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Abstract

In this article, we use a binomial transformation to link, through Bell’s
polynomials, certain "odd" harmonic series with the inverse binomial series
studied by Kalmykov and Davydychev in relation with the Feynman di-
agrams. Surprisingly, this connection allows us to deduce some new and
remarkable identities for the constant C' = 37, ﬁ(l +i4 )
considered by S. Ramanujan in his notebooks.
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1 Introduction

The function 3 defined for R(s) > 0 by the Dirichlet series

1)n1
nZ::l 2n —1)®

has the integral representation

t

1 [foo e ) 1 [toe et 1—e 2
= o dt = / — Li et dt
Bls) ['(s) /0 1+e 2 [(s)Jo 1—e2 0 ( 2

where Lij, denotes the classical polylogarithm Li(z Z o One may also

observe that

1 +o0 eft ' o By
Fo T W)= 2 27)s (o ).

We define two families of functions a4 and §; by the Mellin transforms

—t

1 too e . -~ .
ak(s)zf(s)/o mhk(l—e 2t)t Ydt  for R(s) >0and k > 1,

1 gyt et 1=\
Bk(S) = 1_‘(8)/0 lek 9 t dt for %(S) > 0 and & Z O,

so that
ais) = (2-27)sC(s+1),  and  Bo(s) = ().

We notice a complete analogy between the couple of functions (o, §r) and the
couple (&, nx) defined by

1 [t et
&k(s) = T(s) /0 1 i g Lig(1—e ¢ tdt  for R(s) >0, k>1,
1 ytoo et l—e™ .
= i 5= >
k() ) /o = Lig( 5 ' dt  for R(s) >0, k>0,

where the function &, was introduced by Arakawa and Kaneko (cf. [1], [4]). One
can easily verify that

&i(s) =s ((s+1) = (2—27) " au(s), and no(s) = (1 —2'7)((s).

The values ax(n) et Bx(n) where n is a positive integer can be expressed by means
of the inverse binomial series studied by Kalmykov and Davydychev (cf. [5]) in
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relation with the Feynman diagrams. More precisely, we obtain the following
identities:

wm= L
S
pi(1) = nZ:jl (2:> =15
o) = 3 2>§ - Tm2-L).
By(1) = ni; 2(;57; _ 12 2+ 26 - ggc(:s) |
as(1) = gjl 2(2%;; _ 7;2(ln2)2 - ;<(3) 2+ 4 4G,
@ =3 2() O,
@ =3 2(%)1 T -6,
an(2) = nil 252:51 S; —7¢(3) 2 — 7; _8G(1),

where we use the following notations:

—_

is the "odd" harmonic sum,

Q
3
1
Eal
NgE
I
SN— [\D

E—1

2) is the Catalan constant,

«Q

= 0
i
Mg =

3

Il

—

—
[\
S

~—

w

is the Ramanujan constant (cf. [2] p. 257, [9]).

The first two identities were known of Euler (cf. [8] p. 526), both following ones
were known of Ramanujan (cf. [2] p. 269), and the four last ones seem to be new.
The computation of S1(n) is of particular interest, for it leads to another kind of
new relations deduced by means of a series transformation (cf. section 4.1).



2 Bell polynomials and "odd" harmonic numbers
Definition 1. The modified Bell polynomials are the polynomials
Pm € @[.I’l,fﬂg, ceey xm]

defined for all natural numbers m by Py = 1 and the generating function

00 zk o]
€xp (Zxkk> = Z Pm<x17"' 7Im) Zm»
k=1 m=0

The general explicit expression for P, is
1 xl k‘l x2 k)g xm k,m
i, e (8 () ()

Example 1. For the first values of m, one has

P=1,

Py =,

Py = ;xf + ;IQ ,

P éxi’ + ;Ill’g + —x3,

P = 2143:‘11 + ix%xg + ;:c% + ;xlxg + le:u; .

Notation. For s € C with R(s) > 1 and an integer n > 1, let O{*) be the "odd"
harmonic sum:

n 1
OS) = Z ——  and 0O,:=0W.
= 2k —1)° "

Proposition 1. For all integers m > 0 and n > 1,

m

n 2n too +
Po(O,, ..., 0m) = 22<n_2/0 e(1— e 21T gt (1)

m)

Proof. We are going to prove that




and then we shall obtain formula (1) by identification of the coefficients of z™. On
one side, one has

ﬁ 27 -1 :ﬁ(l— z )1
2 —-1l—-2 5 27 —1
L z
= exp(— Y log(1 — o)
j=1
SIp PP
= exp )
j=1k=1 k(2] - 1)k
+00 Zk n 1
= eXp( R : )’
k=1 k ]Z::l (2] - 1)k
thus i
L~ —exp(Y 0P = Pp(Op, -+ ,0MM) zm
3H1 2] —1—=z kz::l k m,z::O
On the other side, one has
12[ 2j—1 1 P(n+1/2)I'(=2/2+1/2)
2 -1-2 ym  T(n—z/2+1/2)

_ 1 P(n+1/2)T(n)I(=2/2+1/2)
Vi T(n)  T(n-z/2+1/2)

(\V]

where B is the Euler Beta function. Thus, for 0 < |z| < 1, one has

& 2] —1 _ ’I’L<2:) ! n—1 —z/2-1/2
Lo g = v - du,

j=1

2

and making the change of variable u = 1 — =%, one then obtains:

2n
noo9j—1 n() e
H oF J : — 22( 2/ etz(l _6—215)71—16—15dt7
g—1—2z = Jo

and finally

00 2n oo
Z Pm(Om N 7Ogm)) LM — n(”) /+ etz(l . 6_2t)n_16_tdt.
m=0 0



3 The operators D and S, and the Euler series
transformation

Definition 2. Let a be an analytic function in P = {x | R(x) > 1} defined by
+o00
a(z) = / e "G(t)dt forallz € P,
0
where @ € C'([0, +o00[) is such that there exists o < 1, and C' > 0 with

[a(t)| < Ce® for all t € ]0, +o0] .
For x € P, we define the functions x +— D(a)(x) and z — S(a)(x) by
+o0 eft
D(a)() = | (1= e al)dr,
o l—et

€_t

s =[5

Proposition 2. For all integers n > 1, one has

(1 —e ™) a(t)dt.

and for all integer n > 0,
D(a)(n+1) = fj(—nk <Z> alk+1).
Proof. The first relation follows from
St = [ o e_tl__i(n:l)A / zi; FYG()dE = kz: / T et dt
The second relation results from the binomial expansion of (1 — e™*)" since
Dla)n+1) = [ T et — e trat)de

et ;é (—1) (Z) e~ Ma(t)dt

(1) (Z) / T et () dt



Example 2. For s with R(s) > 1 and x € P, let

1
a(z) = =1
One has -
+00 A +o0 ez(L)s
— —(2z—-1)t dt = / —xt 2 dt .
a() /0 ‘ [(s) o © 2I°(s)
Thus for all integer n > 1,
400 . (i)sfl +oo ts_l

D :/ —3(] — —t\n—112 :/ —t 1 — —2t\n—1 ) 9
(a)(n) e 2(1—e™) o) dt e (1—e) F(s)dt (2)

By Proposition 1 above, one also has

+00 tm 22n—1
/ (1 —e )t = =P, (O,,...,00"™).
Thus, if s is an integer, s = m + 1 with m > 0, then we get for all integers n > 1
the following formula
1 22n—1
D(————— = ——
<(2.§L’ _ 1)m+1 )(n> n(?n)

Lemma 1. The operators D and S are linked by the following relation:

P(Oy,..., 0, (3)

n

D (1S(a)> = iD(a) forallz € P.

T

Proof of the lemma. By definition of S(a),

too ] —e7® et

“s@() = [ ) dr,

T

integrating by parts, we get

st = [ ([Tt o) an,

this gives




Thus

and integrating again by parts, we get

(L8 (@) :/Om L0 — ety Gy dt = LD(a)(a).

T 1—et T

Proposition 3. For all complex numbers z such that |z| < 3, one has

+oo

400 =
> Da)(m)" =~ 3 aln) ()", (1
n=1 n=1
D)) . (X1 n
3. 2O s S o)
Proof. For the first relation we write
ZD Y(n+1) "“—/+oo - : at)dt
—(1—e)z
+oo z e—t R
__/0 (z—1>1—e*tzf1a(t)dt'
The expansion
z e_t ~ X —nt Z no
(T = X e (o) a)

gives

the order of fo+ and Y >° , may be interchanged because

/0+Oof Y )"[a(t)|dt = ( i )/()+Ooet|z|a(t)| < +00.

Z| 1—|z| 1 —et

The second relation is an immediate consequence of the first one by Lemma 1
above. O

1—|z]



Proposition 4. For all integers p > 1, one has

X D(a)(n) [t et 1—et
nle”nk_/o 1_€7tL1k( D )a(t)dt

Proof. Let p be a positive integer, then

S

Nk Nk _ p—t
n=1 P n=1 P 1 1 €

+00 6—t o] (1 _ e—t)n R
_/0 e > a(t)dt

k

—t

too ¢ o 1l—et
[T e e

the order of [;" and Y.°°, may be interchanged since, by the hypothesis on @,
[a(t)| < Ce® for all t € ]0, +o0| ,

which gives

+00 eft 00 (1 _ eft)n 400 eft 1 — eft
Atdt<(]/ Li ot < too.
/0 1—et nz::l prnk ja()] dt < o 1—et fe P Je oo

4 The functions «oj; and [

Definition 3. Let k be a positive integer. The functions a4, and [ are respectively
defined for all s € C with R(s) > 0 by

1 oo et
ag(s) = ) /0 ¢ Liy (1 - e’2t) t5=tdt  (for k> 1),

[(s 1—e 2
1 +o00 e—t ) 1— 6_2t .
Br(s) = ) /0 (=T Lig < 5 > t==tdt  (for k >0).

Example 3.

2 [teo et
au(s) = 1“(3)/0 it =21 27 )sC(s + 1),

—t

1 00
el A=l LR R




Proposition 5. If s is such that R(s) > 1, then

a(s) = —D(m)(n) (for k> 1),

Br(s) = i;l 2”171kD<(29: 1_ 1)5)(71) (for k > 0).

Proof. This is an immediate consequence of Proposition 4 applied to the function

1 (L)t
a(x) = 21y (for p =1, 2) since a(t) = e? (2212(3) as already seen in Example 2.
m
Corollary 1. For all integers m > 0, then
. 1 o), (m)
; (2n) o PO, O L0 (for k> 1), (6)
i 2 (OP,02)...,0m)  (for k > 0) (7)
2 (2”)nk+1 P,(0,,0,7,...,0, or k>0).
Proof. This is an immediate consequence of Proposition 5 and formula (3). O
Example 4. Since a;(s) = (2 —27°)s((s + 1), then for all integers m > 1,
00 227171
(2—27"ml(m+1) =Y 72— Pna(0),00,...,00"Y) (8)
=)
In particular, for m = 1, this gives
122 O
CB)=2> Zm (9)
7= (2:> n
Example 5. Since fy(s) = 5(s), one has
[e'e) n On
n=1 (n) n
and for all integers m > 1,
o] n E2m T 2m—+1
P2m Onl), 07(12), ceey Ong)) - () ) (11)
nz::l ( ) (2m)! \ 2

10



where FEs,, (m =1,2,---) are the Euler numbers (cf. [8] 11 (c) p. 544) defined by
the generating function:

> Z2m 22 52t 612°
=1 Eop———xv=14+ =+ —
Cos z +m§_:1 ™ (2m)] + 2! + 4! * 6!

In particular, for m = 1, this gives

o  9n (On)2 0 9n On2) 3
> D =g = 40).
Gy o» a8

n=1 \ , n

Remark 1. In a similar way (cf. [3] § 5.5), one can prove for the couple of
functions (&, ny) the following identities:

(n) (for R(s) >1and k > 1),

1
nk
1

)=
i nnk -)(n) (for R(s) > 1and k > 0),

and, furthermore, one also has (cf. [3] § 3)

1 P,(HWY,... HM™ LA
)(n) = (A7, Hy >W1thH Zk— =1,2,---,m).

(xm+1 n

This gives for example

62) = 2 =2(3),
m(2) = i 2{;"22 = ((3) - %mz ([2] p. 258)

4.1 The function j;
Proposition 6. For all s € C with R(s) > 1, one has

108
s) =D (-1,
n=1 n
hence, for each integer m > 1,
3 1 i O s 2 P,_1(0W 0® om=1) 12
nzz:1<_) n _;(271)712 mfl( noYn s Yn ) ( )



Proof. By Proposition 3 above, we have for all || < 3

—+00 D +00 1
oy n z — 1
If the series >/%9 D(a n( )% is convergent, then, by the classical Abel lemma, we
get
+oo D +oo 1
§ED@m) LT g
n=1 n n=1 n

By Proposition 4 above, the series -7 | 5 D((inl)s)(n) is convergent and

o] 1 1 +oo (_ nfl 1
= D .
Buls) ;2% ((Qx—l nZ::l S((zx—1)5><n>
1
Then, using formula (3) for D(ﬁ)(n), one obtains (12). O
xr — m
Example 6.
00 o0 2n—1 1 7T2
—1)°1 - i
n;l( ) — (2:) 77,2 16 I
00 (2) oo 9gn—1 O 7 T
1 L= =-((3) - =G 13
nz::l< ) n = (2:) n2 4(( ) 2 ( )

([5] (2.36) and (2.37) with u = 2 and 6 = g) ,

S e OF) &2 (0, & 2t 0wt
> (=1) :Z(QDWJF;(Q:)W:M—G (14)

([5] (2.38), (2.39), (2.40) and (C.4) with u = 2 and 0 = g) .

Remark 2. By Remark 1 above, we get also the relation

Hm™ =1
n _ZW-Pm—l(H(l)7H(2)u"'7H(m_1)> (]‘5)

i ™
_ n

which is similar to (12). In particular, one has the following relation:

9] H(2) I 7.‘_2
=Y (—)i = ~ =((3)——=In2.
ST = Y s =B - e



Proposition 7. Let

g=3

k=1

If s is such that R(s) > 1, then

i 2n—1 =(1-27° 1n2+2 2n>jl) — Bi(s). (16)

Thus, for each integer m > 1,

[e.9]

S e = (2K 2 (1) 242 3 (1))~ ). (1)

— k=1

Proof. The first relation is a direct consequence of the following elementary result:
If the series >0 | apn, >0 q by, 2021 apby, and Y07 1 b, >°7_ a are convergent,
then the series >, a, >_p_; by is convergent and we have

Zaank: Zaann—l—Zanbn— anZak.
n=1 k=1 n=1 n=1 n=1 n=1 k=1

Applied to a, = ﬁ and b, 17)17”_1 this relation gives (16). The second

relation is a consequence of the first one by the following observation:
If s is an integer, s = m, then we have

i )k (—1)m(2n —1)™m—-1
= (2n — 1 2n 7
g (1 e
) (1 2 ~ )
n(2n —1)m (=" + Z (2n — 1)k
which gives formula (17). O

Example 7. Formula (17) gives respectively for m = 2 and m = 3 the following
identities:

0o 2 7 G

Z 2n—1 %1n2+1n2—g+2G—ZC(3)+%, (18)

i A Zg‘()ln2—1n2+——2G+—3+G2—W—4. (19)
2n—1 8 2 16 64

n:l

13



5 The values (1) and [x(1)

Proposition 8. For each integer k£ > 1 and o € R such that 0 < o < 1, let Lg(«)

be the (generalized) log-sine integral

Li(a) :/ "l (28in u) du = 772/ zIn*t (QSin M) dz .
0 2 0 2

Then, one has

2ull) = 2 (22:) i - PTG —(1?)!2()14_—1 i)

26(1) = 3 (32) 7 = D) T L)

n=1\ , i=1

Proof. The proof is similar to that given in [10] § 4. Let

21. 2n

z:: (2n) nk+l

1
_7

Then, one has for k£ > 1,

Jp(x) = /Ocv Jk_;<u>du.

By a classical identity due to Euler (cf. [8] p. 526, [10]), one also has
Ji(z) = (arcsinx)?,

hence )
2x arcsin x

h@) ===

It is easily verified that

200 (1) = 28 J,(1) = 2* /01 Jk—;@")

dx

and v
26,(1) = 2’“Jk(£) — 2"?/T Jerl®) 4o
0 x

By (k — 1) integrations by parts and the change of variable x = sin ,

Je(1) = (=" /llnk_l(x) Jo(x)dx = LW /Wulnk_l(sin g)du,

(k—1)!'Jo x 2(k—1)!Jo

14

we get

(20)



and

V2. (=1)F R Jo(z . LS L o
Jk<2):Ek’—)1)!/0 In* 1 (v2x) ()dm_Q((kzl)!/o uln (\/§sm§)du.

It remains to use the binomial expansions of

1 gin 4y — [in( L -U}’“
In""" (sin 2) = [ln(2) + In(2sin 2) :
and
u 1 w ]!
In"~'(v/2sin 5) = lln(\/ﬁ) + In(2sin 2)]
to obtain formulas (20) and (21). O

Proposition 9. For all « such that 0 < a < 1, we have

a) Li(a) = %oﬁ,
b) Lafa) = () = 3 ) — o 37 ),
¢) Ly(a) = 7{;(&4 - 2043 +20%) + 2:1 (ni)g cos(n(n + 1)a)
+ 2m§:1 ( +"1)2 sin(m(n + 1)a) — ;§(4) : (22)

Proof. The assertion a) is trivially verified and b) is a classical identity (cf. [6],
formula (7.53)). It remains to prove c¢). We use the following expansion :

2 = 2"t
Log“(1 —2) = Q;Hnn—l—l
to get
, o—imo(nt1)
Log (1— l”)—QZH 1
Since

L0g2 (1 . e—iwz) — L0g2 (e—iwz/Z(eimt/Q - €—i7rzv/2))
1
= (—imx/2 4+ im/2 + In(2sin 53;7?))2

_ _T(x — 1)+ In*(2sin -2) +iS (Log? (1 - 7)) |

15



one has

In?(2sin %) = 7;2(35 — 12+ R (L0g2 (1 - e_im)) ;

hence ) (n( 1))
00 + T
12(2'”>:7T 1242y g, .
n” (2sin 1 (x— 1)+ nz=:1 ]
Integrating, this gives
(0% 2 o
/ zIn? (2sinm) dr = 7T—/ w(z — 1) dx
0 2 4 Jo
+2 i By /a zeos(m(n + 1)x)dx. (23)
n+1Jo

The permutation of - and [ in (23) is justified by the following Lemma 2 and the
dominated convergence theorem. The integrals in the right-hand side of (23) are
easily computed by

ot 20 a?

Crr—1Pde =2 2
/Ox(x )* dx 1 5 + 5
and

cos(m(n + 1)a) o) . 1
P T e e i s

/Oa zcos(m(n+ 1)z)dr =

Thus, we deduce from (23) the following expression for Ls(«):

7 ot 203 o? < H,
L = —(— — —| 4+ — 2 1
3() 1 ( 1 5 T3 ) + nz::l CESE cos(m(n + 1)a)
S n > A,
2 ' 1 —2 .
+ Wa; (n 1 1) sin(m(n + 1)) nzz:l CESIE
Moreover, one has
.- Hn — Hn 5 1

and this gives (22). O

Lemma 2. The partial sums

zcos(m(n+ 1)x)

ZH" n+1

n=1

are uniformly bounded for x €]0, 1[.

16



Proof of the lemma. Let S,(v) = x 3 }_, cos(m(j + 1)x). A sommation by parts
gives

k . H Hp Hy,
l)z) = D S
z:: mcos w(n+1) nz::l n—l—l n+2>+k:—|—1 w(x),
and one has
2z
= 1 —_—.
)l = IZCOS T+ o) < sin(mx/2)
It follows that, for all z €]0, 1[,
K cos(m(n + 1)z) 2z Hy, Hpu Hy, Cx
2 wH, < (G- + 2y <o <.
= n+1 sin(rz/2)" 2 k+2 k41" 7 sin(rz/2)

Example 8. Formulae (20) and (21) give for k£ = 2 the following relations:

00 22n 1 ) 7
773 =T 1112— *C(S),

n=1 (n)n 2

0 9n 2 5

s 3

These two identities were known of Ramanujan (cf. [2], p. 269).

6 New formulae for Ramanujan’s constant G(1)

In Chapter 9 of his notebooks (cf. [2] p. 255, Entry 11), Ramanujan introduced
the two generating functions!

o'} Onx2n 00 OnfL’2n
F(z) .—ngl 2n)? and G(x) —ngl @n)

then, he writes the following functional relation :

G(z) + G (;i) = F(x)log() +F<1 IDI% (1 _i)

!These functions are respectively quoted ¢ and 1) in the original manuscript : cf. [7] p. 108.

17



with ~ (_1) .
T —-1)" I —
C=— — )
4 nZ::o (4n+1)3 33 ,;) (2n +1)3
Unfortunately, this beautiful formula found by Ramanujan for C' turns out to be
erroneous since the constant C' in (ii) must be equal to

G(1) = z_:l (QOnn)g (cf. [2] p. 257, or [9] for more details).

However, we now show how the calculation of a3(1) and ay(2) provides two inter-
esting formulae for the constant G(1).

Proposition 10. Let G(1) = X, -92; be the Ramanujan constant. One has

n=1 (2n)3
G = Le@m2— T~ Lanaz 4o 3 2 1 (24)
== n2—— — —m*(In —_—.
8 384 8 — (?) (2n)*
Proof. First, we prove the two following identities:
35 1 & H
)= —C4)— = (-1 1=2 2
G(1) = 5160 5 S0 (25)
and
4
One has

I
N

Moreover, by Proposition 9 ¢) with o = 1, one also has

4

H, =«
F == +4G<1).

L(1) = ) 2 () = T

18



Then, applying Proposition 8, formula (20), it results from (26) that

o 22n 1 ) ) 4
203(1) = 2 (2:) =7 (In2)* —7¢(3)In2 + @ +8G(1). (27)
[
Remark 3. We have seen before (cf. Example 4, formula (9)) that
o) 22n71 On 7
ar(2) =) (T)ﬁ = 5((3),
n=1 n
and one also knows (cf. [2], p. 259) that
> O,
-£%-1
Thus - 1 ~ om
= (28)
=2 5 X

The calculation of as(2) provides a nice expression of the Ramanujan constant
G(1) similar to (28).

Proposition 11. Let G(1) = >0, ( s be the Ramanujan constant. One has
the following formula:

7r4 1. 2% On

G(1) = =((3)In2 — fz (Y n

(29)

ool 3

Proof. Applying (2.44) and (2.45) of [5] with u = 4 and # = 7, one obtains an
expression of ay(2) involving L3(1). By means of (26) previously established, one
can simplify this expression to obtain

7.(.4

az(2) =7¢(3)In2 — 3~ 8G(1) (30)
which is equivalent to (29). O
Remark 4. Since £((3) = ¥, (2n+1)3 and %5 = 3,50 (§n+1 5, formula (29) may

be rewritten

—1)n > 22 0,
G(1) = QIH(Q)T%%M?%}FD?’ —(m/8+ ln(2))7§(2(n_il_)1)3 N ;712—:1 (22:) (2n)3

which gets closer to the mysterious erroneous formula given by Ramanujan for C'.

19



References

1]

2]

[10]

T. Arakawa, M. Kaneko, Multiple zeta values, Poly-Bernoulli numbers and
related zeta functions, Nagoya Math. J., 153 (1999), 189-209.

B. C. Berndt, Ramanujan’s Notebooks Part I, Springer Verlag, New York,
1985.

B. Candelpergher, M.-A. Coppo, A new class of identities involving Cauchy
numbers, harmonic numbers and zeta values, Ramanujan J., 27 (2012), 305-
328.

M-A. Coppo, B. Candelpergher, The Arakawa-Kaneko Zeta function, Ra-
manugjan J., 22 (2010), 153-162.

A. Davydychev, M. Kalmykov, Massive Feynman diagrams and inverse bino-
mial sums, Nuclear Physics, B 699 (2004), 3-64.

L. Lewin, Polylogarithms and associated functions, North-Holland, New York,
1981.

S. Ramanujan, Notebooks, Vol. 2, Tata Institute of Fundamental Research,
Bombay, 1957.

R. Roy, Sources in the Development of Mathematics. Infinite Series and Prod-
ucts from the Fifteenth to the Twenty-first Century, Cambridge University
Press, New York, 2011.

R. Sitaramachandrarao, A formula of S. Ramanujan, J. of Number Theory,
25 (1987), 1-19.

Zhang N-Y., K. S. Williams, Values of the riemann zeta function and integrals
involving log(2sin £), Pacific J. Math., 168 (1995), 271-289.

20



