]. R. Bel64 and . Bellman, Perturbation techniques in mathematics, physics, and engineering, 1964.

N. N. Bogolyubov and Y. , Mitropol ? ski? ?. Asimptoti?eskie metody v teorii neline? ?nyh kolebani? ?, Gosudarstv. Izdat. Tehn.-Teor. Lit, 1955.

Y. [. Bogoliubov and . Mitropolsky, Asymptotic methods in the theory of non-linear oscillations. Translated from the second revised Russian edition, International Monographs on Advanced Mathematics and Physics, 1961.

[. Brahim and B. Rousselet, Vibration d'une barre avec une loi de comportement localement non linéaire, Proceedings of " Tendances des applications mathématiques en Tunisie, pp.479-485, 2009.

[. Brahim and B. Rousselet, Double scale analysis of periodic solutions of some non linear vibrating systems, Bra] N. Ben Brahim. Vibration d'une barre avec une loi de comportement localement non linéaire. Communication au Congrès Smai, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00776184

]. N. Bra10 and . Brahim, Vibration of a bar with a law of behaviour locally nonlinear, pp.18-22, 2010.

A. [. Kasakov, I. N. Ekimov, and . Didenkulov, Modulation of torsional waves in a rod with a crack, J.Acoust. Soc. AM, vol.3, issue.106, pp.1289-1291, 1999.

M. Géradin and D. Rixen, Théorie des vibrations. ApplicationàApplicationà la dynamique des structures, 1993.

D. [. Géradin and . Rixen, Mechanical vibrations : theory and application to structural dynamics, 1997.

H. Hazim, N. Fergusson, and B. Rousselet, Numerical and experimental study for a beam system with local unilateral contact modelling satellite solar arrays, Proceedings of the 11th European spacecraft structures, materials and mechanical testing conference, 2009.

]. H. Hr09a, B. Hazim, and . Rousselet, Finite element for a beam system with nonlinear contact under periodic excitation Ultrasonic wave propagation in non homogeneous media, springer proceedings in physics, pp.149-160, 2009.

]. H. Hr09b, B. Hazim, and . Rousselet, Frequency sweep for a beam system with local unilateral contact modelling satellite solar arrays, Proceedings of " Tendances des applications mathématiques en Tunisie, pp.541-545, 2009.

O. Janin and C. H. Lamarque, Comparison of several numerical methods for mechanical systems with impacts, International Journal for Numerical Methods in Engineering, vol.51, issue.9, pp.1101-1132, 2001.
DOI : 10.1002/nme.206

URL : https://hal.archives-ouvertes.fr/hal-00814950

J. Bastien, . Bernardin, . Frédéric, and C. Lamarque, Non smooth deterministic or stochastic discrete dynamical systems. Applications to models with friction or impact. , Mechanical Engineering and Solid Mechanics Series, 2013.

C. [. Jiang, S. W. Pierre, and . Shaw, Large-amplitude non-linear normal modes of piecewise linear systems, Journal of Sound and Vibration, vol.272, issue.3-5, 2004.
DOI : 10.1016/S0022-460X(03)00497-8

URL : https://hal.archives-ouvertes.fr/hal-01350797

B. [. Junca and . Lombard, Dilatation of a One-Dimensional Nonlinear Crack Impacted by a Periodic Elastic Wave, SIAM Journal on Applied Mathematics, vol.70, issue.3, pp.70-3735, 2009.
DOI : 10.1137/080741021

URL : https://hal.archives-ouvertes.fr/hal-00339279

B. [. Junca, . Lombardjr09-]-s, B. Junca, and . Rousselet, Interaction between periodic elastic waves and two contact non-linearities. Mathematical Models and Methods in Applied Sciences Asymptotic expansion of vibrations with unilateral contact, Ultrasonic wave propagation in non homogeneous media, springer proceedings in physics, pp.173-182, 2009.

B. [. Junca and . Rousselet, The method of strained coordinates for vibrations with weak unilateral springs, IMA Journal of Applied Mathematics, vol.76, issue.2, 2010.
DOI : 10.1093/imamat/hxq045

URL : https://hal.archives-ouvertes.fr/hal-00395351

I. Kovacic, The Duffing equation. Nonlinear oscillators and their behaviour, 2011.

M. [. Kerschen, J. C. Peeters, A. F. Golinval, and . Vakakis, Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, Mechanical Systems and Signal Processing, vol.23, issue.1, pp.170-194, 2009.
DOI : 10.1016/j.ymssp.2008.04.002

URL : https://hal.archives-ouvertes.fr/hal-01357931

E. [. Landau and . Lifchitz, Physique théorique. Tome I. Mécanique.Deuxì emé edition revue et complétée, ´ Editions Mir, 1966.

D. Laxalde, L. , M. Kenneth, R. Meyer, and G. R. , Nonlinear modal analysis of mechanical systems with frictionless contact interfaces., " Comput. Mech Hall Introduction to Hamiltonian dynamical systems and the N-Body problem, pp.469-478, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00413696

]. P. Mil06 and . Miller, Applied asymptotic analysis, Graduate Studies in Mathematics, vol.75, 2006.

. [. Moussatov-b, . Castagnede-v, and . Gusev, Frequency up-conversion and frequency down-conversion of acoustic waves in damaged materials, Physics Letters A, vol.301, issue.3-4, pp.281-290, 1991.
DOI : 10.1016/S0375-9601(02)00974-X

]. A. Nay81 and . Nayfeh, Introduction to perturbation techniques, 1981.

]. A. Nay86 and . Nayfeh, Perturbation methods in nonlinear dynamics In Nonlinear dynamics aspects of particle accelerators, Lecture Notes in Phys, vol.247, pp.238-314, 1985.

]. A. Nay05 and . Nayfeh, Resolving controversies in the application of the method of multiple scales and the generalized method of averaging., Nonlinear Dyn, pp.61-102, 2005.

]. A. Lya49, . Lyapunov, and . Liapounoff, The general problem of the stability of motion English translation by Fuller from Edouard Davaux's french translation Probì eme général de la stabilité du mouvement) 9 (1907)); this french translation is to be found in url, Russian in Kharkov. Mat. Obshch, 1892.

]. H. Poi99 and . Poincaré, Méthodes nouvelles de la mécanique céleste, pp.1892-1899

]. B. Rou11 and . Rousselet, Periodic solutions of o.d.e. systems with a Lipschitz non linearity, 2011.

]. L. Rub78 and . Rubenfeld, On a derivative-expansion technique and some comments on multiple scaling in the asymptotic approximation of solutions of certain differential equations, SIAM Rev, vol.20, issue.1, pp.79-105, 1978.

F. [. Sanders and . Verhulst, Averaging methods in nonlinear dynamical systems, 1985.
DOI : 10.1007/978-1-4757-4575-7

J. [. Dufourcq, M. Groby, P. Lagier, and G. Vanderborck, Détection vibroacoustique non linéaire d' endomagements dans une structure poutre, 2003.

M. Lagier and G. Vanderborck, Application of non-linear ultrasonic spectroscopy to health monitoring and damage detection in structures,. 38p, 75th Shock and Vibration Symposium, 2004.

G. [. Rousselet and . Vanderborck, Non destructive testing with non linear vibroacoustic, Septì eme colloque national en Calcul de structures, pp.603-608, 2005.

A. [. Vestroni, A. Luongo, and . Paolone, A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system, Nonlinear Dynamics, vol.35, issue.3, pp.379-393, 2008.
DOI : 10.1007/s11071-008-9337-3