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Abstract

We consider small solutions of a vibrating mechanical system with smooth non-linearities
for which we provide an approximate solution by using a triple scale analysis; a rigorous proof
of convergence of the triple scale method is included; for the forced response, a stability result
is needed in order to prove convergence in a neighbourhood of a primary resonance. The
amplitude of the response with respect to the frequency forcing is described and it is related
to the frequency of a free periodic vibration.
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1 Introduction

In this article, we perform a triple scale analysis of small periodic solutions of free vibrations of
a discrete structure without damping and with a local smooth non-linearity; then we consider a
similar system with damping and a periodic forcing in a resonance situation.

Several experimental studies show that it is possible to detect defects in a structure by con-
sidering its vibro-acoustic response to an external actuation; there is a vast literature in applied
physics. We recall some papers related to the use of the frequency response for non destructive
testing; in particular generation of higher harmonics, cross-modulation of a high frequency by a low
frequency (often called intermodulations in telecommunication): [EDK99], [MCGO02]; in [DGLV03],
”a vibro-acoustic method, based on frequency modulation, is developed in order to detect defects
on aluminium and concrete beams”; experiments have been performed on a real bridge by G. Van-
derborck with four prestressed cables: two undamaged cables, a damaged one and a safe one but
damaged at the anchor. With routine experimental checking of the lowest natural frequency, the
presence of the damaged cable had only been found by comparison with data collected 15 years
ago; the one damaged at the anchor was not found; see details in [LVdb04], [RV05].



However the analysis per se of non linear vibration is also an important topic from the academic
and industrial viewpoint. In this work, we are interested in the behaviour due to a local non linear
stress-strain law; first, we consider free vibration and then forced response of a damped system
with excitation frequency close to a frequency of the free system ; so, this local stress-strain law
is assumed to be: N = ki + cii? + dii®, where N is the normal force and @ is the elongation. The
elastodynamic problem of continuum mechanics leads after discretization by finite elements to a
system of non linear differential equations of second order, thus, this paper deals with such systems
with several degrees of freedom. We determine an asymptotic expansion of small periodic solutions
of a discrete structure; we use the method of triple scale [Nay81] and compare these results with
a numerical integration program; also, we perform a numerical Fourier transform to determine the
frequencies and compare with that of the linear system.

Our approach is only valid in the low frequency range and we have bypassed the propagation of
acoustic waves in the structure; this point has been studied in [JL09],[JL12]. The case of rigid con-
tact which is also important from the point of view of theory and applications has been addressed
in several papers, for example [JLO1], and a synthesis in [BBL13] ; a numerical method to compute
periodic solutions is proposed in [LL11] .Asymptotic expansions have been used for a long time;
such methods are introduced in the famous memoir of Poincaré [Poi99]; a classic general book on
asymptotic methods is [BM55] with french and English translations [BM62, BM61]; introductory
material is in [Nay81], [Mil06]; a detailed account of the averaging method with precise proofs of
convergence may be found in [SV85]; an analysis of several methods including multiple scale expan-
sion may be found in [Mur91]; the case of vibrations with unilateral springs have been presented
in [JR09, JR10, VLP08, HR09a, HR09b, HFR09]; this topic has been presented by H. Hazim at
“Congres Smai” in 2009; more details are to be found in his thesis defended at University of Nice
Sophia-Antipolis in 2010. In a forthcoming paper, such a non-smooth case will be considered as
well as a numerical algorithm based on the fixed point method used in [Roull]. The case of vi-
brations with weak grazing unilateral contact has been presented by S. Junca and Ly Tong at 4th
Canadian Conference on Nonlinear Solid Mechanics 2013; in [JPS04] a numerical approach for large
solutions of piecewise linear systems is proposed. A review paper for so called “non linear normal
modes” may be found in [KPGV09]; it includes numerous papers published by the mechanical engi-
neering community; several application fields have been addressed by this community; for example
in [Mik10] “nonlinear vibro-absorption problem, the cylindrical shell nonlinear dynamics and the
vehicle suspension nonlinear dynamics are analysed”. Preliminary versions of these results may be
found in [BR09] and have been presented in conferences [Bral0, Bral; a proof of convergence of
double scale expansion is to be found in the preliminary work [BR13].

In the present text and in the conclusion, we compare the use of double or triple scale expan-
sion. We emphasize that the use of three time scales, instead of two times scales presented in the
preliminary work [BR13], provides a much improved insight in the behavior of the forced response
close to resonance. In this paper, as an introduction, in a first step, we consider small solutions
of a system with one degree of freedom; we compare free vibration frequency and the frequency of
the periodic forcing for which the amplitude is maximal. Then we address a system with several
degrees of freedom, we look for periodic free vibrations (so called non linear normal modes in the
mechanical engineering community); we compare this frequency with the response to a periodic
forcing close to resonance.



2  One degree of freedom, quadratic and cubic non linearity

We consider a stress-strain law with a strong cubic non linearity:
md
N = ki + ®(i, €) with ®(a,€) = mca® + —a®
€

where € is a small parameter which is also involved in the size of the solution; m is the mass, k
the linear rigidity of the spring and u the change of length of the spring; the choice of this scaling
provides frequencies which are amplitude dependent at first order.

2.1  Free vibration, triple scale expansion up to second order

Using second Newton law, free vibrations of a mass attached to such a spring are governed by:
= 2~ -2, 0.3
U+ w t+cu®+ —u° =0. (1)
€

Remark 2.1. o We intend to look for a small solution therefore, we consider a change of

function and obtain the transformed equation:

i + w?u + ecu® + edu® = 0.

In this form, this is a Duffing equation for which exists a vast literature, for example see the
expository book [KB2011].

e For the scaling we have chosen, when we use double scale analysis, we remarked in [BR09J] that
the approximation that we obtain does not involve explicitly the coefficient ¢ of the quadratic
term; this coefficient is only involved in the proof of the validity of the expansion. In particular
the frequency shift only involves the coefficient d of the cubic term.

e However when we use three time scales, the coefficient of the quadratic term is involved in the
frequency shift.

e On the other hand, if we would let ¢ — +oo in (1) , we would get a singular perturbation
problem; this is not considered here.

As we look for a small solution with a triple scale analysis for time; we set

0 0 0
To=wt, T, =¢€t, Tp=¢€t, hence Dou = a—;fo, Diju = 8—;1 and Dou = 8—;2 (2)
and we obtain
d
d_ltL = wDyu + eDyu + €Dyu
d2
Wg = szgu + 2ewDoDru + 262wD0D2u + eQDfu +263D1Dou + 64D§u.

As we look for a small solution we consider initial data @(0) = ea + €2v; + O(€) and 4(0) = O(€?);
or u(0) = a + ev; + O(e?) and 1(0) = O(e?); we expand the solution with the ansatz

u(t) = w(Ty, Ty, To) = u™ (T, Ty, To) + eu® (Ty, Th, To) + €2r(Ty, T1, Th); (3)



so we obtain:

du  du™ du(? o dr du™ du(® 9 5, dr
G- a tea e T T g TPt —whor)
= [wDou(l) +eDyuM + eDgu(l)] + e[wDou(2) +eDju® + EDQ’U,(Q)]

+ 2[wDor + eDyr + €2 Dy

and with the formula

1 [(d?
Dar = = (# — szgr) =2wDgDir + € [2wD0D27° + D3r + 26D1D27‘,} + e D2r,
€

Py dPu® d?u? 2d2r d2u™ d?u? 9 2 3
@~ ar T taE T ag g Oty

= w?D2uM + ¢ {2wD0D1u(1) + szgu@)}

+ I [2D1D2u(1) + 2wDOD2u(2) + D%U(Q) + Dg’l”:|
+ 64 [Dgu(l) + 2D1D2u(2) =+ EDgu@)] .

We plug expansions (3),(4) into (1); by identifying the powers of € in the expansion of equation
(1), we obtain:

2[D3u® + u(z)] =55 (5)

{ Dgu(l) +uM =0
Dér + T} =953

w2
with
So = —cu(l)2 — du™M? — 20Dy D1u?)  and
S = —2cuMu® = 3duM?u? — 20Dy Dyu™ — D%u(l) — 2wDoDyu® — eR(e,r, u™, u(z)),
with
R(e,r,u,u®) = 2D, Dyu™ + 20Dy Dyu'® + D302
+ cu?? + 2eru® + 3duMVu®? + 3du D + Dar
+e (D%u(l) + 2D Dyu® + eDgu(2)> +ep(uM, u® 1 e)

and with p, a polynomial in 7:

p(uM u® 1 €) = 2cru® 4 du®? 4 +6duMu@r
+ e(er? 4 3du®?r 4 3duVr?) + 2[3duPr? + edr®).



For convenience, we perform the change of variable 6(Ty, Ty, T2) = Ty + (11, T»); we notice that
Do = 1; D10 = D13 and D2 = Dyf3; we solve the first equation of (5) with Dou()(0) = 0, we
get:

uV) = a(Ty, Ty) cos(8). (6)

Remark 2.2. We notice that a and B are not constants but functions of time scales T and Tb
because u depends on these times scales. The dependence of these functions with respect to Ty and Ts
will be determined by solving the equations of the following orders and eliminating the so-called
secular terms.

First, we determine the dependence on T7; with simple manipulation of the second equation of
(5), we obtain

2 3

d _ 3
Sy = —5-(c0s(20) + 1) — —— cos(30) + cos(9) ( 2

+ 2waD1[3> + 2wD;asin(6)

we gather terms at angular frequency w:

3
Sy = —361(1 cos(0) + 2w [D1asin(f) + aDyBeos()] + S5 where

—ca2 3

St = 5 (14 cos(20)) — d% cos(30)

It appears some terms at the frequency of the system, these terms provide a solution u(?) of the
equation (73) which is non periodic and non bounded over long time intervals. We will eliminate
these so-called secular terms by imposing:

3da?
Dia=0and D§= a4 (7)
8w
the solution of the second equation of (5), is:
2 2 3
9y —cCa ca da
U( ) — 2w2 + 67 COS(29) + W COS(39). (8)

Remark 2.3. We have omitted the term at frequency w which is redundant with u"); however this
choice is connected to the value of the initial condition; see Remark 2.5.

For the third equation of (5), the unknown is r; this equation includes non linearities; we do
not solve it but we show that the solution is bounded on an interval dependent on e. We use the
values of vV, u(® in S3. Intermediate computations:

— 3 3 d 4
uMu? = 1;:;; cos(6) + % cos(30) + 64222 (cos(20) + cos(40)).
—5cat da® cat da® cat da’®
(u(l))2u(2) = W + m COS(Q) — @ COS(29) + W COS(39) + m COS(49) + W COS(59)

The right hand side, after some manipulations is:



Sy = sin(0) (2wD2a + 2D1aD1 3 + aD3 B)

2.3 d?a®
+ cos(6) <2waD2[3 — Dia+a(D1B)* + bea sda )

6w?  128w?2
+ Sg — eR(r, ¢, u®, u(2))
with

B 5dca*
T 8w?

st D b
3 30 P10+ 55

4 4ca? 15cda*
+ sin(26) <%D1a> + cos(260) ( ca 5cda >

9da? —c?a®  3d%¢®  9da?
in(30 D 9 - D
+sin(3 )<16w 1a> + cos(3 )< 602 6dw? | 16w 15)

—5eda? —3d%a®

(10)

+ COS(40)(W) + COS(59)(W)
By imposing
2wDsa + 2D1aD1f +aD3f =0
5c2a®  3d*a®
2 2 _
2LUCLD2['3 — Dla —|— Q(Dlﬁ) —|— 64,,;2 — m = O
we get that S3 = Sg — eR(e,u™, u® r) no longer contains any term at frequency w.
2
As Dia =0 and D5 = %, we obtain
9d%a* 5c2a®  3d*a®
2waD — =
waDaf +a ( 6402 ) 602 128w2
So,
5c2a®  15d%a*
Doa(T2) =0 d Dyf(T)=(——ms — —=). 9
As a and 8 do not depend on Ty, we note that:
da 9 3
I =eDia + € Daa + O(€”)
d
B — D1+ D+ O,
thus taking into account (7) and to (9), we obtain:
da ag 3da® , —5c%a® 15d%a*
— =0 d —= — 11
dt and = (e T g56) (1)
therefore, the solution of these equations is:
3da’® o bc2a?  15d%at
a=cte and fB(t)= |e ™ +e(— 15,3 _W)



The constant of integration is chosen to be zero as the initial velocity satisfies u(0) = /(€?).
In order to show that, r is bounded, after eliminating terms at angular frequency w, we go back
to the ¢ variable in the third equations of (5).
d?r 9 ~
w + w'r = S3 (13)

with Sy = S5(t,€) — eR(r, e,u™, u?) where

4 4 4 !
Si(t,e) = 5:% + cos(2(wt + B(1))) (135;% + %) + sin(2(wt + ﬁ(t)))(%)

—2d®  3da®  27d2d5 9d*a®
+COS(3(wt+B(f)))( GCMZ - 64;2 + 12852 ) +Sin(3(wt+ﬁ(t)))(12852)
—3cdat —3d%a®
+ cos(4(wt + B(t)))(%) + cos(5(wt + ﬂ(t)))(wjg)

and R = R(e,r, ), u(2)) — Dsr.

in which the remainder R, the functions uV), u® and their partial derivatives with respect to T4, T5
are expressed with the variable ¢.

Proposition 2.1. There exists v > 0 such that for all t < t. = %, the solution @ = eu of (1) has
the following expansion,

2 2 3
U(t) = ea cos(vet) + € (% L cos(2uit) + s COS(?)VEt)) + e3r(e, t)

~ —ca’® da® . (14)
(0) = ea + 62(—3w2 + 3552) + O(€3),1(0) = O(€?)
with d 2 2.2 d2 4
- 3da 9 oc‘a 15d“a 3
*_“+6&;+6( 1203 %mﬁ>+0&) (15)

and r is uniformly bounded in C*(0,t.).

Proof. Let us use lemma 5.1 with equation (13); set S = S’g; as we have enforced (11), it is a
periodic bounded function orthogonal to et it satisfies lemma hypothesis; similarly set g = R; it
is a polynomial in variable r with coefficients which are bounded functions, so it is a lipschitzian
function on bounded subsets and satisfies lemma hypothesis. |

Remark 2.4. We notice that if we increase c, there is a change of convexity of the mapping a — v;
this is an effect which cannot be noticed by just obtaining a first order approximation of the frequency
with a double scale approzimation of the solution as in [BR13]. See numerical results at the end of
subsection 2.5.

Remark 2.5. We can notice that we can also derive the solution which satisfies u(0) = ea by

2 3
adding to the solution —e*( 55 + 32%) cos(vt)
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Figure 1: Dynamic frequency shift(fft) linear(left) and a non linear element with two meth-
ods(numerical(blue), asymptotic expansion( red))

2.2 Numerical Results

In the figure 1, we find plots of the Fourier transform of solutions; on the left, the linear case,
we notice one frequency and on the right, three frequencies in the non linear case. the Fourier
transform displays the frequencies, 1 = 0.164; 2v1 = 0.329; 3v; = 0.493

We notice good correlation between analytical results of asymptotic expansion and an integration
step by step (with Scilab program ODE and numerical fast Fourier transform).

2.3 Forced vibration, triple scale expansion up to second order
2.3.1 Derivation of the expansion

Here we consider a similar system with a sinusoidal forcing at a frequency close to the free frequencys;
in the linear case without damping, it is well known that the solution is no longer bounded when the
forcing frequency goes to the free frequency. Here, we consider the mechanical system of previous
section but with periodic forcing and we include some damping term; the scaling of the forcing term
is chosen so that the expansion works properly; this is a known point, for example see [Nay86].

.. . d
U+ W+ eXu + i + —u° = €2 F,, cos(Wet), (16)
€

where F,,, = % with the mass m; we assume positive damping, A > 0 and excitation frequency w
is close to an eigenfrequency of the linear system in the following way:

e = w + €o. (17)



Remark 2.6. e We look for a small solution with a triple scale expansion; as for the free
vibrations, we consider a change of function and obtain the transformed equation

il + wu + eMi + ecu® + edu® = €F,, cos(Wet).

o To simplify the computations, the fast scale Ty is chosen to be € dependent.

We set:
0 0 0
To=wet, Ty =¢ctand T = 62t, therefore Dgu = a—;o, Diu = a—;fl and Dou = 8—;2’

SO

d
d_ltL = @Dou + eDyu + e?Dsu and
(18)

% = 02D2u + 2. DoD1u + 2¢2 Do Dau + € Du + 2¢3 Dy Dou + ¢ Du.
With (17), (18) and the following ansatz, we look for a small solution:

u(t) = w(Th, Tr, To) = ul) (Tp, T1, T) + eu® (T, T1, To) + r(To, Tr, T) (19)
we obtain:

du  du™ du® odr du® du® 9 dr
_— = — - = D 2 _ D
G- a a @ T a Ta TPy~ Por)

= [(w + e0)Dou™V 4+ eD1u™) + e DouM] + €[(w + o) Dou'® + eD1u® + €2 Dyu?)]

d
+ wDor + ez(d—: —wDgr)

where we remark that % —wDor = eD1r + €2Dor is of degree 1 in e. For the second derivative, as
for the case without forcing, we introduce
1, d?r 9 9
Dg'l" = E(ﬁ — W DOT)
= 20Do D17 + € [20DoDar + Dir + 2eD2Dyr| + € D3r

and we get

d?u A2y d2u® 2d21" a2y d2u®
2 Tar e tYur T o Tae
= 2D2u® 4 e [2@D0D1u<1> + &2 D2

+ EQCIJQDgT' + EDgr

+e [2@D0D2u<1> + D2 4 20D D1u® + G)QDgr}
+é [2D1D2u(1) + 20DoDyu® + D2u® + Dﬂ

+ et [D%u(l) + 2D1D2u(2) + eD%u(z)} .



We plug previous expansions into (16); we obtain:

w? (D3u® +u?) = 5, (20)

DZu® 4V =
{ w? (D%r + 7“) =53

with
Sy = —cu®? — du®? — 25,DoD1u® — wDou® — 2weD2u® + F, cos(Ty) and (21)
S3 = —2cuMu® — 3du (12,2 — 2oJD0D2u(1) — D%u(l) — 2wD0D1u(2) — 02D(2)u(1) — 20D0D1u(1)
(22)
—2woD2u® — MwDu® — ADyu™ — Ao DouV — eR(e, r,u™), u?) (23)
with
revoir

R(e,r,u™ u®) = 2D, Dou™ + 20Dy Dyu® + D?u(?)
+ cu®? + 2cuMr 4+ 3duMu®? + 3duD?r + ANwDor + Dou™ + Dyu® + eDyu?)

d
+€ (D%u(l) + 2D Dyu® + eD%u(z)) + Dsr + /\(d_: —wDor) + GP(U(1)7 u® €)
and

p(uM u® r ) = 2eru® + du®? + +6duMVuPr
+ e(er? + 3du®?r + 3du™Mr?) + €2[3duPr? + edr).

We solve the first equation of (20):
uV) = a(Ty, Ty) cosf (24)

where we have set 0(Ty, T1,T2) = To + B(T1,T2); we use cos(Tp) = cos(d) cos(3) + sin() sin(3) and
we obtain

ca® da® , :
Sy = —7(005(26‘) +1)— e cos(30) + sin(0) [2wD1a + Awa + F, sin(8)]
3da®
+ cos(0) |2waD1f — VE + 2wao + F,, cos(B)
—3da?

or Sy = cos(f)

+ Fpcos(B)| + 2w[Diasin(f) + a(D18 + o) cos(6)]

+ sin(6) [Mwa + Fy, sin(3)] + 5%

CCL2 3

with S% = 5 (cos(20) +1) — d%cos(?)@).

10



By imposing

2wD;a 4+ dwa = —F,, sin(3)
3da® (25)
2wa D1+ 2wao — =G~ = —Fy, cos(B),
the solution of the second equation of (20) is:
2 2 3
2 —ca ca da
u® = el + 62 cos(20) + 3902 cos(30) (26)

where we have omitted the term at the frequency w is which redundant with u().
The third equation of (20) includes non linearities, the unknown is 7, we do not solve it, but we
show that the solution is bounded on an interval which is € dependent; the right hand side is:

S3 =sinf [Qnga + XaD15+2DaD S + aD%B +20D1a + )\ao]
520 3d*a®
6w 128w?2

+ Sg — eR(e, r, u®, u(2))

+ cos {2waD2ﬂ — ADia — D%a + a(Dlﬂ)2 +0%a+ 20aD1 8 +

where revoir

5cda’ 4ca ca’? 4ca? 15cda*
il in20 | —D — 20 D —_—
55 = oo TS [3w 1“+A3w} eos2 |5 Dt T | T

9da’ 3\da? 9da’® c2a®  3d%a®

in 360 D 30| —D1f— —5 — ——

S {1&0 SToR } eos [16w 10~ 5 64w2}

—3cda* 3d%a®
cos46‘[ 92 } ~ 12857 cosb (27)

To eliminate the secular terms, we impose:
{ 2wDsa + AaD1 B+ 2D1aD1 3+ aD?B + 20D1a + \ao = 0

a a 28
2waD2[3—/\Dla—Dfa+a(D1ﬂ)2+02a+2aaD1ﬁ+562—23 — % =0 (28)

In the system (25) the expression of Dya, D1 can be extracted:

Dia — _ Fmsin(8)  Xa
' 2WF 005(6)2 3da? (29)
Dif = —0— =507 + 5
As the functions a and 8 do not depend on Tj, the following relations hold:
d
d_CtL = eDia + €2Daa + 1€?) (30)
dp 2 3
7 =eD18+ € Dyf + Ie°). (31)
We are going to express %, % as functions of a, 8. We manipulate equation (28)

2wDsa + (Aa + 2D1a)(o 4+ D1 ) —aD23 =0
c2a® 2a®
2waDsf — ADia — D?a + a(o + D15)? + 56w2 - ftzisw =0

11



then, we replace Dya, D13 by their expression in (29), we get

—2waDyB — AD1a — D3a + a(o + D13)? + e’ 3da’ )

{ 2wDsa — £250B) (5 4 Dy B) — aDIB =0

6w? 128w2
and
2wDya — FusinE) (_ Fucos(8) | 3a%y _pag 52)
2 2 3 2 5
200D Al ) Doy a(Bagal ety 20 st
On the other hand, we can determine D?a and D?3 by differentiating (29);
D2 — _ cos() D13 ~ ADia
2w 2
D2j = F,,sin(B8)D1 3 n F,, cos(p) n 3da Dia
2aw 202w dw
or with (29)
F,, cos(B) F,, cos(8)  3da? A ( Fnsin(8) Xa
D2g= 2"V _5_ A L UV e
1 2 T T %aw 8w )2 2 2
F,, sin(B) F,,cos(B) = 3da® F,, cos(p 3da _ Fpsin(B)  Aa
Dig =" 5 il
ih 2aw ? 2aw + 8w + 20w 2
or
D2 o F,, cos(B) N F2 cos?(8)  3da’F,, cos(B) = AFy, sin(ﬂ) Na
a= — il
! 2w daw? 16w? 4w 4
D2p = oFnsin(8)  F7sin(B)cos(8)  3daFnsin(8)  AFycos(B)  3dAa?
e 2aw 2a2w? 16w2 daw 8w
Then, in (32) we use previous formula
20Dy — LSO (Lfe0) 4 )
. 2 . .
+a _UFné;:i(ﬁ) _Fy SISLEEU)JEOSW) _ 3da1;7g:;n(6) _ AF’L?ZS”) _ 3ds);l2 =0
sin a o cos 2 cos? a’F,, cos sin a
2waDyf — A(—Emsin@) _ day ( Fin cos(8) | Frcos'(B) _ 3da”F cos(B) | M sin(f) %)
F,, cos 3da? 5c2a’ 3d?a®
+a(—5 @y S )t er T =
we manipulate
2 s H <
2wDsa — gd;FféLSzm(ﬁ) - :szzn;ﬁ) - AFmﬁ)Sij_ 3d8/}uag - L5d?a®  5e2ad
2waDof5 + %n(ﬁ) + % -7 mzii)S(ﬁ) - 1&;308([5) — T o =0
and we obtain:
a o sin cos a’ Fpy sin
Dsa = Sldﬁ)«:)z + FZwZ 2 + AFTéLwQ . + = 31;1.13 s (33)
2 15d%a* 5c%a” o F,, cos 3da Fy, cos AF,, sin
D2f = _sA_w T e T To? T dwra £+ 32w3 ‘- 8w?a .
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Now we return to (30) introducing (29) and (33), we obtain:

da _6(_Fm5in(6) _ Aa

dt 2w 2
o (3dXa® oF,, sin AF,, cos 8 9da®F,, sin 8 3
e ( Tow? T 4o? g+ 807 T 32,7 +0(€)
A8 _ (g4 3da®  Fmcos(®)) , 2 _ A% _ 15d%’  5cla? (34)
dt 8w 2aw 8w 256w3 12w3

4w?a 32w3 8w2a

+0Fm cos 3 + 3daFmcos B AFm sin6> + 0(63)

Orientation: amplitude and phase equation. FEquations (34) ensure that S§ has no term at
frequency of w; or which goes to wy .

This will allow us to justify this expansion in certain conditions; before we need to consider the
stationnary solution of the system (34) and the stability of the solution close to the stationary
solution. This equation (34) is an extension for triple scale analysis of a similar equation introduced
in a preliminary work with double scale analysis in [BR13].

Remark 2.7. In this approach, we are using the method of reconstitution; this term has been
introduced in 1985 in [Nay86] in order to resolve a discrepancy between higher order approximation
solutions obtained by multi scales method on the one hand and generalised averaging method on the
other hand; it has been discussed in [VLP0OS8] and from the engineering point of view, the controversy
has been resolved in [Nay05]; however the present mathematical proof of convergence seems new.

Remark 2.8. The previous equations are of importance to derive the solution of the equation (1);
their stationary solution will provide an approximate periodic solution of (1).

2.3.2 Stationnary solution and stability
Let us consider the stationary solution of(34), it satisfies:
gl(a7ﬁ70—7 6) = 07
{ 92(a7ﬁ70—7 6) = 0 (35)
with

F,, sin a
g1 = 6(—7% B) _ %)-i—

da® 5i ) da?F,, si
2(31652 + UFTw:azm,B + )\Fgwcgbﬁ + 9 a;;'w;mﬂ) + 0(63) (36)
2 §
g2 = €(—0 + 355 . szc;%(ﬁ))

w
2/ A 15d%a* _ 5c¢%a® oFy, cos B 3daFp cosB  AFpsin 3
T (-850~ Ter ~ Tms T Tdota - T mee 7 ) T O(€).

Now, we study the stability of the solution of (36) in a neighbourhood of this stationary solution
noted (@, 3); set a =a+ a and 8 = S+ f3, the linearised system is written :

(2)-()

J = 3&91 3591
3&92 3592

with the jacobian matrix

13



we compute the partial derivatives:

_ A 2 _ (3da  F,cos(B) 9
Oug = e(=3) +O() 3“”*(%*% +0(e)
__ Fncos(B) 2 _ Fysin(B) 9
Opg1 = e + O(e%) 0pg12 = e + O(e%)
or:
— A 2 0 9da 9
dagn —6(—5)"‘0(6 ) 3a92—€(5+%)+0(6 )
3da3 A
g1 = e(0d — ") + O(e?) Byg2 = €(~35) + O()
8w 2
The matrix trace is ¢tr(J) = —Ae and the determinant is

A2 3doa®  27d*a*
_ 2| 2 _
det(J) =€ [ 4 to 2w * 64w?

the two eigenvalues are negative for e is small enough; when

3da* 1 |9d?a*
o< - - — A2
dw 2V 16w?
then the solution of the linearised system goes to zero; with the theorem of Poincaré-Lyapunov

(look in the appendix for the theorem 5.1) when the initial data is close enough to the stationary
solution, the solution of the system (34), goes to the stationary solution.

- 3da? 1 9d2g4 e
7="10 2V 162

and € small enough, the stationary solution (a, B) of (34) is stable in the sense of Lyapunov (if the
dynamic solution starts close to the stationary solution of (36), it remains close to it and converges
to it ); to the stationary case corresponds the approzimate solution Tgpp = €Uapp of (16)

} + O(€®) (37)

Proposition 2.2. When

—ca® | ca? IR a® N
52 + 62 cos(2(w.t + B)) + 92 cos(3(@ct + B))

Tapp = €@ cos(@ct + f) + € [

with
We =W+ €0

It is periodic up to the order two.

Remark 2.9. The expression of uqpp uses the remark
ut) = a cos(Ty + B) = a cos(@ct + )
and similarly for u®.

With this result of stability, we can state precisely the approximation of the solution of (16)

14



2.3.3 Convergence of the expansion

Proposition 2.3. Consider the solution 4 = eu of (16) with initial conditions

_ cao a? da?

@(0) = eag cos(Bo) + €[ 5 + 6— cos(260) + 390 7531 c0s(350) + O(e %), (38)
3 . g —caz . day . 5

u(0) = —ewap sin(By) + €] 52 sin(26p) — 90,7 sin(350)] + O(€?) (39)

with (ao, Bo) close of the stationary solution (a, 3);

|a0 — d| < 6201, |B - B| < 6201

3da> 9d2a*
when o < 277 602

¢ > 0 such that for all t <t. = %, the following expansion of 4 = eu is satisfied

u(t) = ea(t) cosgcbet + g(t))+ 3
5o + 5oz cos(2(wt + B(1))) + 3'12% cos(3(@t + B(1))] + (e, t)

— A2 and € small enough, there exists

(40)

with ©. = w + €0 and r uniformly bounded in C?(0,t.) and with a, B solution of (34)

Proof. Indeed after eliminating terms at frequency v1, we go back to the variable ¢ for the third
equation (20).
d2
7o) + w?r = Ss
with
Sy = Si(t,€) — eR(u™,u®r €) with R = R — Dsr — AL — Dor)
with all the terms expressed with the variable t. We express Sg in (27) by inserting Dya, D1 by
their expressions in (25) and using 0 = @t + §; this function is not periodic but is close to a
periodic function S§ by replacing 3 by f.
As the solution of (34) is stable, for ¢t < %:

|B(et, €t) — Bl < €2Ch, |a(et,€%t) —a| < €2Cy

and
|S% — 85| < €20y

so this difference may be included in the remainder R. We use lemma 5.1 of Appendix (already
introduced in [BR13]); with S = Sg, it satisfies lemma hypothesis; similarly, we use R = R; it
satisfies the hypothesis because it is a polynomial in the variables r, u1, €,with coefficients which are

bounded functions, so it is lipschitzian on bounded subsets.
O

Remark 2.10. The previous proposition states that for well prepared data close to the stationary
solution, the triple scales approximation converges in the sense that the difference between the
solution and its approzimation is equal to €3r where r is a function which remains bounded in
C?(0,t) with t. = 1, for some constant v, with € going to 0.
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2.3.4 Maximum of the stationary solution, primary resonance

We consider the stationary solution of (34), it satisfies,

{ g1(a,B,0,€) =0, (41)

92(a7ﬁ70—7 6) =0

with formulae (36). We are going to find an expansion of a, 8, o with respect to the small parameter e
when o +— a reaches a maximum. The idea is that the functions (o, €) — (a, 5) are defined implicitly
by the previous equations; the jacobian matrix is

Jiay, 91 Gioc YJie
92a 928 920 YG2e
and its sub matrix J,g is:
_ [ 91a 91p
J(a,B) =
(a,5) < 92a 928 )

in paragraph 2.3.2, we have proved previously that when o, € are small enough, J,s # 0 and so with
the implicit function theorem, in a neighbourhood of the stationary solution, there exists a regular
function

(0,€) — (a, B).
We first transform (35) (36) in the following way

_ Fasin(8) e

0(0,8,0,0) = (-EmSE) X A a5,0) 4 O() =0 ()
B 3da®  F,,cos(B) o
po0.8,0,6) = (o 200 _InD) g po) 0@ =0 @)
with
3d\a®  oF,sinf AF,cosB 9da’F,,sinf3
A =
(@, 8,0) = 3575 ? T T e T 3.8
2 2 4 2 2
As(a, B, ) 7_)\__ 15d“a _ 5c*a

8w  256w3 12w3
oF,,cos8 3daF,, cosp3 B AF,, sin 3
4w2a 32w3 S8w2a

We derive a first approximation of sin and cos 8 by neglecting terms of order one in e:

Fpsinf _ a
Lugind - 2 4 0(c) (44)
Fmcosf — 3da” 564 Ofe)
Using 22 = 0, we get
Fucos(9) 98 _Ada  dA -
2w do 200 te do +0(e) =0 )



When a is maximum with respect to o, we get another equation % = 0; with previous equation,

we get a third equation g3 = 0 with
93(0/7 Bu g, 6) =

We have for € = 0, % =0, % = 0; we denote af, 85, oj the solution of the 3 equations for e = 0.
We differentiate (44) with respect to o; when g—g = 0, we obtain for the first approximation

Fo, cos(Bg) (958[’; -0
S 46)
~ g B e+ ag =0

and so cos(f5) = 0, sin(85) = £1; if we use (42), we notice that a change of sign of sin(53) changes
the sign of a; so we choose sin(8;) = —1 and ag has the sign of F,,; then with (42), (43), the
following equalities hold:

F

ay = —, 05 =

Aw’

3dag?  3dFZ
8w  8\2w3’

(47)

with (46), we get also 86_@5‘ = 2;1“3 = 2. We remark that ¢ is not involved in these formulas. Then

we can compute for e = 0, % = 0; %—‘75 = —%‘f(m% = _%§ % = 0. So we obtain that the
determinant of the extended matrix
Jdia 918 91,0
J*a,8,0)= | G20 925 G20
93a 933 93,0

is not zero for (af, 55, 04 ); so once more, we can use the implicit function theorem to define differ-
entiable functions
e— (a”, 8%, 07)

where we denote a*, 8%, 0" the solution of the 3 equations.

After this first approximation, we look for an expansion of these functions: € — (a*, 8*,0*);
a* = a} +eai + O(%), B* = B+ eB; + O(?), 0* = o5 + et + O(2). (48)
We perform some preliminary computations of A} = A1(ag, 55,00), A5 = A2(ag, 55, 04);

*

_ 3dha§®  ofFsin(B]) n 9day? Fy, sin B4

YO 16w? dw? 3203
. N 15d%apt Bctap? AFy,sin 3]
Ao =55~ 3 3 2
8w 256w 12w 8w?ag
then, we use the values of (47) and we get
. _ _ Finog _ _ Aagog 0A7 o _ F,, sin(55) _ _agA
1,0 2uw? 2w do 4w? 4w (49)
I 15d%a5*  5c%ai®  5og®  bctag? 0450  —Fpcos(B5) 0

207 256w 12w3 T 12w 12w3 oo 4dw?a
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0AT o oFy, cos(f5) AP sin(Gg) N 9da®F, cos(Bg)  AFm  Aag

s 4w? Qw2 32w3 T 8w? 8w (50)
043 _ _o5Fwsin(By)  3daiFusin(B5)  AFy cos(57) (51)
op dw?ab 32w3 8w?a
_ o5Fm  3dagFn, _ o5Fm _ i)\' (52)
dw?ab 32w3 2w2af 2w’

On the other hand, we notice that sin(8y + €31 + O(e?)) = —1+ O(e?) and with (47), we expand
formula (42) to obtain at second order

Aaj Aagog
= A* = —
2 o 2w
and therefore .
. aso,
aj = -8 (53)
We compute
991 0 A7 o 9 Aag 2
50— < 5o + O(e )——eﬂ—l—O(e ) (54)
9970 Fpcos(p) A7 o 9 F.0f Nap )
B 5 +e 5 +O0(e) = —¢ 5 S8 + O(e%); (55)
where we have used cos(8y + €1 + O(€?)) = —€f1 + O(€?) and 9% =0
d g} g} g}
agi _ g1,0 91,03_5 91,0@ T 0(62)
do do op Oo 0B Oa
Aay F.B7  Na 2 2
— |- _ _ -z 56
E{ 4w+< 2w 8w A +0(€) (56)
A
— e * e O 2
(65 + 5o) +O()
as % =0, we get
A
=——. 57
fi=—o (57)
We use these approximations in the second equation (43) to obtain
* * 3da82 dagaf Fmﬂi‘ * 2\
—(o§ +e0y) + w + 6e w + 20z +eA;0+0(e7) =0 (58)
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and hence

= Al 59
1 4w 2aiw + 420 ( )
3dag agog F, A
= A*
4w ( w 2a5w \ 2w + 420
o2 A2
=20 _ 2 4 A
w 4w + 420
%2 5c2a2 22
_ 29 UO . C ao A (60)

We can check the computations by using another way, see Appendir in subsection 5.3 We
remark that we get a frequency slightly different of the free vibration frequency associated to the
same amplitude.

‘We have obtained the following important result.

Proposition 2.4. The stationary solution of (34) satisfies

(Fegp@ 2y cAi(a,B,0) +O(c) =0 .
3da? F,y, cos(B) oy (6 )
(0._8—w+72aw )+ €A2(a7ﬁ70)+0(6 )_O
with
3d\a®  oF,sinfB AF,cosfB 9da}F,, sinp
Ai(a,,0) = 675 ? TR T 32,8
As(a, B,0) = _)\_2 _ 15d%a* _ 5ca?  oF,, cosf3 C3daFm cos 3 _ AF,, sin 8
PBEEITTR 256w 12wP 4w?ay 32w3 8w2ay

this stationary solution reaches its maximum amplitude for o = o + eof + O(e?), a* = a}y +
eai + O(€?), B* = B + Bt + O(€?) with

F,, 3day? 3F? T
%0 =3 70 Sw 823’ Bo 2 (62)
and
. 29 ., bcfai? N 87d%af  5cap? A2 . —A N asod
ag = ——0 —_ _— Y —_——  — — — — = — a1 = ———-
! 12w ° 12w3 4w 256w3  12w3 4w’ TP 2w’ ! w

the periodic forcing is at the angular frequency
Qe = w + ey + 207 + O(e?)

it is slightly different of the approximate angular frequency ve of the undamped free periodic solution
associated to the same amplitude. (15); for this frequency, the approximation (of the solution i = eu
of (16) up to the order €?) is periodic:
u(t) = ea”* cos(w t + f*t)
—ca” da

e[+ cos(2(@et + B7)) + o cos(B(@et + )] + Er(et)  (63)

w

’11(0) = eq* +€2[_Ca*2 I éj;_:;] + 0(63), ’LL(O) — 0(63)

3w?

with r bounded in C?(0,t.)
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Remark 2.11. We remark that, for € small enough, this value of o* is indeed smaller than the
mazimal value that o may reach in order that the previous expansion converges as indicated in
proposition 2.3.

Remark 2.12. We have obtained an expansion of &. up to order €2 to be compared with the
expansion with a double scale analysis (see in [BR13]); in particular the amplitude dependence on
the frequency of the applied force depends on the ratio of ¢ and d; see numerical results below.

We have justified the basic behaviour of a primary resonance; many other phemomena may
appear like subharmonic resonances, see for example [Nay86].

d=1,c=1,wl=1,deltasig=0.000001,ksigmax=25,alpha=0.01,eps=0.01
1.98 1

1.96
1.947
1.927

1.90

amplitude

1.88
1.867]
1.847
1.82;

1.807

1.78 T T T T T T T L1 T T T T T T T
1.0105 1.0110 1.0115 1.0120 1.0125 1.0130 1.0135 1.0140 1.0145 10105  1.0110  1.0115 10120 10125 10130 1.0135 1.0140  1.0145
frequency

Figure 2: Left: amplitude versus frequency of stationary forced solution in blue and magenta;
amplitude of free solution in red. Right: phase versus frequency of stationary forced solution

In figure 2, we use € = 0.01,A = 1/2,¢ = 1,d = 1l,w = 1, F = 1. On the left, the solid line
displays the amplitude of the solution of this equation with respect to values of the frequency; we
have solved (41) with the routine FSOLVE of Scilab; it implements a variant of the hybrid method
of Powell. In proposition 2.2, the solution is stable when sigma is small enough; the routine FSOLVE
fails to solve the equation when o is too large; then we have exchanged the use of o and a. The
dotted line plots the amplitude of the free solution with respect to its frequency. On the right, the
phase v = —f is plotted with respect to the frequencys; it is also obtained by solving (41) with the
routine FSOLVE.

In figure 3, we use e = 0.01,\ = 1/2,¢ = 6,d = 1/4,w = 1,F = 1. On the left the solid line
displays the amplitude of the solution with respect to values of the frequency; on the right the
phase 7 is plotted. We notice that the behaviour is quite different of the previous plots.

Remark 2.13. We emphasise that the behaviour of the last plots is linked to the ration of ¢ and
d; this type of behaviour cannot be obtained with double scale expansion ; see [BR13].
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d=0.25,c=6,wl=1,deltasig=0.000001,ksigmax=25,eps=0.01
2.000 1.80

1.9957
1759

1.990
1707
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1.980 1657

amplitude
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1960 +————— 7+ T T T T T T T T T T T T S0+——T 7T 7 T T T
0.9976 0.9977 0.9978 0.9979 0.9980 0.9981 0.9982 0.9983 0.9984 09976 09977 09978 09979 09980 09981  0.9982  0.9983  0.9984

frequency

Figure 3: Left: amplitude versus frequency of stationary forced solution in blue and magenta;
amplitude of free solution in red. Right: phase versus frequency of stationary forced solution

3 System with local quadratic and cubic non linearity

3.1 Free vibrations, triple scale expansion up to second order

We consider a system of several vibrating masses attached to springs:

M+ K @+ ®(i,e) = 0 (64)

The mass matrix M and the rigidity matrix K are assumed to be symmetric and positive definite.
We assume that the non linearity is local, all components are zero except for two components

p — 1, p which correspond to the end points of some spring assumed to be non linear:
~ _ _ d,. _
Py (@) = c(ty — upfl)z + Z(UP - Upfl)gv Py =Py (65)

In order to get an approximate solution, we are going to display the equation in the generalised
eigenvector basis:

K¢ = wiMey, with ¢f M ¢ =0¢p, k,il=1...,n (66)
So we perform the change of functions:

i=> gror; K=Y GxKor= GrwiMer; Mi= My (67)
k=1 k=1 k=1

= k=1

we obtain

Uk + e + L 20 Gidie) =0, k=1....n
i=1
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As ® has only 2 components which are not zero, it can be written
n
U+ Wik + (Brp-1 — Grp) Pp 1O Tithi€) =0, k=1...,n
i=1

or more precisely
" 2
Uk + Witk + (Prp-1 — Prp) l (Z Ji(ip — mpl)) +

=1
3
d n
< <Zgi(¢i,p_¢i,p1)> 1 =0, k=1...,n (68)
i=1

Remark 3.1. As we intend to look for a small solution, we consider a change offunction

and we obtain the transformed equation:

i=1

n 2
i+ Wiyk + (Drp—1 — Prp) [60 (Z Yi(Dip — ¢z‘,p—1)> +

ed <Zyi(¢iﬂ’_¢ixl’—1)> ‘|=0, kzl,n (69)

i=1

3.1.1 Derivation of an asymptotic expansion

As for the 1 degree of freedom case, we use a triple scale expansion to compute an approximate
small solution; more precisely, we look for a solution close to a normal mode of the associated
linear system; we denote this mode by subscript wy; obviously by permuting the coordinates, this
subscript could be anyone (different of p, this case would give similar results with slightly different
formulae); we set

15 0 0
To=wit, Ti=c¢€t, Th=¢€’thence Doy = 8—%’ Diy, = 3—31{? and Doyy, = 3—31{]; (70)
and we use the ansatz:
yi(t) = yu(To, 11, Tn) = y](gl)(T07T1; Ty) + ey,(f) (To, T, To) + 21y (To, T1, To) (71)
So we have:
d2
dtyj = w?D2yM 4 e [2W1D0D1y,§” + Dgy,@}

e [2w1D0D2y,§” + D2y 4+ 20, Dy Dy + Dgr]
+é [2D1D2y,<j> + 2w, DoDay® + D2yP 4+ Dgrk]

+ét {D%y,ﬁl) + 2D1D2y,(€2) + eD%y,(f)}
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1 /d?r
Dary = - (T; — wa%m) = 2w1 Do D171y + €[2w1 Do Dary, + Dfrk] +262D1Dori + e?’D%rk

We plug previous expansions (71) and (72) into (69); by identifying the coefficients of the powers
of € in the expansion of (69), we get:

W%Doyl(cl) +wky(1) =0 , k=1...,n
Doy£)+wkyk =Sk, k=1...n (73)
W%Dork +wirg =S35 k=1...,n

where S5 1, S3 1, are defined below; to simplify the manipulations, we set d¢rp = (Prp — Gk p—1);

Sok =0y | D900,y 60mp | —dodip | D 4y 661,55 8600y | —201 DoDrylY

lm g,l,0

s = —cOry | Dty 001,005, | — dodwy | Dy Syt 66npdbapdny
1} h,g,l

— 2w1D0D2y(1) D%y,(cl) - 2w1D0D1y,(€2) - eRk(ygl), y£2), Tk, €)
with

Ry, (e, 7”k7y;(C ),y,(f)) = 2D1D2y,(€1) + 2w1D0D2y,(€2) + D%y,(f)

+ by | Dy 001,005 | + codnp | Sy 100000

l,j L,j
+dodry | S Py 80np006,001 | + oy | Syl iV ri80n,006,001
h,g,l h,g,l

+ Dary, + e(Dgy,(C ) 4 2D1D2y,(C ) ¢ eD3y (2 )) + ep(y,(cl), y,(f), Tk, €)
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and with a polynomial in the variables r,, with coefficients yl(l), yg),

p(yl(cl)’ yl(f)’ Tky€) = COPkp Z yl(2)rj5¢lp5¢jp + doryp Z yél)y§2)rlé¢hp5¢gp5¢lp

L,j h,g,l

+ dédrp Z y}(f)y_«?)yz@)(s(bhp‘s%péﬁblp

h,g,l

+ec|cdbry | S ririddndos, | +dsowy [ Sy P rid¢n0bep0d1

L,j h,g,l

+ d5¢kp Z y;(ll)Tng(sﬁbhp(S(bgp(S(blp

h,g,l
+Eddy | Dy rgri00np006p00n | + Eddbuy | D rargriony06e,001, | (74)
h,g,l h,g,l

We set 6‘(T0,T1,T2) == To + ﬁl(Tl,Tg); we note that D09 = 1, D19 = Dlﬁ and D29 = Dgﬁl;

we solve the first set of equations (73), imposing O(€?) initial Cauchy data for k # 1 and D0y§1) (0) =
0; we get:

{ y§1) = a1 (Ty,Ts) cos(f) (75)

y}j):o, k=2...n

Remark 3.2. We note that a1 and 1 are not constants but functions of times Ty and Ty because
u depends on these times scales. The dependence of these functions with respect to Ty and Ty will
be determined by solving the equations of the following orders and eliminating secular terms.

First, we determine the dependence in T7; we manipulate the right hand sides:
caf ), daf 3
So1 = —0¢1, {7(1 + cos(20))d¢1, + 7(005(36‘) + 3cos(9))5¢1p}

+ 2wy [a1 D151 cos(f) + Diaq sin(6)]

2 d 3
Sato = —85p [C;ﬂu +c0s(20))5¢3, + %(605(39) + 3cos(9))5¢§p], for k # 1

In S31, we gather the terms at angular frequency wy;

3
So1 = —3% cos(6))8¢1, + 2w [a1 D11 cos(f) + Dias sin(f)] + s? (76)
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with 5
day
Sg)l —01p [ (1 + cos(29))6¢1p + e cos(36‘)6¢1p
It appears some terms at the frequency of the system, these terms provide a solution y ) of the

equation (73) which is non periodic and non bounded over long time intervals. We will eliminate
these terms by imposing:

D1a1 =0 77
4 2
Dlﬂl _ 3d5¢71pa1 ( )

8(4.)1

and if we assume that w? is a simple eigenvalue and w} # 9w?, w? # 4w} (no internal resonance),
the solution of the second equation (73) is:

g\ =563 [~ o gal cos(29)] + ¢, - cos(36)
l(c = 6¢kp6¢%p[_% m COS(29)] + 5¢;€p5¢1pm COS(39) k= 2, e, N

(78)
where we have omitted the term at angular frequency w; which is redundant with ygl).
For the third set of equations of (73), r is the unknown, this equation contains non-linearities, we
do not solve it but we show that the solution is bounded on an interval dependent of e. The right

hand side, after some manipulations is:

8371 = 3111(9) (2w1D2a1 + 2D16L1D1ﬂ1 =+ alD%ﬁl)

5026¢?pa§ B 3d2(5¢§pa§’
6w? 128w?
+ Sg,l —€R1(r1, €, yg )ay£2))

cos(0) (leangﬁl — Diay +ai1(D1p1)? +

where

5c¢ddol at 4ed g3 ay 4cdg? a? 15cdd¢] at
i 1p™1 : 1p 1p™1 1p™1
== 20 | —————D 20 | —————D —_—

3.1 87 By M| eos 5o D1t T

9dé¢1, a3 2048 a3 3d%5¢8 a8 9daiio]
in3) | —=L—D 30 | — P - _ P 2D
s l 6w, Lon| Teos 602 6402 Tt

osb0  (79)

oedd [_ 5cd5¢{pﬂ _ 3d%5¢%,af

32w% 128w%

and

528,008 a3 3d20¢n, 088 ab
Sk =cos(9)( COPrp0Pipaq Prp ¢1pa1> LS, Rurn ey

62 T 128w “UL Y
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where

5¢dS b, 008, at 4¢5¢1p 002, a
Sg,k = —(bkpz(blp 1—|—sin 260 [7¢kp (blp 1D16L1

©os20 [4c5¢kp5¢§pa§D bt 15cd5¢,€p5¢§pﬂ

8w? 3w 3w i 32uw?
9dS b1y 683, a3 Robrpddi at  3d26drp00T ab  9ddr, 003, a3
3 39 P D 39 _ D _ P P 4 11 lD
em [ 1601 1| oS 62 6d? T 16w 161
5¢dddy, 008 at | 3d20¢,007 ad
+ cos40 | — cdoduy flpal — Okp (flpal 0s bl
32wy 128w7

By imposing

5c26¢5,a5  3d*0¢% a8

2w1a1D261 — D%al + aq (D161)2 + 62 sl =0

{ 2wi1Dsay + 2D1a1 D151 + alD%ﬁl =0

we get that S51 = S§,1 —€eRy(r1, €, yil), y§2)) contains no terms at the frequency of the system.

_ 4 2
As D1a1 =0 and Dlﬁl = M

8o We obtain

3d5¢%pa%)2 N 5¢%6¢5 a3 B 3d*6¢% a3 N

%wiay D (
wiarDafy + ax 6 12807

8&)1

so:
5026¢?pa% B 15d26q5513pa‘11

Dsai(T2) =0 d Dy (Ts) = — 80
2a1(T2) o 261 (T2) 1203 25607 (80)
As a, 8 do not depend on Ty,
{ dd;:; = eDia; + €2Dyay + 0(63) (81)
L = eD1B+ 2Dy + O(%)
and taking into account (77) and (80),we obtain:
d d 3dé¢t a2 —5c¢25¢$ a?  15d%6¢5 a}
aar _ 0 and ﬂ = 67¢1p L 62( (b;p LI ¢1§) 1) (82)
dt dt 8w1 12wy 256wy
As a result, the solution of these equations is:
3dégt, a3 5¢25¢5 a?  15d%6¢5 ai
— d = |25 (- i _ )| 83
a=ce and [ [6 8 € 1263 25603 (83)

In order to show that r; is bounded, after eliminating the secular terms, we can go back to the
variable ¢ in the equation of rj, we get:

dry oo g 4h S : : Mm@

a2 fwir =983, with Sy, =83,(t,€) —€Ry(r1,6,91 01

d? ~ ~ -

—dz;k + wiry = Sy with  S3, = Sgﬁk(t, €) — eRy (1, €, y,il)’yl(f)) k=2,....n
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where S§,1 is in (79) where all time scales Ty, T3, T5 are expressed with the time variable ¢.

Rl - Rl (65 1, ygl)a y£2)) - D3T1

After these manipulations, we can state a proposition which will be easily proved with technical
lemmas of the Appendix.

Proposition 3.1. We assume that w? is a simple eigenvalue and wi — 9w} # 0, wi —4dwi # 0 (no
internal resonance), then it evists ¢ > 0 such that for all t <t. = %, the solution g = eys of (68)
with the initial data

. 2 G107 dyaf 3 p
yl(o):6a1+6 (_37 + 32w2)+€ 7‘1(6,0), yl(O):(’)(e)
1 1
épa’ épa’ CZkGS (84)
WO =5+ sma—op T aEe o) 0 B0 =00
has the following expansion:
91(t) = ear cos(vet) + €[~ Lo + L cos(2(vt)) + Bk cos(3(vet))] + €11 (e, 1) )
2 .2 i .3
Uk(t) = [— 021121%1 + Wﬁlwi) cos(2(vet)) + #ﬁl‘”i) cos(3(vet))] + €3y (e, t)
with ry, uniformly bounded in C?(0,t.2) for k= 1,...n and the angular frequency
3dia?, ., (—5ca? 15d3a} 5
.= - (@) 86
ve=wit el )+ |\ T35~ J5een ) TO) (86)
with 81y = (¢1.p = G1.p-1) 00kp = (Dhp — Drp-1), &1 = c(861p)°, di = d(6¢1,)* and
&= c(601p)*0¢kp, dp = d(5¢1p)*Sny
Corollary 3.1. The solution of (64) with initial conditions
N éa? da3 .
'p1(0) = eay + € (—3—(012 + 32;2) +e3r1(6,0),  oru(0) = O(?)
1 1
; (87)
% 42 = n2 dr.a3
t ~O:2_Cka’1 Cray ! 3 0 t 0202
¢ru(0) = €[ 2&),3 2(4w? _wi) A(9? _wz)] +€ri(€,0),  "¢pu(0) (€%)
is u(t) = Z k() dr + r(t, ) (88)
k=1

with the expansion of yx of previous proposition.

Proof. For the proposition, we use lemma 5.4; set S; = 5'311, Sk = S3 for k =1,...n; as
we have enforced (83), the functions Sy are periodic, bounded, and are orthogonal to e**, we
have assumed that w, and w; are Z independent for k # 1; then S satisfies satisfies the lemma
hypothesis. Similarly, set g = R, its components are polynomials in r with coefficients which are
bounded functions, so it is lipschitzian on the bounded subsets it satisfies the hypothesis of the
lemma and so the proposition is proved. The corollary is an easy consequence of the proposition

and the change of function (67) O
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Remark 3.3. 1. We have obtained a periodic asymptotic expansion of a solution of system (64);
they are called non linear normal modes in the mechanical community ([KPGV09, JPS04].
If the initial condition is close to an eigenvector ®1 up to second order, the component of the
solution on this eigenvector has an approzimation which has the same form as for the single
degree of freedom system; the other components remain small.

2. The frequency shift is given by a similar formula with ¢ replaced by ¢ = c(prp — d1p-1)3, d
replaced by d = d(¢p1,,— b1 p—1); so the frequency shift depends on the position of non-linearity
with respect to the components of the associated eigenvector.

3. In the spirit of inverse problems, this previous point opens a way to localise the non-linearity.

4. We do not study the periodicity of the solution itself but as the system is Hamiltonian, it could
be obtained from general results, for example see [MH92].

5. In the next section, under the assumption of no internal resonance, we shall derive that the
frequencies of the normal mode are close to resonant frequencies for an associated forced
system, the so called primary resonance; with some changes, secondary resonance could be
derived along stmilar lines.

3.1.2 Numerical results

We consider numerical solution of (64) with (65); we have chosen M = I; v = 0 at both ends, so
K is the classical matrix

C = A with A = 1/2; for numerical balance, we have computed #; with the choice p = 1 we have
1 = €[cu + du?] with ¢ = 1,d = 1. In figure 3.1.2, for 29 degrees of freedom, we find the Fourier
transform of the components; some components have the same transform; the graphs are slightly
non symmetric; we find also several curves in phase space for some components of the system.

We remark that up to numerical integration errors, all frequencies are equal and the compo-
nents are periodic. All these characteristics are coherent with the results obtained by asymptotic
expansions: an approximation of a non linear normal mode which is a continuation with respect to
€ of a linear normal mode.

3.2 Forced, damped vibrations, triple scale expansion
3.2.1 Derivation of an asymptotic expansion

We consider a similar system of forced vibrating masses attached to springs with some damping
and submitted to a periodic forcing:

M+ eCti+ Ku + ®(i1, €) = € F cos Wit (89)
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VY

phase portrait(right)

Figure 4: Absolute value of the Fourier transform for (fft) (left);
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with the same assumptions as in subsection 3.1. We assume that the non linearity is local, all
components are zero except for two components p— 1, p which correspond to the endpoints of some
spring assumed to be non linear. As for free vibrations, we perform the change of function

U= Z Tk P (90)
k=1

with ¢, the generalised eigenvectors of (66). However, the distribution of damping is almost always
unknown and it is usually necessary to make an assumption about its distribution; a simple and
widely used hypothesis is to choose a modal damping ( hypothesis of Basile in french terminology):

C=eyM +exgK
Therefore N
ﬁk + EAkyLk + w,%gk —i—t ¢kq)(z Ui G 6) = 62fk cos w1y, k=1....n
i=1
with
em +exwp =N, and ‘¢pF = fy

As for the free vibration case, ® has only 2 components which are not zero, so the system can be
written:

2 3
< 2 ~ - ~ d " ~
Uk + MOk + Wik + (Pkp-1 — Orp) lc (Z Gi(Pip — ¢i,p1)> +- <Z Gi(¢i — ¢i,p1)> ]
i=1 i=1
=2 frcosw Ty, for k=1....n (91)

Remark 3.4. As we intend to look for a small solution, we consider a change of function

and we obtain the transformed equation:

n 2 n 3
ik + €XRTR + Witk + (Pkp—1 — Prp) [60 (Z Yi(Pip — ¢i,p1)> +ed (Z yi(¢i — ¢i,p1)> ]
=1

i=1
=efpcos(wct) for k=1....n (92)

We will highlight a link between the frequency of the free solution of the preceding paragraph
and the amplitude of the steady state forced solution; it is assumed that the excitation frequency
is close to the natural frequency of the linear system

Ue =wi + €0 (93)

As in the previous case, we look for a small solution with a triple scale expansion, more precisely,
we look for a periodic solution close to an eigenmode of the linear system, for example,
we consider mode y; (by permuting the indexes it could be any mode); we set:

9 B
To =@, Ti=et, To=c*hence Doyr = 225 Dy = a_g“k
1

d Doy, — Uk
Ty’ and Lavk

015

30



Derivatives of y, may be expanded:

dyr .
% = O Doyr + €D1yx + €2 Dayi
and )
d*y, ~
dt% = O Diyk + 260 Do D1yy, + 2€* Dy Dayy, + € Diyy, + 2€° D1 Dayy, + €* D3y,

we use the ansatz

yi(t) = yu(To, 11, Tn) = y](gl)(T07T1; Ty) + Gy;(gz) (To, Ty, To) + 21 (To, T1, To)

we get:
dy, dyz(cl) dyl(f) 2 dry, dyl(cl) zdyl(f) 2 2, dry
Wk _ Yy e _ D e _p
di g T e T T e T g TPt (g — Dor)
= [@e Doyl + eD1yy” + Do) + €@ Doyl + eDryl”) + €2 Doy’

N dr N
+ 2@ Dory + E2(d_tk — weDory)

we note that 42& — @eDory = €Dy, + €2 Dary: it is of order 1 in e. For the second derivative, as in

dt
the case of free vibration, we introduce:

1 d2’l”k
D = -
3Tk e( dt?

= 20.Do D17y, + € [20. Do Dary, + Diry + 2DaDyry| + €2 Diry,

— O2Dgrk)

dzyk _ dzy](gl) +€d2y/(€2) e a2, _ d2y](€1) L d2y/(€2)
dt? dt? dt? dt? dt? dt?

= GJSDSQS) + € [2(:)€D0D1yl(€1) + Dgy,(f)

+ ezdjeng + engrk

+ ¢ [20. DDy + DRyl + 25 Do Dy + Dir |
+€ [2D1 Doyl + 25Dy Dayl?) + D3y + Dy

+ ¢t D3y + 201Dy + D3y |

We plug previous expansions (94), (96) and (95) of y* into (92); by identifying the coefficients

of the powers of €, we get:

w2D2yY 4wy =0 k=1...,n
wa%y,(f) + w,%y,(f) = Sak , k=1...,n
wi Dgr 4 wir = Sz 1 ; k=1....n
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with

S2,k = _C(S(bkp Zyl(l)6¢lpy7(nlb)6¢mp - d6¢kp (Z Yy 1)5¢qpy 6¢npyo 6¢Op>

Im g,n,0

— 2(&)11)01)1:%7C )\kwlDoyl(c ) — QWO'DOyk + fk COS(TQ)

Ss = —codnp | S0ty V801005, | — ddtwy | Dy ui V9P 801p06 0506
L,j h,g,n
— 21 DoDayl” — DIy — 201 Do D1y” — o2 D2yl — 2wlaD§y,§1> —20DoD1yS") — 2010 D3y
- /\ley - _/\kUDOyk /\kwlDoy;(C ) eRp (e, 7, ZJ% ), ZJ% ))

where d¢rp = (Pr,p — Prp—1) and with

Ry (e, 7"1my;(C )73/;(@2)) = 2D1D2y,(€1) + 2w1D0D2y,(€2) + D%y,(f)

+ codrp Zyj(‘2)y](‘2)5¢lp5¢jp + cOPrp Zy;l)rl5¢jp5¢lp
1%}

L,j

+dooiy | D YD YD 00np006p00mp | + Aoy | Y Uty rnd@npddepddup

h.g,n h,g,n

Ak (w1 Dor + Dzy,(cl) + Dly,(f) + eDgy,(f)) + Dsr
dr
€ (Dgy,(gl) + 2D1D2y,(€2) + eDgy,(C2 ) + A’“(E — w1 Dor) + ep(y,(cl), y,(f), Tk, €)

and the polynomial p displayed in (74).
We solve the first set of equations (97) imposing initial Cauchy data for k # 1 of order O(€?)
and Doygl)(O) =0 we get:

yil) = ay1(T1,Ts) cos(f)
L B (98)
v =0, k=2,....n

with 0(Ty, Ty, To) = To+ B(T1, T>) for which we have Do = 1, D16 = D1 31; we put terms involving
y,ﬁ, k > 2 into Rj; so we obtain:

03
So1 = —6¢1p{ (1 + cos(26))667, + d41 (cos(30) + 3cos(9))5¢ifp}
+ 2wy (D1aq sin(f) + a1 (D161 + o) cos(0)) + Ajayws sin(h)
+ f1(cos(0) cos(B1) + sin(f) sin(S1))

da:{’ 3
1 —(cos(30) + 3 cos(@))éd)lp}

+ fr(cos(f) cos(B1) +sin(f) sin(B4)), k=1,...,n.

Sa) = —5¢kp[ 5 (1 + cos(20))5¢
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We will eliminate the terms at angular frequency wy hence the functions a; (T4, T2) and 1 (11, Ts)
satisfy:

2wiDiar + Majw, = —f1 sin(ﬁl)
2w1a1D1B1 + 2&)1&0’ — M = _fl COS(ﬂl)

and the solution of the second equation of (97) is:

Y = S | (5o + £ c03(20))003, + 5az cos(30)36%,

320.12

@) ca? dal (99)
Yy = 0¢pp| — 2(‘“57“@ + 3@ cos(29))6¢1p TCT By cos(39)5¢1p

where we have omitted the term at frequency w; which is redundant with y%l)
For the third equation of (97), the unknown is rg; we do not solve it but we show that the

solution is bounded on an interval dependent on e. After some manipulations, the right hand side
is:

8371 = —|—sin9 [2w1D2a1 + /\1a1D1[31 + 2D1(L1D1ﬂ1 + alD%ﬂl + 20’D16L1 + /\1a10]

5¢%6¢5 a3 35(;58 d*a3
6&)1 128&)1

+cos 0 [2w1a1D2ﬁ1 — M Djag — D%al + ax (D1ﬁ1)2 + 02a1 + 20a1 D181 +

+ S"j —€eR(e,r,uM u?)

where
5cddl ai 453 ay A1céd3 a?
Sh, = 3t +5in20 | ——2—D e
3,1 8w? Fsim 3wy 161+ 3wy
453 a2 15cdéd] af
20 | — 121 p b
+cos [ 30, Dt 3207
+ sin36 9d6¢%pa%D " 3\idogt,al 39 9d6¢‘11pa:1)’ B 095, a3 B 3d2(5¢515pa‘1l
16w, " 16w, 16w, 1 6u? 6402
3cdég] ai 3d%5¢8, ab
40 | ————| — cos50——L—
eos l 82 12807

and a similar expression for Sg x- To eliminate the secular terms, we impose,

5¢ 6¢§pa§ 35¢%,d%a}

{ 2wi1Dsay + Mayr D151+ 2D1a1 D151 + G1D2ﬁ1 +20Dia; + Majo =0

2W1G1D2ﬁ1 —MDjar — D%al =+ al(Dlﬁl) + o2 ap + 20’@1D161 + 12807 =0
As a1 and (1 do not depend on Tj, the following relations hold:
d
;tl =eDjay +¢€ D2a1 + O( )
43 (100)
d—tl = eD1S1 + €Dy + O(€%)
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On the other hand, we can determine the expression of Dya; and Dsf, like for one degree of
freedom:

D2 1= 3d>\15¢‘11pa§ + ofisiny + A1 fi1cosy + 9d5¢7411pa§f1 sin ~y

lﬁwf 4wf Sw; 32w;’
26,8 4 25,6
D _ )\? _ 15d°6¢7, a1 _ 5c7d¢7,a1 (101)
27 = T8 25607 207
+Uf1 cosy + 3d5¢7411pa1f1 €osy  Mifisiny
4w%a1 32w? Sw%al

now we return to (100) introducing (99) and (101), we obtain:

day (_ fusin() Alal) L (3dA15¢1*pa§ L ohsinf  AficosB 9do¢1,ai fr sinﬁ) L o)

dt 21 2 16w? 4w? 8w? 3203
3dopt a2
@:e(—a—i- ¢1pa1 _flCOS(ﬁ))
dt 8&.)1 2&.)10,1
N 62( A} 15d%0¢R,a1  5c0df,af  oficosB  3dodi,aificosB A fi sinﬂ) Lo
8wy 256w3 12w3 4wiay 32w3 8wiay
(102)

Remark 3.5. In this approach, like for one free degree of freedom, we are using the method of
reconstitution. We notice these equations are similar to (34)

Remark 3.6. S§ + R(e,r,u(l),u@)) has no term at frequency wy or which goes to wy .
This will allow us to justify this expansion in certain conditions, before we consider the stationary
solution of the system (102) and the stability of the solution close to the stationary solution.

3.2.2 Stationary solution and stability

Let us consider the stationary solution of (102), it satisfies:

g1(a1, B1,0,€) =0,
{ gl(di,ﬂi,a, 6) =0 (103)

with

g1 = E(_fl ;i:)ll(ﬁ) + >\12a1 )+
62(3d,\16¢1‘pa§ " gfizi%nﬁ n Al@:(;sﬁ n 9do¢t a3 fr sin,é’) +0(e3)

16w? 32w}
3d691,01 _ f1 cos(B)
92 = E(_U + 8wy . 22w18a1 4 25,6 2 4
+€2(_ )\? _ 15d70¢7,a] _ 5¢ 6¢fp‘11 + oficosfB 3dddi,a1f1cosB _Mfi sinﬁ) + 0(63)
8w1 256w? 12wi’ 4wfa1 32w;’ Swfal

(104)

The situation is very close to the 1 d.o.f. case; except the replacement of ¢ by ¢ = c&qﬁ?p and d
by of d = d5¢‘11p, the system (104) is the same as (36); the other components are zero. We state a
similar proposition.
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Proposition 3.2. When

and € small enough, the stationary solution (a1, B1) of (102) is stable in the sense of Lyapunov (if
the dynamic solution starts close to the stationary one, it remains close and converges to it); to the
stationary case corresponds the approzimate solution of (92)

1 app = €1 cOS(@ct+ B) + €2 (8 Cal— 2@t 562 + 99 @t 366t 1)
yla;D;D = €ay Cos(w€ +ﬁ)+€ ¢1p wl +6w1 COS (wé +B> ¢lp+32w% COS( (wé +ﬂ)) (blp )
(105)
Tk app = 52(6¢)k [( —cay — cay cos 2(w t+5))5¢>2
wr PI2(@F +wi)  2(wf — dw?) ‘ P
dd? - > 3
~ T e B + BNost,| ) (106)

it is periodic.

With this result of stability, we can state precisely the approximation of the solution of (89)

3.2.3 Convergence of the expansion

In order to prove that 7 is bounded, after eliminating terms at frequency 1, we go back to the
variable ¢ for the third set of equations of (97) .
d2
a2
= 5'3 Lt €) — €Ry(y) ( ),yg ) ,71,€) and for k # 1

Sy = —2e5nplyt V7 60%,] — 3dSuy [yt Y668 — R,y 4t

-‘rwl?‘k—Sgk fork=1,...n with

where

~ dr
Rk(ea Tkvyg )7y§2)) Rk(evrkvygl)a y§2)) - D2Tk - Ak(d_tk - kaOTk)

with all the terms expressed with the variable t.

Proposition 3.3. Under the assumption that w3 # 4w?, w? # 9w} and w? a simple eigenvalue (no
internal resonance) for k # 1, there exists ¢ > 0 such that for all t <t. = %, the solution §j = ey
of (91) with initial data

. 9 .2 7. 43
—C1a7g €107 diaiy 3
27 602 cos(26p) + 3907 cos(3ﬂ0)) +e°r(0, €),

~(o)=e2( “aoh L 00k ogom) + — D80 og3(s )))+63T(0 )
o 2(WZ —w?) | 204} — o) 0T 40w - W) ° '

71(0) = ear + € (

with similar expressions for 11(0), yx(0) and with (a1, o) close to the stationary solution (ay,[3)
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aio — a1| < €CY, |Bo — B < Ct
has the following expansion

— él a% él a% 3

71 = €ay cos(@ct+B(t))+€2[(( 5.2 +W cos(2(wt+p6(t)))+ ;gzg cos(3(@ect+B (1)) +€ri(t)
1 1 1
—éka% éka% dkaf

cos(2(wet+8(t)))+

cos(?,(aetw(t)))} )—l—egrk (1)

_ 9
Yl =€ ([(Q(wi —wl) 24w} —wj) 4(wi — w?)

with a1, B solution of (102) and with 1y, uniformly bounded in C2(0,t.) fork =1,...n and w1, ¢1 are
the eigenvalue and eigenvectors defined in (66), with 6¢1p, = (d1,p — d1,p—1), 0Pkp = (Pk,p — Ph,p—1),
é1 = c(06¢1p)3, di = d(6¢1p)* and &, = c(5¢1p)?6bkp, di. = d(0¢1p)30¢kp as in proposition 3.1.

Corollary 3.2. The solution of (89) with

oY u(0) = ear + 62(—61a%0 —C10dg cos(2v9) + diafy cos(370)) + €°r1(0, €),
2w?, 6w? 32w?

oL a(0) = € melit + C10ig cos(2v9) + diafy cos(3(70)) | + €r1(0, ),
2wi —w})  2(4w? — w?) 4(9w? — w?)

with similar expressions for qﬁfﬁ(O), qﬁ;‘gﬁ(O) and with w, ¢y, the eigenvalues and eigenvectors defined
in (66).

is (t) = 3 Giu(t)on (107)
k=1

with the expansion of yx of previous proposition.

Proof. We follow a similar route as for one degree of freedom, we use lemma 5.4. Set S; = S’gl, Sk =
Ss i for k= 1,...n; as we have enforced (104), the functions Sj are not periodic but close to a
periodic function, bounded and are orthogonal to e**, we have assumed that wy and w; are Z
independent for k # 1; so S satisfies the lemma hypothesis. Similarly, set g = R, it is a polynomial
in 7 with coefficients which are bounded functions , so it is lipschitzian on the bounded subsets of
R, it satisfies the hypothesis of lemma 5.4 and so the proposition is proved. The corollary is an
easy consequence of the proposition and the change of function (90) O

3.2.4 Maximum of the stationary solution

We can state results similar to the case of one degree of freedom.
Proposition 3.4. The stationary solution of (102) satisfies

2(4.)1

4 2
(—o + d0d01 _ h cos(B)y 4 €As(ar, B,0) + O(e?) =0

8wi 2a1wq

(108)

{ (~L5m) f My edy(ar,8,0) + O(2) = 0

36



with

Av(a, B.0) = 3d5¢%pA1a:15 ofisinf  Afjcosf 9d5¢‘11pa%f1 sin B

16w? 4w? 8w? 32w}
Az(a, B,0) = _ At 15d%0¢%,a1  5c*94,0t
T 8wy 256w3 12w3
o fycosp n 3d5¢‘11pa1f1 cos f3 _ A1 fisin B
4wiay 32w? 8wiay

this stationary solution reaches its maximum amplitude for o = o + eo; + O(e?) with

* fl * 3(10/’{20 3de12 * 0
= = = = —— 109
@10 Awr’ 70 8wy 8)@&}{” B 2 (109)
and
i} 87d%atly  5¢%ai} A2 i} A i} al ooy
o = — — _—— = —_—— a = -
L 256wf 12w§’ 4wy’ ! 2wy’ 1,1 w1

the periodic forcing is at the angular frequency
Qe = wy + €0y + a7 + O(?)

up to the term involving the damping ratio A1, it is slightly different of the approzimate angular
frequency v. of the undamped free periodic solution (86); for this frequency, the approximation (of
the solution § = ey of (91) up to the order €?) is periodic:

— & a*2 & (—1*2 - S
71(t) = eaj cos(@ct + B*) + €2[( 2;%1 + éw% cos(2(@et + %))
+82 cos(3(@et + 57)] + €¥ri (e, )
_& a*2 & a*z - = 1
ur(t) = 62[(2@{7;%) _ 2@5—2@) cos(2(@et + %))
JkﬁIS

- 4(wi —9w?)

(110)

cos(3(@et + B*)] + 31 (e, t)

and initial conditions like in proposition 3.1.

4 Conclusion

For some differential systems modelling spring-masses vibrations with non linear springs, we have
derived and rigorously proved an asymptotic approximation of periodic solution of free vibrations
(so called non linear normal modes); for damped vibrations with periodic forcing with frequency
close (but different) to free vibration frequency ( the so called primary resonance case), we have
obtained an asymptotic expansion and derived that the amplitude is maximal close to the frequency
of the non linear normal mode.

We emphasize that the use of three time scales provides a more accurate value of the link between
frequency and amplitude (so called backbone) of a non linear mode but it yields also a new insight
in the behavior of the solution which was not provided by a double-scale analysis: the influence of
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the ratio of ¢ over d on the shape of the backbone and the amplitude of the forced response to an
harmonic force as is clearly displayed in figure 2 and 3.

As an opening to a related problem, we can notice that such non linear vibrating systems linked
to a bar generate acoustic waves; an analysis of the dilatation of a one-dimensional nonlinear crack
impacted by a periodic elastic wave, with a smooth model of the crack may be carried over with a
delay differential equation, [JL09].
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5 Appendix

5.1 Technical lemmas

All these lemmas are recalled here for convenience of the reader; they already have been proposed
in [BR13].

Lemma 5.1. Let w, be solution of
” = S(t,e) +eg(t,w,e
PRSI TR )
If the right hand side satisfies the following conditions
1. S is a sum of periodic bounded functions:
(a) for allt and for all € small enough, S(t,e) < M
(b) fo% et S(t, e)dt = 0, 0% e~ S(t, €)dt = 0 uniformly for e small enough

2. for all R > 0, there exists kr such that for |u| < R and |v| < R, the inequality |g(t,u,e€) —
g(t,v,€)| < kr|lu —v| holds and |g(t,0,€)|is bounded; in other words g is locally lipschitzian
with respect to u.

then, there exists v > 0 such that for ¢ small enough, we is uniformly bounded in C*(0,T,) with

-2
€7 €

Proof. The proof is close to the proof of lemma 6.3 of [JR10]; but it is technically simpler since
here we assume ¢ to be locally lipschitzian with respect to u whereas it is only bounded in [JR10].

1. We first consider
wy” 4+ wy = S(t,€)

112
wi(0) =0, wi(0)=0 (112)
as S is a sum of periodic functions which are uniformly orthogonal to e and e™%, w; is
bounded in C%(0, +00)
2. Then we perform a change of function: w = w; + ws, the following equalities hold
wa” + wy = €ga(t, we, €
2 2 92( 2 ) ( 11 3)

w2(0) =0, whH(0) =0
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with go which satisfies the same hypothesis as g:

for all R > 0, there exists kg such that for |u| < R and |v| < R, the following inequality holds
|g2(t,u, €) — ga(t,v,€)| < krlu — v|. Using Duhamel principle, the solution of this equation
satisfies:

t
wy = e/ sin(t — s)ga(s, wa(s), €)ds
0

from which

t t
wal)] < € [ laalowals).€) = gals0. s + e [ loa(s.0,0)lds
0 0

so if Jw| < R, hypothesis of lemma imply

t
s (1)) < e/ kplws|ds + eCt
0
A corollary of lemma of Bellman-Gronwall, see below, will enable to conclude. It yields

C (expleknt) — 1)

) < —
wa(8)] <

Now set T. = sup{t||w| < R}, then we have

 (expleknt) — 1)

R< —
<

this shows that there exists v such that |wy| < R for ¢ < T, which means that it is in
L>(0,T.) for Tc = Z; also, we have w in C(0,T¢) then as w is solution of (111), it is also
bounded in C%(0, T%).

O

Lemma 5.2. (Bellman-Gronwall, [BG, Bel64]) Let u,¢, 3 be continuous functions with 8 > 0,

u(t) < e(t) —i—/o B(s)u(s)ds for 0 <t <T

w <+ [ ' B(s)e(s) (| t Bir)ar| ds

Lemma 5.3. ( a consequence of previous lemma, suited for expansions, see [SV85]) Let u be a
positive function, do >0, 61 > 0 and

¢
u(t) < dat + 51/ u(s)ds
0

u(t) < g—j (exp(d1t) — 1)
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Lemma 5.4. Let v, = [v5,...,v5]7 be the solution of the following system:
w?(0)” + wivi, = Su(t) + egr(t, ve) (114)

If w and wy are Z independent for all k = 2...N and the right hand side satisfies the following
conditions with M > 0, C' > 0 prescribed constants:

1. Sy is a sum of bounded periodic functions, |Sk(t)] < M which satisfy the non resonance
conditions:

2. Sy is orthogonal to e*™, i.e. fo% Sy (t)ertdt = 0 uniformly for e going to zero

3. for all R > 0 there exists kg such that for |ul]] < R, ||v|| < R, the following inequality holds
fork=1,...,N :
|gk(ta U, 6) - gk(tv v, €)| < kRHu - UH
and |gx(t,0,¢€)| is bounded
then there exists v > 0 such that for e small enough v is bounded in C*(0,T.) with T, = 2

Proof. 1. We first consider the linear system

wi (vk,1)” + wivky = Sk

115
v,1(0) =0 and (vg1) =0 (115)

For k = 1, with hypothesis 1.a, S; is a sum of bounded periodic functions; it is orthogonal to
et there is no resonance. For k # 1, there is no resonance as ZJ’—’; ¢ 7 with hypothesis 1.b.

So vy,1 belongs to C® fork=1,...,n
2. Then we perform a change of function
U, = Uk,1 T+ Vg2

and vy , are solutions of the following system :

wi(vk2)” + wivke = egr2(t, vk 2,€), k=1,...,N

116
02(0) = 0, (1) =0, k=1,...,N (116)

with
g2ty s Vg, o) = ity ooy VB + V) 9, o00)

where gy o satisfies the same hypothesis as gs:
for all R > 0 there exists kg such that for || ux ||< R, || vk [|< R, the following inequality
holds for k=1,...,N :

| gk,2(t, wn, €) = gr2(t, vis €) |1< kg || uk — v || (117)

Using Duhamel principle, the solution or the equation (116) satisfies:
t
Vo = e/ sin(t — s)gk,2(s, vzﬂz(s), €)ds
0
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SO
t
i) 1< € [ gralo via(s),) = gna(s,0,6) | dst
0

t
: / | gra(s,0,€) | ds
0

so with (117), we obtain

t
| v () 1< € /0 k1o (0) || ds + Ct

We shall conclude using Bellman-Gronwall lemma; we obtain

I vk (6) 1<~ expleknt) — 1)
R

this shows that there exists v such that |vf, ,| < R for t < T, which means that it is in

L>(0,T) for T, = 1; also, we have v in C(0,7) then as vy is solution of (111), it is also
bounded in C%(0,T,).
O

Theorem 5.1. ( of Poincaré-Lyapunov, for example see [SV85]) Consider the equation
T = (A + B(t))$ —l—g(t,x), LL‘(tQ) = Xy, t> to

where x,xqg € R™, A is a constant matriz n X n with all its eigenvalues with negative real parts;
B(t) is a matriz which is continuous with the property lim;—, o ||B(t)|| = 0. The vector field is
continuous with respect to t and x is continuously differentiable with respect to x in a neighbourhood
of x = 0; moreover

g(t,) = of|jall) when [l >0

uniformly in t. Then, there exists constants C,to, 0, p such that if ||zo] < %
]| < Cllaolle™=1) ¢ > tg

holds

5.2 Numerical computations of Fourier transform
Assuming a function f to be almost-periodic, the Fourier coefficients are :
T .
Q= TETOO/O f(t)e=Antat (118)

where ), are countable Fourier exponents of f. (for example, see Fourier coefficients of an almost-
periodic function in http://www.encyclopediaofmath.org/). For numerical purposes, we chose T
large enough and with a fast Fourier transform, we compute numerically the Fourier coefficients of
a function of period T equal to f in this interval.
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5.3 Another way of computing the maximum amplitude

This is another way of computing some results of § 2.3.4. Eliminating § at first order in (61) , we
get that a is solution of f(a, 8, 0,¢) = 0 with

_F? a 3da? ?
f= 40‘)72” + (—7 + 6A1)2 + (W —oa+ GCLAQ) + 0(62)

We look for a maximum with respect to o; it will be reached at a value denoted ¢* which
depends on €. By differentiating, we get that

b B
doc o
So o* is solution of of o508 o
_+%8_ 0 with %7&0; (119)

we compute the terms involved in the previous equation;

* %3
%226( Aa +€A1)6A1 +2(3da —a*a*—l—ea*Ag) (—a + ea %> + O(e?)

0o 2 0o 8w 0

or

of Aa* 0A, ., 3da*? . 2 3da*? L0A

8—0——6(2)8—0—2(1( » —o%a®) — 2ea™ Ay + 2¢( " o*a*)a* 50 +0(e%)  (120)
we simplify for a = af + O(e), 0 = o + O(e)

90— —2ay (8—000 — ano) — 2ea; ( ) 2¢eay, < 0°i —ago] — 00a1>

9AT o 3da - 943, 2 g
exag, % — 2€ ( » a ) G =~ 26&02142_0 + 1€%)

We use (47) and the lower order term cancels;

of . [ 9dat?a; . % . eX?ag?
8_0 = —2ea0 ( 0 7L _ agoq — anl) + 4w0 — 2eq, 021420 + O( )
A2ai?
= _260’6 (30’8@1 — (LSO’T — US@T) + ¢ 4w0 - 26010214.2 0 + O( )

Aao

0 — 200439 + O(e?)

= eay) [ —2(204a1 — ajoy) + ——

2
eaj, [2a301 do5ar + /\4—0.) — 2a045 } + O(e).

We compute the derivative with respect to f3;

of Aa 94, (3da3 9 A,

op

—:26[( T e T~ (5 }+0( ) (121)

a7 oca — eaA2>
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* *
and for af, B§

af LOAY
75 = —elad aﬁl + O(e?) (122)
the partial derivatives of Ay, Ay are computed at a = aj, 8 = [, we get:
af NayFy, Nah?
= = — 12
0B “TRw? R (123)
and of 08 22
9f 0B _ Nag
9800 dw (124)

We use (120), (124) in (119); this last equation defines implicitly o* as a function of €; we use the
expansions (48), and we get

of ofop . 2ag . A2ag?
o + 95 90 = ea} {2@001 dopar + o 2a9A% 0] +e 4w0 + O(€?)
* )\2a’0 * 2
= eag {2&001 do5a1 + — 2apA;5 0] + O(e%)
2
= 2ea) [agaf — 204501 + % - aoA;,o} + 0O(e?)
* 2
— 2¢as? [a; - 2"2‘“ 4+ Ago} +0(e?)
0
So we obtain
« 0'*04 )\2 %
P=2 20 o T A% (125)
_,0@ X 505 5cag? (126)
ao 4w 12w 12w3

* kK 2 %2 2 *2
UT_2@< aoao)_)\__500 _5c ay (127)

- g (128)

References

References

[BG] Bellman and Gronwall inequality. Encyclopedia of Mathematics. URL:
http://www.encyclopediaofmath.org/.

[Bel64] R. Bellman. Perturbation techniques in mathematics, physics, and engineering. Holt,
Rinehart and Winston, Inc., New York, 1964.

43



[BM55]

[BM61]

[BM62]

[BROY]

[BR13)]

[Bra]

[Bral0)]

[EDK99]

[GRO3]

[GROT]

[HFR09)]

[HR09a]

[HRO9b]

[JLO1]

N. N. Bogolyubov and Yu. A. Mitropol’skii. Asimptoticeskie metody v teorii nelineinyh
kolebanii. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1955.

N. N. Bogoliubov and Y. A. Mitropolsky. Asymptotic methods in the theory of non-linear
oscillations. Translated from the second revised Russian edition. International Mono-
graphs on Advanced Mathematics and Physics. Hindustan Publishing Corp., Delhi,
Gordon and Breach Science Publishers, New York, 1961.

N. N. Bogolioubov and I. A Mitropolski. Les méthodes asymptotiques en théorie des
oscillations non linéaires. Gauthier-Villars & Cie, Editeur-Imprimeur-Libraire, Paris,

1962.

N. Ben Brahim and B. Rousselet. Vibration d’une barre avec une loi de comportement
localement non linéaire. In Proceedings of ”Tendances des applications mathématiques
en Tunisie, Algerie, Maroc”, Morocco (2009), pages 479-485, 2009.

N. Ben Brahim and B. Rousselet. Double scale analysis of periodic solutions of some
non linear vibrating systems. http://hal.archives-ouvertes.fr/hal-00776184, 2013.

N. Ben Brahim. Vibration d'une barre avec une loi de comportement localement non
linéaire. Communication au Congres Smai 2009.

N. Ben Brahim. Vibration of a bar with a law of behaviour locally nonlinear. Affiche
au GDR-AFPAC conference, 18-22 janvier 2010.

V.V. Kasakov A.E. Ekimov, I.N. Didenkulov. Modulation of torsional waves in a rod
with a crack. J.Acoust. Soc. AM., 3(106):1289-1291, 1999.

M. Géradin and D. Rixen. Théorie des vibrations. Application d la dynamique des
structures. Masson, 1993.

M. Géradin and D. Rixen. Mechanical vibrations : theory and application to structural
dynamics. Chichester: Wiley, 1997.

H. Hazim, N. Fergusson and B. Rousselet. Numerical and experimental study for a beam
system with local unilateral contact modelling satellite solar arrays. In Proceedings of
the 11th European spacecraft structures, materials and mechanical testing conference
(ECSSMMT 11), 2009. http://hal-unice.archives-ouvertes.fr/hal-00418509/fr/.

H. Hazim and B. Rousselet. Finite element for a beam system with nonlinear contact
under periodic excitation. In M. Deschamp A. Leger, editor, Ultrasonic wave propagation
in non homogeneous media, springer proceedings in physics, pages 149-160. Springer,
2009. http://hal-unice.archives-ouvertes.fr /hal-00418504/fr/.

H. Hazim and B. Rousselet. Frequency sweep for a beam system with local unilat-
eral contact modelling satellite solar arrays. In Proceedings of ”Tendances des appli-
cations mathématiques en Tunisie, Algerie, Maroc”, Morocco (2009), pages 541-545,
2009. http://hal-unice.archives-ouvertes.fr /hal-00418507 /fr/.

Janin, O. and Lamarque, C. H., Comparison of several numerical methods for me-
chanical systems with impacts., in Int. J. Numer. Methods Eng., 51, 9, 1101-1132,
2001.

44



[BBL13)

[TPS04]

[JL09]

[JL12]

[JRO9]

[JR10]

[KB2011]

[KPGV09]

[LL58]

[LL60]

[LL66]

[LL11]

[MH92]

[Mik10]

[Mil06]

Bastien, Jérome and Bernardin, Frédéric and Lamarque, Claude-Henri , Non smooth de-
terministic or stochastic discrete dynamical systems. Applications to models with friction
or impact. , Mechanical Engineering and Solid Mechanics Series. John Wiley Eamp;
Sons. zvi, 496 p. , 2013 .

D. Jiang, C. Pierre, and S.W. Shaw. Large-amplitude non-linear normal modes of
piecewise linear systems. Journal of sound and vibration, 2004.

S. Junca and B. Lombard. Dilatation of a one dimensional nonlinear crack impacted by
a periodic elastic wave. SIAM J. Appl. Math, 2009, 70-3,735-761 http://hal.archives-
ouvertes.fr/hal-00339279.

S. Junca and B. Lombard. Interaction between periodic elastic waves and two contact
non-linearities. Mathematical Models and Methods in Applied Sciences, 2012, 22.4.

S. Junca and B. Rousselet. Asymptotic expansion of vibrations with unilateral contact.
In M. Deschamp A. Leger, editor, Ultrasonic wave propagation in non homogeneous
media, springer proceedings in physics, pages 173-182. Springer, 2009.

S. Junca and B. Rousselet. The method of strained coordinates for vibrations with
weak unilateral springs. The IMA Journal of Applied Mathematics, 2010. http://hal-
unice.archives-ouvertes.fr/hal-00395351/fr /.

Kovacic I. (ed.) and Brennan M. (ed.): The Duffing equation. Nonlinear oscillators and
their behaviour John Wiley € Sons, (2011).

G. Kerschen, M. Peeters, J.C. Golinval, and A.F. Vakakis. Nonlinear normal modes,
part 1: A useful framework for the structural dynamicist. Mechanical Systems and
Signal Processing, 23:170-194, 2009.

L. D. Landau and E. M. Lifsic. Mekhanika. Theoretical Physics, Vol. I. Gosudarstv.
Izdat. Fiz.-Mat. Lit., Moscow, 1958.

L. D. Landau and E. M. Lifshitz. Mechanics. Course of Theoretical Physics, Vol. 1.
Translated from the Russian by J. B. Bell. Pergamon Press, Oxford, 1960.

L. Landau and E. Lifchitz. Physique théorique. Tome I. Mécanique. Deuxieme édition
revue et complétée. Editions Mir, Moscow, 1966.

Laxalde, Denis and Legrand, Mathias, Nonlinear modal analysis of mechanical systems
with frictionless contact interfaces., ”Comput. Mech. 7, 47:469-478, 2011.

Kenneth R. Meyer and Glen R. Hall Introduction to Hamiltonian dynamical systems
and the N-Body problem. New York etc.: Springer-Verlag, 1992.

Y. Mikhlin. Nonlinear normal vibration modes and their applications. In Proceedings of
the 9th Brazilian conference on dynamics Control and their Applications, pages 151-171,
2010.

P. D. Miller. Applied asymptotic analysis, volume 75 of Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 2006.

45



IMCGO02]

[Mur91]

[Nay81]
[Nay86]

[Nay05]

[Lya49]

[Poi99]
[Roull]

[Rub78]

[SV85)]

[DGLV03]

[LVdb04]

[RVO5]

[VLPOS]

A. Moussatov-B. Castagnede-V. Gusev. Frequency up-conversion and frequency down-
conversion of acoustic waves in damaged materials. Physics letter A, 301:281-290, 2002.

J. A. Murdock. Perturbations. A Wiley-Interscience Publication. John Wiley & Sons
Inc., New York, 1991. Theory and methods.

A. H. Nayfeh. Introduction to perturbation techniques. J. Wiley, 1981.

A. H. Nayfeh. Perturbation methods in nonlinear dynamics. In Nonlinear dynamics
aspects of particle accelerators (Santa Margherita di Pula, 1985), volume 247 of Lecture
Notes in Phys., pages 238-314. Springer, Berlin, 1986.

A. H. Nayfeh. Resolving controversies in the application of the method of multiple
scales and the generalized method of averaging., Nonlinear Dyn., Volume 40 1, pages
61-102,Springer, 2005.

A. M. Lyapunov or Liapounoff. The general problem of the stability of motion. Princeton
University Press, 1949. English translation by Fuller from Edouard Davaux’s french
translation (Probleme général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse (2)
9 (1907)); this french translation is to be found in url:http://afst.cedram.org/; originally
published in Russian in Kharkov. Mat. Obshch, Kharkov in 1892.

H. Poincaré. Méthodes nouvelles de la mécanique céleste. Gauthier-Villars, 1892-1899.

B. Rousselet. Periodic solutions of o.d.e. systems with a Lipschitz non linearity.
http://hal-unice.archives-ouvertes.fr /hal-00608442, July 2011.

L. A. Rubenfeld. On a derivative-expansion technique and some comments on multiple
scaling in the asymptotic approximation of solutions of certain differential equations.
SIAM Rev., 20(1):79-105, 1978.

J.A. Sanders and F. Verhulst. Awveraging methods in nonlinear dynamical systems.
Springer, 1985.

P. Dufourcq, JP. Groby, M. Lagier, P. Témin, and G. Vanderborck. Détection vibro-
acoustique non linéaire d’ endomagements dans une structure poutre. Communication
au Congres francais de mécanique, septembre 2003.

M. Lagier and G. Vanderborck. Application of non-linear ultrasonic spectroscopy to
health monitoring and damage detection in structures,. 38p. In 75th Shock and Vibration
Symposium, Virginia Beach (VA) USA, du 18/10/2004 au 21/10/2004, 2004.

B. Rousselet and G. Vanderborck. Non destructive testing with non linear vibroacous-
tic. In Rassineux Ohayon, Grellier, editor, Septiéme colloque national en Calcul de
structures, volume 2, pages 603-608. Hermes, 2005.

F. Vestroni, A. Luongo, and A. Paolone. A perturbation method for evaluating nonlinear

normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dynam.,
54(4):379-393, 2008.

46



