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In this article, we present a variety of evaluations of series of polylogarithmic nature. More precisely, we express the special values at positive integers of two classes of zeta functions of Arakawa-Kaneko-type by means of certain inverse binomial series involving harmonic sums which appeared fifteen years ago in physics in relation with the Feynman diagrams. In some cases, these series may be explicitly evaluated in terms of zeta values and other related numbers. Incidentally, this connection allows us to deduce new identities for the

) considered by S. Ramanujan in his notebooks.

Introduction

The function β defined for (s) > 0 by the Dirichlet series

β(s) = ∞ n=1
(-1) n-1 (2n -1) s has the integral representation

β(s) = 1 Γ(s) +∞ 0 e -t 1 + e -2t t s-1 dt = 1 Γ(s) +∞ 0 e -t 1 -e -2t Li 0 1 -e -2t 2 t s-1 dt
where Li k denotes the classical polylogarithm Li k (z) = ∞ n=1 z n n k . One may also observe that 1 Γ(s) +∞ 0 e -t 1 -e -2t Li 1 (1 -e -2t ) t s-1 dt = (2 -2 -s )s ζ(s + 1) .

These preliminary observations lead us to introduce two families of functions α k and β k defined by the Mellin transforms

α k (s) = 1 Γ(s) +∞ 0 e -t 1 -e -2t Li k 1 -e -2t t s-1 dt for (s) > 0 and k ≥ 1 , β k (s) = 1 Γ(s) +∞ 0 e -t 1 -e -2t Li k 1 -e -2t
2 t s-1 dt for (s) > 0 and k ≥ 0 , so that α 1 (s) = 2 -s (2 s+1 -1)sζ(s + 1), and β 0 (s) = β(s) .

We point out that the function α k (s) introduced here is (apart from a factor 2 -s ) nothing less than the special value at x = 1/2 of the (generalized) Arakawa-Kaneko zeta function ξ k (s, x) previously defined in [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF], whereas the function β k (s) is a new function of the same type. Let us remind that the original Arakawa-Kaneko zeta function ξ k (s) = ξ k (s, 1) was introduced by Arakawa and Kaneko in 1999 (cf. [START_REF] Arakawa | Multiple zeta values, Poly-Bernoulli numbers and related zeta functions[END_REF]) and formed the subject of recent works and further generalizations (cf. [START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF], [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF], [START_REF] Sasaki | On generalized poly-Bernoulli numbers and related L-functions[END_REF], [START_REF] Young | Symmetries of Bernoulli polynomial series and Arakawa-Kaneko zeta functions[END_REF]).

In the case where s is a positive integer, the special values α k (s) and β k (s) can be expressed by means of certain inverse binomial series studied by Kalmykov and Davydychev in relation with the Feynman diagrams (cf. [START_REF] Davydychev | Massive Feynman diagrams and inverse binomial sums[END_REF]). More precisely, we obtain the following identities: (1) n , . . . , O (j) n , . . . , O (m) n ) (for k ≥ 1) ,

α k (m + 1) = ∞ n=1 2 2n-1 2n n n k+1 P m (O
β k (m + 1) = ∞ n=1 2 n-1 2n n n k+1
P m (O (1) n , . . . , O (j) n , . . . , O (m) n ) (for k ≥ 0) , where P m is the modified Bell polynomial of order m and O (j) n = n k=1 1 (2k-1) j is the "odd" harmonic number of order j. For small values of k ans s, these series may be explicitly evaluated in terms of zeta values and other related constants which are real periods in the sense of Kontsevich and Zagier (cf. [START_REF] Kontsevich | Periods[END_REF]). For instance, we have the following evaluations:

α 1 (2) = ∞ n=1 2 2n-1 2n n O n n 2 = 7 2 ζ(3) , β 1 (2) = ∞ n=1 2 n-1 2n n O n n 2 = 7 4 ζ(3) - π 2 G , α 2 (2) = ∞ n=1 2 2n-1 2n n O n n 3 = 7ζ(3) ln 2 - π 4 32 -8G(1) , α 3 (1) = ∞ n=1 2 2n-1 2n n 1 n 4 = π 2 2 (ln 2) 2 - 7 2 ζ(3) ln 2 + π 4 96 + 4G(1) ,
where we use the following notations:

O n := O (1) n = n j=1 1 2j -1 , G := β(2) is the Catalan constant, G(1) := ∞ n=1
O n (2n) 3 is the Ramanujan constant (cf. [START_REF] Berndt | Ramanujan's Notebooks Part I[END_REF] p. 257, [START_REF] Sitaramachandrarao | A formula of S[END_REF]).

The evaluation of α 1 (2) above was given previously in [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction Zêta d'Hurwitz[END_REF], whereas the following ones are new. In particular, the two last relations provide new interesting formulae for the Ramanujan's constant G(1) as explained in detail in section 6.

2 Bell polynomials and "odd" harmonic numbers Definition 1. The modified Bell polynomials are the polynomials

P m ∈ Q[x 1 , x 2 , ..., x m ]
defined for all natural numbers m by P 0 = 1 and the generating function

exp ∞ k=1 x k z k k = ∞ m=0 P m (x 1 , • • • , x m ) z m ,
The general explicit expression for P m is

P m (x 1 , ..., x m ) = k 1 +2k 2 +•••+mkm=m 1 k 1 !k 2 ! . . . k m ! x 1 1 k 1 x 2 2 k 2 . . . x m m km . Example 1.
For the first values of m, one has

P 0 = 1 , P 1 = x 1 , P 2 = 1 2 x 2 1 + 1 2 x 2 , P 3 = 1 6 x 3 1 + 1 2 x 1 x 2 + 1 3 x 3 , P 4 = 1 24 x 4 1 + 1 4 x 2 1 x 2 + 1 8 x 2 2 + 1 3 x 1 x 3 + 1 4 x 4 .

Notation.

For s ∈ C with (s) ≥ 1 and an integer n ≥ 1, let O (s) n be the "odd" harmonic sum:

O (s) n = n k=1 1 (2k -1) s and O n := O (1)
n .

In the notation of [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF], one has

O (s) n = 2 -s h (s) n-1 (1/2) with h (s) n (x) = n j=0 1 (j + x) s .
Proposition 1. For all integers m ≥ 0 and n ≥ 1,

P m (O n , . . . , O (m) n ) = n 2n n 2 2n-1 +∞ 0 e -t (1 -e -2t ) n-1 t m m! dt . ( 1 
)
Proof. Since

P m (O n , . . . , O (m) n ) = 2 -m P m (h (1) 
n-1 (1/2), . . . , h (m) n-1 (1/2)) , formula (1) 
follows from Lemma 1 of [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF] in the special case x = 1/2. To be self-contained, we give a direct proof below. We show that

∞ m=0 P m (O n , • • • , O (m) n ) z m = n j=1 2j -1 2j -1 -z = n 2n n 2 2n-1 +∞ 0 e tz (1 -e -2t
) n-1 e -t dt , and then we shall obtain formula (1) by identification of the coefficients of z m . On one side, one has

n j=1 2j -1 2j -1 -z = n j=1 (1 - z 2j -1 ) -1 = exp(- n j=1 log(1 - z 2j -1 )) = exp( n j=1 +∞ k=1 z k k(2j -1) k ) = exp( +∞ k=1 z k k n j=1 1 (2j -1) k ) , thus n j=1 2j -1 2j -1 -z = exp( ∞ k=1 O (k) n z k k ) = ∞ m=0 P m (O n , • • • , O (m) n ) z m .
On the other side, one has

n j=1 2j -1 2j -1 -z = 1 √ π Γ(n + 1/2)Γ(-z/2 + 1/2) Γ(n -z/2 + 1/2) = 1 √ π Γ(n + 1/2) Γ(n) Γ(n)Γ(-z/2 + 1/2) Γ(n -z/2 + 1/2) = n 2 2n 2n n B(n, -z/2 + 1/2) ,
where B is the Euler Beta function. Thus, for 0 < |z| < 1, one has

n j=1 2j -1 2j -1 -z = n 2n n 2 2n 1 0 u n-1 (1 -u) -z/2-1/2 du ,
and making the change of variable u = 1 -e -2t , one then obtains:

n j=1 2j -1 2j -1 -z = n 2n n 2 2n-1 +∞ 0 e tz (1 -e -2t ) n-1 e -t dt ,
and finally

∞ m=0 P m (O n , • • • , O (m) n ) z m = n 2n n 2 2n-1 +∞ 0 e tz (1 -e -2t
) n-1 e -t dt . 

D(a)(x) = +∞ 0 e -t 1 -e -t (1 -e -t ) x a(t) dt , S(a)(x) = +∞ 0 e -t 1 -e -t (1 -e -xt ) a(t) dt . Proposition 2. For all integers n ≥ 1, one has S(a)(n) = n k=1 a(k) ,
and for all integer n ≥ 0,

D(a)(n + 1) = n k=0 (-1) k n k a(k + 1) .
Proof. The first relation follows from

S(a)(n) = +∞ 0 e -t -e -(n+1)t 1 -e -t a(t)dt = +∞ 0 ( n k=1 e -kt ) a(t)dt = n k=1 +∞ 0 e -kt a(t)dt .
The second relation results from the binomial expansion of (1 -e -t ) n since

D(a)(n + 1) = +∞ 0 e -t (1 -e -t ) n a(t)dt = +∞ 0 e -t n k=0 (-1) k n k e -kt a(t)dt = n k=0 (-1) k n k +∞ 0 e -t e -kt a(t)dt = n k=0 (-1) k n k a(k + 1) .
Example 2. For s with (s) ≥ 1 and x ∈ P , let

a(x) = 1 (2x -1) s . One has a(x) = +∞ 0 e -(2x-1)t t s-1 Γ(s) dt = +∞ 0 e -xt e t 2 ( t 2 ) s-1 2Γ(s) dt .
Thus, for all integer n ≥ 1,

D(a)(n) = +∞ 0 e -t 2 (1 -e -t ) n-1 ( t 2 ) s-1 2Γ(s) dt = +∞ 0 e -t (1 -e -2t ) n-1 t s-1 Γ(s) dt . (2)
By ( 1), one has

+∞ 0 e -t (1 -e -2t ) n-1 t m m! dt = 2 2n-1 n 2n n P m (O n , . . . , O (m) n ) .
Thus, if s is an integer, s = m + 1 with m ≥ 0, then we get for all integers n ≥ 1 the following formula

D( 1 (2x -1) m+1 )(n) = 2 2n-1 n 2n n P m (O n , . . . , O (m) n ) . ( 3 
)
Lemma 1. The operators D and S are linked by the following relation:

D 1 x S(a) = 1 x D(a) for all x ∈ P .
Proof of the lemma. By definition of S(a),

1 x S(a)(x) = +∞ 0 1 -e -xt x [ e -t 1 -e -t a(t)] dt ,
integrating by parts, we get

1 x S(a)(x) = +∞ 0 e -xt ∞ t e -u 1 -e -u a(u) du dt , this gives 1 x S(a)(t) = ∞ t e -u 1 -e -u a(u) du . Thus D( 1 x S(a))(x) = +∞ 0 e -t (1 -e -t ) x-1 ∞ t e -u 1 -e -u a(u) du dt ,
and integrating again by parts, we get

D( 1 x S(a))(x) = +∞ 0 1 x (1 -e -t ) x e -t 1 -e -t a(t) dt = 1 x D(a)(x) .
Remark 1. The relation between D and S given above is a reformulation of a result that we called the "harmonic property" in an earlier paper: cf. [START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF] Theorem 6 (where the operator S is denoted by A). Proposition 3. For all complex numbers z such that |z| < 1 2 , one has

+∞ n=1 D(a)(n) z n = - +∞ n=1 a(n)( z z -1 ) n , +∞ n=1 D(a)(n) z n n = - +∞ n=1 1 n S(a)(n)( z z -1 ) n . ( 4 
)
Proof. For the first relation we write

+∞ n=0 D(a)(n + 1)z n+1 = +∞ 0 e -t z 1 -(1 -e -t )z a(t)dt = - +∞ 0 ( z z -1 ) e -t 1 -e -t z z-1 a(t)dt .
The expansion

( z z -1 ) e -t 1 -e -t z z-1 a(t) = +∞ n=1 e -nt ( z z -1 ) n a(t) gives +∞ n=0 D(a)(n + 1)z n+1 = - +∞ 0 +∞ n=1 e -nt ( z z -1 ) n a(t)dt = - +∞ n=1 ( z z -1 ) n +∞ 0 e -nt a(t)dt ,
the order of +∞ 0 and ∞ n=1 may be interchanged because

+∞ 0 +∞ n=1 e -nt ( |z| 1 -|z| ) n | a(t)|dt = ( |z| 1 -|z| ) +∞ 0 e -t 1 -e -t |z| 1-|z| | a(t)| < +∞ .
The second relation ( 4) is an immediate consequence of the first one by Lemma 1 above.

Proposition 4. For all integers

p ≥ 1, one has ∞ n=1 D(a)(n) p n n k = +∞ 0 e -t 1 -e -t Li k ( 1 -e -t p ) a(t) dt . ( 5 
)
Proof. Let p be a positive integer, then

∞ n=1 D(a)(n) p n n k = ∞ n=1 1 p n n k +∞ 0 e -t 1 -e -t (1 -e -t ) n a(t) dt = +∞ 0 e -t 1 -e -t ∞ n=1 (1 -e -t ) n p n n k a(t) dt = +∞ 0 e -t 1 -e -t Li k ( 1 -e -t p ) a(t) dt ,
the order of +∞ 0 and ∞ n=1 may be interchanged since, by the hypothesis on a,

| a(t)| ≤ Ce αt for all t ∈ ]0, +∞[ , which gives +∞ 0 e -t 1 -e -t ∞ n=1 (1 -e -t ) n p n n k | a(t)| dt ≤ C +∞ 0 e -t 1 -e -t Li k ( 1 -e -t
p )e αt dt < +∞ . 

α k (s) = 1 Γ(s) +∞ 0 e -t 1 -e -2t Li k 1 -e -2t t s-1 dt (for k ≥ 1) , β k (s) = 1 Γ(s) +∞ 0 e -t 1 -e -2t Li k 1 -e -2t 2 t s-1 dt (for k ≥ 0) . Example 3. α 1 (s) = 2 Γ(s) +∞ 0 e -t 1 -e -2t t s dt = 2 -s (2 s+1 -1)sζ(s + 1) , β 1 (s) = 1 Γ(s) +∞ 0 e -t 1 -e -2t ln 2 -ln(1 + e -2t ) t s-1 dt .
Remark 2 (link with the Arakawa-Kaneko zeta function). In [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF], we introduced the function (s, x) → ξ k (s, x) defined for (s) > 0 and x > 0 by :

ξ k (s, x) = 1 Γ(s) +∞ 0 e -xt Li k (1 -e -t )
1 -e -t t s-1 dt which is a very natural extension of the zeta function of Arakawa and Kaneko in the same way as the Hurwitz zeta function ζ(s, x) generalizes the Riemann zeta function. In the simplest case k = 1, ξ 1 (s, x) is nothing else than sζ(s + 1, x), and moreover one deduces immediately from the previous definition that

α k (s) = 2 -s ξ k (s, 1 2 
) .

Proposition 5. If s is such that (s) ≥ 1, then

α k (s) = ∞ n=1 1 n k D( 1 (2x -1) s )(n) (for k ≥ 1) , β k (s) = ∞ n=1 1 2 n n k D( 1 (2x -1) s )(n) (for k ≥ 0) .
Proof. This is an immediate consequence of formula (5) applied to the function

a(x) = 1 (2x -1) s (for p = 1, 2) since a(t) = e t 2 ( t 2 ) s-1 2Γ(s)
as already seen in Example 2.

Corollary 1. For all integers m ≥ 0, then

α k (m + 1) = ∞ n=1 2 2n-1 2n n n k+1 P m (O (1) n , . . . , O (m) n ) (for k ≥ 1) , ( 6 
)
β k (m + 1) = ∞ n=1 2 n-1 2n n n k+1 P m (O (1) n , . . . , O (m) n ) (for k ≥ 0) . ( 7 
)
Proof. This is an immediate consequence of Proposition 5 by formula (3).

Example 4. Since α 1 (s) = 2 -s (2 s+1 -1)sζ(s + 1), then for all integers m ≥ 1,

(2 -2 -m )mζ(m + 1) = ∞ n=1 2 2n-1 2n n n 2 P m-1 (O (1) n , . . . , O (m-1) n ) . ( 8 
)
In particular, for m = 2, a nice formula for Apéry's constant (cf. [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction Zêta d'Hurwitz[END_REF], p. 81) is regained:

∞ n=1 2 2n 2n n O n n 2 = 7ζ(3) . ( 9 
)
Example 5. Since β 0 (s) = β(s), one has for all integers m ≥ 1,

β(2m) = ∞ n=1 2 n-1 2n n n P 2m-1 (O (1) n , . . . , O (2m-1) n ) . ( 10 
)
In particular, for m = 1, a nice formula for Catalan's constant (cf. [START_REF] Berndt | Ramanujan's Notebooks Part I[END_REF] p. 293, Entry 34) is regained:

∞ n=1 2 n 2n n O n n = 2G, (11) 
and for m = 2, formula ( 10) is translated into

∞ n=1 2 n 2n n (O n ) 3 n + 3 ∞ n=1 2 n 2n n O n O (2) n n + 2 ∞ n=1 2 n 2n n O (3) n n = 12β(4) . ( 12 
)
Remark 3. In a similar way (cf. [3] § 5.5), one can prove for ξ k (s) := ξ k (s, 1) the following identity:

ξ k (s) = ∞ n=1 1 n k D( 1 x s )(n) (for (s) ≥ 1 and k ≥ 1) ,
and, furthermore, one has (cf. [START_REF] Candelpergher | A new class of identities involving Cauchy numbers, harmonic numbers and zeta values[END_REF] § 3)

D( 1 x m+1 )(n) = P m (H (1) n , . . . , H (m) n ) n with H (j) n = n k=1 1 k j (j = 1, 2, • • • , m) ,
which gives for instance Euler's famous identity:

ξ 1 (2) = ∞ n=1 H n n 2 = 2ζ(3) .

The function β 1

The Euler series transformation (Proposition 3 above) provides an alternative expression for β 1 .

Proposition 6. For all s ∈ C with (s) ≥ 1, one has

β 1 (s) = ∞ n=1 (-1) n-1 O (s) n n , hence, for each integer m ≥ 1, ∞ n=1 (-1) n-1 O (m) n n = ∞ n=1 2 n-1 2n n n 2 P m-1 (O (1) n , . . . , O (m-1) n ) . ( 13 
)
Proof. By ( 4), one has for all |z| < 1 2 ,

+∞ n=1 D(a)(n) n z n = - +∞ n=1 1 n S(a)(n)( z z -1 ) n . If the series +∞ n=1 D(a)(n) n 1
2 n is convergent, then, by the classical Abel lemma, we get

+∞ n=1 D(a)(n) n 1 2 n = +∞ n=1 1 n S(a)(n)(-1) n-1 .
By formula (5), the series

∞ n=1 1 2 n n D( 1 (2x-1) s )(n) is convergent and β 1 (s) = ∞ n=1 1 2 n n D( 1 (2x -1) s )(n) = +∞ n=1 (-1) n-1 n S( 1 (2x -1) s )(n) .
Then, using formula (1) for D( 1 (2x -1) m )(n), one obtains [START_REF] Young | Symmetries of Bernoulli polynomial series and Arakawa-Kaneko zeta functions[END_REF].

Example 6. ∞ n=1 (-1) n-1 O n n = ∞ n=1 2 n-1 2n n 1 n 2 = π 2 16 , ∞ n=1 (-1) n-1 O (2) n n = ∞ n=1 2 n-1 2n n O n n 2 = 7 4 ζ(3) - π 2 G ( 14 
)
( [START_REF] Davydychev | Massive Feynman diagrams and inverse binomial sums[END_REF] (2.36) and (2.37) with u = 2 and Remark 4. In complete analogy with [START_REF] Young | Symmetries of Bernoulli polynomial series and Arakawa-Kaneko zeta functions[END_REF], one also has the following relation

θ = π 2 ) , ∞ n=1 (-1) n-1 O (3) n n = ∞ n=1 2 n 2n n (O n ) 2 (2n) 2 + ∞ n=1 2 n 2n n O (2) n (2n) 2 = π 4 64 -G 2 (15) 
∞ n=1 (-1) n-1 H (m) n n = ∞ n=1 1 2 n n 2 P m-1 (H (1) n , . . . , H (m-1) n ) (16)
which is equivalent to that given by Choi and Srivastava ([4] p. 66, formula (4.29)).

Proposition 7.

Let

H n = n k=1 (-1) k-1 k . If s is such that (s) > 1, then ∞ n=1 H n (2n -1) s = (1 -2 -s )ζ(s) ln 2 + ∞ n=1 (-1) n-1 n(2n -1) s -β 1 (s) . ( 17 
)
Thus, for each integer m > 1,

∞ n=1 H n (2n -1) m = (1-2 -m )ζ(m) ln 2+(-1) m ln 2+2 m k=1 (-1) m-k β(k)-β 1 (m) . (18)
Proof. The first relation is a direct consequence of the following elementary result: 

If the series ∞ n=1 a n , ∞ n=1 b n , ∞ n=1 a n b n and ∞ n=1 b n n k=1 a k are convergent, then the series n≥1 a n n k=1 b k is convergent and we have ∞ n=1 a n n k=1 b k = ∞ n=1 a n ∞ n=1 b n + ∞ n=1 a n b n - ∞ n=1 b n n k=1 a k .
(-1) k (2n -1) k = (-1) m (2n -1) -m -1 2n , hence (-1) n-1 n(2n -1) m = (-1) m (-1) n-1 n + 2 m k=1 (-1) m-k (-1) n-1 (2n -1) k
which gives formula (18).

Example 7. Formula (18) gives respectively for m = 2 and m = 3 the following identities:

∞ n=1 H n (2n -1) 2 = π 2 8 ln 2 + ln 2 - π 2 + 2G - 7 4 ζ(3) + πG 2 , ( 19 
) ∞ n=1 H n (2n -1) 3 = 7 8 ζ(3) ln 2 -ln 2 + π 2 -2G + π 3 16 + G 2 - π 4 64 . ( 20 
)
5 The values α k (1) and β k [START_REF] Arakawa | Multiple zeta values, Poly-Bernoulli numbers and related zeta functions[END_REF] The special values of α k and β k at s = 1 are evaluated in terms of (generalized) log-sine functions (cf. [START_REF] Davydychev | Massive Feynman diagrams and inverse binomial sums[END_REF], [START_REF] Lewin | Polylogarithms and associated functions[END_REF]).

Proposition 8. For each integer k ≥ 1 and α ∈ R such that 0 ≤ α ≤ 1, let L k (α) be the log-sine-type integral1 :

L k (α) = απ 0 u ln k-1 2 sin u 2 du = π 2 α 0 x ln k-1 2 sin πx 2 dx .
Then, one has

2α k (1) = ∞ n=1 2 2n
2n n

1 n k+1 = 2 k-1 k i=1 (-1) i-1 (ln 2) k-i (i -1)!(k -i)! L i (1) , ( 21 
)
2β k (1) = ∞ n=1 2 n 2n n 1 n k+1 = k i=1 (-1) i-1 2 i-1 (ln 2) k-i (i -1)!(k -i)! L i ( 1 2 
) .

(

) 22 
Proof. The proof is similar to that given in [14] § 4. Let

J k (x) = 1 2 k ∞ n=1 (2x) 2n 2n n n k+1 .
Then, one has for k ≥ 1,

J k (x) = x 0 J k-1 (u) u du .
By a classical identity due to Euler (cf. [START_REF] Zhang | Values of the riemann zeta function and integrals involving log(2 sin θ 2 )[END_REF], [START_REF] Zucker | On the series 2k k -1 k -n and related sums[END_REF]), one also has

J 1 (x) = (arcsin x) 2 , hence J 0 (x) = 2x arcsin x √ 1 -x 2 . It is easily verified that 2α k (1) = 2 k J k (1) = 2 k 1 0 J k-1 (x)
x dx , and

2β k (1) = 2 k J k ( √ 2 2 ) = 2 k √ 2 2 0 J k-1 (x) x dx .
By (k -1) integrations by parts and the change of variable x = sin u 2 , we get

J k (1) = (-1) k-1 (k -1)! 1 0 ln k-1 (x) J 0 (x) x dx = (-1) k-1 2(k -1)! π 0 u ln k-1 (sin u 2 )du ,
and

J k ( √ 2 2 ) = (-1) k-1 (k -1)! √ 2 2 0 ln k-1 ( √ 2x) J 0 (x) x dx = (-1) k-1 2(k -1)! 1 2 π 0 u ln k-1 ( √ 2 sin u 2 )du.
It remains to use the binomial expansions of

ln k-1 (sin u 2 ) = ln( 1 2 ) + ln(2 sin u 2 ) k-1
, and

ln k-1 ( √ 2 sin u 2 ) = ln( 1 √ 2 ) + ln(2 sin u 2 ) k-1
to obtain formulas (21) and ( 22).

Proposition 9.

For all α such that 0 ≤ α ≤ 1, we have

a) L 1 (α) = π 2 2 α 2 , b) L 2 (α) = ζ(3) - ∞ n=1 cos(πnα) n 3 -απ ∞ n=1 sin(πnα) n 2 , c) L 3 (α) = π 4 16 (α 4 - 8 3 α 3 + 2α 2 ) + 2 ∞ n=1 H n (n + 1) 3 cos(π(n + 1)α) + 2πα ∞ n=1 H n (n + 1) 2 sin(π(n + 1)α) - 1 2 ζ(4) . ( 23 
)
Proof. The assertion a) is trivially verified and b) is a classical identity (cf. [START_REF] Lewin | Polylogarithms and associated functions[END_REF], formula (7.53)). It remains to prove c). We use the following expansion :

Log 2 (1 -z) = 2 ∞ n=1 H n z n+1 n + 1 to get Log 2 1 -e -iπx = 2 ∞ n=1
H n e -iπx(n+1) n + 1 .

Since

Log Integrating, this gives

α 0 x ln 2 2 sin πx 2 dx = π 2 4 α 0 x(x -1) 2 dx + 2 ∞ n=1 H n n + 1 α 0 x cos(π(n + 1)x) dx . ( 24 
)
The permutation of and in ( 24) is justified by the following Lemma 2 and the dominated convergence theorem. The integrals in the right-hand side of (24) are easily computed by

α 0 x(x -1) 2 dx = α 4 4 - 2α 3 3 + α 2 2 ,
and α 0

x cos(π(n + 1)x)dx = cos(π(n + 1)α)

π 2 (n + 1) 2 + α π(n + 1) sin(π(n + 1)α) - 1 π 2 (n + 1) 2 .
Thus, we deduce from (24) the following expression for L 3 (α): 

L 3 (α) = π 4 4 ( α 4 4 - 2α 3 3 + α 2 2 ) + 2 ∞ n=1 H n (n + 1) 3 cos(π(n + 1)α) + 2πα ∞ n=1 H n (n + 1) 2 sin(π(n + 1)α) -2 ∞ n=1 H n (n + 1) 3 .

Moreover, one has

H n n + 1 x cos(π(n + 1)x) = k n=1 S n (x)( H n n + 1 - H n+1 n + 2 ) + H k k + 1 S k (x) ,
and one has

|S n (x)| = x n j=1
cos(π(j + 1)x) ≤ 2x sin(πx/2) .

It follows that, for all x ∈]0, 1[, 

k n=1 xH n cos(π(n + 1)x) n + 1 ≤ 2x sin(πx/2) ( H 1 2 - H k+1 k + 2 + H k k + 1 ) ≤ Cx sin(πx/2) ≤ C .

New formulae for Ramanujan's constant G(1)

In Chapter 9 of his notebooks (cf. [START_REF] Berndt | Ramanujan's Notebooks Part I[END_REF] p. 255, Entry 11), Ramanujan introduced two generating functions2 :

F (x) := ∞ n=1 O n x 2n (2n) 2 and G(x) := ∞ n=1 O n x 2n (2n) 3 ,
then, he writes the following functional relation :

G(x) + G 1 -x 1 + x = F (x) log(x) + F 1 -x 1 + x log 1 -x 1 + x - 1 16 log 2 (x) log 2 1 -x 1 + x + C , (ii) with C = π 4 ∞ n=0 (-1) n (4n + 1) 3 - π 3 √ 3 ∞ n=0 1 (2n + 1) 3 .
Unfortunately, this beautiful formula for C given by Ramanujan turns out to be erroneous since, letting x tend to 1 in (ii), one sees easily that the constant C must be equal to

G(1) = ∞ n=1
O n (2n) 3 (cf. [START_REF] Berndt | Ramanujan's Notebooks Part I[END_REF] p. 257, or [START_REF] Sitaramachandrarao | A formula of S[END_REF] for more details).

However, the calculation of α 3 (1) and α 2 (2) provides two interesting formulae for the constant G(1).

Proposition 10. Let G(1) = ∞ n=1 On (2n) 3 be the Ramanujan constant. One has G(1) = 7 8 ζ(3) ln 2 - π 4 384 - 1 8 π 2 (ln 2) 2 + 2 ∞ n=1 2 2n 2n n 1 (2n) 4 . ( 25 
)
Proof. One has

G(1) = ∞ n=1 O n (2n) 3 = ∞ n=1 H 2n -1 2 H n (2n) 3 = ∞ n=1 H 2n (2n) 3 - ∞ n=1 1 2 H n (2n) 3 = ∞ n=1 1 + (-1) n 2 H n n 3 - ∞ n=1 1 2 4 H n n 3 = 1 2 ∞ n=1 H n n 3 + 1 2 ∞ n=1 (-1) n H n n 3 - 1 2 4 ∞ n=1 H n n 3 = 35 64 ζ(4) - 1 2 ∞ n=1 (-1) n-1 H n n 3 .
Moreover, by (23) with α = 1, one also has Thus

L 3 (1) = 25 8 ζ(4) -2 ∞ n=1 (-1) n-1 H n n 3 = π 4 96 + 4G(1) . ( 26 
F (1) = ∞ n=1 O n (2n) 2 = 1 4 ∞ n=1 2 2n 2n n O n (2n) 2 . ( 28 
)
The calculation of α 2 (2) provides a nice expression of the Ramanujan constant G(1) similar to (28). O n (2n) 3 .

(29)

Proof. Applying (2.44) and (2.45) of [START_REF] Davydychev | Massive Feynman diagrams and inverse binomial sums[END_REF] with u = 4 and θ = π, one obtains, after calculations, an expression of α 2 (2) involving L 3 (1) which may be simplified using formula (26). Finally, we get the following relation: O n (2n) 3 (31) which gets closer to the erroneous formula given by Ramanujan for C.

Conclusion

With the aim of defining a natural framework for the study of the special values of zeta functions of Arakawa-Kaneko-type, we were led to consider polylogarithmic series in the generic form: (-1) j n j a(j + 1) .

We studied the important cases a(x) = x -s and a(x) = (2x -1) -s for z = 1 and z = 1/2. Though limited in practice to small values of k and s, our approach provided plenty of nice formulae with interest both in number theory and in physics.

4 The functions α k and β k Definition 3 .

 3 Let k be a positive integer. The functions α k and β k are respectively defined for all s ∈ C with (s) > 0 by

([ 7 ]

 7 (2.38), (2.39), (2.40) and (C.4) with u = 2 and θ = π 2) .

Applied to a n = 1 (

 1 2n-1) s and b n = (-1) n-1 n , this relation gives (17). The second relation is a consequence of the first one by the following observation: If s is an integer, s = m, then we have m k=1

  for x ∈]0, 1[. Proof of the lemma. Let S n (x) = x n j=1 cos(π(j + 1)x). A sommation by parts gives k n=1

Example 8 .

 8 Formulae (21) and (22) give for k = 2 the following identities: which were known of Ramanujan (cf.[START_REF] Berndt | Ramanujan's Notebooks Part I[END_REF], p. 269).

3 ( 1 Remark 5 . 1 ( 2

 31512 )Then, applying formula (21) with k = 3, it results from (26) that 2α We have seen before (cf. Example 4, formula[START_REF] Lewin | Polylogarithms and associated functions[END_REF]) that α

Proposition 11 .

 11 Let G(1) = ∞ n=1 On (2n) 3 be the Ramanujan constant. One has the following formula:

α 2 ( 2

 22 

F

  k (a, z) = ∞ n=1 D(a)(n) z n n k with k ∈ N, z ∈ C,andD(a)(n + 1) = n j=0

3 The operators D and S, and the Euler series transformation Definition 2. Let

  

	a be an analytic function in P = {x | (x) ≥ 1} defined by
	a(x) =	+∞	e -xt a(t)dt for all x ∈ P ,
	0		
	where a ∈ C 1 ([0, +∞[) is such that there exists α < 1, and C > 0 with
	| a(t)| ≤ Ce αt for all t ∈ ]0, +∞[ .

For x ∈ P , we define the functions x → D(a)(x) and x → S(a)(x) by

  2 1 -e -iπx = Log 2 e -iπx/2 (e iπx/2 -e -iπx/2 )

		= (-iπx/2 + iπ/2 + ln(2 sin	1 2	xπ)) 2
		= -	π 2 4	(x -1) 2 + ln 2 (2 sin	πx 2	x) + i Log 2 1 -e -iπx ,
	one has	ln 2 (2 sin	πx 2	) =	π 2 4	(x -1) 2 +		Log 2 1 -e -iπx ,
	hence	ln 2 2 sin	πx 2		=	π 2 4	(x -1) 2 + 2	∞ n=1	H n	cos(π(n + 1)x) n + 1	.

With the notations of[START_REF] Lewin | Polylogarithms and associated functions[END_REF], L k (α) is -Ls (1) k+1 (απ).

These functions are respectively denoted by φ and ψ in the original manuscript : cf.[START_REF] Ramanujan | [END_REF] p. 108.
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