(
1

(n+ 1)z−1
− 1

(n+ 2)z−1
)
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thus

Rf (x) =

+∞∑
n=0

1

(n+ x)z
− 1

z − 1
= ζ(z, x)− 1

z − 1

with (x, z) 7→ ζ(z, x) the Hurwitz zeta function.
Note that for all z 6= 1 the Hurwitz zeta function (x, z) 7→ ζ(z, x) is defined and we have

ζ(z, x)− ζ(z, x+ 1) =
1

xz

and
∫ 2

1
ζ(z, x)dx = 1

z−1 . Thus

R1/xz (x) = ζ(z, x)− 1

z − 1
and for all z 6= 1

R∑
n≥1

1

nz
= ζ(z)− 1

z − 1

4) If f(x) = 1
x then

Rf (x) =

+∞∑
n=0

(
1

n+ x
− 1

n+ 1
)−

∫ 2

1

+∞∑
n=0

(
1

n+ x
− 1

n+ 1
)dx

This last integral is

+∞∑
n=1

(Log(n+ 1)− Log(n)− 1

n
) = lim

N→+∞
Log(N + 1)−

N∑
n=1

1

n
= −γ

Thus

Rf (x) =

+∞∑
n=0

(
1

n+ x
− 1

n+ 1
) + γ

and
R∑
n≥1

1

n
= γ

Note that the function Ψ = Γ′/Γ verify

Ψ(x+ 1)−Ψ(x) =
1

x

with
∫ 2

1
Ψ(x)dx = 0. Thus

R 1
x

= −Ψ(x)

If f(x) = 1
xk+1 with k integer > 0 then

∂kΨ(x+ 1)− ∂kΨ(x) = (−1)kk!
1

xk+1

with ∫ 2

1

∂kΨ(x)dx = ∂k−1ψ(2)− ∂k−1ψ(1) = (−1)k−1(k − 1)!

Thus

R 1

xk+1
=

(−1)k−1

k!
∂kΨ− 1

k

5) If f(x) = Log(x) then Rf = −Log Γ +
∫ 2

1
Log Γ(t)dt and

∫ 2

1
Log Γ(t)dt = −1 + Log(

√
2π) thus

RLog(x) = −Log(Γ(x)) + Log(
√

2π)− 1

and
R∑
n≥1

Log(n) = Log(
√

2π)− 1
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1.3.2 The ϕf function

Let f ∈ Oπ and a function ϕ analytic for Re(x) > a with −1 < a < 0 and of exponential type < π solution of

ϕ(x)− ϕ(x− 1) = f(x) with ϕ(0) = 0

If we set

R(x) = −ϕ(x− 1) +

∫ 1

0

ϕ(x)dx

then R is an analytic function for Re(x) > a+1 and of exponential type < π solution of R(x)−R(x+1) = f(x)

with
∫ 2

1
R(x)dx = 0, thus R = Rf and we get

ϕ(x) =

∫ 1

0

ϕ(x)dx−Rf (x+ 1)

The condition ϕ(0) = 0 gives
∫ 1

0
ϕ(x)dx = Rf (1). Conversely if f ∈ Oπ and if we set

ϕf (x) = Rf (1)−Rf (x+ 1)

then ϕf is analytic for Re(x) > a with −1 < a < 0 and of exponential type < π and is solution of

ϕf (x)− ϕf (x− 1) = f(x) with ϕf (0) = 0

Thus we get the

Equivalent definition of Ramanujan summation:
If f ∈ Oπ then there exist a unique analytic function x 7→ ϕf (x) for Re(x) > a with −1 < a < 0 and of

exponential type < π solution of

ϕf (x)− ϕf (x− 1) = f(x) with ϕf (0) = 0

And we set
R∑
n≥1

f(n) =

∫ 1

0

ϕf (x)dx

Remark
The relation ϕf (x) = Rf (1)−Rf (x+ 1) gives

ϕf (x) =

R∑
n≥1

f(n)−Rf (x) + f(x)

We have
ϕf (n) = Rf (1)−Rf (n+ 1) = f(1) + f(2) + ...+ f(n)

Thus the function ϕf (x) is an interpolation function of the partial sums of the series
∑
n≥1 f(n), Ramanujan

write
ϕf (x) = f(1) + f(2) + ...+ f(x)

The sum
∑R
n≥1 f(n) is then the constant term C(f) in the MacLaurin expansion

ϕf (x) = C(f) +
∫ x

1
f(t)dt+ f(x)

2 +
∑m
k=1

B2k

(2k)!∂
2k−1f(x)−

∫ +∞
x

b2m+1(t)
(2m+1)! ∂

2m+1f(t)dt

Examples
1) For z 6= 1 we have

ϕ1/xz (x) =

R∑
n≥1

1

nz
− (ζ(z, x)− 1

z − 1
) +

1

xz
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thus

ϕ1/xz (x) = ζ(z)− ζ(z, x) +
1

xz

For z = 1 we have

1 + ...+
1

x
= ϕ 1

x
(x) =

R∑
n≥1

1

n
−R 1

x
(x+ 1) = γ + Ψ(x+ 1)

2) We have Log(Γ(x+ 1))− Log(Γ(x)) = Log(x) and Log(Γ(1)) = 0 thus

ϕLog(x) = Log(Γ(x+ 1))

1.3.3 Relation to usual summation.

By the definition of Rf we have Rf (1) − Rf (n) =
∑n−1
k=1 f(k). Thus the series

∑
n≥1 f(n) is convergent if and

only if Rf (n) has a finite limit when n→ +∞ and in this case

R∑
n≥1

f(n) =

∞∑
n≥1

f(n) + lim
n→+∞

Rf (n)

In some cases limn→+∞Rf (n) is simply related to the integral of the function f . We have

Rf (n) =
f(n)

2
−
∫ n

1

f(t)dt+ i

∫ +∞

0

f(n+ it)− f(n− it)
e2πt − 1

dt

If f(z)→ 0 when Re(z)→ +∞ then by the dominated convergence theorem we see that

lim
n→+∞

∫ +∞

0

f(n+ it)− f(n− it)
e2πt − 1

dt = 0 (1.6)

If the integral
∫ +∞

1
f(t)dt is convergent then Rf (n) has a finite limit when n→ +∞

lim
n→+∞

Rf (n) = −
∫ +∞

1

f(t)dt

Conclusion
Let f ∈ Oπ with f(z) → 0 when Re(z) → +∞. If the integral

∫ +∞
1

f(t)dt is convergent then the series∑
n≥1 f(n) is convergent and we have

R∑
n≥1

f(n) =

∞∑
n≥1

f(n)−
∫ +∞

1

f(x)dx (1.7)

Remark
This relation can be obtained with other hypothesis on f :
if the series

∑
n≥1 f(x+ n) is convergent for Re(x) > 0 we have

∞∑
n≥0

f(x+ n)−
∞∑
n≥0

f(x+ 1 + n) = f(x)

thus if x 7→
∑∞
n≥0 f(x+ n) is in Oπ we get

Rf (x) =

∞∑
n≥0

f(x+ n)−
∫ 2

1

∞∑
n≥0

f(x+ n)dx

If ∫ 2

1

∞∑
n≥0

f(x+ n)dx =

∞∑
n≥0

∫ 2

1

f(x+ n)dx =

∫ +∞

1

f(x)dx
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then

Rf (x) =

∞∑
n≥0

f(x+ n)−
∫ +∞

1

f(x)dx. (1.8)

In this case we have

ϕf (x) = Rf (1)−Rf (x+ 1) =

+∞∑
n≥1

(f(n)− f(n+ x))

Note that if this last series is convergent and if limx→+∞ f(x) = 0 then we get

+∞∑
n≥1

(f(n)− f(n+ x))−
+∞∑
n≥1

(f(n)− f(n+ x− 1)) = f(x)

and
∑+∞
n≥1(f(n)− f(n+ 0)) = 0 thus we get

ϕf (x) =

+∞∑
n≥1

(f(n)− f(n+ x))

a formula that Ramanujan uses in some places.

Example
We have

+∞∑
n≥1

(
1

n
− 1

n+ x
) = ϕ 1

x
(x) = Ψ(x+ 1) + γ

Thus

Log(Γ(x+ 1)) = −γx−
+∞∑
n=1

(Log(1 +
x

n
)− x

n
)

that is
1

Γ(x+ 1)
= eγx

+∞∏
n=1

(1 +
x

n
)e−

x
n



Chapter 2

Properties of the Ramanujan
summation

2.1 Some elementary properties

2.1.1 The unusual property of the shift.

Let f ∈ Oπ by linearity we have

R∑
n≥1

f(n+ 1) =

R∑
n≥1

f(n)−
R∑
n≥1

(f(n)− f(n+ 1))

Let g(x) = f(x)− f(x+ 1) then Rg(x) = f(x)−
∫ 2

1
f(x)dx thus

R∑
n≥1

(f(n)− f(n+ 1)) = f(1)−
∫ 2

1

f(x)dx

We get
R∑
n≥1

f(n+ 1) =

R∑
n≥1

f(n)− f(1) +

∫ 2

1

f(x)dx

We see that the usual properties of summation of convergent series

+∞∑
n=1

f(n+ 1) =

+∞∑
n=1

f(n)− f(1)

is not satisfied by Ramanujan summation.

Let f ∈ Oπ and x > 0 if g(u) = f(u+ x) then we verify immediately that

Rg(u) = Rf (u+ x)−
∫ x+2

x+1

Rf (u)du

thus
R∑
n≥1

g(n) =

R∑
n≥1

f(n+ x) = Rf (x+ 1)−
∫ x+2

x+1

Rf (u)du

Integrating the equation Rf (u)−Rf (u+ 1) = f(u) between 1 and x+ 1 we find that∫ x+1

1

f(u)du = −
∫ x+2

x+1

Rf (u)du (2.1)

thus without any hypothesis of convergence we have

17
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R∑
n≥1

f(n+ x) = Rf (x+ 1) +

∫ x+1

1

f(u)du = Rf (x)− f(x) +

∫ x+1

1

f(t)dt (2.2)

For a positive integer x = m we have Rf (m+ 1) = Rf (1)−
∑m
n=1 f(n) thus

R∑
n≥1

f(n+m) = Rf (1)−
m∑
n=1

f(n) +

∫ m+1

1

f(u)du

Conclusion
If m is a positive integer we have the shift property

R∑
n≥1

f(n+m) =

R∑
n≥1

f(n)−
m∑
n=1

f(n) +

∫ m+1

1

f(x)dx (2.3)

Examples
1) Let f(x) = 1

x and Hm =
∑m
k=1

1
k we have

R∑
n≥1

1

n+m
=

R∑
n≥1

1

n
−Hm +

∫ m+1

1

1

x
dx = γ −Hm + Log(m+ 1)

Since R 1
x

= −Ψ(x) the formula (2.2) gives more generally

R∑
n≥1

1

n+ x
= −Ψ(x+ 1) + Log(x+ 1) (2.4)

If 0 < p < q are integers then
R∑
n≥1

1

n+ p
q

= −Ψ(
p

q
)− q

p
+ Log(

p

q
+ 1)

Thus by Gauss formula (c.f. Lehmer) we get

R∑
n≥1

1

p+ nq
=

1

q
γ +

1

q
Log(

q

2
) +

π

2q
cot(π

p

q
)− 2

q

∑
0<k<q/2

cos(2πk
p

q
)Log(sin(π

k

q
))− 1

p
+

1

q
Log(

p

q
+ 1)

2) For z 6= 1 the formula (2.2) gives

R∑
n≥1

1

(n+ x)z
= ζ(z, x)− 1

xz
+

1

z − 1

1

(x+ 1)z−1

where ζ is the Hurwitz zeta function.
3) For f(x) = Log(x) we get by (2.2)

R∑
n≥1

Log(n+ x) = −Log(Γ(x)) + Log(
√

2π)− 1− Log(x) + (x+ 1)Log(x+ 1)− x

This gives

Log(Γ(x)) = −
R∑
n≥1

Log(1 +
n

x
)− 1

2
Log(x) + Log(

√
2π) + xLog(x)− x+ (x+ 1)Log(1 +

1

x
)− 1
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thus we get the Stirling formula

Log(Γ(x+ 1)) =
1

2
Log(x) + Log(

√
2π) + xLog(x)− x+R(x)

with

R(x) = (x+ 1)Log(1 +
1

x
)− 1−

R∑
n≥1

Log(1 +
n

x
)

Remark
The relation ϕf (x) = Rf (1)−Rf (x+ 1) gives

ϕf (x) =

R∑
n≥1

f(n)−
R∑
n≥1

f(n+ x) +

∫ x+1

1

f(u)du

2.1.2 Functional relations for ϕf

Theorem 2 Let f ∈ Oπ and an integer N > 1 then

Rf(x/N)(x) =

N−1∑
k=0

Rf (
x+ k

N
)−N

∫ 1

1/N

f(x)dx (2.5)

We get
R∑
n≥1

f(
n

N
) =

N−1∑
k=0

[ R∑
n≥1

f(n− k

N
)
]
−
N−1∑
k=1

∫ k/N

1

f(x)dx−N
∫ 1

1/N

f(x)dx (2.6)

Proof
The function

R(x) =

N−1∑
k=0

Rf (
x+ k

N
) = Rf (

x

N
) +Rf (

x+ 1

N
) + ...+Rf (

x+N − 1

N
)

satisfies
R(x)−R(x+ 1) = Rf (

x

N
)−Rf (

x

N
+ 1) = f(

x

N
)

thus

Rf( xN )(x) =

N−1∑
k=0

Rf (
x+ k

N
)−

∫ 2

1

N−1∑
k=0

Rf (
x+ k

N
)dx

but we have from (2.1) ∫ 2

1

N−1∑
k=0

Rf (
x+ k

N
)dx = N

∫ 1
N +1

1
N

Rf (x)dx = N

∫ 1

1/N

f(x)dx

Thus

Rf(x/N)(x) =

N−1∑
k=0

Rf (
x+ k

N
)−N

∫ 1

1/N

f(x)dx

and
R∑
n≥1

f(
n

N
) =

N−1∑
k=0

Rf (
k + 1

N
)−N

∫ 1

1/N

f(x)dx

We have by (2.2)

Rf (
k + 1

N
) =

R∑
n≥1

f(n− 1 +
k + 1

N
)−

∫ (k+1)/N

1

f(x)dx
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thus we get
R∑
n≥1

f(
n

N
) =

N−1∑
k=0

R∑
n≥1

f(n− 1 +
k + 1

N
)−

N−1∑
k=1

∫ k/N

1

f(x)dx−N
∫ 1

1/N

f(x)dx

which is
R∑
n≥1

f(
n

N
) =

N−1∑
k=0

R∑
n≥1

f(n− k

N
)−

N−1∑
k=1

∫ k/N

1

f(x)dx−N
∫ 1

1/N

f(x)dx

�

Remark
If g ∈ Oπ/N then with f : x 7→ g(Nx) we have

R∑
n≥1

g(n) =

N−1∑
k=0

[ R∑
n≥1

g(Nn− k)
]

+

N−1∑
k=1

1

N

∫ N

k

g(x)dx−
∫ N

1

g(x)dx

Thus if f ∈ Oπ/2 then we get

R∑
n≥1

f(n) =

R∑
n≥1

f(2n) +

R∑
n≥1

f(2n− 1)− 1

2

∫ 2

1

f(x)dx (2.7)

For f(x) = 1
x we get

R∑
n≥1

1

n
=

1

2

R∑
n≥1

1

n
+

R∑
n≥1

1

2n− 1
− 1

2
Log(2)

thus
∑R
n≥1

1
2n−1 = γ

2 + 1
2Log(2).

Theorem 3 Let f ∈ Oπ and an integer N > 1 then

ϕf(x/N)(x) =

N−1∑
j=0

ϕf (
x− j
N

) +

R∑
n≥1

f(
n

N
)−N

R∑
n≥1

f(n) +N

∫ 1

1/N

f(x)dx

which is the entry 7 Ch VI of Ramanujan Notebook corrected with the integral term.

Proof
We can write eq (2.5) in the form

Rf(x/N)(x+ 1) = Rf (
x+ 1

N
) +Rf (

x+ 2

N
) + ...+Rf (

x+N

N
)−N

∫ 1

1/N

f(x)dx

with Rf(x/N)(x+ 1) =
∑R
n≥1 f( nN )− ϕf(x/N)(x) we get

R∑
n≥1

f(
n

N
)−ϕf(x/N)(x) = N

R∑
n≥1

f(n)−
[
ϕf (

x+ 1−N
N

)+ϕf (
x+ 2−N

N
)+...+ϕf (

x+N −N
N

)
]
−N

∫ 1

1/N

f(x)dx

�
Corollary
Since ϕf(x/N)(0) = 0 and ϕf (0) = 0 then we get

N−1∑
k=1

ϕf (
−k
N

) = N

R∑
n≥1

f(n)−
R∑
n≥1

f(
n

N
)−N

∫ 1

1/N

f(x)dx

a formula that Ramanujan gives without the correcting integral term.
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Examples
1) If f(x) = 1

x we have ϕf (x) = γ + Ψ(x + 1) and in this case we have also f(x/N) = Nf(x) thus
ϕf(x/N)(x) = Nϕf (x) and the preceding theorem gives

N(γ + Ψ(x+ 1)) = γ + Ψ(
x

N
+ 1) + ...+ γ + Ψ(

x+ 1

N
) +Nγ −Nγ +NLog(N)

thus

NΨ(x+ 1) = Ψ(
x+ 1

N
) + ...+ Ψ(

x+N

N
) +NLog(N)

we get the well known formula

Ψ(x) =
1

N

N−1∑
k=0

Ψ(
x− k
N

) + Log(N)

2) If f(x) = Log(x) then ϕf (x) = Log(Γ(x+ 1)) and f(x/N) = Log(x)− Log(N) thus

ϕf(x/N)(x) = ϕLog(x)− ϕLog(N)(x) = Log(Γ(x+ 1))− xLog(N)

With the preceding theorem we get

Log(Γ(x+ 1)) =

N∑
k=1

Log
(Γ(x+k

N )
√

2π

)
+ (x+

1

2
)Log(N) + Log

(√
2π
)

taking the exponential we get the Gauss formula for the Gamma function.

3) If f(x) = Log(x)
x then f(x/N) = N Log(x)

x −NLog(N) 1
x , thus

ϕf(x/N)(x) = Nϕf (x)−NLog(N)(γ + Ψ(x+ 1))

and we get

Nϕf (x)−NLog(N)Ψ(x+ 1) =

N−1∑
j=0

ϕf (
x− j
N

) +N

∫ 1

1/N

f(x)dx

this gives

ϕLog(x)
x

(x) =
1

N

N−1∑
j=0

ϕLog(x)
x

(
x− j
N

) + Log(N)Ψ(x+ 1)− 1

2
Log2(N)

which is entry 17 of chapter 8.

4) If f(x) = Log2(x) then f(x/N) = Log2(x)− 2Log(x)Log(N) + Log2(N), thus

ϕf(x/N)(x) = ϕf (x)− 2Log(N)Log(Γ(x+ 1)) + xLog2(N)

and we get

ϕf (x)− 2Log(N)Log(Γ(x+ 1)) + xLog2(N) =

N−1∑
j=0

ϕf (
x− j
N

)

+ (1−N)

R∑
n≥1

Log2(n)− 2Log(N)(Log(
√

2π)− 1) +
1

2
Log2(N)

+ N

∫ 1

1/N

f(x)dx

this gives

ϕf (x) =

N−1∑
j=0

ϕf (
x− j
N

) + 2Log(N)Log(
Γ(x+ 1)√

2π
)− (

1

2
+ x)Log2(N)− (N − 1)(

R∑
n≥1

Log2(n)− 2)

this is entry 18(ii) of chapter 8 with C =
∑R
n≥1 Log

2(n)−2 (note that the constant C in entry 18 of Ramanujan

is C0(f) and that
∑R
n≥1 Log

2(n) is C1(f) and C1(f)− C0(f) =
∫ 1

0
Log2(x)dx = 2)



22 CHAPTER 2. PROPERTIES OF THE RAMANUJAN SUMMATION

2.1.3 Summation on Z
Let f ∈ Oπ such that the function x 7→ f(−x + 1) is also in Oπ. Then we can try to define

∑R
n∈Z f(n) by

breaking the sum in two parts
R∑
n∈Z

f(n) =

R∑
n≥1

f(n) +

R∑
n≥1

f(−n+ 1)

But to get a coherent definition this sum must be independent on the breaking point, thus we must have

R∑
n∈Z

f(n) =

R∑
n≥1

f(n+m) +

R∑
n≥1

f(−n+ 1 +m)

Now by the shift property we find easily that

R∑
n≥1

f(n+m) +

R∑
n≥1

f(−n+ 1 +m)−
∫ m+1

m

f(x)dx =

R∑
n≥1

f(n) +

R∑
n≥1

f(−n+ 1)−
∫ 1

0

f(x)dx

Thus we get the following definition:

Definition
Let f ∈ Oπ such that the function x 7→ f(−x+ 1) is also in Oπ. Then we define

∑R
n∈Z f(n) by

R∑
n∈Z

f(n) =

R∑
n≥1

f(n) +

R∑
n≥1

f(−n+ 1)−
∫ 1

0

f(x)dx

Remark
With this definition in a case of convergence we have

R∑
n∈Z

f(n) =

+∞∑
n=1

f(n) +

+∞∑
n=1

f(−n+ 1)−
∫ +∞

−∞
f(x)dx

Examples
1) Let a ∈ C and |a| < π and a 6= 0. Let f(x) = eax then the divergent calculation∑

n∈Z
ean =

∑
n≥1

ean + ea
∑
n≥1

e−an =
ea

1− ea
+

1

1− e−a
= 0

is perfectly rigorous if we take our preceding definition since

R∑
n∈Z

ean =

R∑
n≥1

ean + ea
R∑
n≥1

e−an −
∫ 1

0

eaxdx

= (
ea

1− ea
+
ea

a
) + (

1

1− e−a
− 1

a
)− ea − 1

a
= 0

2.2 Summation and derivation

Let f ∈ Oπ there is a very simple relation between ∂Rf and R∂f . This is a consequence of the fact that

∂Rf (x)− ∂Rf (x+ 1) = ∂f(x)

thus R∂f = ∂Rf −
∫ 2

1
∂Rf (x)dx by

∫ 2

1
∂Rf (x)dx = −f(1) we get

R∂f (x) = ∂Rf (x) + f(1) (2.8)
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The relation ϕf (x) =
∑R
n≥1 f(n)−Rf (x+ 1) gives also

ϕ∂f (x) = ∂ϕf (x)− f(1) +

R∑
n≥1

∂f(n) (2.9)

Theorem 4 Let f ∈ Oπ then

R∑
n≥1

f(n) = −
m∑
k=1

Bk
k!
∂k−1f(1) + (−1)m+1

∫ 1

0

R∂mf (t+ 1)
Bm(t)

m!
dt (2.10)

Thus if F (x) = F1(x) =
∫ x

1
f(t)dt and for k ≥ 2 let Fk(x) =

∫ x
1
Fk−1(t)dt, then we have

R∑
n≥1

Fm(n) = (−1)m+1

∫ 1

0

Rf (t+ 1)
Bm(t)

m!
dt

For m = 1 we have
R∑
n≥1

F (n) =

∫ 2

1

tRf (t)dt

Proof
We have B1(t) = t− 1

2 thus

0 =

∫ 1

0

Rf (t+ 1)dt =

∫ 1

0

Rf (t+ 1)∂B1(t)dt

integrating by parts we get with the relation (2.8)

Rf (1) =
1

2
f(1) +

∫ 1

0

R∂f (t+ 1)B1(t)dt

If we continue integration by parts we find

R∑
n≥1

f(n) = −
m∑
k=1

Bk
k!
∂k−1f(1) + (1)m+1

∫ 1

0

R∂mf (t+ 1)
Bm(t)

m!
dt

�

Remark
If f is a polynomial of degree N then ∂N+1f = 0 thus

R∑
n≥1

f(n) = −
N∑
k=0

Bk+1

(k + 1)!
∂kf(1)

Example

Let f(x) = 1/x. We have F1(x) = Log(x), F2(x) = xLog(x)− x+ 1, F3(x) = x2

2 Log(x)− 3
4x

2 + x− 1
4 and

more generally we have

Fk(x) =
xk−1

(k − 1)!
Log(x) + Pk(x)

where the Pk are the polynomials defined by P1 = 0 and

P ′k(x) = Pk−1(x)− xk−2

(k − 1)!
if k ≥ 2

Pk(1) = 0
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Thus
R∑
n≥1

Log(n) = −
∫ 1

0

ψ(t+ 1)B1(t)dt

R∑
n≥1

nLog(n) =

∫ 1

0

ψ(t+ 1)
B2(t)

2!
dt+

R∑
n≥1

n−
R∑
n≥1

1

R∑
n≥1

n2

2
Log(n) = −

∫ 1

0

ψ(t+ 1)
B3(t)

3!
dt+

3

4

R∑
n≥1

n2 −
R∑
n≥1

n+
1

4

R∑
n≥1

1

and

1

k!

R∑
n≥1

nkLog(n) = (−1)k−1

∫ 1

0

ψ(t+ 1)
Bk+1(t)

(k + 1)!
dt−

R∑
n≥1

Pk+1(n)

Theorem 5 Let f ∈ Oπ then

R∑
n≥1

n∑
k=1

f(k) =
3

2

R∑
n≥1

f(n)−
R∑
n≥1

nf(n)−
R∑
n≥1

F (n) with F (x) =

∫ x

1

f(t)dt

Proof
We use

xRf (x)− (x+ 1)Rf (x+ 1) = xf(x)−Rf (x+ 1)

thus
R∑
n≥1

nf(n)−Rf (n+ 1) = 1Rf (1)−
∫ 2

1

xRf (x)dx

Since
∫ 2

1
xRf (x)dx =

∑R
n≥1 F (n) we get

R∑
n≥1

nf(n)−
R∑
n≥1

Rf (n+ 1) =

R∑
n≥1

f(n)−
∫ 2

1

xRf (x)dx =

R∑
n≥1

f(n)−
R∑
n≥1

F (n)

With Rf (n+ 1) = Rf (1)−
∑n
k=1 f(k) we get

R∑
n≥1

nf(n)−
R∑
n≥1

Rf (1) +

R∑
n≥1

n∑
k=1

f(k) =

R∑
n≥1

f(n)−
R∑
n≥1

F (n)

since
∑R
n≥1Rf (1) = 1

2Rf (1) = 1
2

∑R
n≥1 f(n) we get our assertion.

�

Example
We have for all s

R∑
n≥1

n∑
k=1

1

ks
=

3

2

R∑
n≥1

1

ns
−
R∑
n≥1

1

ns−1
−
R∑
n≥1

∫ n

1

t−sdt

For Re(s) > 2 we have

R∑
n≥1

n∑
k=1

1

ks
=

3

2
ζ(s)− 3

2

1

s− 1
− ζ(s− 1) +

1

s− 2
− 1

s− 1

R∑
n≥1

(1− 1

ns−1
)
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Let H
(s)
n =

∑n
k=1

1
ks then

R∑
n≥1

H(s)
n =

3

2
ζ(s)− s− 2

s− 1
ζ(s− 1)− 1

s− 1

For s = 1 we have
R∑
n≥1

n∑
k=1

1

k
=

3

2

R∑
n≥1

1

n
−
R∑
n≥1

1−
R∑
n≥1

log(n)

thus
R∑
n≥1

Hn =
3

2
γ +

1

2
− Log(

√
2π)

For s = 2 we have
R∑
n≥1

n∑
k=1

1

k2
=

3

2

R∑
n≥1

1

n2
−
R∑
n≥1

1

n
+

R∑
n≥1

(
1

n
− 1)

thus
R∑
n≥1

H(2)
n =

3

2
ζ(2)− 2

Remark. We can write the result of the theorem in the form

R∑
n≥1

ϕf (n) =
3

2

R∑
n≥1

f(n)−
R∑
n≥1

nf(n)−
∫ 2

1

xRf (x)dx

This can be generalized to the sums
∑R
n≥1 f(n)g(n) where f and g are of moderate growth. We have

Rf (x)Rg(x)−Rf (x+ 1)Rg(x+ 1) = Rf (x)g(x) + f(x)(Rg(x)− g(x))

and we get

R∑
n≥1

ϕf (n)g(n) +

R∑
n≥1

ϕg(n)f(n) =

R∑
n≥1

f(n)

R∑
n≥1

g(n) +

R∑
n≥1

f(n)g(n) +

∫ 2

1

Rf (x)Rg(x)dx

For g = ∂f we have∫ 2

1

Rf (x)R∂f(x)dx =

∫ 2

1

Rf (x)∂Rf (x)dx =
1

2
(Rf (2))2 −Rf (1))2) =

1

2
f(1)2 − f(1)Rf (1)

thus we get

R∑
n≥1

ϕf (n)∂f(n) +

R∑
n≥1

ϕ∂f (n)f(n) =

R∑
n≥1

f(n)

R∑
n≥1

∂f(n) +

R∑
n≥1

f(n)∂f(n) +
1

2
f(1)2 − f(1)

R∑
n≥1

f(n)

2.3 The case of an entire function

Theorem 6 Let f an entire function defined by

f(x) =

+∞∑
k=0

ck
k!
xk with |ck| ≤ Cτk
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where τ < π. Then
R∑
n≥1

f(n) =

∫ 1

0

f(x)dx− 1

2
c0 −

+∞∑
k=1

ck
Bk+1

(k + 1)!

By the fact that B2k+1 = 0 for k ≥ 1 we have

R∑
n≥1

f(n) =

∫ 1

0

f(x)dx− 1

2
f(0)−

+∞∑
k=1

c2k−1
B2k

(2k)!

Thus in a case of convergence we have

+∞∑
n≥1

f(n) =

∫ +∞

0

f(x)dx− 1

2
f(0)−

+∞∑
k=1

c2k−1
B2k

(2k)!

Proof
Let us evaluate Rf . We have

Rxk =
1−Bk+1(x)

k + 1

thus we consider the function

x 7→
+∞∑
k=0

ck
(k + 1)!

−
+∞∑
k=0

ck
Bk+1(x)

(k + 1)!

By texz

ez−1 =
∑
n≥0

Bn(x)
n! zn and the Cauchy integral formula we have for 0 < r < 2π

Bk+1(x)

(k + 1)!
=

1

2πrk

∫ 2π

0

exre
it

ereit − 1
e−iktdt

thus for Re(x) > 0 we get

|Bk+1(x)

(k + 1)!
| ≤ 1

2πrk
er|x|

∫ 2π

0

1

|ereit − 1|
dt = Crr

−ker|x|

For τ < r < 2π this prove that the series
∑+∞
k=0 ck

Bk+1(x)
(k+1)! is uniformly convergent and define an analytic function

of exponential type < 2π for Re(x) > 0. By∫ 2

1

+∞∑
k=0

ck
1−Bk+1(x)

(k + 1)!
dx =

+∞∑
k=0

ck

∫ 2

1

1−Bk+1(x)

(k + 1)!
dx = 0

we have

Rf (x) =

+∞∑
k=0

ck
1−Bk+1(x)

(k + 1)!

Thus

Rf (1) =

+∞∑
k=0

ck
1−Bk+1(1)

(k + 1)!
=

+∞∑
k=0

ck
(k + 1)!

− c0B1(1)−
+∞∑
k=1

ck
Bk+1(1)

(k + 1)!

this gives
R∑
n≥1

f(n) =

∫ 1

0

f(x)dx− 1

2
c0 −

+∞∑
k=1

ck
Bk+1

(k + 1)!

Thus
R∑
n≥1

f(n) =

∫ 1

0

f(x)dx− 1

2
f(0)−

+∞∑
k=1

ck
Bk+1

(k + 1)!

�
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Remarks
1) If we write f(x) =

∑+∞
k=0

∂kf(0)
k! xk the preceding theorem is nothing else than

R∑
n≥1

f(n) =

+∞∑
k=0

∂kf(0)

k!

R∑
n≥1

nk

If we use the expansion of f at 1 then we find

R∑
n≥1

f(n) =

+∞∑
k=0

∂kf(1)

k!

R∑
n≥1

(n− 1)k =
1

2
f(1)−

+∞∑
k=1

∂kf(1)
Bk+1

(k + 1)!
= −

+∞∑
k=1

∂k−1f(1)
Bk
k!

2) The preceding theorem is not valid if f is not entire: take f(x) = 1
1+x2t2 then if we apply the preceding

result we find∫ +∞

0

1

1 + x2t2
dx− 1

2
=

π

2t
− 1

2
which is not

+∞∑
n≥1

1

1 + n2t2
=

π

2t
− 1

2
+
π

t

1

e2π/t − 1

Example

With p integer > 0 and 0 < t < π/p let f(x) = sinp(xt)
xp for x 6= 0 and f(0) = tp. This fonction is entire and

even thus
R∑
n≥1

sinp(nt)

np
=

∫ 1

0

sinp(xt)

xp
dx− 1

2
tp

We are in a case of convergence thus

+∞∑
n=1

sinp(nt)

np
=

R∑
n≥1

sinp(nt)

np
+

∫ +∞

1

sinp(xt)

xp
dx =

∫ +∞

0

sinp(xt)

xp
dx− 1

2
tp

this gives
+∞∑
n=1

sinp(nt)

np
= tp−1

∫ +∞

0

sinp(x)

xp
dx− 1

2
tp

With p = 1 we get for 0 < t < π
+∞∑
n=1

sin(nt)

n
=

∫ +∞

0

sin(x)

x
dx− 1

2
t

Note that for t = π
2 we find easily the value of

∫ +∞
0

sin(x)
x dx∫ +∞

0

sin(x)

x
dx =

+∞∑
n=1

sin(nπ2 )

n
+
π

4
=

∞∑
n=1

(−1)n−1

2n− 1
− π

4
=
π

2

Remark
The preceding theorem gives easily the sum of some trigonometric series.
Let 0 < t < 1 and f the entire function

f(x) =
cos(πxt)− 1

x2
=

+∞∑
k=1

(−1)k
π2kt2k

2k(2k − 1)

x2k−2

(2k − 2)!

This function is even and we have f(0) = −π
2t2

2 .
Then by the preceding theorem we have

R∑
n≥1

cos(πnt)− 1

n2
=

∫ 1

0

cos(πxt)− 1

x2
dx+

π2t2

4
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thus
R∑
n≥1

cos(πnt)

n2
=

R∑
n≥1

1

n2
+

∫ 1

0

cos(πxt)− 1

x2
dx+

π2t2

4
(2.11)

Since we are in a case of convergence then

+∞∑
n≥1

cos(πnt)

n2
=

+∞∑
n≥1

1

n2
+

∫ 1

0

cos(πxt)− 1

x2
dx+

∫ +∞

1

cos(πxt)

x2
dx− 1 +

π2t2

4

Integrating by parts we have∫ 1

0

cos(πxt)− 1

x2
dx+

∫ +∞

1

cos(πxt)

x2
dx = 1− πt

∫ +∞

0

sin(πxt)

x
dx = 1− 1

2
π2t

Thus
+∞∑
n≥1

cos(πnt)

n2
=
π2

6
− 1

2
π2t+

1

4
π2t2 (2.12)

2.3.1 Expression of Catalan’s constant

The Catalan’s constant G is defined by

G =

∞∑
n=1

(−1)n−1

(2n− 1)2
=

+∞∑
n=1

sin(π2n)

n2

Let the entire function

f(x) =
1

x2
sin(

π

2
x)− π

2x
=

+∞∑
k=1

(−1)k(
π

2
)2k+1 x2k−1

(2k + 1)!

We have by the preceding theorem

R∑
n≥1

sin(π2n)

n2
− π

2n
=

∫ 1

0

(
sin(π2 t)

t2
− π

2t
)dt−

+∞∑
k=1

(−1)k(
π

2
)2k+1 B2k

2k(2k + 1)!

Since we are in a case of convergence then

R∑
n≥1

sin(π2n)

n2
=

+∞∑
n≥1

sin(π2n)

n2
−
∫ +∞

1

sin(π2 t)

t2
dt = G−

∫ +∞

1

sin(π2 t)

t2
dt

thus

G− π

2
γ =

∫ 1

0

(
sin(π2 t)

t2
− π

2t
)dt+

∫ +∞

1

sin(π2 t)

t2
dt−

+∞∑
k=1

(−1)k(
π

2
)2k+1 B2k

2k(2k + 1)!

With ∫ 1

0

(
sin(π2 t)

t2
− π

2t
)dt+

∫ +∞

1

sin(π2 t)

t2
dt =

π

2
− π

2
Log(

π

2
)− π

2
γ

we get

G =
π

2
− π

2
Log(

π

2
)−

+∞∑
k=1

(−1)k(
π

2
)2k+1 B2k

2k(2k + 1)!
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2.3.2 The sum
∑R

n≥1
e−zn

n

For 0 < z < π let the entire function

f(x) =
e−zx − 1

x
=

+∞∑
k=0

(−1)k+1

k!

zk+1

k + 1
xk

We have
R∑
n≥1

e−zn − 1

n
=

∫ 1

0

e−zx − 1

x
dx+

1

2
z −

+∞∑
k=1

(−1)k+1 z
k+1

k + 1

Bk+1

(k + 1)!

Thus

R∑
n≥1

e−zn

n
= γ +

∫ 1

0

e−zx − 1

x
dx+

1

2
z −

+∞∑
k=2

(−1)k

k!
zk
Bk
k

Since B2j+1 = 0 for j ≥ 1 this last sum is
∑+∞
k=2

1
k!z

k Bk
k and his derivative is

∂
( +∞∑
k=2

1

k!
zk
Bk
k

)
=

1

z

+∞∑
k=2

zk

k!
Bk =

1

z
(

z

ez − 1
− 1 +

1

2
z) =

e−z

1− e−z
− 1

z
+

1

2

which gives
+∞∑
k=2

(−1)k

k!
zk
Bk
k

= Log(1− e−z)− Log(z) +
1

2
z

Finally we get for 0 < z < π

R∑
n≥1

e−zn

n
= γ +

∫ 1

0

e−zx − 1

x
dx− Log(1− e−z) + Log(z) (2.13)

Since we are in a case of convergence then

R∑
n≥1

e−zn

n
=

+∞∑
n=1

e−zn

n
−
∫ +∞

1

e−zx

x
dx = −Log(1− e−z)−

∫ +∞

1

e−zx

x
dx

thus we get ∫ +∞

1

e−zx

x
dx+

∫ 1

0

e−zx − 1

x
dx = −γ − Log(z) (2.14)

Remark
Let

∑+∞
n=1 e

−tnα with 0 < α ≤ 1 and 0 < t < π. Then we have

+∞∑
n=1

e−tn
α

=

R∑
n≥1

e−tn
α

+

∫ +∞

1

e−tx
α

dx

With

e−tn
α

=

+∞∑
k=0

(−1)ktk

k!
nαk

and Rxαk(x) = ζ(−αk, x) + 1
αk+1 (with (x, z) 7→ ζ(z, x) the Hurwitz zeta function) we get

Re−txα (x) =

+∞∑
k=0

(−1)ktk

k!

(
ζ(−αk, x) +

1

αk + 1

)
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Thus
+∞∑
n=1

e−tn
α

=

+∞∑
k=0

(−1)ktk

k!
ζ(−αk) +

+∞∑
k=0

(−1)ktk

k!

1

αk + 1
+

∫ +∞

1

e−tx
α

dx

and we get

+∞∑
n=1

e−tn
α

=

+∞∑
k=0

(−1)ktk

k!
ζ(−αk) +

∫ +∞

0

e−tx
α

dx =

+∞∑
k=0

(−1)ktk

k!
ζ(−αk) +

1

α
Γ(

1

α
)t−

1
α

Note that this formula is not valid for α = 2 since it gives

+∞∑
n=1

e−tn
2

= ζ(0) +
1

2
Γ(

1

2
)t−

1
2

but the true formula is known to involves exponentially small terms when t→ 0 (cf. Bellman)

+∞∑
n=1

e−tn
2

= ζ(0) +
1

2
Γ(

1

2
)t−

1
2 +
√
πt−

1
2

+∞∑
n=1

e−π
2n2/t

2.4 A surprising relation

Let f of moderate growth then for 0 < z < π then we prove the ”surprising relation”

R∑
n≥1

e−nzϕf (n) =
1

1− e−z
R∑
n≥1

e−nzf(n)− e−z

z

R∑
n≥1

f(n)− e−z
R∑
n≥1

enz
∫ n

1

e−ztf(t)dt

Proof
By the shift property we can write for |z| < π

R∑
n≥1

e−nzϕf (n) = ez
R∑
n≥1

e−(n+1)zϕf (n+ 1)− ez
R∑
n≥1

e−(n+1)zf(n+ 1)

= ez
R∑
n≥1

e−nzϕf (n)− ϕf (1) + ez
∫ 2

1

e−zxϕf (x)dx

−ez
R∑
n≥1

e−nzf(n) + f(1)− ez
∫ 2

1

e−zxf(x)dx

Thus

R∑
n≥1

e−nzϕf (n) =
ez

1− ez

∫ 2

1

e−zx(ϕf (x)− f(x))dx− ez

1− ez
R∑
n≥1

e−nzf(n)

=
ez

1− ez

∫ 2

1

e−zx(

R∑
n≥1

f(n)−Rf (x))dx− ez

1− ez
R∑
n≥1

e−nzf(n)

We get

R∑
n≥1

e−nzϕf (n) = −e
−z

z

R∑
n≥1

f(n)− ez

1− ez
R∑
n≥1

e−nzf(n)− ez

1− ez

∫ 2

1

e−zxRf (x)dx

It remains to prove that

R∑
n≥1

enz
∫ n

1

e−ztf(t)dt =
e2z

1− ez

∫ 2

1

e−ztRf (t)dt
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Let G the function defined by

G(x, z) = ezx
∫ x

1

e−ztf(t)dt

We can evaluate
∑R
n≥1G(n, z) by observing that the function G is the solution of the differential equation

∂xG− zG = f with G(1) = 0

The condition G(1) = 0 gives R∂xG = ∂xRG thus the function RG is the solution of the differential equation

∂xRG − zRG = Rf

This gives

RG(x, z) = Kezx + ezx
∫ x

1

e−ztRf (t)dt

With the condition
∫ 2

1
RG(x)dx = 0 and integration by parts we get gives

K = − ez

ez − 1

∫ 2

1

e−ztRf (t)dt

thus RG(1, z) = Kez gives
R∑
n≥1

enz
∫ n

1

e−ztf(t)dt =
e2z

1− ez

∫ 2

1

e−ztRf (t)dt

�

Remark
Let F0 = f and for k ≥ 1 let Fk(x) =

∫ x
1
Fk−1(t)dt we have

∑
k≥1

Fk(x)zk−1 =
∑
k≥0

zk
∫ x

1

(x− t)k

k!
f(t)dt = ezx

∫ x

1

e−ztf(t)dt

thus
R∑
n≥1

enz
∫ n

1

e−ztf(t)dt =
∑
k≥1

(

R∑
n≥1

Fk(n))zk−1

and we the ”surprising relation” is simply

R∑
n≥1

e−nzϕf (n) =
1

1− e−z
R∑
n≥1

e−nzf(n)− e−z

z

∑
k≥0

(

R∑
n≥1

Fk(n))zk

that gives a relation between the sums
∑R
n≥1 n

kϕf (n),
∑R
n≥1 n

kf(n), and Ck =
∑R
n≥1 Fk(n):

R∑
n≥1

ϕf (n) =
3

2

R∑
n≥1

f(n)−
R∑
n≥1

nf(n)− C1

R∑
n≥1

nϕf (n) =
5

12

R∑
n≥1

f(n) +
1

2

R∑
n≥1

nf(n)− 1

2

R∑
n≥1

n2f(n)− C1 + C2

R∑
n≥1

n2ϕf (n) =
1

3

R∑
n≥1

f(n)− 1

6

R∑
n≥1

nf(n) +
1

2

R∑
n≥1

n2f(n)− 1

3

R∑
n≥1

n3f(n)− C1 + 2C2 − 2C3

...
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Example

For f(x) = 1/x we have F1(x) = Log(x), F2(x) = xLog(x)− x+ 1, F3(x) = x2

2 Log(x)− 3
4x

2 + x− 1
4 and we

get the sums
∑R
n≥k n

kHn in terms of the constants γ and ζ ′(−j)

R∑
n≥1

Hn =
3

2
γ +

1

2
− Log(

√
2π)

R∑
n≥1

nHn =
5

12
γ +

7

8
− Log(

√
2π)− ζ ′(−1)

R∑
n≥1

n2Hn =
1

3
γ +

17

34
− Log(

√
2π)− 2ζ ′(−1) + ζ ′(−2)

More generally we have (Cf. Candelpergher, Gadiyar, Padma)

R∑
m≥1

mpHm =
1−Bp+1

p+ 1
γ +

p∑
k=1

(−1)kCkp ζ
′(−k)− Log(

√
2π) + rp with rp ∈ Q

2.5 The case of a Laplace transform

Theorem 7 Let f̂ is a continuous function on [0,+∞[ such that

|f̂(ξ)| ≤ Ceaξ with a < 1

and f his Laplace transform defined for Re(x) > a by

f(x) =

∫ +∞

0

e−xξ f̂(ξ)dξ

Then f is analytic for Re(x) > a and is of moderate growth, we have

R∑
n≥1

f(n) = Rf (1) =

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
) f̂(ξ)dξ .

Proof
The function f is analytic for Re(x) > a and |f(x)| ≤ C 1

Re(x)−a , thus f is of moderate growth. Now we have

Rf (x) = −
∫ x

1

f(t)dt+

∫ +∞

0

e−xξ(
1

1− e−ξ
− 1

ξ
) f̂(ξ)dξ

To prove this assertion write

Rf (x)−Rf (x+ 1) =

∫ x+1

x

f(t)dt+

∫ +∞

0

e−xξ(1− e−ξ)( 1

1− e−ξ
− 1

ξ
) f̂(ξ)dξ

thus

Rf (x)−Rf (x+ 1) = f(x) +

∫ x+1

x

f(t)dt−
∫ +∞

0

e−xξ
1− e−ξ

ξ
f̂(ξ)dξ

but we have by Fubini’s theorem∫ x+1

x

f(t)dt =

∫ +∞

0

∫ x+1

x

e−tξ f̂(ξ)dt dξ =

∫ +∞

0

e−xξ
1− e−ξ

ξ
f̂(ξ)dξ

Thus Rf (x)−Rf (x+ 1) = f(x) and we can verify that
∫ 2

1
Rf (x)dx = 0, then

R∑
n≥1

f(n) = Rf (1) =

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
) f̂(ξ)dξ .
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Example

Let f(x) = 1
xk

for k > 0 then f(x) =
∫ +∞

0
e−xξ ξk−1

(k−1)!dξ and we get for k 6= 1

ζ(k)− 1

k − 1
=

R∑
n≥1

1

nk
=

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
)

ξk−1

(k − 1)!
dξ .

and

γ =

R∑
n≥1

1

n
=

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
) dξ .

Theorem 8 Let
∑
k≥1 ckx

k a power series with radius ρ > 1 and let f(x) =
∑+∞
k=1 ck

1
xk

then the function f is
analytic in {Re(x) > 1/ρ} and is the Laplace transform of the entire function

f̂(ξ) =

+∞∑
k=1

ck
ξk−1

(k − 1)!

We have
R∑
n≥1

f(n) = c1γ +

+∞∑
k=2

ck(ζ(k)− 1

k − 1
)

Proof
By hypothesis we have |ck| ≤ Mrk with 0 < r = 1

ρ−ε < 1. The series
∑
k≥1 ck

ξk−1

(k−1)! is convergent for all

ξ ∈ C and the function

f̂(ξ) =

+∞∑
k=1

ck
ξk−1

(k − 1)!

is an entire function with
|f̂(ξ)| ≤ Cer|ξ|

For Re(x) > r we have∫ +∞

0

e−xξ f̂(ξ)dξ =

∫ +∞

0

+∞∑
k=1

cke
−xξ ξk−1

(k − 1)!
dξ =

+∞∑
k=1

ck

∫ +∞

0

e−xξ
ξk−1

(k − 1)!
dξ =

+∞∑
k=1

ck
1

xk
= f(x)

the permutation is justified by∫ +∞

0

+∞∑
k=1

|ck|e−Re(x)ξ ξk−1

(k − 1)!
dξ ≤M

∫ +∞

0

+∞∑
k=1

rke−Re(x)ξ ξk−1

(k − 1)!
≤Mr

∫ +∞

0

e−(Re(x)−r)ξdξ < +∞

Thus by the preceding theorem

R∑
n≥1

f(n) =

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
) f̂(ξ)dξ =

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
)
∑
k≥1

ck
ξk−1

(k − 1)!
dξ.

interchanging
∫

et
∑

we get

R∑
n≥1

f(n) =

∞∑
k=1

ck

∫ +∞

0

e−ξ(
1

1− e−ξ
− 1

ξ
)

ξk−1

(k − 1)!
dξ .

and by the preceding example
R∑
n≥1

f(n) = c1γ +

+∞∑
k=2

ck(ζ(k)− 1

k − 1
)

�
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Remark

Since
R∑
n≥1

1

n
= γ and

R∑
n≥1

1

nk
= ζ(k)− 1

k − 1
for k 6= 1

the preceding theorem can be stated in the form of the result of a permutation of signs
∑R
n≥1 and

∑+∞
k=1

R∑
n≥1

+∞∑
k=1

ck
1

nk
=

+∞∑
k=1

ck

R∑
n≥1

1

nk

Examples

1) We have

+∞∑
k=2

(−1)k

k

R∑
n≥1

1

nk
=

R∑
n≥1

+∞∑
k=2

(−1)k

k

1

nk

But
+∞∑
k=2

(−1)k

k

1

nk
= −Log(1 +

1

n
) +

1

n
= Log(n)− Log(n+ 1) +

1

n

Thus
R∑
n≥1

+∞∑
k=2

(−1)k

k

1

nk
=

R∑
n≥1

(Log(n)− Log(n+ 1)) + γ = −2Log(2) + 1 + γ

this gives
+∞∑
k=2

(−1)k

k
(ζ(k)− 1

k − 1
) = −2Log(2) + 1 + γ

With
+∞∑
k=2

(−1)k

k

1

k − 1
=

+∞∑
k=2

(−1)k

k − 1
−

+∞∑
k=2

(−1)k

k
= 2Log(2)− 1

we get finally

+∞∑
k=2

(−1)k

k
ζ(k) = γ

2) Let z ∈ C we have

R∑
n≥1

e−z/n

n
=

R∑
n≥1

+∞∑
k=0

(−1)kzk

k!

1

nk+1
=

+∞∑
k=0

(−1)kzk

k!

R∑
n≥1

1

nk+1

thus

R∑
n≥1

e−z/n

n
= γ +

∑
k≥1

(−1)k

k!
(ζ(k + 1)− 1

k
)zk (2.15)
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2.6 Analyticity with respect to a parameter

2.6.1 The theorem of analyticity

It is well known that the simple convergence of a series
∑
n≥1 f(n, z) of functions z 7→ f(n, z) analytic in a

domain U does not imply that the sum
∑+∞
n≥1 f(n, z) is analytic in U . A very important property of Ramanujan

summation is that analyticity of the terms imply analyticity of the sum. We have an illustration of this fact
with

R∑
n≥1

1

nz
= ζ(z)− 1

z − 1

where we see that the pole of zeta is removed.

Definition
Let (x, z) 7→ f(x, z) a function defined for Re(x) > 0 and z ∈ U ⊂ C such that z 7→ f(x, z) is analytic for

z ∈ U. We say that f is locally uniformly in Oπ if
a) for all z ∈ U the function x 7→ f(x, z) is analytic for Re(x) > 0
b) for any K compact of U there exist α < π and C > 0 such that for Re(x) > 0 and z ∈ K

|f(x, z)| ≤ Ceα|x|

By Cauchy formula there is the same type of inequality for the derivatives ∂kz f thus ∂kz f is locally uniformly
in Oπ.

Theorem 9 Analyticity of z 7→
∑R
n≥1 f(n, z)

Let (x, z) 7→ f(x, z) a function defined for Re(x) > 0 and z ∈ U ⊂ C such that z 7→ f(x, z) is analytic for
z ∈ U and f is locally uniformly in Oπ. Then the function

z 7→
R∑
n≥1

f(n, z)

is analytic in U and

∂kz

R∑
n≥1

f(n, z) =

R∑
n≥1

∂kz f(n, z)

Thus if z0 ∈ U and

f(n, z) =

+∞∑
k=0

ak(n)(z − z0)k for |z − z0| < ρ and n ≥ 1

then
R∑
n≥1

f(n, z) =
+∞∑
k=0

[
R∑
n≥1

ak(n)](z − z0)k

Proof
Let z ∈ K ⊂ U then we have

R∑
n≥1

f(n, z) =
f(1, z)

2
+ i

∫ +∞

0

f(1 + it, z)− f(1− it, z)
e2πt − 1

dt

The function

h : z 7→ f(1 + it, z)− f(1− it, z)
e2πt − 1

is analytic in U for all t ∈]0,+∞[ and if z ∈ K

|f(1 + it, z)− f(1− it, z)
e2πt − 1

| ≤ Aeαt

e2πt − 1
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then by the analyticity theorem of an integral depending on a parameter we get the analyticity of h in U and
for t > 1 we have

∂kh(z) =

∫ +∞

0

∂kz f(1 + it, z)− ∂kz f(1− it, z)
e2πt − 1

dt

Thus the function z 7→
∑R
n≥1 f(n, z) is analytic in U and

∂kz

R∑
n≥1

f(n, z) =

R∑
n≥1

∂kz f(n, z)

For z0 ∈ U let

f(n, z) =

+∞∑
k=0

ak(n)(z − z0)k for |z − z0| < ρ and n ≥ 1

then ak(n) = 1
k!∂

k
z f(n, z0) and

R∑
n≥1

f(n, z) =

+∞∑
k=0

1

k!
∂kz

R∑
n≥1

f(n, z0)(z − z0)k =

+∞∑
k=0

R∑
n≥1

1

k!
∂kz f(n, z0)(z − z0)k =

+∞∑
k=0

[

R∑
n≥1

ak(n)](z − z0)k

�

Examples
1) Let f(x, z) = 1

z+x and U = {|z| < 1} we have for z ∈ U and x ≥ 1

f(x, z) =
1

x

1

1 + z
x

=
1

x
+

+∞∑
k=1

(−1)k

xk+1
zk

thus
R∑
n≥1

1

z + n
= γ +

+∞∑
k=1

(−1)k(ζ(k + 1)− 1

k
)zk

By
∑R
n≥1

1
z+n = −Ψ(z + 1) + Log(z + 1) we get

Ψ(z + 1) = −γ +

+∞∑
k=1

(−1)k−1ζ(k + 1)zk

Integrating we get

Log(Γ(z + 1)) = −γz +

+∞∑
k=2

(−1)kζ(k)
zk

k

Note that on the other hand we have formally

R∑
n≥1

1

n+ z
=

1

z

R∑
n≥1

1

1 + n
z

=

R∑
n≥1

∑
k≥0

(−1)k
nk

zk+1

thus

R∑
n≥1

1

n+ z
=

1

2z
+
∑
k≥1

(−1)k
1

zk+1
(
1−Bk+1

k + 1
)

= − 1

2z
+ Log(1 +

1

z
) +

∑
k≥1

B2k

2k

1

z2k
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This gives the asymptotic expansion

Ψ(z + 1) = Log(z) +
1

2z
−
∑
k≥1

B2k

2k

1

z2k

the last series is divergent but the sum can be defined by the Borel summation procedure.

2) Let the function f(x, s) = 1
xs the preceding theorem the function s 7→

∑R
n≥1

1
ns is an entire function. We

have seen in chapter 1 that
∑R
n≥1

1
ns = ζ(s)− 1

s−1 for Re(s) > 1 thus by analytic continuation we get

R∑
n≥1

1

ns
= ζ(s)− 1

s− 1
for s 6= 1

If s = −k with k integer ≥ 1 we get

ζ(−k) +
1

k + 1
=

R∑
n≥1

nk =
1−Bk+1

k + 1
if k ≥ 1

thus

ζ(−k) = −Bk+1

k + 1
if k ≥ 1

for k = 0 we get ζ(0) = −1 +
∑R
n≥1 1 = − 1

2 .
By derivation we get

∂

R∑
n≥1

1

ns
= −

R∑
n≥1

Log(n)

ns

this gives

R∑
n≥1

Log(n)

ns
= −ζ ′(s)− 1

(s− 1)2
for s 6= 1

Thus for example ζ ′(0) = −1−
∑R
n≥1 Log(n) = −Log(

√
2π) and

∑R
n≥1 nLog(n) = −ζ ′(−1)− 1

4 but we have

seen that
∑R
n≥1 nLog(n) = Log(A)− 1

3 where A is the Glaisher-Kinkelin constant, thus we get

−ζ ′(−1)− 1

4
= Log(A)− 1

3

More generally

R∑
n≥1

Logk(n)

ns
= (−1)k∂kζ(s)− k!

(s− 1)k+1
for s 6= 1.

For s = 1 we have the sums
∑R
n≥1

Logk(n)
n which are related to the Stieltjes constants γk defined by the

Laurent expansion of ζ at 1

ζ(s+ 1) =
1

s
+
∑
n≥0

(−1)k

k!
γks

k

We have
R∑
n≥1

1

ns+1
= ζ(s+ 1)− 1

s

and the expansion
1

ns+1
=
∑
k≥0

(−1)k

k!
sk
Logk(n)

n
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gives
R∑
n≥1

1

ns+1
=
∑
k≥0

(−1)k

k!
sk
R∑
n≥1

Logk(n)

n

thus

γk =

R∑
n≥1

Logk(n)

n
(2.16)

3) With f(x, z) = Log2(z + x) we get

R∑
n≥1

Log2(z + n) =

R∑
n≥1

Log2(n) + 2

R∑
n≥1

Log(n)Log(1 +
z

n
) +

R∑
n≥1

Log2(1 +
z

n
)

We have

R∑
n≥1

Log(n)Log(1 +
z

n
) =

∞∑
k=1

(−1)k−1

k
zk
R∑
n≥1

Log(n)

nk
= γ1z +

∞∑
k=2

(−1)k

k
(ζ ′(k) +

1

(k − 1)2
)zk

and
R∑
n≥1

Log2(1 +
z

n
) =

∞∑
k=2

(−1)k(ζ(k)− 1

k − 1
)σkz

k with σk =

k−1∑
i=1

1

i(k − i)
=

2

k
Hk−1

By the shift property we have if z is an integer

R∑
n≥1

Log2(z + n) =

R∑
n≥1

Log2(n)−
z∑
k=1

Log2(k) + (z + 1)Log2(z + 1)− 2(z + 1)Log(z + 1) + 2z

The function ϕLog2x(z) =
∑z
k=1 Log

2(k) is introduced by Ramanujan in his notebooks (chapter 8 entry 18).
Since

(z + 1)Log2(z + 1)− 2(z + 1)Log(z + 1) + 2z = 2

∞∑
k=2

(−1)k

k

1

(k − 1)2
zk −

∞∑
k=2

(−1)k
1

k − 1

2

k
Hk−1z

k

we get for z integer

ϕLog2x(z) = −2γ1z − 2

∞∑
k=2

(−1)k

k
ζ ′(k)zk − 2

∞∑
k=2

(−1)k

k
ζ(k)Hk−1z

k (2.17)

Since ∂Log2x = 2Log(x)
x and using the relation

ϕ∂f (x) = ∂ϕf (x) +

R∑
n≥1

∂f(n)− f(1)

we get

ϕLog(x)
x

(z) = −γ1 −
∞∑
k=2

(−1)kζ ′(k)zk−1 −
∞∑
k=2

(−1)kζ(k)Hkz
k−1 +

R∑
n≥1

Log(n)

n

thus

ϕLog(x)
x

(z) =

∞∑
k=1

(−1)kζ ′(k + 1)zk +

∞∑
k=1

(−1)kζ(k + 1)Hkz
k
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4) Let f ∈ O0 and 0 < z < π, since we are in a case of convergence for the series
∑
n≥1 e

−znf(n) we have

R∑
n≥1

e−znf(n) =

+∞∑
n=1

e−znf(n)−
∫ +∞

1

e−zxf(x)dx

Let F (x) =
∫ x

1
f(t)dt, if e−zxF (x) = O( 1

xα ) with α > 1, we have by integration by parts∫ +∞

1

e−zxf(x)dx = z

∫ +∞

1

e−zxF (x)dx

With

+∞∑
n=1

e−znF (n) =

R∑
n≥1

e−znF (n) +

∫ +∞

1

e−zxF (x)dx

we get
+∞∑
n=1

e−znF (n) =

R∑
n≥1

e−znF (n) +
1

z

∫ +∞

1

e−zxf(x)dx

If f(x) = 1
x ans 0 < z < π then

+∞∑
n=1

e−znLog(n) =

R∑
n≥1

e−znLog(n) +
1

z

∫ +∞

1

e−zx

x
dx

=

R∑
n≥1

e−znLog(n)−
+∞∑
k=1

(−1)k

k!

zk−1

k
− γ + Log(z)

z

But we have by the theorem of analyticity

R∑
n≥1

e−znLog(n) =

+∞∑
k=0

(−1)k

k!
zk
R∑
n≥1

nkLog(n) =

+∞∑
k=0

(−1)k−1

k!
zk(ζ ′(−k) +

1

(k + 1)2
)

thus

+∞∑
n=1

e−znLog(n) =

+∞∑
k=0

(−1)k−1

k!
zkζ ′(−k)− γ + Log(z)

z

Corollary
As a consequence of the preceding theorem and

Rf(x,z)(x) =

R∑
n≥1

f(n+ x, z) + f(x, z)−
∫ x+1

1

f(t, z)dt

ϕf(x,z)(x) =

R∑
n≥1

f(n, z)−
R∑
n≥1

f(n+ x, z) +

∫ x+1

1

f(u, z)du

we have with the same hypothesis as in the preceding theorem the analyticity of these functions of z and by
derivation with respect to z we get

∂zRf(x,z)(x) = R∂zf(x,z)(x)

∂zϕf(x,z)(x) = ϕ∂zf(x,z)(x)
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Example If f(x, z) = 1
xz with z 6= 1 then

ϕLog(x)
xz

= −∂zϕ 1
xz

= −ζ ′(z) + ∂zζ(z, x)− ∂z
1

xz

we get

ϕLog(x)
xz

= −ζ ′(z) + ∂zζ(z, x) +
Log(x)

xz

For z = 0 then

ϕLog(x) = −ζ ′(0) + ∂zζ(0, x) + Log(x)

but we know that ϕLog(x) = Log(Γ(x+ 1)) thus we get the Lerch formula (c.f Berndt)

Log(Γ(x)) = −ζ ′(0) + ∂zζ(0, x)

2.6.2 Analytic continuation of Dirichlet series

Let x 7→ c(x) a function analytic for Re(x) > 0 such that we have the asymptotic expansion at infinity

c(x) =
∑
k≥0

αk
1

xjk

where Re(j0) <Re(j1) <Re(j2) < ... <Re(jk) <... Then let

h(s) =
∑
n≥1

c(n)

ns

this function is analytic for Re(s) > 1−Re(j0) and we have

h(s) =

R∑
n≥1

c(n)

ns
+

∫ +∞

1

c(x)x−sdx

The function s 7→
∑R
n≥1

c(n)
ns is an entire function, thus the singularities of the funtion h are given by the

integral term∫ +∞

1

c(x)x−sdx =

∫ +∞

1

(N−1∑
k≥0

αkx
−s−jk +O(x−s−jN )

)
dx =

N−1∑
k≥0

αk
1

s+ jk − 1
+RN (s)

Thus we get simple poles for the function h at the points s = 1− jk with residues αk.

Examples
1) Let h(s) =

∑+∞
n=1

1
(n+1)ns for Re(s) > 1 then

+∞∑
n=1

1

(n+ 1)ns
=

R∑
n≥1

1

(n+ 1)ns
+

∫ +∞

1

1

(x+ 1)xs
dx

The function s 7→
∑R
n≥1

1
(n+1)ns is an entire function, thus the singularities of the (analytic continuation of the)

function h are the singularities of the function s 7→
∫ +∞

1
1

(x+1)xs dx. Since for x > 1 we have

1

(x+ 1)xs
=

+∞∑
k=0

(−1)k

xs+k+1

we get by the dominated convergence∫ +∞

1

1

(x+ 1)xs
dx =

+∞∑
k=0

(−1)k
∫ +∞

1

x−s−k−1dx =

+∞∑
k=0

(−1)k

s+ k
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Thus the function h has simple poles at s = −k,k = 0, 1, 2, ... and

h(s) =
(−1)k

s+ k
+

R∑
n≥1

1

(n+ 1)ns
+

+∞∑
j 6=k

(−1)j

s+ j

We observe that

lim
s=−k

(h(s)− (−1)k

s+ k
) =

R∑
n≥1

nk

n+ 1
+

+∞∑
j 6=k

(−1)j

j − k

2) Let c(x) = Ψ(x+ 1) + γ then Ψ(n) = Hn and for Re(s) > 1 let h(s) =
∑+∞
n=1

Hn
ns .

We have for Re(s) > 1

h(s) =

R∑
n≥1

Hn

ns
+

∫ +∞

1

(Ψ(x+ 1) + γ)x−sdx

The asymptotic expansion at infinity

Ψ(x+ 1) + γ = Log(x) + γ +
1

2x
−
∑
k≥1

B2k

2k

1

x2k

gives

h(s) =

R∑
n≥1

Hn

ns
+

∫ +∞

1

Log(x)x−sdx+
γ

s− 1
+

1

2s
−

N∑
k≥1

B2k

2k

1

s+ 2k − 1
+RN (s)

The integral term ∫ +∞

1

Log(x)x−sdx =
1

(s− 1)2

gives for h a pole of order 2 at s=1 with residue γ. We have a simple pole at s = 0 with residue 1/2 and
simple poles at s = 1− 2k with residues −B2k

2k .

2.6.3 The zeta function associated to Laplacian on the sphere S2

Let A = −∆ the Laplacian on the sphere S2 the zeta function associated to this operator is (cf. Birmingham
and Sen)

ζA(s) =

+∞∑
n=1

2n+ 1

ns(n+ 1)s

we have

ζA(s) =

R∑
n≥1

2n+ 1

ns(n+ 1)s
+

∫ +∞

1

2x+ 1

xs(x+ 1)s
dx

The function s 7→
∑R
n≥1

2n+1
ns(n+1)s is an entire function, thus the singularities of ζA are the singularities of the

function s 7→
∫ +∞

1
2x+1

xs(x+1)s dx. Since for x > 1 we have

1

(x+ 1)sxs
=

+∞∑
k=0

(−1)k

k!
s(s+ 1)...(s+ k − 1)x−2s−k

we get by the dominated convergence∫ +∞

1

2x+ 1

xs(x+ 1)s
dx =

1

s− 1
+

+∞∑
k=0

(−1)k+1

(k + 1)!
s(s+ 1)...(s+ k − 1)

Thus the function ζA has only a simple pole at s = 1. By Mellin inversion we have with c > 1

Tr(e−At) =
1

2iπ

∫ c+i∞

c−i∞
ζA(s)Γ(s)t−sds
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and by the residues theorem we get the asymptotic expansion

Tr(e−At) ∼ 1

t
+
∑
p≥0

(−1)p

p!
ζA(−p)tp

The evaluation of ζA(−p) is easily done by the Ramanujan summation

ζA(−p) =

R∑
n≥1

(2n+ 1)np(n+ 1)p − 1

p+ 1
+

p∑
k=0

(−1)k+1

(k + 1)!
(−p)(−p+ 1)...(−p+ k − 1)

We find for example

ζA(0) =

R∑
n≥1

(2n+ 1)− 2 = −2

3

ζA(−1) =

R∑
n≥1

(2n+ 1)n(n+ 1)− 2 = − 1

15

We see that Ramanujan summation gives a simple alternative way to the way of Mellin summation technique
proposed by Birmingham an Sen.

2.6.4 Zeta regularization of divergent products

Let a function x 7→ a(x) such that x 7→ Log(a(x)) is a function of moderate growth, we can use the Ramanujan
summation to give the following definition of the Ramanujan product

R∏
n≥1

a(n) = e
∑R
n≥1 Log(a(n))

Thus we get for example
R∏
n≥1

n = e
∑R
n≥1 Log(n) = eLog(

√
2π)−1 =

√
2π

e

Note that with this definition of the Ramanujan product we have for any positive constant C

R∏
n≥1

(a(n)C) = e
∑R
n≥1 Log(a(n))+log(C) = e

∑R
n≥1 Log(a(n))e

∑R
n≥1 Log(C) =

( R∏
n≥1

a(n)
)
e

1
2Log(C)

thus we get the strange relation
R∏
n≥1

(a(n)C) =
√
C

R∏
n≥1

a(n)

There is a well-known procedure to define infinite divergent products which avoid such strange property. That
is the zeta-regularization of divergents products (cf. Quine Heydari Song), defined by

reg∏
n≥1

a(n) = e−Z
′
a(0) with Za defined analytic continuation of s 7→

+∞∑
n≥1

1

(a(n))s

it is assumed that s 7→
∑+∞
n≥1

1
(a(n))s is defined for Re(s) > α and Za is defined near 0 by analytic continuation.

There is a simple relation of this Ramaujan product with the zeta-regularization of divergents products.
For Re(s) > α we have

+∞∑
n≥1

1

(a(n))s
=

R∑
n≥1

1

(a(n))s
+

∫ +∞

1

1

(a(x))s
dx
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The function 7→
∑R
n≥1

1
(a(n))s is an entire function, we assume that the function

Ya : s 7→
∫ +∞

1

1

(a(x))s
dx

has an analytic continuation near 0. Thus

Z ′a(s) = −
R∑
n≥1

Log(a(n))

(a(n))s
+ Y ′a(s)

and we get
reg∏
n≥1

a(n) = e−Z
′
a(0) = e

∑R
n≥1 Log(a(n))e−Y

′
a(0) = e−Y

′
a(0)

R∏
n≥1

a(n)

Thus we can use Ramanujan summation to evaluate zeta-regularized products.

Example
We have for Re(z) > 0

R∏
n≥1

(n+ z) = e
∑R
n≥1 Log(n+z) =

√
2π

Γ(z + 1)
(x+ 1)x+1e−(x+1)

and for Re(s) > 1

Y (s) =

∫ +∞

1

1

(x+ z)s
dx =

(z + 1)−s+1

s− 1

thus
Y ′(0) = (z + 1)Log(z + 1)− (z + 1)

and we get
reg∏
n≥1

(n+ z) = e−Y
′(0)

R∏
n≥1

(n+ z) =

√
2π

Γ(z + 1)

2.7 Integration with respect to a parameter

2.7.1 Interchanging
∑R

n≥1 and
∫
I

Theorem 10 Let (x, u) 7→ f(x, u) defined for Re(x) > 0 and u ∈ I where I is an interval I ⊂ R. We suppose
that

a) for all Re(x) > 0 the function u 7→ f(x, u) is integrable on I
b) f is in Oπ uniformly in the parameter u ∈ I in an interval I ⊂ R:
there is α < π such that

|f(x, u)| ≤ Ceα|x| for all Re(x) > 0 and all u ∈ I

Then ∫
I

R∑
n≥1

f(n, u)du =

R∑
n≥1

∫
I

f(n, u)du

Proof
We have

R∑
n≥1

f(n, u) =
f(1, u)

2
+ i

∫ +∞

0

f(1 + it, u)− f(1− it, u)

e2πt − 1
dt

It suffices to prove that∫
I

(

∫ +∞

0

f(1 + it, u)− f(1− it, u)

e2πt − 1
dt)du =

∫ +∞

0

∫
I
f(1 + it, u)du−

∫
I
f(1− it, u)du

e2πt − 1
dt
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This is a consequence of the Fubini theorem since

|f(1 + it, u)− f(1− it, u)|
e2πt − 1

≤ A eαt

e2πt − 1

�

Examples
1) We use the equation

R∑
n≥1

cos(πnt) =
sin(πt)

πt
− 1

2
for t ∈ [0, 1[.

and ∫ 1/2

0

(t− 1

2
)2 cos(πnt)dt = −

2 sin 1
2πn

π3n3
+

πn

π3n3

Thus we have
R∑
n≥1

∫ 1/2

0

(t− 1

2
)2 cos(πnt)dt = −2

R∑
n≥1

sin 1
2πn

π3n3
+

R∑
n≥1

1

π2n2

Since we are in a case of convergence

R∑
n≥1

sin 1
2πn

π3n3
=

+∞∑
n≥1

sin 1
2πn

π3n3
−
∫ +∞

1

sin 1
2πx

π3x3
dx =

1

π3

∞∑
n=1

(−1)n−1

(2n− 1)3
−
∫ +∞

1

sin 1
2πx

π3x3
dx

By the preceding theorem

R∑
n≥1

∫ 1/2

0

(t− 1

2
)2 cos(πnt)dt =

∫ 1/2

0

(t− 1

2
)2
R∑
n≥1

cos(πnt)dt =

∫ 1/2

0

(t− 1

2
)2(

sin(πt)

πt
− 1

2
)dt

Integrating by part we have ∫ +∞

1

sin 1
2πx

π3x3
dx =

1

2π3
− 1

8

∫ +∞

1

sin 1
2πx

πx
dx

Thus we get

∞∑
n=1

(−1)n−1

(2n− 1)3
=

1

32
π3

2) We use the equation

R∑
n≥1

sin(πnt) = −cos(πt)

πt
+

1

2
cot(

πt

2
) for t ∈ [0, 1[.

and ∫ 1/2

0

t sin(πnt)dt = −
cos 1

2πn

2πn
+

sin( 1
2πn)

π2n2

Thus

R∑
n≥1

∫ 1/2

0

t sin(πnt)dt =

R∑
n≥1

(−
cos 1

2πn

2πn
+

sin( 1
2πn)

π2n2
) =

1

4π

∞∑
n=1

(−1)n−1

n
+

∫ +∞

1

cos 1
2πx

2πx
dx

+
1

π2

∞∑
n=1

(−1)n−1

(2n− 1)2
−
∫ +∞

1

sin 1
2πx

π2x2
dx
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By the preceding theorem this is∫ 1/2

0

R∑
n≥1

t sin(πnt)dt =

∫ 1/2

0

(−cos(πt)

π
+

1

2
t cot(

πt

2
))dt

Finally after an integration by parts we get∫ π/2

0

x cot(
x

2
)dx = 2G+

1

2
πLog(2)

where G =
∑+∞
n=1

(−1)n−1

(2n−1)2 is the Catalan’s constant.

And by same type of calculation∫ π/2

0

x2 cot(
x

2
)dx = 2πG+

1

4
π2Log(2)− 35

8
ζ(3)

3) By the shift property we have for x > 0 and x 6= 1

R∑
n≥1

1

(n+ 1)x
= ζ(x)− 1− 2−(x−1)

x− 1

if x = 1 then this formula is extended analytically by
∑R
n≥1

1
n+1 = γ − 1 + Log(2). Since

∫ +∞

0

R∑
n≥1

1

(n+ 1)x
dx =

R∑
n≥1

∫ +∞

0

e−xLog(n+1)dx =

R∑
n≥1

1

Log(n+ 1)

We get
R∑
n≥1

1

Log(n+ 1)
=

∫ +∞

0

[
ζ(x)− 1− 2−(x−1)

x− 1

]
dx

2.7.2 The functional equation for zeta

By the formula
R∑
n≥1

f(n) =
f(1)

2
+ i

∫ +∞

0

f(1 + it)− f(1− it)
e2πt − 1

dt

we get with x > 0 and f(u) = 1/(u− 1 + x)

R∑
n≥1

1

n− 1 + x
=

1

2x
+ i

∫ +∞

0

1/(x+ it)− 1/(x− it)
e2πt − 1

dt

and with the shift property we get

R∑
n≥1

1

n+ x
= Log(1 +

1

x
)− 1

2x
+ 2

∫ +∞

0

t/(x2 + t2)

e2πt − 1
dt

this gives

R∑
n≥1

1

n+ x
= Log(1 +

1

x
) + 2

∫ +∞

0

(
1

e2πt − 1
− 1

2πt
)

t

x2 + t2
dt
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Taking the Mellin transform we get for 0 < s < 1
a) for the left side

∫ +∞

0

xs−1
R∑
n≥1

1

n+ x
dx =

R∑
n≥1

∫ +∞

0

xs−1 1

n+ x
dx =

R∑
n≥1

ns−1

∫ +∞

0

xs−1 1

1 + x
dx =

π

sinπs

R∑
n≥1

ns−1

b) for the right side∫ +∞

0

xs−1Log(1 +
1

x
) + 2

∫ +∞

0

xs−1

∫ +∞

0

(
1

e2πt − 1
− 1

2πt
)

t

x2 + t2
dt dx

since ∫ +∞

0

xs−1Log(1 +
1

x
) =

π

sinπs

1

s

and∫ +∞

0

xs−1

∫ +∞

0

(
1

e2πt − 1
− 1

2πt
)

t

x2 + t2
dt dx =

∫ +∞

0

(
1

e2πt − 1
− 1

2πt
)

∫ +∞

0

xs−1 t

x2 + t2
dx dt

=

∫ +∞

0

(
1

e2πt − 1
− 1

2πt
)ts−1 π/2

sinπs/2

= (2π)−sΓ(s)ζ(s)
π/2

sinπs/2

Thus we get

π

sinπs

R∑
n≥1

ns−1 = 2(2π)−sΓ(s)ζ(s)
π/2

sinπs/2
+

π

sinπs

since
∑R
n≥1 n

s−1 − 1
s = ζ(1− s) we get

π

sinπs
ζ(1− s) = 2(2π)−sΓ(s)ζ(s)

π/2

sin(πs/2)

this is the Riemann functional equation.

2.7.3 The Muntz formula

Let a function f integrable on [0,+∞[ such that f(x) = O( 1
|x|α ) with α > 1, then for 0 <Re(s) < 1. Then by

interchanging
∫
I

∑R
n≥1 =

∑R
n≥1

∫
I

we get∫ +∞

0

xs−1
R∑
n≥1

f(nx)dx =

R∑
n≥1

∫ +∞

0

xs−1f(nx)dx

thus ∫ +∞

0

xs−1
R∑
n≥1

f(nx)dx =
( R∑
n≥1

1

ns
) ∫ +∞

0

xs−1f(x)dx

Then since we are in a case of convergence we have

R∑
n≥1

f(nx) =

+∞∑
n≥1

f(nx)− 1

x

∫ +∞

x

f(t)dt

thus
R∑
n≥1

f(nx)− 1

x

∫ x

0

f(t)dt =

+∞∑
n≥1

f(nx)− 1

x

∫ +∞

0

f(t)dt
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We get

∫ +∞

0

xs−1
( +∞∑
n≥1

f(nx)− 1

x

∫ +∞

0

f(t)dt
)

=
( R∑
n≥1

1

ns
) ∫ +∞

0

xs−1f(x)dx−
∫ +∞

0

xs−1
( 1

x

∫ x

0

f(t)dt
)
dx

For 0 <Re(s) < 1 we get by integration by parts∫ +∞

0

xs−1
( 1

x

∫ x

0

f(t)dt
)
dx = − 1

s− 1

∫ +∞

0

xs−1f(x)dx

Since
∑R
n≥1

1
ns = ζ(s)− 1

s−1 we obtain the Muntz formula (cf. E.C.Titchmarsh and D.R. Heath-Brown p.28)

∫ +∞

0

xs−1
( +∞∑
n≥1

f(nx)− 1

x

∫ +∞

0

f(t)dt
)
dx = ζ(s)

∫ +∞

0

xs−1f(x)dx

Remark

Let a function f such that (x, t) 7→ xαf(xt) satisfies the hypothesis of the preceding theorem with I =]0, 1[
then ∫ 1

0

R∑
n≥1

nαf(nt)dt =

R∑
n≥1

∫ 1

0

nαf(nt)dt =

R∑
n≥1

nα−1

∫ n

0

f(u)du

thus if F0(x) =
∫ x

0
f(t)dt then

R∑
n≥1

nα−1F0(n) =

∫ 1

0

R∑
n≥1

nαf(nt)dt

With α = 0 and f(x) = 1
1+x we get

R∑
n≥1

Log(n+ 1)

n
=

∫ 1

0

R∑
n≥1

1

1 + nt
dt =

∫ 1

0

1

t

R∑
n≥1

1

n+ 1
t

dt =

∫ +∞

1

Log(1 + u)−Ψ(1 + u)

u
du

With α = 1 and f(x) = 1
1+x2 we get

R∑
n≥1

Arctg(n) =

∫ 1

0

R∑
n≥1

n

1 + n2t2
dt =

∫ 1

0

1

t2

R∑
n≥1

n

n2 + 1
t2

dt

since
R∑
n≥1

n

n2 + a2
=

1

2
(

R∑
n≥1

1

n+ ia
+

R∑
n≥1

1

n− ia
) = Log(

√
1 + a2)− 1

2
(Ψ(1 + ia) + Ψ(1− ia))

we get

R∑
n≥1

Arctg(n) =

∫ +∞

1

Log(
√

1 + u2)− 1

2
(Ψ(1 + iu) + Ψ(1− iu)) du

Note that the same calculations with I =]0,+∞[ gives

∫ +∞

0

R∑
n≥1

nαf(nt)dt =
[ R∑
n≥1

nα−1
] ∫ +∞

0

f(t)dt
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2.8 Heat equation

Let x = (x1, x2) ∈ R2 and t ≥ 0, the function

U(x, t) =

R∑
n≥1

1

n+ t
e−

|x|2
4(n+t)

is solution of heat equation

∂tU = ∂2
x1x1

U + ∂2
x2x2

U

Let

f(z) =

R∑
n≥1

1

n
e−

z
n = γ +

∞∑
k=1

(−1)k(ζ(k + 1)− 1

k
)
zk

k!

then

f(
|x|2

4
) =

∑
n≥1

1

n
e−
|x|2
4n = U(x, 0)

With the heat kernel we get

U(x, t) =

∫
R2

1

4πt
e−
|x−y|2

4t U(y, 0)dy

= e−
|x|2
4t

1

4πt

∫
R2

e
x.y
2t e−

|y|2
4t f(

|y|2

4
)dy

Let x = (r, 0) with polar coordinates we get

U(x, t) = e−
|x|2
4t

1

4πt

∫ +∞

0

∫ 2π

0

e
1
2t rρ cos(θ)ρe−

ρ2

4t f(
ρ2

4
)dρdθ

We have for t > 0

g(rρ/2t) =

∫ 2π

0

e
1
2t rρ cos(θ)dθ = 2πI0(rρ/2t)

where I0 is the Bessel function I0(z) =
∑
k≥0

1
(k!)2 (z/2)2k

Thus

U(x, t) = e−
r2

4t
1

4πt
2π

∫ +∞

0

I0(rρ/2t)ρe−
ρ2

4t f(
ρ2

4
)dρ

this gives

R∑
n≥1

1

(n+ t)
e−

r2

4(n+t) = e−
r2

4t
1

2t

∫ +∞

0

I0(rρ/2t)ρe−
ρ2

4t (

R∑
n≥1

1

n
e−

ρ2

4n )dρ

With z = r2

4 and u = ρ2

4 we get

R∑
n≥1

1

n+ t
e−

z
n+t = e−z/t

1

t

∫ +∞

0

I0(2
√
zu/t)e−

u
t (

R∑
n≥1

1

n
e−

u
n )du

If t is a positive integer we have the shift property

R∑
n≥1

1

n+ t
e−

z
n+t =

R∑
n≥1

1

n
e−

z
n −

t∑
n≥1

1

n
e−

z
n +

∫ t+1

1

1

x
e−z/xdx
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with t = 1 we get the integral equation

f(z) = e−z −
∫ 2

1

1

x
e−z/xdx+ e−z

∫ +∞

0

I0(2
√
zu)e−uf(u)du (2.18)

Note that

f(z) =

R∑
n≥1

e−
z
n − 1

n
+ γ = γ +

+∞∑
n≥1

e−
z
n − 1

n
−
∫ +∞

1

e−
z
t − 1

t
dt

Let

g(z) = γ +

+∞∑
n≥1

e−
z
n − 1

n

this function is the exponential generating function of the zeta values

g(z) = γ +
∑
k≥1

ζ(k + 1)(−1)k
zk

k!

Since f(z) = g(z) −
∫ +∞

1
e−

z
t −1
t dt it is easy to prove that the integral equation (2.19) gives now a simpler

integral equation for this generating function g that is

g(z) = e−z + e−z
∫ ∞

0

e−uI0(2
√
zu)g(u)du

2.9 Link with Borel summation

2.9.1 Ramanujan summation in term of Bernoulli numbers

Let a function f given by the Borel sum

f(x) =

B∑
k≥0

αkx
k

that is for Re(x) > 0

f(x) =

∫ +∞

0

e−ξ
(∑
k≥0

αkx
k ξ

k

k!

)
dξ

We assume that the function (x, ξ) 7→
∑
k≥0 αkx

k ξ
k

k! satisfies the hypothesis of theorem 9.
Then we have

R∑
n≥1

f(n) =

R∑
n≥1

∫ +∞

0

e−ξ
∑
k≥0

αkn
k ξ

k

k!
dξ

=

∫ +∞

0

e−ξ
R∑
n≥1

∑
k≥0

αkn
k ξ

k

k!
dξ

Now we assume that
R∑
n≥1

∑
k≥0

αkn
k ξ

k

k!
=
∑
k≥0

αk
ξk

k!

R∑
n≥1

nk

then

R∑
n≥1

f(n) =

∫ +∞

0

e−ξ
∑
k≥0

αk

R∑
n≥1

nk
ξk

k!
dξ

=

∫ +∞

0

e−ξ(
α0

2
+
∑
k≥1

αk(
1−Bk+1

k + 1
)
ξk

k!
dξ
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thus we get by definition of Borel summation

R∑
n≥1

f(n) =
α0

2
+

B∑
k≥1

αk(
1−Bk+1

k + 1
) (2.19)

Note that this formula is nothing else than

R∑
n≥1

B∑
k≥1

αkn
k =

B∑
k≥1

R∑
n≥1

αkn
k

which we recall is valid under the strong hypothesis:
∑R
n≥1

∑
k≥0 αkn

k ξ
k

k! =
∑
k≥0 αk

ξk

k!

∑R
n≥1 n

k.

Example
Let f(x) = 1

1+x =
∑B
k≥0(−1)kxk that is for Re(x) > 0 we have f(x) =

∫ +∞
0

e−ξe−xξdξ. We have

R∑
n≥1

∑
k≥0

(−1)knk
ξk

k!
=

R∑
n≥1

e−nξ =
e−ξ

1− e−ξ
+
e−ξ

−ξ
=

1

2
+
∑
k≥1

(−1)k(
1−Bk+1

k + 1
)
ξk

k!
=
∑
k≥0

(−1)k
ξk

k!

R∑
n≥1

nk

thus
R∑
n≥1

1

n+ 1
=

1

2
+

B∑
k≥1

(−1)k(
1−Bk+1

k + 1
)

but
∑R
n≥1

1
n+1 = γ − 1 + Log(2) and

∑B
k≥1

(−1)k

k+1 = Log(2)− 1 thus we get

γ =
1

2
+

B∑
k≥1

(−1)k−1Bk+1

k + 1

More generally we have
R∑
n≥1

1

n+ z
=

1

z

R∑
n≥1

1

1 + n
z

=

R∑
n≥1

B∑
k≥0

(−1)k
nk

zk+1

thus

R∑
n≥1

1

n+ z
=

1

2z
+

B∑
k≥1

(−1)k
1

zk+1
(
1−Bk+1

k + 1
) = − 1

2z
+ Log(1 +

1

z
) +

B∑
k≥1

B2k

2k

1

z2k

this gives by (2.4)

Ψ(z + 1) = Log(z) +
1

2z
−
B∑
k≥1

B2k

2k

1

z2k

Note that we cannot make the same calculation for
∑
n≥1

1
1+n2 . We have 1

1+x2 =
∑B
k≥0(−1)kx2k but∑R

n≥1

∑
k≥0(−1)kn2k ξ

k

k! =
∑R
n≥1 e

−n2ξ is not defined.

Remark
The formula (2.19) is not always valid.

Let f(x) = xy
exy−1 for Re(x) > 0 and y > 0. We have f(x) =

∑B
k≥0

Bk
k! x

kyk.
thus if we apply (2.19) then

R∑
n≥1

ny

eny − 1
=
B0

2
+

B∑
k≥1

Bk
k!

(
1−Bk+1

k + 1
)yk
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Since BkBk+1 = 0 if k ≥ 2 we get

R∑
n≥1

ny

eny − 1
=

1

2
+

1

y

B∑
k≥1

Bk
(k + 1)!

yk+1 − B1B2

2
y

this gives
R∑
n≥1

ny

eny − 1
=

1

y

∫ y

0

t

et − 1
dt− 1

2
− B1B2

2
y

Since we are in a case of convergence we get

+∞∑
n≥1

ny

eny − 1
=

1

y

∫ +∞

0

t

et − 1
dt− 1

2
− B1B2

2
y

that is
+∞∑
n≥1

ny

eny − 1
=
π2

6y
− 1

2
+

y

24

but unfortunately this formula is not true.

2.9.2 An integral formula

Let a function f given by the Borel sum f(x) =
∑B
k≥0 αkx

k that is for Re(x) > 0

f(x) =

∫ +∞

0

e−ξ(
∑
k≥0

αkx
k ξ

k

k!
)dξ =

∫ +∞

0

e−u/x

x
f̂(u)du

with

f̂(u) =
∑
k≥0

αk
uk

k!

Then by interchange of
∫

and
∑R
n≥1 we get

R∑
n≥1

f(n) =

∫ +∞

0

R∑
n≥1

e−u/n

n
f̂(u)du

But we have
R∑
n≥1

e−u/n

n
= γ +

∑
k≥1

(−1)k

k!
(ζ(k + 1)− 1

k
)uk

thus

R∑
n≥1

f(n) =

∫ +∞

0

γ +
∑
k≥1

(−1)k

k!
(ζ(k + 1)− 1

k
)uk

 f̂(u)du

Example

Let f : x 7→ 1
x+z with x > 0 and z > 0 this function is given by the Borel sum f(x) =

∑B
k≥0

(−1)k

zk+1 x
k then

f(x) =

∫ +∞

0

e−u/x

x
f̂(u)du with f̂(u) =

∑
k≥0

(−1)k

zk+1

uk

k!
=

1

z
e−u/z
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thus

R∑
n≥1

1

n+ z
=

∫ +∞

0

γ +
∑
k≥1

(−1)k

k!
(ζ(k + 1)− 1

k
)uk

 1

z
e−u/zdu

= γ +

B∑
k≥1

[
(−1)k(ζ(k + 1)− 1

k
)

]
zk

= γ +

B∑
k≥1

[
(−1)kζ(k + 1)

]
zk + Log(1 + z)

Since
∑R
n≥1

1
z+n = −Ψ(z + 1) + Log(z + 1) we get for z > 0

Ψ(z + 1) = −γ +

B∑
k≥1

[
(−1)k+1ζ(k + 1)

]
zk

2.10 Double Ramanujan sums

2.10.1 Definitions and properties

We study iterate Ramanujan summation
R∑
n≥1

R∑
m≥1

f(m,n)

Theorem 11 Let a function (x, y) 7→ f(x, y) analytic for Re(x) > 0 and Re(y) > 0 with

x 7→ f(x, y) in Oπ for all Re(y) > 0

y 7→ f(x, y) in Oπ for all Re(x) > 0

If there exist a function W analytic for Re(x) > 0 and Re(y) > 0 such that

W (x, y)−W (x, y + 1)−W (x+ 1, y) +W (x+ 1, y + 1) = f(x, y)

with x 7−→W (x, y) in Oπ(P ) for all Re(y) > 0 and y 7−→W (x, y) in Oπ(P ) for all Re(x) > 0 then we have

R∑
n≥1

R∑
m≥1

f(m,n) =

R∑
m≥1

R∑
n≥1

f(m,n)

Proof
Let R(x, y) = W (x, y)−W (x, y + 1) then

R(x, y)−R(x+ 1, y) = f(x, y)

thus
R∑
m≥1

f(m, y) = R(1, y)− (

∫ 2

1

W (x, y)dx−
∫ 2

1

W (x, y + 1)dx)

For x = 1 the equation W (1, y)−W (1, y + 1) = R(1, y) gives

R∑
n≥1

R(1, n) = W (1, 1)−
∫ 2

1

W (1, y)dy
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thus

R∑
n≥1

R∑
m≥1

f(m,n) = W (1, 1)−
∫ 2

1

W (1, y)dy −
R∑
n≥1

∫ 2

1

W (x, n)dx+

R∑
n≥1

∫ 2

1

W (x, n+ 1)dx

= W (1, 1)−
∫ 2

1

W (1, y)dy −
∫ 2

1

W (x, 1)dx+

∫ 2

1

∫ 2

1

W (x, y)dxdy

Evaluation of
∑R
m≥1

∑R
n≥1 f(m,n)

We have
W (x, y)−W (x+ 1, y)− (W (x, y + 1)−W (x+ 1, y + 1)) = f(x, y)

R∑
n≥1

f(m,n) = W (m, 1)−W (m+ 1, 1)− (

∫ 2

1

W (m, y)dy −
∫ 2

1

W (m+ 1, y)dy)

thus

R∑
m≥1

R∑
n≥1

f(m,n) =

R∑
m≥1

W (m, 1)−W (m+ 1, 1)−
R∑
m≥1

(

∫ 2

1

W (m, y)dy −
∫ 2

1

W (m+ 1, y)dy)

=
R∑
m≥1

W (m, 1)− (
R∑
m≥1

W (m, 1)−W (1, 1) +

∫ 2

1

W (x, 1)dx)

−
∫ 2

1

W (1, y)dy +

∫ 2

1

∫ 2

1

W (x, y)dydx

= W (1, 1)−
∫ 2

1

W (x, 1)dx−
∫ 2

1

W (1, y)dy +

∫ 2

1

∫ 2

1

W (x, y)dydx

Conclusion

R∑
n≥1

R∑
m≥1

f(m,n) = W (1, 1)−
∫ 2

1

W (1, y)dy −
∫ 2

1

W (x, 1)dx+

∫ 2

1

∫ 2

1

W (x, y)dxdy

R∑
m≥1

R∑
n≥1

f(m,n) = W (1, 1)−
∫ 2

1

W (x, 1)dx−
∫ 2

1

W (1, y)dy +

∫ 2

1

∫ 2

1

W (x, y)dydx

By Fubini’s theorem we have ∫ 2

1

∫ 2

1

W (x, y)dxdy =

∫ 2

1

∫ 2

1

W (x, y)dydx

donc
∑R
n≥1

∑R
m≥1 f(m,n) =

∑R
m≥1

∑R
n≥1 f(m,n).

�

Examples
1) We have by the shift property

R∑
m≥1

R∑
n≥1

1

n+m
=

R∑
m≥1

γ −
R∑
m≥1

Hm +

R∑
m≥1

Log(m+ 1)

=
1

2
γ − 3

2
γ − 1

2
+ Log(

√
2π) + Log(

√
2π)− 1 + 2Log2− 1

This gives
R∑
m≥1

R∑
n≥1

1

n+m
= −γ + 3Log(2) + Log(π)− 5

2
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2) We have
∑+∞
n=1

1
(n+m)2 = ζ(2)−H(2)

m thus

R∑
m≥1

R∑
n≥1

1

(n+m)2
=

R∑
m≥1

+∞∑
n=1

1

(n+m)2
−
R∑
m≥1

∫ +∞

1

1

(x+m)2
dx

=

R∑
m≥1

(ζ(2)−H(2)
m )−

R∑
m≥1

1

m+ 1

Thus
R∑
m≥1

R∑
n≥1

1

(n+m)2
= 3− ζ(2)− γ − Log(2)

Remark
By the same method we get more generally

R∑
m≥1

R∑
n≥1

f (n+m) =

R∑
n≥1

(n− 1)f(n) + 2

R∑
n≥1

F (n) +

∫ 2

1

F (y)dy

This is obtained by

R∑
m≥1

R∑
n≥1

f(n+m) =

R∑
m≥1

(

R∑
n≥1

f(n)− Sm(f) +

∫ m+1

1

f(x)dx)

=
1

2

R∑
n≥1

f(n)−
R∑
m≥1

Sm(f) +

R∑
m≥1

∫ m+1

1

f(x)dx

=
1

2

R∑
n≥1

f(n)− (
3

2

R∑
n≥1

f(n)−
R∑
n≥1

nf(n)−
R∑
n≥1

∫ n

1

f(x)dx) +

R∑
m≥1

∫ m+1

1

f(x)dx

= −
R∑
n≥1

f(n) +

R∑
n≥1

nf(n) +

R∑
n≥1

∫ n

1

f(x)dx+

R∑
m≥1

∫ m+1

1

f(x)dx

=

R∑
n≥1

(n− 1)f(n) + 2

R∑
n≥1

∫ n

1

f(x)dx+

∫ 2

1

∫ y

1

f(x)dxdy

=

R∑
n≥1

(n− 1)f(n) + 2

R∑
n≥1

F (n) +

∫ 2

1

F (y)dy

�

Example

R∑
m≥1

R∑
n≥1

Log (n+m) =

R∑
n≥1

(n− 1)Log(n) + 2

R∑
n≥1

nLog(n)− 1 +

∫ 2

1

(yLog(y)− y)dy

2.10.2 The case of convergence

Like in one dimension we have a formula that link
∑R
n≥1

∑R
m≥1 to

∑+∞
n=1

∑+∞
m=1.

We have

R∑
n≥1

R∑
m≥1

f(m,n) =

+∞∑
n=1

+∞∑
m=1

f(m,n) +

∫ +∞

1

∫ +∞

1

f(x, y)dxdy −
+∞∑
n=1

∫ +∞

1

f(x, n)dx−
+∞∑
n=1

∫ +∞

1

f(m, y)dy
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Examples

1) For Re(s) > 2 we have

R∑
m≥1

R∑
n≥1

1

(n+m)s
=
s− 3

s− 1
ζ(s− 1) +

22−s

(s− 1)(s− 2)
+

1

s− 1
− (ζ(s)− 1

s− 1
)

Note that

+∞∑
m=1

+∞∑
n=1

1

(n+m)s
=

R∑
m≥1

+∞∑
n=1

1

(n+m)s
+

∫ +∞

1

+∞∑
n=1

1

(n+ x)s
dx

=

R∑
m≥1

(ζ(s)−H(s)
m ) +

+∞∑
n=1

1

s− 1

1

(n+ 1)s−1

This gives the relation
+∞∑
m=1

+∞∑
n=1

1

(n+m)s
= ζ(s− 1)− ζ(s)

Independently this relation is easily deduced from the summation by packets

+∞∑
m=1

+∞∑
n=1

1

(n+m)s
=

+∞∑
k=1

∑
m+n=k+1

1

(n+m)s

This type of summation cannot be applied to
∑R
m≥1

∑R
n≥1

1
(n+m)s

2) With f(x, y) = 1
xy(x+y) we know that

+∞∑
n=1

+∞∑
m=1

f(m,n) = 2ζ(3)

thus we get

R∑
n≥1

R∑
m≥1

1

mn(m+ n)
= 2ζ(3) + 2Log(2)− 2

+∞∑
n=1

Log(n+ 1)

n2

But
1

mn(m+ n)
=

1

n2m
− 1

n2(m+ n)

and by the shift property
R∑
m≥1

1

m+ n
= γ −Hn + Log(n+ 1)

we get
R∑
n≥1

R∑
m≥1

1

mn(m+ n)
= γ

R∑
n≥1

1

n2
−
R∑
n≥1

1

n2
(γ −Hn + Log(n+ 1))

After some simplifications this gives∫ +∞

1

Ψ(x+ 1) + γ

x2
dx =

+∞∑
n≥1

Log(n+ 1)

n2
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2.10.3 The sums
∑R

n≥1
Hn
np

We have by the shift property
R∑
n≥1

1

m+ n
= γ −Hm + Log(m+ 1)

this gives
R∑
m≥1

R∑
n≥1

1

m

1

m+ n
=

R∑
m≥1

1

m

R∑
n≥1

1

m+ n
=

R∑
m≥1

1

m
(γ −Hm + Log(m+ 1))

thus
R∑
m≥1

R∑
n≥1

1

m

1

m+ n
= γ2 −

R∑
m≥1

Hm

m
+

R∑
m≥1

Log(m+ 1)

m

On the other side

R∑
n≥1

R∑
m≥1

1

m

1

m+ n
=

R∑
n≥1

1

n
(

R∑
m≥1

(
1

m
− 1

m+ n
)) =

R∑
n≥1

1

n
(Hn − Log(n+ 1))

thus
R∑
n≥1

R∑
m≥1

1

m

1

m+ n
=

R∑
m≥1

Hm

m
−
R∑
m≥1

Log(m+ 1)

m

By the preceding theorem we get

R∑
m≥1

Log(m+ 1)

m
=

R∑
m≥1

Hm

m
− γ2

2

The sum
∑R
m≥1

Log(m+1)
m is simply related to

∑R
m≥1

Log(m)
m :

R∑
m≥1

Log(m+ 1)

m
=

R∑
m≥1

Log(m+ 1)

m+ 1
+

R∑
m≥1

Log(m+ 1)

m+ 1

1

m

=

R∑
m≥1

Log(m)

m
+

∫ 2

1

Log(x)

x
dx+

R∑
m≥1

Log(m+ 1)

m+ 1

1

m

=

R∑
m≥1

Log(m)

m
+

1

2
Log2(2) +

R∑
m≥1

Log(m+ 1)

m+ 1

1

m

But the last series
∑
m≥1

Log(m+1)
m+1

1
m is convergent and thus we have

R∑
m≥1

Log(m+ 1)

m+ 1

1

m
=

+∞∑
m=1

Log(m+ 1)

m(m+ 1)
−
∫ +∞

1

Log(x+ 1)

x(x+ 1)
dx

=

+∞∑
m=1

Log(m+ 1)

m(m+ 1)
− π2

12
− 1

2
Log2(2)

Finally we get

R∑
m≥1

Log(m)

m
− π2

12
+

+∞∑
m=1

Log(m+ 1)

m(m+ 1)
=

R∑
m≥1

Hm

m
− γ2

2

thus
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R∑
m≥1

Hm

m
= γ1 −

π2

12
+
γ2

2
+

+∞∑
m=1

Log(m+ 1)

m(m+ 1)

Remark
We can obtain directly the sums

∑R
m≥1

Log(m)
m by

R∑
n≥1

1

m+ n− 1
= γ −Hm +

1

m
+ Log(m)

this gives
R∑
m≥1

R∑
n≥1

1

m

1

m+ n− 1
= γ2 −

R∑
m≥1

Hm

m
+ ζ(2)− 1 +

R∑
m≥1

Log(m)

m

Now consider the sum
∑R
m≥1

1
m

1
m+n−1 . We have if n = 1

R∑
m≥1

1

m

1

m+ n− 1
=

R∑
m≥1

1

m2

and if n > 1

R∑
m≥1

1

m

1

m+ n− 1
=

+∞∑
m=1

1

m(m+ n− 1)
−
∫ +∞

1

1

x(x+ n− 1)
dx

=
Hn−1

n− 1
− Log(n)

n− 1

Thus the sum
∑R
n≥1

∑R
m≥1

1
m

1
m+n−1 is

∑R
n≥1 f(n) where

f(n) =

R∑
m≥1

1

m2
if n = 1

=
Hn−1

n− 1
− Log(n)

n− 1
if n > 1

The function f is given by f(x) = 1
x−1 (γ + ψ (x)− Log(x)) and we have

R∑
n≥1

f(n) =

R∑
n≥1

f(n+ 1) + f(1)−
∫ 2

1

f(x)dx

thus

R∑
n≥1

R∑
m≥1

1

m

1

m+ n− 1
=

R∑
n≥1

Hn

n
−
R∑
n≥1

Log(n+ 1)

n
+

R∑
m≥1

1

m2
−
∫ 2

1

1

x− 1
(γ + Ψ (x)− Log(x))dx

With the preceding results, after some simplifications we get∫ 1

0

γ + Ψ(x+ 1)

x
dx =

+∞∑
m=1

Log(m+ 1)

m(m+ 1)

We have for an integer q > 1

2q−1∑
k=1

(−1)k−1 1

nkm2q−k =
1

m2q−1(m+ n)
+

1

n2q−1(m+ n)
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thus if ζR(k) =
∑R
m≥1

1
mk

then

2q−1∑
k=1

ζR(k)ζR(2q − k)(−1)k−1 = 2

R∑
n≥1

R∑
m≥1

1

m2q−1(m+ n)

With
R∑
n≥1

1

m+ n
= γ −Hm + Log(m+ 1)

we get

2

R∑
m≥1

R∑
n≥1

1

m2q−1(m+ n)
= 2γζR(2q − 1) + 2

R∑
m≥1

Log(m+ 1)−Hm

m2q−1

thus
R∑
m≥1

Log(m+ 1)

m2q−1
−
R∑
m≥1

Hm

m2q−1
=

1

2

2q−2∑
k=2

ζR(k)ζR(2q − k)(−1)k−1

For q = 2 we get

R∑
m≥1

Log(m+ 1)

m3
−
R∑
m≥1

Hm

m3
= −1

2
(ζR(2))2

2.10.4 The sums
∑R

n≥1
∑R

m≥1
1

mp(m+n)q

We begin with the sum
∑R
m≥1

∑R
n≥1

m
m+n . We have

R∑
m≥1

R∑
n≥1

m

m+ n
=

R∑
m≥1

R∑
n≥1

m+ n

m+ n
−
R∑
m≥1

R∑
n≥1

n

m+ n
=

1

4
−
R∑
m≥1

R∑
n≥1

n

m+ n

thus we get

R∑
m≥1

R∑
n≥1

m

m+ n
=

1

8

Remark
Since

∑R
n≥1

m
m+n = m(γ −Hm + Log(m+ 1)), we get

R∑
m≥1

R∑
n≥1

m

m+ n
=

R∑
m≥1

m(γ −Hm + Log(m+ 1)) =
5

12
γ −

R∑
m≥1

mHm +

R∑
m≥1

mLog(m+ 1)

thus we find
R∑
m≥1

mHm =
5

12
γ +

R∑
m≥1

mLog(m+ 1)− 1

8

Since

R∑
m≥1

mLog(m+ 1) =

R∑
m≥1

(m+ 1)Log(m+ 1)−
R∑
m≥1

Log(m+ 1)

= −ζ ′(−1)− Log(
√

2π) + 1

we have another proof of the relation

R∑
m≥1

mHm =
5

12
γ − ζ ′(−1)− Log(

√
2π) +

7

8
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A general relation
Let an integer p ≥ 2 and

Vp(X,m, n) =

p−1∑
k=1

(
1

mknp−k
+

1

nkmp−k )Xp−k−1

Wp(X,m, n) =

p−1∑
k=1

(
1

mk(m+ n)p−k
+

1

nk(m+ n)p−k
)Xp−k−1

The partial fraction decomposition of 1
mk(m+n)p−k

+ 1
nk(m+n)p−k

gives the relation

Wp(1 +X,m, n) +Xp−2Wp(1 + 1/X,m, n) = Vp(X,m, n)

With R− summation on m and n, we get

R∑
n≥1

R∑
m≥1

Wp(1 +X,m, n) +Xp−2
R∑
n≥1

R∑
m≥1

Wp(1 + 1/X,m, n) =

R∑
n≥1

R∑
m≥1

Vp(X,m, n)

If we set

ζR(k) =
R∑
m≥1

1

mk

and

R∑
n≥1

R∑
m≥1

1

mk(m+ n)p−k
= ζR(k, p− k)

then the polynomials

Sp(X) =

p−1∑
k=1

ζR(k, p− k)Xp−k−1

satisfies the relation (cf. Zagier)

Sp(1 +X) +Xp−2Sp(1 + 1/X) =

p−1∑
k=1

ζR(k)ζR(p− k)Xp−k−1
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Chapter 3

Ramanujan summation of alternating
series.

3.1 Definition

The sum
∑R
n≥1(−1)n is not defined in the preceding sections. This is a consequence of the fact that for the

sequence n 7→ (−1)n there is no interpolation function f ∈ Oπ.

To define the summation of alternating series we begin to use the Euler-Boole summation formula

f(1)− f(2) + ...+ (−1)n−1f(n) =
1

2

m∑
k=0

∂kf(1)
Ek
k!

+
(−1)n−1

2

m∑
k=0

∂kf(n+ 1)
Ek
k!

+
1

2

∫ n+1

1

1

m!
em (t) ∂m+1f (t) dt

which we can write on the form

f(1)− ...+ (−1)n−1f(n) =
1

2

m∑
k=0

∂kf(1)
Ek
k!

+
1

2

∫ +∞

1

1

m!
em (t) ∂m+1f (t) dt

+
(−1)n−1

2

m∑
k=0

∂kf(n+ 1)
Ek
k!
− 1

2

∫ ∞
n+1

1

m!
em (t) ∂m+1f (t) dt

We see that we have the same structure like in the Euler-MacLaurin formula. By integration by parts we verify
that the constant term

C̃(f) =
1

2

m∑
k=0

∂kf(1)
Ek
k!

+
1

2

∫ +∞

1

1

m!
em (t) ∂m+1f (t) dt

is independent on m for m ≥M.

We can define a summation for an alternating series
∑
k≥1(−1)k−1f(k), like the preceding Ramanujan

summation, by defining

R∑
k≥1

(−1)k−1f(k) = C̃(f) =
1

2

m∑
k=0

∂kf(1)
Ek
k!

+
1

2

∫ +∞

1

1

m!
em (t) ∂m+1f (t) dt

We get for example:∑R
k≥1(−1)k−1 = 1

2E0 = 1/2 and
∑R
k≥1(−1)k−1k = 1

2E0 + 1
2
E1

1! = 1
2 −

1
4 = 1

4 .
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To obtain a definition not directly dependent on the Euler-Boole summation formula, we note

Tf (n) =
(−1)n

2

m∑
k=0

∂kf(n)
Ek
k!
− 1

2

∫ ∞
n

1

m!
em (t) ∂m+1f (t) dt

then we have
f(1)− ...+ (−1)n−1f(n) = C̃(f) + Tf (n+ 1)

thus
(−1)n−1f(n) = Tf (n+ 1)− Tf (n)

If we define Af (n) = (−1)nTf (n) we get

Af (n) +Af (n+ 1) = f(n)

and
R∑
n≥1

(−1)n−1f(n) = C̃(f) = −Tf (1) = Af (1)

The equation Af (x) + Af (x + 1) = f(x) does not specify an unique function Af we must avoid the the
solutions of A(x) +A(x+ 1) = 0, that are combinations of the functions e(2k+1)iπx.

Lemma 2
If f ∈ Oπ then there exist a unique solution Af ∈ Oπ of

Af (x) +Af (x+ 1) = f(x)

We have

Af (x) = Rf(2x)(
x

2
)−Rf(2x)(

x+ 1

2
). (3.1)

Proof
The function x 7→ f(2x) is in O2π and by the theorem 1 there is a function R ∈ O2π which is solution of

R(x)−R(x+ 1) = f(2x) with
∫ 2

1
R(x)dx = 0. And let

A(x) = R(
x

2
)−R(

x+ 1

2
)

then we have

A(x) +A(x+ 1) = −R(
x

2
+ 1) +R(

x+ 1

2
)−R(

x+ 1

2
) +R(

x

2
)

= −R(
x

2
+ 1) +R(

x

2
)

= f(x).

Unicity of the solution: if a function A ∈ Oπ is a solution of A(x) + A(x + 1) = 0 then the function
R(x) = A(x)eiπx is a solution of R(x) − R(x + 1) = 0 of exponential type < 2π, thus by the Lemma 1 the
function R is a constant C and we have A(x) = Ceiπx, and A ∈ Oπ implies C = 0.
�

Definition
If f ∈ Oπ there exist a unique function Af ∈ Oπ solution of Af (x) +Af (x+ 1) = f(x) and we define

R∑
n≥1

(−1)n−1f(n) = Af (1)
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Remarks
1) This definition does not contradict the preceding definition, because if f ∈ Oπ there is no function g ∈ Oπ

such that g(n) = (−1)nf(n). The condition g ∈ Oπ is essential since in the case f = 1 if we take g(x) = eiπx

then Rg(x) = eiπx

2 −
1
iπ thus

R∑
n≥1

eiπn = −1

2
− 1

iπ

And if we take g(x) = e−iπx then Rg(x) = e−iπx

2 + 1
iπ thus

R∑
n≥1

e−iπn = −1

2
+

1

iπ

2) If f ∈ Oπ then x 7→ f(x)eiπx is in O2π and by theorem 1 there is a unique function Rf(x)eiπx solution of
R(x) − R(x + 1) = f(x)eiπx. Then the function A(x) = e−iπxRf(x)eiπx is solution of A(x) + A(x + 1) = f(x),
but A is not Af since it is not of exponential type < π.

3) We have
∫ x+1

x
Af (x)dx+

∫ x+2

x+1
Af (x)dx =

∫ x+1

x
f(x)dx thus by the preceding definition

R∑
n≥1

(−1)n−1

∫ n+1

n

f(x)dx =

∫ 2

1

Af (x)dx

Examples
1) The Euler polynomials Ek(x) given by∑

k≥0

Ek(x)

k!
zk =

2exz

ez + 1

are solution of
Ek(x) + Ek(x+ 1) = 2xk

thus Axk = 1
2Ek(x) By Lemma 2 we have

Axk =
2k

k + 1
(Bk+1(

x+ 1

2
)−Bk+1(

x

2
))

By the properties of Bernoulli polynomials we deduce that for k integer > 0

R∑
n≥1

(−1)n−1n2k = 0

thus
R∑
n≥1

(−1)n−1n2k−1 =
22k

4k
(B2k(1)−B2k(

1

2
))

this gives
R∑
n≥1

(−1)n−1n2k−1 =
22k

4k
(B2k −B2k(21−4k − 1))

2) If f(x) = Log(x) then Rf (x) = −Log(Γ(x)) + Log(
√

2π)− 1 thus

RLog(2x) = RLog(2) − Log(Γ(x)) + Log(
√

2π)− 1 = (
3

2
− x)Log(2)− Log(Γ(x)) + Log(

√
2π)− 1

By Lemma 2 we get

Af (x) =
1

2
Log(2)− Log(Γ(x/2)) + Log(Γ((x+ 1)/2))
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and Af (1) = 1
2Log(2)− Log(Γ(1/2)) thus

R∑
n≥1

(−1)n−1Log(n) =
1

2
Log(2)− 1

2
Log(π)

3) We have for |z| < π

eixz + ei(x+1)z = eixz(1 + eiz)

thus Aeixz = eixz

1+eiz and
R∑
n≥1

(−1)n−1einz =
eiz

1 + eiz

We deduce that for −π < t < π
R∑
n≥1

(−1)n−1 cos(nt) =
1

2

R∑
n≥1

(−1)n−1 sin(nt) =
1

2
tan(

t

2
)

4) The function Ψ = Γ′/Γ satisfies

Ψ(x) + Ψ(x+ 1) = 2Ψ(x) +
1

x

thus

2

R∑
n≥1

(−1)n−1Ψ(n) +

R∑
n≥1

(−1)n−1

n
= Ψ(1)

We know that
∑R
n≥1

(−1)n−1

n = ln(2), this gives

2

R∑
n≥1

(−1)n−1Ψ(n) + ln(2) = −γ

With Ψ(n) + 1
n + γ = Hn we find that

R∑
n≥1

(−1)n−1Hn =
1

2
ln 2

In the same manner

xΨ(x) + (x+ 1)Ψ(x+ 1) = 2xΨ(x) + Ψ(x) + 1 +
1

x

gives
R∑
n≥1

(−1)n−1nHn =
1

4
− 1

4
ln 2

3.2 Relation to usual summation.

Let f ∈ Oπ from the equation Af (x) +Af (x+ 1) = f(x) we get

Af (1) + (−1)nAf (n) =

n−1∑
k=1

(−1)k−1f(k)
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If the alternating series
∑
n≥1(−1)n−1f(n) is convergent then (−1)nAf (n) must have a limit when n→∞ but

with the oscillation of (−1)n and the fact that Af ∈ Oπ then it seems that this limit is 0. Thus in the case the
series

∑
n≥1(−1)n−1f(n) is a convergent series we expect that

R∑
n≥1

(−1)n−1f(n) =

∞∑
n=1

(−1)n−1f(n)

To prove this we note that if the series
∑
n≥0(−1)nf(x+ n) is convergent for all Re(x) > 0 and if the function

x 7→
∞∑
n=0

(−1)nf(x+ n)

is in Oπ, this sum is the unique solution of A(x) +A(x+ 1) = f(x). Thus we get

Af (x) =

∞∑
n=0

(−1)nf(x+ n)

and

R∑
n≥1

(−1)n−1f(n) =
∞∑
n=0

(−1)nf(n+ 1)

Remark
The fact that for alternating series there is not a corrective integral term is also clear if we note that for f

sufficiently decreasing when Re(x)→ +∞ we have

Af (x) = Rf(2x)(
x

2
)−Rf(2x)(

x+ 1

2
)

=

∞∑
n≥0

f(x+ 2n)−
∫ +∞

1

f(2x)dx−
∞∑
n≥0

f(x+ n+ 1) +

∫ +∞

1

f(2x)dx

=

∞∑
n≥0

f(x+ 2n)−
∞∑
n≥0

f(x+ n+ 1)

=

∞∑
n=0

(−1)nf(x+ n)

3.3 Properties of the summation

We have immediately the property of linearity

R∑
n≥1

(−1)n−1(af(n) + bg(n)) = a

R∑
n≥1

(−1)n−1f(n) + b

R∑
n≥1

(−1)n−1g(n)

3.3.1 The shift property

Let f ∈ Oπ we have for any integer p ≥ 1

Af (x+ p) +Af (x+ p+ 1) = f(x+ p)

thus if we note f(+p) : x 7→ f(x+ p) then Af(+p)(x) = Af (x+ p) and

R∑
n≥1

(−1)n−1f(n+ p) = Af (p+ 1) = (−1)pAf (1) + (−1)p+1

p∑
k=1

(−1)k−1f(k)
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This gives the usual property for the shift

R∑
n≥1

(−1)n−1f(n+ p) = f(p)− f(p− 1) + ...+ (−1)p−1f(1) + (−1)p
R∑
n≥1

(−1)n−1f(n)

thus for the special case p = 1 we get

R∑
n≥1

(−1)nf(n+ 1) = −f(1) +

R∑
n≥1

(−1)n−1f(n)

Remark
Let f ∈ Oπ and F (x) =

∫ x
1
f(t)dt as a consequence of the shift property we have

R∑
n≥1

(−1)n−1F (n) = −1

2

∫ 2

1

Af (x)dx (3.2)

Proof
Let f ∈ Oπ we have ∫ x+1

x

Af (x)dx+

∫ x+2

x+1

Af (x)dx =

∫ x+1

x

f(x)dx

thus by the preceding definition

R∑
n≥1

(−1)n−1

∫ n+1

n

f(x)dx =

∫ 2

1

Af (x)dx

With F (x) =
∫ x

1
f(t)dt this gives

∫ 2

1

Af (x)dx =

R∑
n≥1

(−1)n−1(F (n+ 1)− F (n)) = −
R∑
n≥1

(−1)nF (n+ 1)−
R∑
n≥1

(−1)n−1F (n)

and by the shift property this gives
∫ 2

1
Af (x)dx = −2

∑R
n≥1(−1)n−1F (n).

�

3.3.2 Summation of even and odd terms.

The classical properties

+∞∑
n=1

f(2n− 1) +

+∞∑
n=1

f(2n) =

+∞∑
n=1

f(n)

and
+∞∑
n=1

(−1)n−1f(n) =

+∞∑
n=1

(f(2n− 1)− f(2n))

are not satisfied by Ramanujan sums.

Theorem 12 Let f ∈ Oπ we have

R∑
n≥1

f(2n− 1) =
1

2

R∑
n≥1

f(n) +
1

2

R∑
n≥1

(−1)n−1f(n)

R∑
n≥1

f(2n) =
1

2

R∑
n≥1

f(n)− 1

2

R∑
n≥1

(−1)n−1f(n) +
1

2

∫ 2

1

f(t)dt
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Proof
It is equivalent to prove the following assertions

R∑
n≥1

f(2n− 1) +

R∑
n≥1

f(2n) =

R∑
n≥1

f(n) +
1

2

∫ 2

1

f(t)dt

and

R∑
n≥1

f(2n− 1)−
R∑
n≥1

f(2n) =

R∑
n≥1

(−1)n−1f(n)− 1

2

∫ 2

1

f(t)dt

The first assertion is simply (2.7). For the second assertion let g(x) = f(2x) thus

Af (x) = Rg(
x

2
)−Rg(

x+ 1

2
)

and
R∑
n≥1

(−1)n−1f(n) = Rg(
1

2
)−

R∑
n≥1

g(n)

But we know by eq(10) that

Rg(
1

2
) =

R∑
n≥1

g(n− 1

2
) +

∫ 1

1/2

g(t)dt

Then
R∑
n≥1

(−1)n−1f(n) =

R∑
n≥1

g(n− 1

2
)−

R∑
n≥1

g(n) +

∫ 1

1/2

g(t)dt

thus we obtain
R∑
n≥1

(−1)n−1f(n) =

R∑
n≥1

f(2n− 1)−
R∑
n≥1

f(2n) +
1

2

∫ 2

1

f(t)dt

�

Remark
From the preceding theorem we have

R∑
n≥1

f(n) =

R∑
n≥1

f(2n− 1) +

R∑
n≥1

f(2n)− 1

2

∫ 2

1

f(t)dt

R∑
n≥1

(−1)n−1f(n) =

R∑
n≥1

f(2n− 1)−
R∑
n≥1

f(2n) +
1

2

∫ 2

1

f(t)dt

Examples
1) Let f(x) = 1

x

R∑
n≥1

1

2n− 1
=

1

2

R∑
n≥1

1

n
+

1

2

R∑
n≥1

(−1)n−1 1

n

thus
R∑
n≥1

1

2n− 1
=

1

2
γ +

1

2
ln 2

2) Let f(x) = ln(x) then
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R∑
n≥1

(−1)n−1Log(n) =

R∑
n≥1

Log(n)− 2

R∑
n≥1

Log(2n) +

∫ 2

1

Log(t)dt

With
R∑
n≥1

Log(2n) =

R∑
n≥1

Log(2) +

R∑
n≥1

ln(n) =
1

2
Log(2) + Log(

√
2π)− 1

we get

R∑
n≥1

(−1)n−1Log(n) =
1

2
Log(

2

π
)

And we have also

R∑
n≥1

Log(2n− 1) =
1

2

R∑
n≥1

Log(n) +
1

2

R∑
n≥1

(−1)n−1Log(n) =
1

2
(Log(

√
2π)− 1) +

1

4
Log(

2

π
)

thus
R∑
n≥1

Log(2n− 1) =
1

2
(Log(2)− 1)

and by the shift property

R∑
n≥1

Log(2n+ 1) =
1

2
(Log(2) + 3Log(3))− 1

3) Let f(x) = Log(x)
x then

R∑
n≥1

Log(2n)

2n
=

1

2

R∑
n≥1

Log(n)

n
− 1

2

R∑
n≥1

(−1)n−1Log(n)

n
+

1

2

∫ 2

1

Log(x)

x
dx

but
R∑
n≥1

Log(2n)

2n
=

R∑
n≥1

Log(2)

2n
+

R∑
n≥1

Log(n)

2n
=
Log(2)

2
γ +

1

2

R∑
n≥1

Log(n)

n

thus

Log(2)

2
γ = −1

2

R∑
n≥1

(−1)n−1Log(n)

n
+
Log2(2)

4

this gives

R∑
n≥1

(−1)n−1Log(n)

n
=
Log2(2)

2
− γLog(2)

3.3.3 Derivation and integration

Let f ∈ Oπ we have by theorem 8

R∑
n≥1

(−1)n−1f(n) =

R∑
n≥1

(2f(2n− 1)− f(n)) =

R∑
n≥1

(−1)n−1f(n) =

R∑
n≥1

(f(n)− 2f(2n)) +

∫ 2

1

f(t)dt

Thus if f depend on an extra parameter z or t then the theorems of analyticity en integration of chapter 2
remains valid.
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Examples
1) We know that for Re(z) < 0

R∑
n≥1

(−1)n−1eznHn =
ln (ez + 1)

ez + 1

Thus expanding in powers of z we obtain

R∑
n≥1

(−1)n−1Hn =
ln (2)

2

and
R∑
n≥1

(−1)n−1nHn =
1

4
− ln (2)

4

R∑
n≥1

(−1)n−1n2Hn = − 1

16

2) For Re(s) > 0

R∑
n≥1

(−1)n−1 1

ns
= (1− 21−s)ζ(s)

thus

R∑
n≥1

(−1)n−1 = (1− 21)ζ(0)⇒ ζ(0) = −1

2

By derivation, for s 6= 1 we have

R∑
n≥1

(−1)n−1 ln(n)

ns
= −21−s (ln 2) ζ (s)−

(
1− 21−s) ζ ′ (s)

thus

R∑
n≥1

(−1)n−1 ln(n) = −2 (ln 2) ζ (0) + ζ ′ (0)

= ln 2 + ζ ′ (0)

R∑
n≥1

(−1)n−1n2 ln(n) = −
(
1− 23

)
ζ ′ (−2) = −7ζ(3)/(2π)2

R∑
n≥1

(−1)n−1nk ln(n) = −2k+1 (ln 2) ζ (−k)−
(
1− 2k+1

)
ζ ′ (−k)

3) We have for −π < t < π

R∑
n≥1

(−1)n−1eint =
eit

1 + eit
=

eit/2

e−it/2 + eit/2
=

1

2
+ i

1

2
tg(

t

2
)

Thus for −π < t < π
R∑
n≥1

(−1)n−1 cos(nt) =
1

2

and
R∑
n≥1

(−1)n−1 sin(nt) =
1

2
tg(

t

2
)
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3.4 Application: Expression of the Stieltjes constants

Theorem 13 All the Stieltjes constants γm =
∑R
n≥1

Logm(n)
n can be expressed in terms linear combinations of

the constants γ̃k given by the convergent series

γ̃k =

+∞∑
n=1

(−1)n−1Logk(n)

n

More precisely we have

γm = −m!
∑

k+l=m
l≥−1,k≥0

Bl+1Log
l(2)

(l + 1)!

γ̃k
k!

Proof
By the preceding theorem we have

R∑
m≥1

1

(2n)z+1
=

1

2

R∑
m≥1

1

nz+1
− 1

2

R∑
m≥1

(−1)n−1

nz+1
+

1

2

∫ 2

1

1

xz+1
dx

thus

R∑
m≥1

1

nz+1
=

1

1− 2−z

R∑
m≥1

(−1)n−1

nz+1
− 1

z

But we can expand all the terms

R∑
m≥1

1

nz+1
=

R∑
m≥1

e−zLog(n)

n
=

+∞∑
k=0

(−1)k

k!
zk

R∑
m≥1

Logk(n)

n

R∑
m≥1

(−1)n−1

nz+1
=

R∑
m≥1

(−1)n−1e−zLog(n)

n
=

+∞∑
k=0

(−1)k

k!
zk

R∑
m≥1

(−1)n−1Logk(n)

n

1

1− 2−z
=

1

zLog(2)

−zLog(2)

e−zLog(2) − 1
=

+∞∑
k=0

(−1)kBk
k!

Logk−1(2)zk−1

This gives

+∞∑
m=0

(−1)m

m!
zm

R∑
n≥1

Logm(n)

n

=

[
+∞∑
l=−1

(−1)l+1Bl+1

(l + 1)!
Logl(2)zl

]+∞∑
k=0

(−1)k

k!
zk
R∑
n≥1

(−1)n−1Logk(n)

n

− 1

z

=

+∞∑
m=−1

zm
∑

k+l=m

(−1)l+1Bl+1

(l + 1)!
Logl(2)

(−1)k

k!

R∑
n≥1

(−1)n−1Logk(n)

n
− 1

z

the coefficient of z−1 in the sum is Log−1(2)
∑R
n≥1

(−1)n−1

n = 1 thus we have

+∞∑
m=0

(−1)m

m!
zm

R∑
n≥1

Logm(n)

n
=

+∞∑
m=0

zm
∑

k+l=m

(−1)l+1Bl+1

(l + 1)!
Logl(2)

(−1)k

k!

R∑
n≥1

(−1)n−1Logk(n)

n

By identification we get

1

m!

R∑
n≥1

Logm(n)

n
= −

∑
k+l=m
l≥−1,k≥0

Bl+1Log
l(2)

(l + 1)!

 1

k!

R∑
n≥1

(−1)n−1Logk(n)

n
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�

Examples
For m = 0

R∑
n≥1

1

n
= − 1

Log(2)

 R∑
n≥1

(−1)n−1Log(n)

n

−B1

 R∑
n≥1

(−1)n−1

n


thus

+∞∑
n=1

(−1)n−1Log(n)

n
= −γLog(2) +

1

2
Log2(2)

For m = 1

R∑
n≥1

Log(n)

n
= − 1

Log(2)

1

2

R∑
n≥1

(−1)n−1Log2(n)

n


−B1

 R∑
n≥1

(−1)n−1Log(n)

n


−B2Log(2)

2!

 R∑
n≥1

(−1)n−1

n


thus

R∑
n≥1

Log(n)

n
= − 1

Log(2)

[
1

2

+∞∑
n=1

(−1)n−1Log2(n)

n

]
+

1

2
[−γLog(2)] +

1

6
Log2(2)

For m = 2

1

2

R∑
n≥1

Log2(n)

n
= − 1

Log(2)

 1

3!

R∑
n≥1

(−1)n−1Log3(n)

n


−B1

 1

2!

R∑
n≥1

(−1)n−1Log2(n)

n


−B2Log(2)

2!

 R∑
n≥1

(−1)n−1Log(n)

n


3.5 Other alternate sums

Theorem 14 Let f ∈ Oπ then

R∑
n≥1

(−1)n−1
n∑
k=1

f(k) =
1

2

R∑
n≥1

(−1)n−1f(n)

Proof
We write

(−1)n−1Rf (n)− (−1)n−1Rf (n+ 1) = (−1)n−1f(n)
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then
R∑
n≥1

(−1)n−1Rf (n) +

R∑
n≥1

(−1)nRf (n+ 1) =

R∑
n≥1

(−1)n−1f(n)

but
R∑
n≥1

(−1)nRf (n+ 1) =

R∑
n≥1

(−1)n−1Rf (n) +Rf (1)

thus

2

R∑
n≥1

(−1)n−1Rf (n) =

R∑
n≥1

(−1)n−1f(n) +

R∑
n≥1

f(n)

�

Example
We have

−
R∑
n≥1

(−1)n−1Log(n) = 2

R∑
n≥1

(−1)n−1Log(Γ(n+ 1))

thus
R∑
n≥1

(−1)n−1Log(n!) =
1

4
Log(

2

π
)

Theorem 15 Let We now study series of type

SAn (f) =

n∑
k=1

(−1)k−1f(k)

If f is of moderate growth then

R∑
n≥1

SAn (f) =
3

2

R∑
n≥1

(−1)n−1f(n)−
R∑
n≥1

(−1)n−1nf(n)

R∑
n≥1

(−1)n−1SAn (f) =
1

2

R∑
n≥1

(−1)n−1f(n)−
R∑
n≥1

(−1)n−1F (n) with F (x) =

∫ x

1

f(u)du

Proof
We have SAn (f) = Af (1) + (−1)nAf (n) + (−1)n−1f(n) thus the sums

R∑
n≥1

SAn (f) and

R∑
n≥1

(−1)n−1SAn (f)

are well defined if f is of moderate growth and it is equivalent to prove that

R∑
n≥1

(−1)n−1Af (n) =

R∑
n≥1

(−1)n−1nf(n)

R∑
n≥1

Af (n) =
1

2

R∑
n≥1

(−1)n−1f(n) +
1

2

R∑
n≥1

f(n)− 1

2

∫ 2

1

Af (x)dx
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We have
xAf (x) + (x+ 1)Af (x+ 1) = Af (x+ 1) + xf(x)

thus

Af (1) =

R∑
n≥1

(−1)n−1Af (n+ 1) +

R∑
n≥1

(−1)n−1nf(n)

but Af (1) + (−1)n−1Af (n+ 1) = SAn (f) this gives the first assertion.

For the second assertion we use

Af (x)−Af (x+ 1) = 2Af (x)− f(x)

and the function R(x) = Af (x)−
∫ 2

1
Af (x)dx is solution of

R(x)−R(x+ 1) = 2Af (x)− f(x)∫ 2

1

R(x)dx = 0

thus

Af (1)−
∫ 2

1

Af (x)dx = 2

R∑
n≥1

Af (n)−
R∑
n≥1

f(n)

i.e.
R∑
n≥1

(−1)n−1f(n)−
∫ 2

1

Af (x)dx = 2

R∑
n≥1

Af (n)−
R∑
n≥1

f(n)

We have
∫ 2

1
Af (x)dx =

∑R
n≥1(−1)n−1(F (n+ 1)− F (n)) with F (x) =

∫ x
1
f(u)du

∫ 2

1

Af (x)dx = −2

R∑
n≥1

(−1)n−1F (n)

Finaly we note that
(−1)n−1Af (n) = Af (1)− SAn (f) + (−1)n−1f(n)

thus
Af (n) = Af (1)− 1)n−1 − (1)n−1SAn (f) + f(n)

�

Example
For f(x) = 1/x let HA

n =
∑n
k=1(−1)k−1 1

k then

R∑
n≥1

HA
n =

3

2
ln(2)− 1

2

Theorem 16 If f and g are of modeate growth then

R∑
n≥1

f(n)SAn (g) +

R∑
n≥1

(−1)n−1g(n)Sn(f) =

R∑
n≥1

(−1)n−1f(n)g(n) +

R∑
n≥1

f(n)

R∑
n≥1

(−1)n−1g(n)

Proof
Multiplying by Rf (x) the equation Ag(x) +Ag(x+ 1) = g(x) we get

Ag(x)Rf (x) +Ag(x+ 1)Rf (x) = g(x)Rf (x)
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or

Ag(x)Rf (x) +Ag(x+ 1)(Rf (x+ 1) + f(x)) = g(x)Rf (x)

This gives

Ag(x)Rf (x) +Ag(x+ 1)Rf (x+ 1) = g(x)Rf (x)− f(x)Ag(x+ 1)

We obtain

Ag(1)Rf (1) =

R∑
n≥1

(−1)n−1(g(n)Rf (n)− f(n)Ag(n+ 1))

=

R∑
n≥1

(−1)n−1g(n)Rf (n)−
R∑
n≥1

(−1)n−1f(n)Ag(n+ 1)

=

R∑
n≥1

(−1)n−1g(n)(

R∑
n≥1

f(n) + f(n)− Sn(f))

−
R∑
n≥1

(−1)n−1f(n)((−1)n−1SAn (g)− (−1)n−1
R∑
n≥1

(−1)n−1g(n))

Finaly

0 =

R∑
n≥1

(−1)n−1f(n)g(n)−
R∑
n≥1

(−1)n−1g(n)Sn(f)−
R∑
n≥1

f(n)SAn (g) +

R∑
n≥1

f(n)

R∑
n≥1

(−1)n−1g(n)

�

Example

With f = g the preceding theorem gives

R∑
n≥1

f(n)SAn (f) +

R∑
n≥1

(−1)n−1f(n)Sn(f) =

R∑
n≥1

(−1)n−1[f(n)]2 +

R∑
n≥1

f(n)

R∑
n≥1

(−1)n−1f(n)

For f(x) = 1/x we have

R∑
n≥1

(−1)n−1Hn

n
+

R∑
n≥1

HA
n

n
= γ ln 2 +

R∑
n≥1

(−1)n−1 1

n2
= γ ln 2 +

1

2
ζ(2)

We have (cf. Srivastava and Choi p.357 (40))

R∑
n≥1

(−1)n−1Hn

n
=

1

2
ζ(2)− 1

2
(Log(2))2

We get a formula that generalize a formula of Sitaramachandrarao ([4] A formula of Ramanujan, th 3.5).

R∑
n≥1

HA
n

n
= γ ln 2 +

1

2
(ln 2)2

where HA
n =

∑n
k=1(−1)k−1 1

k .
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3.6 Generalization

Let N integer > 1 and ω a root of unity ω = e2iπm/N ,m = 1, ..., N−1, we can define the Ramanujan summation
of the series ∑

n≥1

ωn−1f(n)

Let N integer > 1 we note simply f(Nx) the function

: x 7→ f(Nx)

Lemma
Let ω a root of unity ω = e2iπm/N ,m = 1, ..., N − 1. Let f ∈ O2π/N then the equation

R(x)− ωR(x+ 1) = f(x)

has a unique solution Rωf ∈ O2π/N . We have

Rωf (x) =

N−1∑
k=0

ωkRf(Nx)(
x+ k

N
) (3.3)

Proof
The function Rωf defined by (5.3) verify

Rωf (x)−Rωf (x+ 1) = Rf(Nx)(
x

N
)−Rf(Nx)(

x

N
+ 1) = f(x)

For the unicity we note that if R ∈ O2π/N is solution of

R(x)− ωR(x+ 1) = 0

then
ωxR(x)− ωx+1R(x+ 1) = 0

and T : x 7→ ωxR(x) is in O2π and is solution of T (x)− T (x+ 1) = 0. Thus T is constant and

R(x) = Cω−x

With R ∈ O2π/N this implies C = 0.
�

Definition
Let ω a root of unity ω = e2iπm/N ,m = 1, ..., N − 1. Let f ∈ O2π/N we define

R∑
n≥1

ωn−1f(n) = Rωf (1)

where Rωf ∈ O2π/N is the unique solution of

R(x)− ωR(x+ 1) = f(x)

Theorem 17 We have for ω = e2iπm/N ,m = 1, ..., N − 1

R∑
n≥1

ωn−1f(n) =

N−1∑
k=0

ωk
R∑
n≥1

f(Nn+ k + 1−N) +
1

N

N−1∑
k=0

ωk
∫ N

k+1

f(x)dx

For k = 1, ..., N

R∑
n≥1

f(Nn+ k −N) =
1

N

R∑
n≥1

f(n) +
1

N

N−1∑
m=1

e−
2iπm
N k

R∑
n≥1

e
2iπm
N nf(n)

+
1

N

∫ k

1

f(x)dx
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Proof
We have

R∑
n≥1

ωn−1f(n) =

N−1∑
k=0

ωkRf(Nx)(
k + 1

N
)

which is true for ω = e2iπm/N ,m = 1, ..., N − 1.
If ω = 1 the function R given by

R(x) =

N−1∑
k=0

Rf(Nx)(
x+ k

N
)

is solution of
R(x)−R(x+ 1) = f(x)

Thus

Rf (x) =

N−1∑
k=0

Rf(Nx)(
x+ k

N
)−

∫ 2

1

N−1∑
k=0

Rf(Nx)(
x+ k

N
)dx

∫ 2

1

N−1∑
k=0

Rf(Nx)(
x+ k

N
)dx = N

∫ 1+1/N

1/N

Rf(Nx)(x)dx = N

∫ 1

1/N

f(Nx)dx =

∫ N

1

f(x)dx

and

Rf (x) =

N−1∑
k=0

Rf(Nx)(
x+ k

N
)−

∫ N

1

f(x)dx

R∑
n≥1

f(n) =

N−1∑
k=0

Rf(Nx)(
k + 1

N
)−

∫ N

1

f(x)dx

The system of equations

N−1∑
k=0

Rf(Nx)(
k + 1

N
) =

R∑
n≥1

f(n) +

∫ N

1

f(x)dx

N−1∑
k=0

e
2iπm
N kRf(Nx)(

k + 1

N
) = e−

2iπm
N

R∑
n≥1

e
2iπm
N nf(n) ,m = 1, ..., N − 1

is of type
∑N−1
k=0 bke

2iπm
N k = am and can be solved by and bk = 1

N

∑N−1
m=0 e

− 2iπm
N kam thus

Rf(Nx)(
k + 1

N
) =

1

N
(

R∑
n≥1

f(n) +

∫ N

1

f(x)dx)

+
1

N

N−1∑
m=1

e−
2iπm
N ke−

2iπm
N

R∑
n≥1

e
2iπm
N nf(n)

With

Rf(Nx)(
k + 1

N
) =

R∑
n≥1

f(Nn−N + 1 + k)−
∫ 1+k

N

1

f(Nx)dx

=

R∑
n≥1

f(Nn+ k + 1−N) +
1

N

∫ N

k+1

f(x)dx

we get for k = 0, ..., N − 1

R∑
n≥1

f(Nn+ k + 1−N) =
1

N

R∑
n≥1

f(n) +
1

N

N−1∑
m=1

e−
2iπm
N (k+1)

R∑
n≥1

e
2iπm
N nf(n)

+
1

N

∫ k+1

1

f(x)dx
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�

Remark. Relation with the usual summation
Let ω a root of unity ω = e2iπm/N ,m = 1, ..., N − 1.
Let f ∈ O2π/N . If the series

∑
n≥1 ω

n−1f(n+ x− 1) is convergent for Re(x) > 0 then the function

R(x) =

+∞∑
n≥1

ωn−1f(n+ x− 1)

is solution of
R(x)− ωR(x+ 1) = f(x)

If R ∈ O2π/N then by unicity of the solution we obtain

Rωf (x) =

+∞∑
n≥1

ωn−1f(n+ x− 1)

thus
R∑
n≥1

f(n) =

+∞∑
n≥1

ωn−1f(n)

Examples
1) N = 2

R∑
n≥1

f(2n− 1) =
1

2

R∑
n≥1

f(n)− 1

2

1∑
m=1

R∑
n≥1

e
2iπm

2 nf(n)

R∑
n≥1

f(2n) =
1

2

R∑
n≥1

f(n) +
1

2

R∑
n≥1

(−1)nf(n) +
1

2

∫ 2

1

f(x)dx

2) N = 3

R∑
n≥1

f(3n− 2) =
1

3

R∑
n≥1

f(n) +
1

3
e−

2iπ
3

R∑
n≥1

e
2iπ
3 nf(n) +

1

3
e−

4iπ
3

R∑
n≥1

e
4iπ
3 nf(n)

R∑
n≥1

f(3n− 1) =
1

3

R∑
n≥1

f(n) +
1

3
e−

4iπ
3

R∑
n≥1

e
2iπ
3 nf(n) +

1

3
e−

2iπ
3

R∑
n≥1

e
4iπ
3 nf(n)

+
1

3

∫ 2

1

f(x)dx

R∑
n≥1

f(3n) =
1

3

R∑
n≥1

f(n) +
1

3

R∑
n≥1

e
2iπ
3 nf(n) +

1

3

R∑
n≥1

e
4iπ
3 nf(n)

+
1

3

∫ 3

1

f(x)dx
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Chapter 4

Formal transforms and numerical
evaluations

4.1 Formal transforms

We know that the Ramanujan summation is related to the series −
∑
k≥1

Bk
k! ∂

k−1f(1) by the formulas

R∑
n≥1

f(n) = −
m∑
k=1

Bk
k!
∂k−1f(1) + (1)m+1

∫ 1

0

R∂mf (t+ 1)
Bm(t)

m!
dt

or
R∑
n≥1

f(n) = −
m∑
k=1

Bk
k!
∂k−1f(1) +

∫ +∞

1

bm+1(x)

(m+ 1)!
∂m+1f(x)dx

The relation with the series −
∑
k≥1

Bk
k! ∂

k−1f(1) can also be viewed in an operator setting.
Let E the shift operator defined by

Eg(x) = g(x+ 1)

by Taylor formula we have formally E = e∂ , and the equation R(x)−R(x+ 1) = f(x) is

(I − e∂)R = f

and we have

R =
I

I − E
f = − ∂

e∂ − I
∂−1f = −∂−1f −

∑
k≥1

Bk
k!
∂k−1f

With ∂−1f(x) =
∫ x

1
f(t)dt we get formally

R∑
n≥1

f(n) = −
∑
k≥0

Bk+1

(k + 1)!
∂kf(1)

Unfortunately this last series is often divergent for the usual Cauchy summation. A more useful formula is
obtained if we work wiyh the difference operator

∆g(x) = g(x+ 1)− g(x)

Thus we write ∆ = E − I, and translate the equation R(x)−R(x+ 1) = f(x) in the form

−∆R = f

To get an expansion of I
∆ we use that I

log(I+∆) −
I
∆ can be expanded in powers of ∆ and that formally we

have
I

log(I + ∆)
=

I

log(e∂)
= ∂−1

79
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Thus define the modified Bernoulli numbers βn by

t

log(1 + t)
=
∑
n≥0

βn
n!
tn = 1 +

∑
n≥0

βn+1

(n+ 1)!
tn+1

We get
I

log(I + ∆)
− I

∆
=
∑
n≥0

βn+1

(n+ 1)!
∆n

Thus

R = − I
∆
f = −∂−1f +

∑
n≥0

βn+1

(n+ 1)!
∆nf

This gives formally
R∑
n≥1

f(n) =
∑
n≥0

βn+1

(n+ 1)!
(∆nf)(1) (4.1)

Remark
The modified Bernoulli numbers βn+1 are given by

t

log(1 + t)
=
∑
n≥0

βn
n!
tn

Thus they are given by β0 = 1 and the relation

n∑
k=0

βn
n!

(−1)k

n− k + 1
= 0

this gives

β1 =
1

2
, β2 = − 1

12
, β3 =

1

24
, β4 = − 19

720
, β5 =

3

160
, β6 = − 863

60480
, ...

We can give an integral expression of these numbers if we write

t

log(1 + t)
=

∫ 1

0

exLog(1+t)dx =

∫ 1

0

(1 + t)xdx =
∑
n≥0

tn
∫ 1

0

x(x− 1)...(x− n+ 1)

n!
dx

thus we get

βn =

∫ 1

0

x(x− 1)...(x− n+ 1)dx

This formula and the sum
∑
n≥0

βn+1

(n+1)! (∆
nf)(1) in (4.1) show that Ramanujan summation can be related

to Newton interpolation series.

4.2 Newton interpolation series

The Newton interpolation series are series of type∑
n≥0

an
(z − 1)...(z − n)

n!

with the convention (z−1)...(z−n)
n! = 1 si n = 0. They have the following property:

If for x0 ∈ R\N the series
∑
n≥0 an

(x0−1)...(x0−n)
n! is convergent then the series

∑
n≥0 an

(z−1)...(z−n)
n! is

uniformly convergent on every compact of the half plane {Re(z) > x0} thus defining an analytic function

f(z) =

+∞∑
n=0

an
(z − 1)...(z − n)

n!
for z ∈ {Re(z) > x0} (4.2)
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If for x0 < 1 the series
∑
n≥0 an

(x0−1)...(x0−n)
n! is convergent then the coefficients an are related to the values

f(1), f(2), ... of the fonction f by

f(k + 1) =

k∑
n=0

an
k(k − 1)...(k − n+ 1)

n!
=

k∑
n=0

anC
n
k

a relation that we can invert to get an expression of the coefficients an

an = ∆nf(1) =

n∑
k=0

f(k + 1)Ckn(−1)n−k

Thus for z ∈ {Re(z) > x0} we get the Newton interpolation formula

f(z) =

+∞∑
n=0

∆nf(1)
(z − 1)...(z − n)

n!

Remark: Ramanujan interpolation formula

To get the expansion of a function f in Newton series we have to evaluate the terms ∆nf(1), this can be
done by the generating function

∑
n≥0

∆nf(1)
tn

n!
=

∑
n≥0

n∑
k=0

f(k + 1)
tn

k!(n− k)!
(−1)n−k =

∑
k≥0

f(k + 1)
tk

k!

∑
l≥0

(−1)ltl

l!

thus ∑
n≥0

∆nf(1)
tn

n!
= e−t

∑
k≥0

f(k + 1)
tk

k!

Now if we write

(z − 1)...(z − k) = (−1)k
1

Γ(−z + 1)

∫ +∞

0

e−ttk−zdt

then we have

∑
k≥0

(∆kf)(1)

k!
(z − 1)...(z − k) =

1

Γ(−z + 1)

∑
k≥0

(−1)k(∆kf)(1)

k!

∫ +∞

0

e−ttk−zdt

and interchanging
∑
k≥0 and

∫ +∞
0

we get

∑
k≥0

(∆kf)(1)

k!
(z − 1)...(z − k) =

1

Γ(−z + 1)

∫ +∞

0

t−ze−t
∑
k≥0

(−1)k(∆kf)(1)

k!
tkdt

But

e−t
∑
k≥0

(−1)k(∆kf)(1)

k!
tk =

∑
k≥0

(−1)k

k!
f(k + 1)tk

thus the Newton interpolation formula become the Ramanujan interpolation formula

f(z) =
1

Γ(−z + 1)

∫ +∞

0

t−z
∑
k≥0

(−1)k

k!
f(k + 1)tkdt
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4.3 Another formula for Ramanujan summation

Let f be given by the Newton interpolation formula, then for any integer n ≥ 1

f(n) =

+∞∑
k=0

(∆kf)(1)

k!
(n− 1)...(n− k)

To evaluate the sum
∑R
n≥1 f(n) we thus evaluate the sums

∑R
n≥1(n− 1)...(n− k) and try to prove that

R∑
n≥1

f(n) =

+∞∑
k=0

(∆kf)(1)

k!

R∑
n≥1

(n− 1)...(n− k)

We first note that

(x− 1)...(x− (k + 1))− x(x− 1)...(x− k) = −(k + 1)(x− 1)...(x− k)

thus

R(x−1)...(x−k) = − 1

k + 1
(x− 1)...(x− (k + 1)) +

1

k + 1

∫ 2

1

(x− 1)...(x− (k + 1))dx

and we get
R∑
n≥1

(n− 1)...(n− k) =
1

k + 1

∫ 2

1

(x− 1)...(x− (k + 1))dx

We verify that

1

k + 1

∫ 2

1

(x− 1)...(x− (k + 1))dx =
1

k + 1

∫ 1

0

x(x− 1)...(x− k)dx =
βk+1

k + 1

Thus
R∑
n≥1

(n− 1)...(n− k) =
βk+1

k + 1

and the formula (4.1) is simply

R∑
n≥1

f(n) =
∑
k≥0

(∆kf)(1)

k!

R∑
n≥1

(n− 1)...(n− k)

Theorem 18 Let f analytic for Re(z) > x0 with

|f(z)| ≤ Ce|z|Log(2)

Let

βk+1 =

∫ 1

0

x(x− 1)...(x− k)dx

and

∆kf(1) =

k∑
j=0

f(j + 1)Cjk(−1)k−j

then the series
∑
k≥0

βk+1

(k+1)! (∆
kf)(1) is convergent and

R∑
n≥1

f(n) =

∞∑
k=0

βk+1

(k + 1)!
(∆kf)(1)
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Proof
This is a consequence of the following theorems of Nörlund (Sur les series d’interpolation, Gauthier-Villars,

1926):

Theorem 1 of Nörlund
Let x0 < 1.
If the series

∑
n≥0 an

(x0−1)...(x0−n)
n! is convergent then the function

f(z) =

+∞∑
n=0

an
(z − 1)...(z − n)

n!

is analytic for Re(z) > x0 and

|f(z)| ≤ Ce|z|π2 |z|x0+ 1
2

Theorem 2 of Nörlund
If a function f is analytic for Re(z) > x0 and verify

|f(z)| ≤ Ce|z|Log(2)

then for Re(z) > sup(x0, 1/2) we have

f(z) =

+∞∑
n=0

∆nf(1)
(z − 1)...(z − n)

n!

this expansion is uniformly convergent for Re(z) > sup(x0, 1/2) + ε

By the Theorem 2 of Nörlund we have

f(x) =
∑
k≥0

(∆kf)(1)

k!
(x− 1)...(x− k)

this expansion being uniformly convergent in every compact of Re(z) > sup(x0, 1/2). The series

∑
k≥0

(∆kf)(1)

(k + 1)!
(x− 1)...(x− (k + 1))

is also convergent for Re(x) > sup(x0, 1/2). This can be proved by

(∆kf)(1)

(k + 1)!
(x− 1)...(x− (k + 1)) =

(∆kf)(1)

k!
(x− 1)...(x− k)

x− (k + 1)

k + 1

and applying the classical summation by part. Thus this series define an analytic function

R(x) = −
+∞∑
k=0

(∆kf)(1)

(k + 1)!
(x− 1)...(x− (k + 1))

for Re(x) > α = sup(x0, 1/2). This function verify

R(x)−R(x+ 1) = f(x)

and by the Theorem 1 of Nörlund we have

|R(x)| ≤ Ce|x|π2 |x|α+ 1
2

Thus R is in Oπ, it suffices now to define Rf by

Rf (x) = R(x)−
∫ 2

1

R(t)dt
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By uniform convergence of the series defining R on the interval [1, 2] we get the result.
�

Example
If f(x) = 1

x then ∑
n≥0

∆nf(1)
tn

n!
= e−t

∑
k≥0

tk

(k + 1)!
=
e−t

t
(et − 1) =

1− e−t

t

thus

∆nf(1) =
(−1)n

n+ 1

and

γ =

R∑
n≥1

1

n
=

∞∑
k=0

(−1)k

k + 1

βk+1

(k + 1)!

Remark
Note that for any integer m ≥ 1 we have if g(x) = f(x+m)

∆ng(1) =

n∑
k=0

f(k +m+ 1)Ckn(−1)n−k = ∆nf(m+ 1)

and by the shift property

R∑
n≥1

f(n) =

R∑
n≥1

g(n) +

m∑
n=1

f(n)−
∫ m+1

1

f(x)dx

thus for any integer m ≥ 1 we get

R∑
n≥1

f(n) =

∞∑
k=0

βk+1

(k + 1)!
(∆kf)(m+ 1) +

m∑
n=1

f(n)−
∫ m+1

1

f(x)dx

This can be used in some cases to get numerical evaluations of the Ramanujan sums, for example if we set
f(x) = 1

(x+1)Log(x+1) we get with m = 20

R∑
n≥1

1

(n+ 1)Log(n+ 1)
= 0.42816572487123...

The case of alternating series
For the use of ∆ in the case of summation of alternating series we write the equation A(x)+A(x+1) = f(x)

in the form
(2I + ∆)A = f

Thus

A =
1

2

I

I + 1
2∆

f

This gives formally
R∑
n≥1

(−1)n−1f(n) =
∑
n≥0

(−1)n

2n+1
(∆nf)(1)

and we see that the Ramanujan summation of alternating series is simply the classical Euler summation which
is defined by

Euler∑
n≥0

vn =

+∞∑
n=0

1

2n+1

n∑
k=0

Cknvk



Chapter 5

A general algebraic view on summation
of series

5.1 Introduction

The Ramanujan summation differs of the classical summations methods by the fact that for convergent series
the Ramanujan summation does not give the usual sum. And also there is the shift property which seems
very strange for a summation procedure. Thus it is necessary to give a general algebraic formalism to unify
Ramanujan summation and the classical methods of summation of series.

To introduce this formalism we begin with the analysis of the example of Borel summation.
The Borel summation is formally given by the interversion formula

∑
n≥0

an =

+∞∑
n=0

an

∫ +∞

0

e−t
tn

n!
dt =

∫ +∞

0

e−t(

+∞∑
n=0

an
tn

n!
) dt

More precisely let a complex sequence (an), then if the series

f(x) =

+∞∑
n=0

an
xn

n!

is convergent for x near 0 then the function f is analytic near 0 and such that for all n ≥ 0

an = ∂nf(0)

And formally we get ∑
n≥0

an =
∑
n≥0

∂nf(0) = (
∑
n≥0

∂nf)(0) = ((I − ∂)−1f)(0)

Thus
∑
n≥0 an = R(0) with R solution of the equation

(I − ∂)R = f

Assume that f has an analytic continuation near [0,+∞[ and take the solution

R(x) = ex
∫ +∞

x

e−tf(t)dt

if this integral is convergent, thus we get formally∑
n≥0

an = R(0) =

∫ +∞

0

e−tf(t)dt

The problem is that the differential equation (I−∂)R = f has an infinity of solutions thus we must introduce
a condition to get a unique solution.

85
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Let E the space of complex analytic functions f near [0,+∞[ such that e−xf(x) has a finite limit when
x→ +∞.

And let

D(f)(x) =
df

dx
(x) = ∂f(x)

v0(f) = f(0)

v∞(f) = lim
x→+∞

e−xf(x)

A sequence (an) has the generating function f ∈ E if

an = ∂nf(0)

Since f is analytic near 0 then in a small disk D(0, ρ) we have

f(x) =

+∞∑
n=0

∂nf(0)
xn

n!

The differential equation

R− ∂R = f

gives the general solution

R(x) = −ex
∫ x

0

e−tf(t)dt+Kex

The condition R ∈ E is equivalent to the convergence of the integral
∫ +∞
α

e−tf(t)dt and the condition
v∞(R) = 0 gives

K =

∫ +∞

α

e−tf(t)dt

Finally we see that the equation R−D(R) = f with the condition v∞(Rf ) = 0 gives the unique solution

R(x) = ex
∫ +∞

x

e−tf(t)dt

Thus the series
∑
n≥0 an is Borel-summable if the the series

∑
n≥0 an

xn

n! is convergent for x near 0 and define
by analytic continuation a function f ∈ E then

B∑
n≥0

an = v0(R) =

∫ +∞

0

e−tf(t)dt

5.2 An algebraic formalism

Let a C-vector space E with a linear operator D : E → E and two linear operators v0, v∞ : E → C such that :

(*) The solutions of Dg = g form a one dimensional subspace of E generated by α ∈ E with

v0(α) = v∞(α) = 1

(**) If v0(Dng) = 0 for all n ≥ 0 then g = 0

Remark
By the property (*) we have

If Dg = g and v∞(g) = 0 then g = 0
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Definition
If (an) is a complex sequence then we say that (an) is generated by f ∈ E if

an = v0(Dnf) for all n ≥ 0

then by (**) this element f is unique.

Formally the sum
∑
n≥0 an is defined by∑

n≥0

an =
∑
n≥0

v0(Dnf) = v0(
∑
n≥0

Dnf) = v0((I −D)−1f)

thus ∑
n≥0

an = v0(R) with (I −D)R = f

If R1 and R2 are solutions of the equation R−DR = f then g = R1 −R2 is solution of Dg = g thus to get
unicity we use the preceeding remark and we add to the equation R−DR = f the condition v∞(R) = 0.

Definition
Let T =(E,D, v0, v∞) as above. Let (an) a complex sequence generated by f ∈ E and assume that there is

Rf ∈ E solution of
Rf −DRf = f with v∞(Rf ) = 0

then this Rf is unique and we define
T∑
n≥0

an = v0(Rf )

Remark
Since Rf −DRf = f we have for any positive integer k

DkRf −Dk+1Rf = Dkf

thus we get for any integer N ≥ 1

Rf −DNRf =

N−1∑
k=0

Dkf

This gives
T∑
n≥0

an =

N−1∑
k=0

ak + v0(DNRf )

and also

v∞(DNRf ) = −
N−1∑
k=0

v∞(Dkf)

Examples
1) The usual Cauchy summation
Let E the vector space of convergent complex sequences u = (un)n≥0. Let the operators

D : (un) 7→ (u1, u2, u3, ...)

v0 : (un) 7→ u0

v∞ : (un) 7→ lim
n→+∞

un

Since v0(Dnf) = fn a complex sequence (an) ∈ E has the generating element

f = (an)
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The equation R−D(R) = f is

(R0, R1, R2, ...)− (R1, R2, R3, ...) = (a0, a1, a2, ...)

this gives Rn −Rn+1 = an thus

Rn+1 = R0 −
n∑
k=0

ak

and the condition v∞(R) = 0 gives Rn+1 → 0 thus

n∑
k=0

ak → R0 = v0(R)

We see that the series
∑
n≥0 an is Cauchy-summable if

∑n
k=0 ak has a finite limit when n → +∞ and we

write
+∞∑
n=0

an = v0(R) = limn→+∞

n∑
k=0

ak

we said simply that the series
∑
n≥0 an is convergent.

2) The Ramanujan summation.

We have defined the Ramanujan summation for series
∑R
n≥1 an, indexed by n ≥ 1, these can be seen series

indexed by n ≥ 0 if we let

R∑
n≥1

an =

R∑
n≥0

bn with bn = an+1

Let the space E = Oπ and the operators

Df(x) = f(x+ 1)

v0(f) = f(1)

v∞(f) =

∫ 2

1

f(t)dt

The condition (*) is simply that a function f ∈ Oπ which is 1-periodic is constant and we get α = 1. The
condition (**) is a consequence of Carlson theorem’s.

A complex sequence (an)n≥1 = (bn)n≥0 has the generating element f ∈ Oπ if for all integer n ≥ 0 we have

bn = v0(Dnf) = f(n+ 1)

that is for all integer n ≥ 1 we have

an = f(n)

The equation

Rf −DRf = f

is simply our difference equation

Rf (x)−Rf (x+ 1) = f(x)

and the condition v∞(Rf ) = 0 is simply the condition
∫ 2

1
Rf (t)dt = 0 that we have in the Ramanujan

summation.
We write as usual

R∑
n≥1

an = v0(Rf ) = Rf (1)
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Properties

1) The linearity property
We have clearly for C ∈ C

T∑
n≥0

an + Cbn =

T∑
n≥0

an + C

T∑
n≥0

bn

2) The shift property
If (an) is generated by f , for any integer N ≥ 1 we have the shift property

T∑
n≥0

an+N =

T∑
n≥0

an −
N−1∑
n=0

an +

N−1∑
k=0

v∞(Dkf)

Proof
If (an) is generated by f ∈ E then for any integer N ≥ 1

an+N = v0(Dn+Nf) = v0(Dn(DNf))

thus the sequence (an+N ) is generated by DNf ∈ E.
The equation Rf −DRf = f gives

DNRf −D(DNRf ) = DNf

but generally we don’t have v∞(DNRf ) = 0.
If we add −v∞(DNRf )α to DNRf we get

[DNRf − v∞(DNRf )α]−D[DN (Rf )− v∞(DNRf )α] = DNf

v∞[DNRf +−v∞(DNRf )α] = 0

Thus
T∑
n≥0

an+N = v0[DN (Rf )− v∞(DNRf )α] = v0(DN (Rf ))− v∞(DNRf )

Since and by the preceeding remark we have

−v∞(DNRf ) =

N−1∑
k=0

v∞(Dkf)

this gives the shift property

T∑
n≥0

an+N =

T∑
n≥0

an −
N−1∑
n=0

an +

N−1∑
k=0

v∞(Dkf)

�

In the special case N = 1 we get

T∑
n≥0

an+1 =

T∑
n≥0

an − a0 + v∞(f)

Note that if we have the additional property:

(***) If v∞(g) = 0 then v∞(Dg) = 0
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then v∞(Rf ) = 0 gives v∞(DNRf ) = 0 for all positive integer thus the shift property is the usual property

T∑
n≥0

an+N =

T∑
n≥0

an −
N−1∑
n=0

an

This is the case for most summations but not for the Ramanujan summation.

Remark: Generalized limit
If we define the generalized limit of a sequence (an) by

T∑
n≥0

(an − an+1) = a0 − lim
T
an

then the shift property gives
lim
T
an = v∞(f)

Thus the generalized limit associated to the summation is nothing else than v∞.
To see that the summation is related to the partial sums by this generalized limit let the sequence (rn)

defined by

r0 =

T∑
n≥0

an

rn = r0 −
n−1∑
k=0

ak for n ≥ 1

Since we have r0 = v0(Rf ) and (by the preceding remark) for any integer n ≥ 1

rn = v0(DnRf )

we see that the sequence (r)n is generated by Rf thus

lim
T
rn = v∞(Rf ) = 0

and finally we get

lim
T

(r0 −
n−1∑
k=0

ak) = 0

5.3 Examples

1) Cesaro summation
Let E the vector space of complex sequences u = (un)n≥0 such that

lim
n→+∞

u0 + ...+ un−1

n
is finite

And let the operators

D : (un) 7→ (u1, u2, u3, ...)

v0 : (un) 7→ u0

v∞ : (un) 7→ lim
n→+∞

u0 + ...+ un−1

n

A sequence (an) ∈ E is generated by
f = (an)
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The equation R−DR = f is Rk −Rk+1 = ak thus

R0 −Rn =

n−1∑
k=0

ak = Sn−1

this gives

R0 −R1 = a0 = S0

R0 −R2 = a0 + a1 = S1

...

R0 −Rn =

n−1∑
k=0

ak = Sn−1

thus

R0 −
R1 + ...+Rn

n
=
S0 + ...+ Sn−1

n

We see that R = (Rn) ∈ E if and only if S0+...+Sn−1

n has a finite limit when n→ +∞. Since

S0 + ...+ Sn−1

n
=
S0 + ...+ Sn−2

n− 1

n− 1

n
+
Sn−1

n

this implies that Sn−1

n has a finite limit when n→ +∞. Thus automatically we get f ∈ E.

The condition v∞(R) = 0 is limn→+∞
R1+...+Rn

n = 0 this gives

R0 = lim
n→+∞

S0 + ...+ Sn−1

n

Thus series
∑
n≥0 an is Cesaro-summable if the sequence (S0+...+Sn−1

n ) has a finite limit when n→ +∞ and
we write

C∑
n=0

an = v0(R) = R0 = lim
n→+∞

S0 + ...+ Sn−1

n

Remark
This can be generalized to Toeplitz summations in this case we let

v∞(un) = lim
t→+∞

+∞∑
n=0

at,nun

where (at,n)n∈N a family of sequences indexed by t ∈ N such that:

a) For all t ∈ N the series
∑
n≥0 |at,n| is convergent. There is M > 0 such that

∑+∞
n=0 |at,n| ≤ M for all

t ∈ N.
b) limt→α

∑+∞
n=0 at,n = 1.

c) limt→αat,n = 0 for all n.

2) Euler summation
Let E the vector space of complex sequences u = (un) with limn→+∞

un
2n is finite. And let the operators

D : (un) 7→ (un+1 − un)

v0 : (un) 7→ u0

v∞ : lim
n→+∞

un
2n

We have for all n ≥ 0

v0(Dnf) =

n∑
k=0

Cknfk(−1)n−k

thus we get
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fn =

n∑
k=0

v0(Dkf)Ckn

Let a complex sequence (an) and the sequence f = (fn) defined by

fn =

n∑
k=0

akC
k
n

Assume that f ∈ E, we have v0(Dnf) = an, thus the sequence (an) is generated by f .
The equation R−DR = f is

2Rk −Rk+1 = fk

this gives

R0 =
1

2
R1 +

1

2
f0

1

2
R1 =

1

22
R2 +

1

22
f1

1

22
R2 =

1

23
R3 +

1

23
f2

...

we get

R0 =
1

2
f0 +

1

22
f1 + ...+

1

2n+1
fn −

1

2n
Rn

We have R ∈ E if and only if the sequence (Rn2n ) has a finite limit, in this case the series
∑
n≥0

1
2n+1 fn is

convergent and this implies that limn→+∞
1

2n fn = 0 thus we have automaticaly f ∈ E.
The condition

0 = v∞(R) = lim
n→+∞

1

2n
Rn

gives

R0 = lim
n→+∞

1

2
f0 +

1

22
f1 + ...+

1

2n+1
fn

Finally the series
∑
n≥0 an is Euler-summable if the series

∑
k≥0

1

2n+1

( n∑
k=0

akC
k
n

)
is convergent and we write

E∑
n=0

an = v0(R) = R0 =

+∞∑
k=0

1

2n+1

( n∑
k=0

akC
k
n

)

3) Abel summation
Let E the vector space of analytic functions on ]− 1, 1[ such that

lim
x→1

(1− x)f(x) is finite

Let the operators

Df(x) =
f(x)− f(0)

x
if x 6= 0 and Df(0) = f ′(0)

v0(f) = f(0)

v∞(f) = lim
x→1

(1− x)f(x)
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Since f ∈ E is analytic on ]− 1, 1[ we can write

f(x) =

+∞∑
m=0

αmx
m with αm =

∂mf(0)

m!

and we have

Df(x) =

+∞∑
m=0

αm+1x
m

thus for all n ≥ 0

Dnf(x) =

+∞∑
m=0

αm+nx
m

and we get

v0(Dnf) = αn =
∂nf(0)

n!

Let a sequence (an) and assume that the series

f(x) =

+∞∑
n=0

anx
n

is convergent for x ∈]− 1, 1[ and define a function f ∈ E.
Then

an =
∂nf(0)

n!
= v0(Dnf)

and the sequence (an) is generated by f .
The equation R−DR = f gives

R(x) =
1

1− x
(R(0)− xf(x))

Thus R is analytic on ]− 1, 1[ and R ∈ E if and only if limx→1 f(x) is finite then automatically f ∈ E.
The condition v∞(R) = 0 gives

R(0) = lim
x→1

f(x)

Finally if the series
∑
n≥0 anx

n is convergent for all x ∈ [−1, 1[ and if limx→1

∑+∞
n=0 anx

n is finite, then
f ∈ E and

∑
n≥0 an is Abel-summable

A∑
n=0

an = v0(R) = R(0) = lim
x→1

+∞∑
n=0

anx
n
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Chapter 7

Appendix

7.1 Euler-MacLaurin and Euler-Boole formulas

7.1.1 A Taylor formula

The classical Taylor formula

f(x) =

m∑
k=0

∂kf(0)
xk

k!
+

∫ x

0

(x− t)m

m!
∂m+1f(t)dt

can be generalized if we replace the polynomial xk

k! by other polynomials.

Définition
Let µ a linear form on C0(R) such that µ(1) = 1, we define the polynomials (Pn) by:

P0 = 1

∂Pn = Pn−1 , µ(Pn) = 0 for n ≥ 1

Generating function for the Pn
We have formaly

∂x(
∑
k≥0

Pk(x)zk) =
∑
k≥1

Pk−1(x)zk = z
∑
k≥0

Pk(x)zk

thus ∑
k≥0

Pk(x)zk = Cexz

and

µx(
∑
k≥0

Pk(x)zk) =
∑
k≥0

µx(Pk(x))zk = 1

µx(
∑
k≥0

Pk(x)zk) = µx(Cexz) = Cµx(exz)

this gives C = 1
µx(exz) . Thus the generating function of the sequence (Pn) is∑

n

Pn(x)zn = exz/Mµ(z)

where the function Mµ is defined by Mµ(z) = µx(exz).

Examples
1) µ(f) = f(0), Pn(x) = xn

n! , Mµ(z) = 1,
∑
Pn(x)zn = exz

97
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2) µ(f) =
∫ 1

0
f(t)dt , Pn(x) = Bn(x)

n! , Mµ(z) =
∑∫ 1

0
tn

n! z
ndt =

∑
zn

(n+1)! = 1
z (ez − 1)

∑
n

Bn(x)

n!
zn =

zexz

ez − 1

The Bn(x) are the Bernoulli polynomials and the Bn = Bn(0) the Bernoulli numbers. With the generating
function we verify that B0 = 1, B1 = −1/2, B2n+1 = 0 if n ≥ 1, Bn(1− x) = (−1)nBn(x).

3) µ(f) = 1
2 (f(0) + f(1)) , Pn(x) = En(x)

n! ∑
n

En(x)

n!
zn =

2exz

ez + 1

The En(x) are the Euler polynomials and we call En = En(0) the Euler numbers.
With the generating function we verify that E0 = 1, E1 = −1/2 if n ≥ 1, En(1− x) = −1)nEn(x).

Taylor formula
Let f be a C∞(R) function, then we have

f(x) = f(y) +

∫ x

y

∂P1(x+ y − t)∂f(t)dt

and by integration by parts we get for every m ≥ 1

f(x) = f(y) +

m∑
k=1

(Pk(x)∂kf(y)− Pk(y)∂kf(x)) +

∫ x

y

Pm(x+ y − t)∂m+1f(t)dt

Applying µ at this function as a function of y this gives a general Taylor formula: for every m ≥ 0

f(x) =

m∑
k=0

µy(∂kf(y))Pk(x) + µy(

∫ x

y

Pm(x+ y − t)∂m+1f(t)dt)

7.1.2 Euler-MacLaurin formula

We can transform the Taylor formula to get a summation formula. Taking x = 0 we get

f(0) =

m∑
k=0

µy(∂kf(y))Pk(0)− µy(

∫ y

0

Pm(y − t)∂m+1f(t)dt)

In the case of µ : f 7→
∫ 1

0
f(t)dt we have

f(0) =

m∑
k=0

Bk
k!
∂k−1f ]10 −

∫ 1

0

(

∫ y

0

Bm(y − t)
m!

∂m+1f(t)dt)dy

Replacing m by 2m and with B1 = −1/2 and B2k+1 = 0, we get

f(0) =

∫ 1

0

f(t)dt+
1

2
(f(0)− f(1)) +

m∑
k=1

B2k

(2k)!
∂2k−1f ]10 −

∫ 1

0

(

∫ y

0

B2m(y − t)
(2m)!

∂2m+1f(t)dt)dy

The last integral can easily be evaluated by Fubini, we obtain

f(0) =

∫ 1

0

f(t)dt+
1

2
(f(0)− f(1)) +

m∑
k=1

B2k

(2k)!
∂2k−1f ]10 +

∫ 1

0

B2m+1(t)

(2m+ 1)!
∂2m+1f(t)dt (7.1)

Let j be a positive integer, by replacing f by x 7→ f(j + x) in the last formula we obtain

f(j) =

∫ j+1

j

f(t)dt+
1

2
(f(j)− f(j + 1)) +

m∑
k=1

B2k

(2k)!
∂2k−1f ]j+1

j +

∫ j+1

j

b2m+1(t)

(2m+ 1)!
∂2m+1f(t)dt
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where b2m+1(t) = B2m+1(t− [t]).

Summing these relations on j from 1 to n− 1, we get for f ∈ C∞(]0,∞[) the Euler-MacLaurin formula

f(1) + ...+ f(n) =

∫ n

1

f(x)dx+
f(1) + f(n)

2
(7.2)

+

m∑
k=1

B2k

(2k)!
[∂2k−1f ]n1 (7.3)

+

∫ n

1

b2m+1(x)

(2m+ 1)!
∂2m+1f(x)dx (7.4)

7.1.3 Euler-Boole formula

In the case of the Euler polynomials, the formula

f(0) =

m∑
k=0

µy(∂kf(y))Pk(0)− µy(

∫ y

0

Pm(y − t)∂m+1f(t)dt)

gives

f(0) =

m∑
k=0

1

2
(∂kf(0) + ∂kf(1))

Ek
k!
− 1

2

∫ 1

0

(−1)mEm(t)

m!
∂m+1f(t)dt

Let j be a positive integer, by replacing f by x 7→ f(j + x) in the last formula we obtain

f(j) =

m∑
k=0

1

2
(∂kf(j) + ∂kf(j + 1))

Ek
k!

−1

2

∫ j+1

j

(−1)mEm
m!

(t− j) ∂m+1f (t) dt

Define
em(t) = (−1)[t](−1)mEm (t− [t])

we obtain by summation on j, the Euler-Boole summation formula

f(1)− f(2) + ...+ (−1)n−1f(n) =
1

2

m∑
k=0

∂kf(1)
Ek
k!

+
(−1)n−1

2

m∑
k=0

∂kf(n+ 1)
Ek
k!

+
1

2

∫ n+1

1

1

m!
em (t) ∂m+1f (t) dt
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Chapter 8

The chapter VI of the second
Ramanujan Notebook

In the chapter VI of his second notebook Ramanujan gives the defintion of the constant of a series. We give
here an exact copy of this chapter.
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p.59

CHAPTER VI

Let f(1) + f(2) + f(3) + f(4) + .....+ f(x) = φ(x), then

φ(x) = c+
∫
f(x)dx+ 1

2f(x) + B2

b2 f
′(x)− B4

b4 f
′′′(x)+

B6

b6 f
V (x) + B8

b8 f
V II(x) + &c

sol. φ(x)− φ(x− 1) = f(x) ; apply V 1. (*)

N.B. By giving any value to x, c can be found.
R.S. is not a terminating series except in some
special cases. Consequently no constant can be

found in 1
2f(x) + B2

b2 f
′(x)− B4

b4 f
′′′(x) + &c except

in those special cases. If R.S. be a terminating
series, it must be some integral function of
x. In this case there is no possibility of a constant
(according to the ordinary sense) in φ(x) ; for

φ(1) = f(1) + φ(0) : But φ(1) = f(1) ∴ φ(0) is always 0

whether φ(x) is rational or irrational. ∴ When
φ(x) is a rational integral function of (x) it
must be divisible and hence no constant but
0 can exist. The algebraic constant of a se
-ries is the constant obtained by completing
the remaining part in the above theorem. We can
substitute this constant which is like the cen
-tre of gravity of a body instead of its di-
vergent infinite series.

————————————————————————————

(*) V 1.If f(x+ h)− f(x) = hφ′(x), then
f(x) = φ(x)− h

2
φ′(x) + B2

b2 h
2φ′′(x)− B4

b4 h
4φIV (x) + &c

If f(x+ h) + f(x) = hφ′(x), then
f(x) = h

2
φ′(x)− (22 − 1)B2

b2 h
2φ′′(x) + (24 − 1)B4

b4 h
4φIV (x)−&c

Sol. If we write ex for φ(x), we see that the coeff ts in
R.S. are the same as those in the expansion of h

eh−1

and h
eh+1

respectively.
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E.G. The constant of the series 1 + 1 + 1 + &c = −1
2 ; for

the sum to x terms = x = c+
∫

1dx+ 1
2 ∴ c = −1

2

We may also find the constant thus
c = 1 + 2 + 3 + 4 + &c
∴ 4c = 4 + 8 + &c
∴ −3c = 1− 2 + 3− 4 + &c = 1

(1+1)2 = 1
4

∴ c = − 1
12

2. φ(x) +
∑n=∞

n=0
Bn
bn f

n−1(x) cos πn
2 = 0

Sol. Let Bn
bnψ(n) be the coeff t. of fn−1(x) then we

see ψ(0) = 1, ψ(2) = −1, ψ(4) = 1, ψ(6) = −1 &c
ψ(3) = 0, ψ(5) = 0, ψ(7) = 0, B1

b1ψ(1) = 1
2 ; but B1 =∞

∴ ψ(1) = 0. Again by V 26 cor 2. (*) we have

π(n− 1)Bn = 1 when n = 1 ∴ Bnψ(n)
bn = π(n−1)Bn

bn . ψ(n)
π(n−1)

= 1
2 when n = 1, i.e ψ(n)

π(n−1) = 1
2 when n = 1 ∴

∴ ψ(n) = − cos πn
2 .

3. The sum to a negative number of terms is
the sum with the sign changed, calcula-
ted backwards from the term previous to the
first to the given number of terms with
positive sign instead of negative.

Sol. φ(x) = f(1) + f(2) + ...+ f(n+ x)
−f(1 + x)− f(2 + x)− ...− f(n+ x)

————————————————————————————

(*) V 26 cor 2. πnBn+1 = 1 when n = 0

Sol. nSn+1 = (2π)n

bn+1
πnBn+1 = 1 when n = 0

i.e. πnBn+1 = 1 when n approaches 0.
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change x to −x and put n = x, then we have

φ(−x) = φ(0)− {f(0) + f(−1) + f(−2) + ...+ f(−x+ 1)};

but φ(0) = 0.
E.G. 1 + 2 + 3 + &c to −5 terms
= −(0− 1− 2− 3− 4) =10

4.i. For finding the sum to a fractional num
-ber of terms assume the sum to be true al
-ways and if there is any difficulty in find
-ing φ(x), take n any integer you choose,
find φ(n+ x) and then subtract {f(1 + x)+
f(2 + x) + f(3 + x) + ...+ f(n+ x)} from the result.

ii. φ(h) = φ(n)− {f(1 + h) + f(2 + h) + ...+ f(n+ h)}
+hf(n) + Σh

b1 f
′(n) + Σh2

b2 f
′′(n) + &c where n

is any integer or infinity.

E.G.1. 1 + 1
2 + 1

3 + ... 1h
= (1 + 1

2 + ...+ 1
n)− ( 1

1+h + 1
2+h + ...+ 1

n+h) when n =∞
= c0+logen− ( 1

1+h + 1
2+h + ...+ 1

n+h) when n =∞
where c0 is the constant of Σ 1

n

2. bh = nh

(1+h
1 )(1+h

2 )...(1+h
n )

when n =∞.

sol. bh = bn+h
bn . bnbhbn+h =

nh(1+ 1
n )(1+ 2

n )...(1+h
n )

(1+h
1 )(1+h

2 )...(1+h
n )

∴ bh÷ (1 + 1
n)(1 + 2

n)...(1 + h
n) = nh

(1+h
1 )(1+h

2 )...(1+h
n )
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iii. φ(h) = xf(1)− x1+hf(1 + h) + x2f(2)− x2f(2 + h) + &c

5. Def. A series is said to be corrected when its
constant is subtracted from it.
The differential coeff t. of a series is a corrected series.

i.e d{φ(1)+φ(2)+...+φ(x)}
dx = φ′(1) + φ′(2) + ...

+φ′(x)− c′ where c′ is the constant of φ′(1) + φ′(2)
+φ′(3) + ...+ φ′(x).

Sol. In the diff l. coeff t. of φ(1) + φ(2) + ...+ φ(x)
there can’t be any constant. Therefore it
should be corrected.

N.B. If f(1) + f(2) + ...+ f(x) be a convergent
series then its constant is the sum of the series

E.G.1.
d(1+ 1

2+...+ 1
x )

dx = 1
(x+1)2 + 1

(x+2)2 + 1
(x+3)2 + &c

Sol.
dΣ 1

x

dx = − 1
12 − 1

22 − ...− 1
x2 − c

= 1
(x+1)2 + 1

(x+2)2 + &c

2. If c0 be the constant of Σ 1
x , then

dbx
dx = bx(Σ 1

x − c0)

Sol. dbx
dx = bxdlogebx

dx = bx(Σ 1
x − c0)
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3.
∫ x

0 Σ 1
xdx = logebx+ xc0.

4.
∫ x

0 (113 + 213 + ...+ x13)dx = 1
14(114 + 214 + ...+ x14)− x

12 .

5. d(110+210+...+x10)
dx = 10(19 + 29 + ...+ x9) + 10

132 .

6.
∫ x

0 (
√

1 +
√

2 + ...+
√
x)dx = 2

3(1
√

1 + 2
√

2 + ...+ x
√
x)

− x
4π( 1

1
√

1
+ 1

2
√

2
+ &c).

6. If fn(x) stands for the n th derivative of f(x)
and cn be the constant of {fn(1) + fn(2) + ...+ fn(x)}
then φ(x) = −c1x− c2

x2

b2 − c3
x3

b3 − c4
x4

b4 −&c

Sol. φ(x) = φ(0) + x
b1φ
′(0) + x2

b2φ
′′(0) + &c

But from VI 5 we have φ(0) = 0, φ′(0) = −c1, φ
′′(0) =

−c2 &c

E.g. 1. logebx = −S1x+ S2

2 x
2 − S3

3 x
3 + &c where Sn

is the constant of ( 1
1n + 1

2n + 1
3n + &c).

2. Σ 1
x = S2x− S3x

2 + S4x
3 −&c where Sn = 1

1n + 1
2n + &c

N.B. This is very useful in finding φ(x) for
fractional values of x.

7. If c′n be the constant of
f( 1

n) + f( 2
n) + f( 3

n) + ...+ f(xn) , then
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φ(xn) + φ(x−1
n ) + φ(x−2

n ) + ...+ φ(x−n+1
n )− nc

= f( 1
n) + f( 2

n) + ...+ f(xn)− c′n

Sol. Let ψ(x) = φ(xn) + φ(x−1
n ) + ...+ φ(x−n+1

n ) then
ψ(x)− ψ(x− 1) = φ(xn)− φ(x−nn ) = f(xn)
∴ ψ(x) & f(xn) + f(x−1

n ) + ...+ f( 1
n) differ only by

some constant; hence if these be corrected
they must be equal. ψ(x) contains n terms each
each of which is of the form φ(y) whose constant
is c. The constant of ψ(x) is nc & the con-
stant of f( 1

n) + f( 2
n) + ...+ f(xn) is c′n by our

supposition.

Cor.1. φ(− 1
n) + φ(− 2

n) + ...+ φ(−n−1
n ) = nc− c′n

Sol. Put x = 0 in the above theorem.
2.i. φ(−1

2) = 2c− c′2.
ii. c = c0 = c′1.

iii. φ(−1
3) + φ(−2

3) = 3c− c′3
iv. φ(−1

4) + φ(−3
4) = 2c+ c′2 − c′4.

v. φ(−1
6) + φ(−5

6) = c+ c′2 + c′3 − c′4.

8. φ(x− 1
2) = c+

∫
f(x)dx− (1− 1

2)B2

b2 f
′(x) + (1− 1

23 )B4

b4 f
′′′(x)

−&c =
∑n=∞

n=0

{
(1− 1

2n−1 )Bnbn f
n−1(x) cos πn

2

}
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Sol. Put n = 2, change x to 2x and apply VI 1.

9.i. S(a1 + a2 + a3 + &c) means that the series is a conver
gent series and its sum to infinity is required
ii. C(a1 + a2 + a3 + &c) means that the series is a di-
vergent series and its constant is reqd.
iii. G(a1 + a2 + a3 + &c) means that the series is oscil-
lating or divergent and the value of its genera-
ting function is required.

N.B. Hereafter the series will only be given omit
-ting S,C or G and from the nature of the series
we should infer whether C, S or G is reqd; more
over if a series appear to be equal to a finite qua
-ntity we must select S,C or G from the nature
of the series.

10.i. The value of an oscillating series is only true
when the series is deduced from a regular series.
For example the series 1− 1 + 1− 1 + &c = 1

2 only
when it is deduced from a regular series of
the form φ(1)− φ(2) + φ(3)−&c. Again if
we take an irregular series ar − br + cr − dr
+&c we get the same series 1− 1 + 1− 1 + &c when
r becomes 0 ; yet its value is not 1

2 in this case

ii. a1 − a2 + a3 − a4 + &c is not equal to the series
(a1 − a2) + (a3 − a4) + (a5 − a6) + &c or to the series
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a1 − (a2 − a3)− (a4 − a5)− (a6 − a7)−&c ; but to the
series a1 − (a2 − a3 + a4 −&c)
e.g. 1− 2 + 3− 4 + &c is not equal to (1− 2) + (3− 4)
+(5− 6) + &c or to 1− (2− 3)− (4− 5)−&c

iii. (a1 − a2 + a3 −&c)± (b1 − b2 + b3 −&c)
= (a1 ± b1)− (a2 ± b2) + (a3 ± b3)−&c

Ex.i.shew that (a1 − a2 + a3 −&c) + (b1 − b2 + &c)
= a1 + (b1 − a2)− (b2 − a3) + (b3 − a4)−&c

Sol. L.S = a1 + (b1 − b2 + b3 −&c)− (a2 − a3 + &c)
= a1 + (b1 − a2)− (b2 − a3) + &c

2. a1 − a2 + a3 − a4 + &c = a1

2 + 1
2{(a1 − a2)− (a2 − a3) + &c}

3. = 3a1−a2

4 + 1
4{(a1 − 2a2 + a3)− (a2 − 2a3 + a4) + &c}

4. = 7a1−4a2+a3

8 + 1
8{(a1 − 3a2 + 3a3 − a4)− (a2 − 3a3 + 3a4

−a5) + (a3 − 3a4 + 3a5 − a6)−&c}

ii. a1 − a2 + a3 − a4 + &c
= a1

2 + a1−a2

4 + a1−2a2+a3

8 + &c
= xa1 − x2a2 + x3a3 − x4a4 + &c
= xa1

2 − x
2 a1−a2

4 + x3 a1−2a2+a3

8 + &c
when x approaches unity.
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12. If a2

a3
lies between a1

a2
& a3

a4
, then

a1 − a2 + a3 − a4 + &c lies between a2
1

a1+a2
& a1 − a2

2

a2+a3

e.g. 1− 2 + 3− 4 + &c lies between 1
3 & 1

5 and its
values is 1

4 . b0− b1 + b2− b3 + &c lies between
1
2 & 2

3 ; its value is 3
5 very nearly.

But 2− 21
2 + 31

3 − 41
4 + 51

5 −&c cannot lie

between 22

2+2 1
2

& 2− (2 1
2 )2

2 1
2+3 1

3

as
2 1

2

3 1
3

is not

lying between 2
2 1

2

&
3 1

3

4 1
4

.i.e it cannot

lie between .889 & 929 as its value is 1.193

13. φ1(x) + φ2(x) + φ3(x) + &c can be expanded in
ascending powers of x , say A0 + A1x+ A2x

2 + &c
where each of A1, A2,&c is a series.

Case I When An is a convergent series
(1) If A0 + A1x+ A2x

2 + &c be a rapidly conver
-gent series what is required is got.
(2) But if it is a slowly convergent or an
oscillating series, convergent or divergent (at
least for some values of x )
(a).Change x into a suitable function of y so
that the new series in ascending powers
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of y may be a rapidly convergent series;
e.g. let x

1+x
2

= y, then x− x2

2 + x3

3 −
x4

4 + &c

= y − y3

12 + y5

80 −
y7

448 + &c
(b) or convert it into a continued fraction
e.g. x− x2

3 + 2
15x

3 − 17
315x

4 + &c = x
1+

x
3+

x
5+&c

1
x −

b1
x2 + b2

x3 − b3x4 + &c = x

x+1− 12

x+3− 22
x+5−&c

(c) or transform it into another series by ap-
plying III 8; e.g. 1

x −
2
x2 + 5

x3 − 15
x4 + &c

= 1
x+1 −

1
(x+1)(x+2) + 1

(x+1)(x+2)(x+3) −&c

(d) or take the reciprocal of the series and try to
make it a rapidly convergent series in anyway

Case II When An is an oscillating (convergent
or divergent) or a pure divergent series

(1) Let Cn be the constant or the value of its
generating function. Then the given series
= Ψ(x) + c0 + c1x+ c2x

2 + c3x
3 + &c where Ψ(x)

can be found in special cases.

(2) But if c0 + c1x+ c2x
2 + &c be a divergent series

find some function of n (say Pn) such that
the value of P0 + P1x+ P2x

2 + &c may be easily
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found and cn − Pn may be rapidly diminish as n
increases. Then the given series =
F (x) + (c0 − P0) + (c1 − P1)x+ (c2 − P2)x

2 + &c

e.g.1. 1
x+1 −

1
x+2 + 1

x+3 −&c = 1
x(1− 1 + 1−&c)

− 1
x2 (1− 2 + 3−&c) = 1

2x −
1

4x2 + &c

2. 1
12−x2 + 1

22−x2 + 1
32−x2 + &c = − 1

x2 (1 + 1 + 1 + &c)
− 1
x4 (12 + 22 + 32 + &c)− 1

x4 (14 + 24 + 34 + &c) = Ψ(x)

+ 1
2x2 = 1

2x2 − πcotg(πx)
2x

3. 1
1x + 1

2x + 1
3x + &c = (1 + 1 + 1 + &c)

−x(log1 + log2 + &c = −1
2 − xlog

√
2π −&c

= 1
x−1 + 1 + x+ x2 + &c− 1

2 − xlog
√

2π −&c
= 1

x−1 + 1
2 + (1− .91894)x−&c

= 1
x−1 + 1

2 + .8106x−&c

14.i x
ex+1 + x

e2x+1 + x
e3x+1 + &c

= log2− x
4 + (B2)

2x
2(22−1)

2b2 + (B4)
2x

4(24−1)
4b4 +

(B6)
2x

6(26−1)
6b6 + &c

Sol. x
ex+1 + x

e2x+1 + x
e3x+1 + x

e4x+1 + &c

= x
2(1 + 1 + 1 + &c)−B2

x2(22−1)
b2 (1 + 2 + 3 + &c)

+B4
x4(24−1)
b4 (13 + 23 + 33 + &c)−&c.
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= Ψ(x)− x
4 + (B2)

2x
2(22−1)

2b2 + (B4)
2x

4(24−1)
4b4 + &c

Now it is reqd to find Ψ(x)
The given series = x

ex−1 −
x

e2x−1 + x
e3x−1 −&c

= log2+ terms involving x & higher powers
of x. ∴ Ψ(x) = loge2.

ii. x
ex−1 + x

e2x−1 + x
e3x−1 + x

e4x−1 + &c

= C − logex+ x
4 − (B2)

2 x2

2b2 −B
2
4
x4

4b4 −B
2
6
x6

6b6 −&c

Sol. Proceedind as in the previous theorem
we have the series = Ψ(x) + C + x

4

−B2
2 x2

2b2 −B4
2 x4

4b4 −&c
But we know x

ex+1 + x
e2x+1 + x

e3x+1 + &c
= ( x

ex−1 + x
e2x−1 + &c)− ( 2x

e2x−1 + 2x
e4x−1 + &c)

∴ Ψ(x)−Ψ(2x) = log2 ; hence Ψ(x) = −logex .

Ex.1.shew that the constant in the series
100
√

1 + 100
√

2 + 100
√

3 + 100
√

4 + ...+ 100
√
x

is −.4969100
2. 1

2+1 + 1
22+1 + 1

23+1 + &c = 3
4 + loge2

48 nearly
3. 1

1+ 10
9

+ 1
1+( 10

9 )2 + 1
1+( 10

9 )3 + &c = 6.331009 .
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4. 1
10
9 −1

+ 1
( 10

9 )2−1
+ 1

( 10
9 )3−1

+ &c = 27 nearly

15. i. 1
x−1 + 1

x2−1 + 1
x3−1 + &c

= 1
x
x+1
x−1 + 1

x4
x2+1
x2−1 + 1

x9
x3+1
x3−1 + &c

ii. 1
x−1 −

1
x2−1 + 1

x3−1 −
1

x4−1 + &c

= 1
x
x2+1
x2−1 −

1
x4
x4+1
x4−1 + 1

x9
x6+1
x6−1 −&c

sol. 1
x−1 = 1

x−1

± 1
x2−1 = ±

{
1
x2 + 1

x2(x2−1)

}
1

x3−1 = 1
x3 + 1

x6 + 1
x6(x3−1)

± 1
x4−1 = ±

{
1
x4 + 1

x8 + 1
x12 + 1

x12(x4−1)

}
&c&c&c

Adding up all the terms we can get the results.

16. r
1−ax + r2

1−ax2 + r3

1−ax3 + &c to n terms

= arx
1−ax + (arx2)2

1−ax2 + (arx3)3

1−ax3 + &c to n terms

+r−rn+1

1−r + a (rx)2−(rx)n+1

1−rx + a2 (rx2)3−(rx2)n+1

1−rx2 + &c
to n terms.

sol. r
1−ax = arx

1−ax + r.
r2

1−ax2 = (arx2)2

1−ax2 + r2 + ar2x2.
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r3

1−ax3 = (arx3)3

1−ax3 + r3 + ar3x3 + a2r3x6.
&c&c&c

Adding up all the terms in the n rows we can get the results.
Cor. r

1−ax + r2

1−ax2 + r3

1−ax3 + &c

= arx
1−ax + (arx2)2

1−ax2 + (arx3)3

1−ax3 + &c

+ r
1−r + a(rx)2

1−rx + a2(rx2)3

1−rx2 + a3(rx3)4

1−rx3 + &c

17. a
1−m + (a+h)n

1−mx + (a+2h)n2

1−mx2 + (a+3h)n3

1−mx3 + &c

= .a. 1−mn
(1−m)(1−n) + (a+ b) 1−mnx2

(1−mx)(1−nx)(mnx)

+(a+ 2b) 1−mnx4

(1−mx2)(1−nx2)(mnx
2)2 + (a+ 3b) 1−mnx6

(1−mx3)(1−nx3)

+&c+ b
m{

mx
(1−x)2 + (mnx)2

(1−nx)2 + (mnx2)3

(1−nx2)2 + &c

Cor 1. a
1−n + (a+b)n

1−nx + (a+2b)n2

1−nx2 + &c

= a.1+n
1−n + (a+ b)1+nx

1−nx(n2x) + (a+ 2b)1+nx2

1−nx2 (n2x2)2

+b{ x
(1−n)2 + n3x2

(1−nx)2 + n5x6

(1−nx2)2 + n7x12

(1−nx3)2 + &c}

2. If An denotes the no. of factores in n including
1 & n then A1

x + A2

x2 + A3

x3 + &c = 1
x−1 + 1

x2−1 + &c
and hence deduce VI 15 i


