A. Aubin, Some nonlinear problems in Riemannian geometry, 1998.
DOI : 10.1007/978-3-662-13006-3

L. Arthur, J. L. Besse, and . Kazdan, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas, 1978.

[. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math, vol.305, pp.805-808, 1987.

[. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, pp.375-417, 1991.
DOI : 10.1002/cpa.3160440402

[. Cabré, Nondivergent elliptic equations on manifolds with nonnegative curvature, Communications on Pure and Applied Mathematics, vol.50, issue.7, pp.623-665, 1997.
DOI : 10.1002/(SICI)1097-0312(199707)50:7<623::AID-CPA2>3.3.CO;2-B

[. Cartan, Leçons sur la géométrie des espaces de Riemann, 1951.

H. Cartan, Calcul différentiel, 1967.

J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, 2008.
DOI : 10.1090/chel/365

[. Cordero, ?. Erausquin, R. J. Mccann, and M. Schmuckenschläger, A Riemannian interpolation inequality ?? la Borell, Brascamp and Lieb, Inventiones Mathematicae, vol.146, issue.2, pp.219-257, 2001.
DOI : 10.1007/s002220100160

URL : https://hal.archives-ouvertes.fr/hal-00693677

R. J. Crittenden, Minimum and conjugate points in symmetric spaces, Journal canadien de math??matiques, vol.14, issue.0, pp.320-328, 1962.
DOI : 10.4153/CJM-1962-024-8

[. Delanoë, ??quations du type de Monge???Amp??re sur les vari??t??s Riemanniennes compactes, II, Del82] Philippe Delanoë. ´ Equations du type de Monge?Ampère sur les variétés riemanniennes compactes, pp.341-353403, 1981.
DOI : 10.1016/0022-1236(81)90080-X

P. Delanoë, Local solvability of elliptic, and curvature, equations on compact manifolds, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2003, issue.558, pp.23-45, 2003.
DOI : 10.1515/crll.2003.041

P. Delanoë, Gradient rearrangement for diffeomorphisms of a compact manifold, Differential Geometry and its Applications, vol.20, issue.2, pp.145-165, 2004.
DOI : 10.1016/j.difgeo.2003.10.003

P. Delanoë and Y. Ge, Regularity of optimal transport on compact, locally nearly spherical, manifolds, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2010, issue.646, pp.65-115, 2010.
DOI : 10.1515/crelle.2010.066

P. Delanoë and Y. Ge, Locally nearly spherical surfaces are almost-positively $c$-curved, Methods and Applications of Analysis, vol.18, issue.3, pp.269-302, 2011.
DOI : 10.4310/MAA.2011.v18.n3.a2

P. Delanoë and G. Loeper, Gradient estimates for potentials of invertible gradient???mappings on the sphere, Calculus of Variations and Partial Differential Equations, vol.487, issue.3, pp.297-311, 2006.
DOI : 10.1007/s00526-006-0006-4

P. Delanoë and F. Ere, Positively curved riemannian locally symmetric spaces are positively squared distance curved. Canad, J. Math, vol.65, issue.4, pp.757-767, 2013.

C. Lawrence and . Evans, Classical solutions of fully nonlinear, convex , second-order elliptic equations, Comm. Pure Appl. Math, vol.35, issue.3, pp.333-363, 1982.

[. Figalli, Y. ?. , H. Kim, and R. J. Mccann, H??lder Continuity and Injectivity of Optimal Maps, Archive for Rational Mechanics and Analysis, vol.12, issue.3, pp.747-795, 2013.
DOI : 10.1007/s00205-013-0629-5

[. Figalli, Y. ?. , H. Kim, and R. J. Mccann, Regularity of optimal transport maps on multiple products of spheres, Journal of the European Mathematical Society, vol.15, issue.4, pp.1131-1166, 2013.
DOI : 10.4171/JEMS/388

A. Figalli, L. Rifford, and C. Villani, On the Ma???Trudinger???Wang curvature on surfaces, Calculus of Variations and Partial Differential Equations, vol.255, issue.9, pp.3-4307, 2010.
DOI : 10.1007/s00526-010-0311-9

A. Figalli, L. Rifford, and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Mathematical Journal, vol.63, issue.4, pp.855-876, 2011.
DOI : 10.2748/tmj/1325886291

URL : https://hal.archives-ouvertes.fr/hal-00923320

A. Figalli, L. Rifford, and C. Villani, Nearly Round Spheres Look Convex, American Journal of Mathematics, vol.134, issue.1, pp.109-139, 2012.
DOI : 10.1353/ajm.2012.0000

URL : https://hal.archives-ouvertes.fr/hal-00923321

G. Giraud, Sur diff??rentes questions relatives aux ??quations du type elliptique, Annales scientifiques de l'??cole normale sup??rieure, vol.47, issue.221, pp.197-266, 1930.
DOI : 10.24033/asens.801

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, 2001.

P. Hartman, Ordinary differential equations Corrected reprint of the second (1982) edition, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.38, p.658490, 2002.

E. Hopf, Elementare BemerkungenüberBemerkungen¨Bemerkungenüber die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitz. Ber. Preuss. Akad. Wissensch. Berlin, Math.? Phys. Kl, vol.19, pp.147-152, 1927.

[. Hopf, ???ber den funktionalen, insbesondere den analytischen Charakter der L???sungen elliptischer Differentialgleichungen zweiter Ordnung, Mathematische Zeitschrift, vol.34, issue.1, pp.194-233, 1931.
DOI : 10.1007/BF01180586

J. Jost, Riemannian geometry and geometric analysis, 2011.
DOI : 10.1007/978-3-642-21298-7

[. Karcher, A geometric classification of positively curved symmetric spaces and the isoparametric construction of the Cayley plane On the geometry of differentiable manifolds, Astérisque, pp.163-164111, 1986.

[. Kim, Counterexamples to Continuity of Optimal Transport Maps on Positively Curved Riemannian Manifolds, International Mathematics Research Notices, vol.15, 2008.
DOI : 10.1093/imrn/rnn120

P. A. Wilhelm and . Klingenberg, Riemannian geometry, 1995.

?. Young, R. J. Kim, and . Mccann, Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc. (JEMS), vol.12, issue.4, pp.1009-1040, 2010.

?. Young, R. J. Kim, and . Mccann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. Reine Angew. Math, vol.664, pp.1-27, 2012.

S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I. Wiley Classics Library, 1996.

S. Kobayashi and K. Nomizu, Foundations of differential geometry Wiley Classics Library, 1996.

S. Lang, Introduction to differentiable manifolds. Universitext, 2002.

G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Mathematica, vol.202, issue.2, pp.241-283, 2009.
DOI : 10.1007/s11511-009-0037-8

G. Loeper, Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna, Archive for Rational Mechanics and Analysis, vol.20, issue.3, pp.269-289, 2011.
DOI : 10.1007/s00205-010-0330-x

[. Liu, N. S. Trudinger, and X. Wang, Regularity for Potential Functions in Optimal Transportation, Communications in Partial Differential Equations, vol.46, issue.1, pp.165-184, 2010.
DOI : 10.1007/s11401-006-0142-3

G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: The nonfocal case, Duke Mathematical Journal, vol.151, issue.3, pp.431-485, 2010.
DOI : 10.1215/00127094-2010-003

R. J. Mccann, Polar factorization of maps on Riemannian manifolds, Geometric and Functional Analysis, vol.11, issue.3, pp.589-608, 2001.
DOI : 10.1007/PL00001679

J. W. Milnor, Topology from the differentiable viewpoint Princeton Landmarks in Mathematics, 1997.

G. Monge, Mémoire sur la théorie des déblais et remblais, Mémoires Acad. Royale Sci. Paris, p.1781

N. Xi, N. S. Ma, X. Trudinger, and . Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal, vol.177, issue.2, pp.151-183, 2005.

[. Myers, topology. I. Simply connected surfaces, Duke Mathematical Journal, vol.1, issue.3, pp.376-391, 1935.
DOI : 10.1215/S0012-7094-35-00126-0

S. Richard, C. Palais, and . Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol.1353, 1988.

H. Murray, H. F. Protter, and . Weinberger, Maximum principles in differential equations, N.J, 1967.

S. Neil and . Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc, vol.278, issue.2, pp.751-769, 1983.

S. Neil, X. Trudinger, and . Wang, On the second boundary value problem for Monge?Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.8, issue.51, pp.143-174, 2009.

J. Vétois, Continuity and injectivity of optimal maps, Calculus of Variations and Partial Differential Equations, vol.20, issue.3, 2011.
DOI : 10.1007/s00526-014-0725-x

A. D. Weinstein, The Cut Locus and Conjugate Locus of a Riemannian Manifold, The Annals of Mathematics, vol.87, issue.1, pp.29-41, 1968.
DOI : 10.2307/1970592

[. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, issue.16, 1973.