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Abstract

In this article, we present a variety of evaluations of series of polylogarithmic
nature. More precisely, we express the special values at positive integers of
two classes of zeta functions of Arakawa-Kaneko-type by means of certain
inverse binomial series involving harmonic sums which appeared fifteen years
ago in physics in relation with the Feynman diagrams. In some cases, these
series may be explicitly evaluated in terms of zeta values and other related
numbers. Incidentally, this connection allows us to deduce new identities for
the constant C' = 3°, ﬁ(qu%Jr- -+ 5-1+) considered by S. Ramanujan
in his notebooks.
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1 Introduction
The function 3 defined for R(s) > 0 by the Dirichlet series

1)n1
n; 2n —1)®

has the integral representation

t

1 [fee e ) 1 [toe et 1—e 2
= ol dt = / — Li el dt
Bls) ['(s) /o 1+e 2 I(s)Jo 1—e2 0 ( 2

where Li, denotes the classical polylogarithm Li(z Z o One may also

observe that

1 +o00 e—t ' s 3y
o L e = e = - s Gl k)

These preliminary observations lead us to introduce two families of functions ay
and [ defined by the Mellin transforms

—t

1 too e . _ o
ak(s)zf(s)/o lek(l—e Qt)t Ydt  for R(s) >0and k > 1,

1 ot et (1—eH\
Bk(s)zr(s)/o lek 5 t*7"dt  for R(s) >0and k >0,

so that
ai(s) =(2-277)s¢(s+1), and fo(s) = B(s).

We notice a complete analogy between the couple of functions (ay, ;) and the
couple (&, mx) defined by

1 e et
Ek(s) = T(s) /0 1 ie—t Lig(1—e ¢ tdt  for R(s) >0, k>1,

1 e et 1—et
= Li thdt f k>
Ne(8) ) /0 o ix( 5 ) or ®(s) >0, k>0,

where the function &, was introduced by Arakawa and Kaneko in 1999 (cf. [1]),
and formed the subject of recent works and further generalizations (cf. [3], [5],
[10]). One can easily verify that

&i(s) =s((s+1) = (2—27) " au(s), and no(s) = (1 —2"7)((s).



In the particular case where s is a positive integer, the values ay(s) et fi(s) can
be expressed by means of certain inverse binomial series studied by Kalmykov and
Davydychev in relation with the Feynman diagrams (cf. [6]). More precisely, we
obtain the following identities:

(e’ 22n71 )

ag(m+1) = §me(ogl>,...,0g>, 0" (for k> 1),
= 2! (1) ) (m)

Brm+1) =Y P,(0W .. 0V . 0M™) (for k> 0),

— (2:) nk+1
where P, is the modified Bell polynomial of order m and OY) = S°7_, m is
the "odd" harmonic number of order j. For small values of k ans s, these series

may be explicitly evaluated in terms of zeta values and other related constants.
For instance, we establish the following new relations:

oo 22n71 On B 7
(651 (2) = — (27?> F - §C<3)7
00 2n—1 On
pi(2) =) (gn) 2= 1C(3) -5G,
n=1 n
00 22n—1 On _ 71.4
a(2) = nz::l (27?) = 7¢(3)In2 — o 8G(1),
00 22n—1 1 71_2 ) 7 7T4

where we use the following notations:

0, :=0) = 2211
.]_

=1
G := [(2) is the Catalan constant,

G(1) := Zl (207:)3 is the Ramanujan constant (cf. [2] p. 257, [9]).

In particular, the previous relations provide new interesting formulae for the Ra-
manujan’s constant G(1) as explained in detail in section 6.

2 Bell polynomials and "odd" harmonic numbers

Definition 1. The modified Bell polynomials are the polynomials

Pm € Q[xbx?v 7xm]

3



defined for all natural numbers m by Fy = 1 and the generating function

00 Zk: 00
exp (kak = Z Pm(xla"' 7xm) Zm?
k=1 m=0

The general explicit expression for P, is
]. xl kl x2 kg $m km
N OO
k1+2ko+-+mkm=m lﬁ'kgl o km' 1 9 m

Example 1. For the first values of m, one has

B =1,

P =ux,

P, = ;xf + ;:cg )

P = éxi’ + ;xle + ;353 3

P, = ;4:%1 + iﬁaﬁz + ;xg + ;151333 + Rk

Notation. For s € C with R(s) > 1 and an integer n > 1, let O{*) be the "odd"
harmonic sum:
- 1
0B —
R

k=1

and O, :=0W.
Proposition 1. For all integers m > 0 and n > 1,

P(O,,...,0™) = n<2nn)

n o 22n—1

m

+00 t
/ e (1 —e )t —at. (1)
0

m)!

Proof. We are going to prove that

2n
5 w21 () e
Pm On O(m) m o _ — n / tz 1— —2t\n—1 _tdt
— ( ) ) )Z ]1;[12]_1_2 22n—1 0 € ( e ) € )

and then we shall obtain formula (1) by identification of the coefficients of 2™. On



one side, one has

ﬁ 25— 1 :ﬁ(l_ z =
2 —1l=2 5 27—1
= exp(= 3 log(1 - 2],’2 )
]_
n +oo Zk
= exp( )
jz::uczl /{Z(Qj - 1)k
+oo Zk n 1
=exp() — : ),
k=1 k 321 (2] - 1)k
thus i
M5 Lol (Y 015 ) = 3 Pu(O - OF) 2
o120 — 1=z k=1 m=0
On the other side, one has
ﬁ 2j—1 1 P(n+1/2)I(—2/2+1/2)
2 —1—2z ym  Tn-z/2+1/2)

_ 1 T(n+1/2)T()(~2/2+1/2)
Vi L) Tn—z/2+1/2)

- (2:>B(n, /24 1/2),

V]

where B is the Euler Beta function. Thus, for 0 < |z| < 1, one has

2n

H .7 —1 _ n(ﬂ) /1 un—l(l . u)—z/2—l/2du7
i 0

23—1—2 22n

and making the change of variable u = 1 — e~2!, one then obtains:

n - 2n oo
11 -1 _ n(n) /+ (1 — et
0

2j—1—2z 2201

and finally

0o 2n o
S Pu(Op, -+, 0 2 = n(n> /+ e (1 —e 2 leldt .
0

m=0



3 The operators D and S, and the Euler series
transformation

Definition 2. Let a be an analytic function in P = {x | R(x) > 1} defined by
+o00
a(z) = / e "G(t)dt forallz € P,
0
where @ € C'([0, +o00[) is such that there exists o < 1, and C' > 0 with

[a(t)| < Ce® for all t € ]0, +o0] .
For x € P, we define the functions x +— D(a)(x) and z — S(a)(x) by
+o0 eft
D(a)() = | (1= e al)dr,
o l—et

€_t

s =[5

Proposition 2. For all integers n > 1, one has

(1 —e ™) a(t)dt.

and for all integer n > 0,
D(a)(n+1) = fj(—nk <Z> alk+1).
Proof. The first relation follows from
St = [ o e_tl__i(n:l)A / zi; FYG()dE = kz: / T et dt
The second relation results from the binomial expansion of (1 — e™*)" since
Dla)n+1) = [ T et — e trat)de

et ;é (—1) (Z) e~ Ma(t)dt

(1) (Z) / T et () dt



Example 2. For s with R(s) > 1 and x € P, let

1
a(z) = =1
One has A
+o0 51 +o0 65(7)5—
_ —(2z—-1)t dt = / —xt 2 dt .
a() /0 ‘ I'(s) o © 2I'(s)
Thus, for all integer n > 1,
400 . (i)sfl +oo ts_l

D :/ -5(1 — —t\n—1\2 :/ —t 1 — —2t\n—1 . 2
(a)(n) e 2(1—e™) o) dt e (1—e) F(s)dt (2)

By (1), one has

400 tm 22n—1
/ et1—e 2t g =% __p (O,,...,0m).
0 m' n(Q:)
Thus, if s is an integer, s = m + 1 with m > 0, then we get for all integers n > 1
the following formula

D((2x—11)m+1)(n) = i(Z;)Pm(on, L,00M). 3)

n

Lemma 1. The operators D and S are linked by the following relation:

D <1S(a)> = 1D(a) forall z € P.
x T

Proof of the lemma. By definition of S(a),

too ] —e @ et

“S(@)(e) = | [l dr,

T

integrating by parts, we get

s = [Te ([T TSt du) ar,
[~ )

this gives

iS(a)(t) -7 i_:_ua(u) du.



Thus

and integrating again by parts, we get

DL s(a)) (@) :/Om L0ty Gy dt = D(a)(x).

T T 1—et T

Proposition 3. For all complex numbers z such that |z| < 3, one has

3% D)) 2" == 3 aln) ()",
3 D@ S = 32 L s@mi ) )

Proof. For the first relation we write

ZD )(n + 1)zt _/m © at)dt
I1—(1—et)z

too e
= — a(t)dt .
/0 (z—1>1—e—tﬁa(>

The expansion

gives

the order of [;"* and 3°°, may be interchanged because

—t

/()+oof Y 1_| | Ia(lt)ldtz(l‘_z| )/0+°°€|Z|a(t)|<+oo.

2| 1—et

1=z

The second relation (4) is an immediate consequence of the first one by Lemma 1
above. O



Proposition 4. For all integers p > 1, one has
n=1

Proof. Let p be a positive integer, then

;:L(k”) - /0 " 1 ie_tLik(l _pe Va(t) dt. (5)

s D) s LT i etranar
= prnk —pmklo 1—et
400 e—t 00 (1 _ e—t)n
— a(t) dt
/0 1 —et nz::l prnk alt)
oo et 1—et
_ Li N
| e dr,

the order of [;" and 3.°°, may be interchanged since, by the hypothesis on @,
[a(t)| < Ce® for all t € )0, +o00] ,

which gives

o] —t

too et (1—e )" too et 1—e
Atdt<(]/ Li ot < to0.
/0 1—et Z prnk a()] dt < o 1—et B P Je oo

]

4 The functions o and [

Definition 3. Let k be a positive integer. The functions a4 and [ are respectively
defined for all s € C with R(s) > 0 by

1yt et ) o\ e
ak(S):F(S)/O =7 Liy, (1—6 Qt)t Ydt  (for k> 1),

1 oo e~ 1—e2
= Li ts7tdt  (for k > 0).
Bils) I'(s) /0 L2 * ( 2 > (for k = 0)

Example 3.

ai(s) = 2 /;oo o t5dt =2(1 -2 Ns((s+1),

[(s) 1— e—2t
1 +oo —t
Bi(s) = F(s)/o ﬁ {1112 —1In(1+ e_zt)} A



Proposition 5. If s is such that R(s) > 1, then

< 1 1
ag(s) = nz::l ED(W)(TL) (for k> 1),
© 1 1

Br(s) = nZ::l 2”nkD<(2x — 1)5)(71) (for k > 0).

Proof. This is an immediate consequence of formula (5) applied to the function

1 . tys—1
a(x) = 21y (forp =1, 2) since a(t) = e? (223(5) as already seen in Example 2.
O
Corollary 1. For all integers m > 0, then
oo 2271 1
(1) (m)
k(m+1) ;<2n)nk+1 n (07, 0.™)  (for k>1), (6)
00 on— 1 N (m)
k(m + 1) g(Qn)nk—i-l (07, .., 0™)  (for k> 0). (7)
Proof. This is an immediate consequence of Proposition 5 by formula (3). [
Example 4. Since a;(s) = (2 — 2*)3@(3 + 1), then for all integers m > 1,
n—1
(2 —27™)yml(m + 1) Z P,_1(OW, . .. 0m=Dy, (8)
e
In particular, for m = 1, this gives
o0 22n O
> o =7C(3). 9
20
Example 5. Since 5y(s) = ((s), one has for all integers m > 1,
0 gn-— 1
B2Em) =" o Pt (0L, ... 00™ ). (10)
n=1 (n) n

In particular, for m = 1, a nice formula for Catalan’s constant (cf. [2] p. 293,
Entry 34) is regained:
* 2" O,
Y =20, (11)
") n
NG

and for m = 2, formula (10) is translated into

on o  9n 002 o 9n 0(3)

ni( ) 32( ) 22( );:125(4). (12)

10



Remark 1. In a similar way (cf. [3] § 5.5), one can prove for the couple of
functions (&, nx) the following identities:

> 1

&k(s) = Z ED<E)<TL) (for R(s) > 1 and k > 1),
m(s) =3 2n1nkD(;S)(n) (for R(s) > 1 and k > 0).

n=1

and, furthermore, one has (cf. [3] § 3)

1 P(HM, ... H™ I
D(——)(n) = L7 H™) in HY) =3
™ k=1

1
n kI

which gives for instance the well-known identities

f(2)= > o2 =20),
m(2) = f_ojl Qfgz = (@) - T m2 (2 p. 258)

4.1 The function 5,

The Euler series transformation (Proposition 3 above) provides an alternative ex-
pression for (.

Proposition 6. For all s € C with R

—~

s) > 1, one has

. L0
Bi(s) =D (=)=,
n=1 n
hence, for each integer m > 1,
9] B 07(1m) oo 2n—1 B
S (1T =Y S B (O, 0. (13)
n=1 n n=1 (n)n2
Proof. By (4), one has for all |z| < 3,
= D(a)(n) , X1 Z \n
> S — -y —S(a)n) ()"

n=1 n=1

If the series 329 an is convergent, then, by the classical Abel lemma, we
get

=D 1 =1

> PO LS Lsamy (-1

n
n=1 n 2

n=1 n

11



By formula (5), the series >2>7 | 5 D((M 1)s)(n) is convergent and

&l 1 X (=1 1
Then, using formula (1) for D((inl)m)(n), one obtains (13). O

Example 6.

n=1 n=1 | ,
> 0% xo2to, 7 T

e = = = 14
T =2 e 160 3¢ (14)

1O & 2" (0n)? & 20 O ot
Z(_l) n Z (2:) <2n)2 +n2::1 (2:) <2n)2 - 674 -G (15)

([6] (2.38), (2.39), (2.40) and (C.4) with u = 2 and 6 = g) .

Remark 2. By Remark 1 above, one also has the relation

[e's) . Hq(zm) %S 1 -
Ul(m) = Z:l<_1) ! n = Z;Wmel(Hle)var(L 1)) (16)

which is similar to (13) and equivalent to that given by Choi and Srivastava ([4]
p. 66, formula (4.29)).

Proposition 7. Let

7=

k=1
If s is such that R(s) > 1, then

2&2(1—2 ln2+Z anl) — Bi(s) . (17)

Thus, for each integer m > 1,

= (1-2""™)¢(m) In 2+4(—1)" In 242 i(—1)m—k/3(k)—/31(m) . (18)

Z n—l =

n:l

12



Proof. The first relation is a direct consequence of the following elementary result:
If the series >0 an, > oneq by, Doy anb, and 3207 b, >0 ay are convergent,
then the series >, a, >_j_; by is convergent and we have

aank: Zaann—l—Zanbn— anZak.
n=1 k=1 n=1 n=1 = n=1 k=1
Applied to a, = ﬁ and b, = #, this relation gives (17). The second

relation is a consequence of the first one by the following observation:
If s is an integer, s = m, then we have

mo(=1)F (—1)m(2n —1)™ -1
2 2n — 1)k 2n ’
i (
hence ( 1)n71 ( l)nfl m ( l)nfl
— = (1) 23 (—1)m L
n(2n —1)™ (=1) n - ,;1( ) (2n — 1)k
which gives formula (18). O

Example 7. Formula (18) gives respectively for m = 2 and m = 3 the following
identities:

> 7T2 7 G
1% ig 7 3 ) 7T4

In2—-1In2 7_2 — - —. 2
g 2n—1 8§(3)n n2+ o G+16+G ol (20)

5 The values «;(1) and (x(1)

The special values of ay and 5 at s = 1 are evaluated in terms of (generalized)
log-sine functions (cf. [6], [7]).

Proposition 8. For each integer k£ > 1 and o € R such that 0 < o < 1, let Lg(«)
be the log-sine-type integrall:

Li(a) = Tulnt (2sin L) du =72 [ 2* 7t (28in 28 de
0 2 0 2

Then, one has

22 ] K . (In2) L(1). 21)

204 (1) = 2 @ T gk—1 ;(_1)’ 1 ] i

'With the notations of [7], Ly(a) is LS,(:JZl( ).

13



0 9n 1 k i 2i—1(1n 2)k—z 1

=1

P = 2 oy e = 200 g — i M)

n

Proof. The proof is similar to that given in [11] § 4. Let

Then, one has for £ > 1,

By a classical identity due to Euler (cf. [11], [12]), one also has
Ji(z) = (arcsinz)?,

hence

Jo() 2z arcsin x
) = ——.
0 V1—2?
It is easily verified that
L Jge
2a;,(1) = 27, (1) = 2"?/ Mdaz,
0 x

and v
\f) — 2"?/T Joal®)
0

26,(1) = 2% 7 ( .

By (k — 1) integrations by parts and the change of variable z = sin g, we get

Je(1) = Sl /01 lnk_l(x) Jo(x)dx = 7(_1)]671 /Oﬂulnk_l(sin g)du,

(k— 1) x 20k — 1)!

in

(k—1) v ok —1)!

It remains to use the binomial expansions of
1 k—1
In* (sin g) = [ln(2) + In(2sin g)} ,
and

(V2 sin ) = l1n< ) + In(2sin ;>] -

1
V2
to obtain formulas (21) and (22).

14

(22)

k-1 2 k-1
Jk(ﬁ) = (=1) /02 In*~'(v/2z) Jo(x)da: = (=1) /02 ulnkil(\/ising)du.



Proposition 9. For all « such that 0 < o < 1, we have

2
a) Li(a) = %a%

b) Lo(a) = C(3) Z (mna) o Z sin(mna)
n=1
4 00 Hn
¢) Lz(a) = %(o/l — 2043 +20%) + 2; CESE 5 cos(m(n + 1)a)
1
+ 21 Z 5 sin(m(n + 1)a) — 5{(4) . (23)

Proof. The assertion a) is trivially verified and b) is a classical identity (cf. [7],
formula (7.53)). It remains to prove c¢). We use the following expansion

2n+1
L l—2)=2» H,——
©8 ( 2 nzl n+1
to get
—zﬂx(n—i—l)
L 2 1 _ —zﬂ'x _ 2
o8 ( ) Z n+1
Since

Log2 (1 _ e#m;) _ Log2 (efm:/z(eim/z _ eﬂ'm/z))

1
= (—imz/2 +im/2 + In(2sin ixﬂ))Q
2

_Wz(x B 1)2 + 1n2(2 sin %;p) + 1 (Log2 (1 — e_imz)) :

one has

In?(2sin %) = j(m — 12+ R (Log2 (1 - €_im)) ;

hence

2 oo
: +1)x)
2 (2 mc) T 1o anos(ﬂ(n .
n” ( 2sin - T (x — 1)+ nE:I o

Integrating, this gives

“en (2 ) ar = [oto 17
/OZEII sin 4 JZ

+22n+1/ zcos(m(n+ 1)x) dz. (24)

15



The permutation of - and [ in (24) is justified by the following Lemma 2 and the
dominated convergence theorem. The integrals in the right-hand side of (24) are
easily computed by

a ot 202 P
CPde = 2
/ox(x Jdv="p——%+5

and
/Oa zcos(m(n+ 1)z)dr = cos(m(n + 1)a) a !

pcy g i ey L G ) R ot NER

Thus, we deduce from (24) the following expression for Lj(a):

5 cos(m(n +1)a)

+27TO(Z 5 sin(m(n + 1)a Z

n + 1
Moreover, one has
o0 Hn o0 Hn 5 1
,;(n+1)3 ;”3 (4) = ;C(4) = C(4) = ;¢(4),
and this gives (23). -
Lemma 2. The partial sums
zk: I xcos(m(n+ 1)x)
n=1 " n+1

are uniformly bounded for z €]0, 1[.

Proof of the lemma. Let S, (x) = x>7_; cos(m(j + 1)z). A sommation by parts
gives

i Hn i Hn HnJrl Hk
D) = _
;n+1xcos(7r(n+ )x) ;Sn(x)(n—i—l n+2)+k+1sk(x)’
and one has
2z
= 1 _—.
)l = xZCOS T+ ) < sin(mx/2)

It follows that, for all = €]0, 1[,

k

Z cos(m(n + 1)z) <_ 2z (E_HHle Hy, )< — Cx <c.

— n+1 sin(mz/2) 2 k+2 k+1 sin(mx/2)

]

16



Example 8. Formulae (21) and (22) give for k = 2 the following identities:

00 22n 1 ) 7
;(27?),”3—7( 1H2—§<(3>,
> 2" 1 2 35

which were known of Ramanujan (cf. [2], p. 269).

6 New formulae for Ramanujan’s constant G(1)

In Chapter 9 of his notebooks (cf. [2] p. 255, Entry 11), Ramanujan introduced
two generating functions?:

2n

2
Opx ™ O,x
n

F(z) = and G(z) := :
2 oy 2 oy
then, he writes the following functional relation :

G(m)—FG(l_w) :F(x)log(x)+F<1;i>log<1_$)

14+ =z 1+x
- Logaytog (10) ;
T log”(x) log Tz +C, (ii)
with © (_1) .
T —1)" -
C=- - )
4 Zb (4n+1)3  3V/3 Zg) (2n +1)3

Unfortunately, this beautiful formula for C' given by Ramanujan turns out to be
erroneous since one sees easily that the constant C' in (ii) must be equal to

G(1) = 2_:1 (2071")3 (cf. [2] p. 257, or [9] for more details).

However, the calculation of a3(1) and ay(2) provides two interesting formulae for
the constant G(1).

Proposition 10. Let G(1) = %, -22; be the Ramanujan constant. One has

n=1 (2n)3
G(1) 7g(3)1 o 1 2(] 2)2+2§j 2 1 (25)
== n2—-— —-n(ln — -
8 384 8 = () @)t

2These functions are respectively quoted ¢ and 9 in the original manuscript : cf. [8] p. 108.

17



Proof. One has

0 00 H2 lH
G(1) — n__ n o ddn
D=2y =5
S (@) = 2(2n)
e, S,
= 2 nd 2t nd
1 & H, 1&(-1)"H, 1 & H,
_57;1?—'—2; n3 24;n3
35 1 & H,
= C4) = =Y (—1)m =
S = S
Moreover, by (23) with o = 1, one also has
L) = 2y - 2 z
G 26
= T a6, (26)
Then, applying formula (21) with k& = 3, it results from (26) that
00 22n 1 ) ) 7T4
205(1) = Y < — =1 (In2)* = 7¢(3) In2 + —— + 8G(1) (27)
— (:) n 48
and this relation is equivalent to (25). O

Remark 3. We have seen before (cf. Example 4, formula (9)) that
00 22n—1 On _ 7

)= 3 Ty = 56

n=1 n

and one also knows (cf. [2], p. 259) that
2 On 7
=52

Thus
1.2, 22 O,

0o On B
SX e ik e

The calculation of as(2) provides a nice expression of the Ramanujan constant
G/(1) similar to (28).

(28)
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Proposition 11. Let G(1) = >0, ( s be the Ramanujan constant. One has
the following formula:

m 13220 0,
G(1)==(3)In2 — — — .
(1) =5¢@) 2 =55 2,; () 2n)?
Proof. Applying (2.44) and (2.45) of [6] with u = 4 and 6 = 7, one obtains, after
calculations, an expression of ay(2) involving L3(1) which may be simplified using

formula (26). Finally, we get the following relation:

(29)

ool

7.‘.4

ay(2) = 7((3) In2 — o5 —8G(1) (30)

and this relation is equivalent to (29). O

Remark 4. Since £((3) =X ,5¢ m and g—; = > n>0 W, formula (29) may
be rewritten

6 =21m2) 3 G~ (/5 ) > (2(;?1)3 - ;i (2%) (2%3 (31)

which gets closer to the erroneous formula given by Ramanujan for C.

7 Conclusion

With the aim of defining a natural framework for the study of the special values of
zeta functions of Arakawa-Kaneko-type, we were led to consider polylogarithmic
series in the generic form:

n

Z 27 with k€N, 2€C, and
-2t

S

We particularly emphasized on four important cases summarized in the follow-
ing table:

D n+1

z=1|2=1/2
a(z) =a"* & (s) k()
a(x) = 2z —1)7° | ax(s) Br(s)

Though limited in practice to small values of k and s, our approach provided
plenty of nice formulae with potential interpretations in physics.
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