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We consider small solutions of a vibrating mechanical system with smooth non-linearities for which we provide an approximate solution by using a triple scale analysis; a rigorous proof of convergence of the triple scale method is included; for the forced response, a stability result is needed in order to prove convergence in a neighbourhood of a primary resonance. The amplitude of the response with respect to the frequency forcing is described and it is related to the frequency of a free periodic vibration.

Introduction

In this article, we perform a triple scale analysis of small periodic solutions of free vibrations of a discrete structure without damping and with a local smooth non-linearity; then we consider a similar system with damping and a periodic forcing in a resonance situation.

Several experimental studies show that it is possible to detect defects in a structure by considering its vibro-acoustic response to an external actuation; there is a vast literature in applied physics. We recall some papers related to the use of the frequency response for non destructive testing; in particular generation of higher harmonics, cross-modulation of a high frequency by a low frequency (often called intermodulations in telecommunication): [START_REF] Kasakov | Modulation of torsional waves in a rod with a crack[END_REF], [START_REF] Moussatov-B. Castagnede-V | Frequency up-conversion and frequency downconversion of acoustic waves in damaged materials[END_REF]; in [START_REF] Dufourcq | Détection vibroacoustique non linéaire d' endomagements dans une structure poutre[END_REF], "a vibro-acoustic method, based on frequency modulation, is developed in order to detect defects on aluminium and concrete beams"; experiments have been performed on a real bridge by G. Vanderborck with four prestressed cables: two undamaged cables, a damaged one and a safe one but damaged at the anchor. With routine experimental checking of the lowest natural frequency, the presence of the damaged cable had only been found by comparison with data collected 15 years ago; the one damaged at the anchor was not found; see details in [START_REF] Lagier | Application of non-linear ultrasonic spectroscopy to health monitoring and damage detection in structures,. 38p[END_REF], [START_REF] Rousselet | Non destructive testing with non linear vibroacoustic[END_REF].

However the analysis per se of non linear vibration is also an important topic from the academic and industrial viewpoint. In this work, we are interested in the behaviour due to a local non linear stress-strain law; first, we consider free vibration and then forced response of a damped system with excitation frequency close to a frequency of the free system ; so, this local stress-strain law is assumed to be: N = kũ + cũ 2 + dũ 3 , where N is the normal force and ũ is the elongation. The elastodynamic problem of continuum mechanics leads after discretization by finite elements to a system of non linear differential equations of second order, thus, this paper deals with such systems with several degrees of freedom. We determine an asymptotic expansion of small periodic solutions of a discrete structure; we use the method of triple scale [START_REF] Nayfeh | Introduction to perturbation techniques[END_REF] and compare these results with a numerical integration program; also, we perform a numerical Fourier transform to determine the frequencies and compare with that of the linear system.

Our approach is only valid in the low frequency range and we have bypassed the propagation of acoustic waves in the structure; this point has been studied in [START_REF] Junca | Dilatation of a one dimensional nonlinear crack impacted by a periodic elastic wave[END_REF], [START_REF] Junca | Interaction between periodic elastic waves and two contact non-linearities[END_REF]. The case of rigid contact which is also important from the point of view of theory and applications has been addressed in several papers, for example [START_REF] Janin | Comparison of several numerical methods for mechanical systems with impacts[END_REF], and a synthesis in [START_REF] Bastien | Non smooth deterministic or stochastic discrete dynamical systems. Applications to models with friction or impact[END_REF] ; a numerical method to compute periodic solutions is proposed in [START_REF] Laxalde | Nonlinear modal analysis of mechanical systems with frictionless contact interfaces[END_REF] .Asymptotic expansions have been used for a long time; such methods are introduced in the famous memoir of Poincaré [START_REF] Poincaré | Méthodes nouvelles de la mécanique céleste[END_REF]; a classic general book on asymptotic methods is [START_REF] Bogolyubov | Mitropol ′ skiȋ. Asimptotičeskie metody v teorii nelineȋnyh kolebaniȋ[END_REF] with french and English translations [START_REF] Bogolioubov | Les méthodes asymptotiques en théorie des oscillations non linéaires[END_REF][START_REF] Bogoliubov | Asymptotic methods in the theory of non-linear oscillations[END_REF]; introductory material is in [START_REF] Nayfeh | Introduction to perturbation techniques[END_REF], [START_REF] Miller | Applied asymptotic analysis[END_REF]; a detailed account of the averaging method with precise proofs of convergence may be found in [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]; an analysis of several methods including multiple scale expansion may be found in [START_REF] Murdock | Perturbations. A Wiley-Interscience Publication[END_REF]; the case of vibrations with unilateral springs have been presented in [JR09, JR10, VLP08, HR09a, HR09b, HFR09]; this topic has been presented by H. Hazim at "Congrès Smai" in 2009; more details are to be found in his thesis defended at University of Nice Sophia-Antipolis in 2010. In a forthcoming paper, such a non-smooth case will be considered as well as a numerical algorithm based on the fixed point method used in [START_REF] Rousselet | Periodic solutions of o.d.e. systems with a Lipschitz non linearity[END_REF]. The case of vibrations with weak grazing unilateral contact has been presented by S. Junca and Ly Tong at 4th Canadian Conference on Nonlinear Solid Mechanics 2013; in [START_REF] Jiang | Large-amplitude non-linear normal modes of piecewise linear systems[END_REF] a numerical approach for large solutions of piecewise linear systems is proposed. A review paper for so called "non linear normal modes" may be found in [START_REF] Kerschen | Nonlinear normal modes, part 1: A useful framework for the structural dynamicist[END_REF]; it includes numerous papers published by the mechanical engineering community; several application fields have been addressed by this community; for example in [START_REF] Mikhlin | Nonlinear normal vibration modes and their applications[END_REF] "nonlinear vibro-absorption problem, the cylindrical shell nonlinear dynamics and the vehicle suspension nonlinear dynamics are analysed". Preliminary versions of these results may be found in [START_REF] Brahim | Vibration d'une barre avec une loi de comportement localement non linéaire[END_REF] and have been presented in conferences [START_REF] Brahim | Vibration of a bar with a law of behaviour locally nonlinear[END_REF][START_REF] Brahim | Vibration d'une barre avec une loi de comportement localement non linéaire[END_REF]; a proof of convergence of double scale expansion is to be found in the preliminary work [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF].

In the present text and in the conclusion, we compare the use of double or triple scale expansion. We emphasize that the use of three time scales, instead of two times scales presented in the preliminary work [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF], provides a much improved insight in the behavior of the forced response close to resonance. In this paper, as an introduction, in a first step, we consider small solutions of a system with one degree of freedom; we compare free vibration frequency and the frequency of the periodic forcing for which the amplitude is maximal. Then we address a system with several degrees of freedom, we look for periodic free vibrations (so called non linear normal modes in the mechanical engineering community); we compare this frequency with the response to a periodic forcing close to resonance.

One degree of freedom, quadratic and cubic non linearity

We consider a stress-strain law with a strong cubic non linearity:

N = kũ + Φ(ũ, ǫ) with Φ(ũ, ǫ) = mcũ 2 + md ǫ ũ3
where ǫ is a small parameter which is also involved in the size of the solution; m is the mass, k the linear rigidity of the spring and ũ the change of length of the spring; the choice of this scaling provides frequencies which are amplitude dependent at first order.

Free vibration, triple scale expansion up to second order

Using second Newton law, free vibrations of a mass attached to such a spring are governed by:

ü + ω 2 ũ + cũ 2 + d ǫ ũ3 = 0. ( 1 
)
Remark 2.1.

• We intend to look for a small solution therefore, we consider a change of function ũ = ǫu and obtain the transformed equation:

ü + ω 2 u + ǫcu 2 + ǫdu 3 = 0.
In this form, this is a Duffing equation for which exists a vast literature, for example see the expository book [KB2011].

• For the scaling we have chosen, when we use double scale analysis, we remarked in [START_REF] Brahim | Vibration d'une barre avec une loi de comportement localement non linéaire[END_REF] that the approximation that we obtain does not involve explicitly the coefficient c of the quadratic term; this coefficient is only involved in the proof of the validity of the expansion. In particular the frequency shift only involves the coefficient d of the cubic term.

• However when we use three time scales, the coefficient of the quadratic term is involved in the frequency shift.

• On the other hand, if we would let ǫ → +∞ in (1) , we would get a singular perturbation problem; this is not considered here.

As we look for a small solution with a triple scale analysis for time; we set

T 0 = ωt, T 1 = ǫt, T 2 = ǫ 2 t, hence D 0 u = ∂u ∂T 0 , D 1 u = ∂u ∂T 1 and D 2 u = ∂u ∂T 2 (2) 
and we obtain

du dt = ωD 0 u + ǫD 1 u + ǫ 2 D 2 u d 2 u dt 2 = ω 2 D 2 0 u + 2ǫωD 0 D 1 u + 2ǫ 2 ωD 0 D 2 u + ǫ 2 D 2 1 u + 2ǫ 3 D 1 D 2 u + ǫ 4 D 2 2 u.
As we look for a small solution we consider initial data ũ(0) = ǫa + ǫ 2 v 1 + O(ǫ 3 ) and u(0) = O(ǫ 3 ); or u(0) = a + ǫv 1 + O(ǫ 2 ) and u(0) = O(ǫ 2 ); we expand the solution with the ansatz

u(t) = u(T 0 , T 1 , T 2 ) = u (1) (T 0 , T 1 , T 2 ) + ǫu (2) (T 0 , T 1 , T 2 ) + ǫ 2 r(T 0 , T 1 , T 2 );
(3) so we obtain:

du dt = du (1) dt + ǫ du (2) dt + ǫ 2 dr dt = du (1) dt + ǫ du (2) dt + ǫ 2 D 0 r + ǫ 2 ( dr dt -ωD 0 r) = [ωD 0 u (1) + ǫD 1 u (1) + ǫD 2 u (1) ] + ǫ[ωD 0 u (2) + ǫD 1 u (2) + ǫD 2 u (2) ] + ǫ 2 [ωD 0 r + ǫD 1 r + ǫ 2 D 2 r]
and with the formula

D 3 r = 1 ǫ d 2 r dt 2 -ω 2 D 2 0 r = 2ωD 0 D 1 r + ǫ 2ωD 0 D 2 r + D 2 1 r + 2ǫD 1 D 2 r, + ǫ 3 D 2 2 r,
we get

d 2 u dt 2 = d 2 u (1) dt 2 + ǫ d 2 u (2) dt 2 + ǫ 2 d 2 r dt 2 = d 2 u (1) dt 2 + ǫ d 2 u (2) dt 2 + ǫ 2 D 2 0 r + ǫ 3 D 3 r = ω 2 D 2 0 u (1) + ǫ 2ωD 0 D 1 u (1) + ω 2 D 2 0 u (2) + ǫ 2 2ωD 0 D 2 u (1) + D 2 1 u (1) + 2ωD 0 D 1 u (2) + D 2 0 r + ǫ 3 2D 1 D 2 u (1) + 2ωD 0 D 2 u (2) + D 2 1 u (2) + D 3 r + ǫ 4 D 2 2 u (1) + 2D 1 D 2 u (2) + ǫD 2 2 u (2) . (4) 
We plug expansions (3),(4) into (1); by identifying the powers of ǫ in the expansion of equation (1), we obtain:

D 2 0 u (1) + u (1) = 0 ω 2 D 2 0 u (2) + u (2) = S 2 ω 2 D 2 0 r + r = S 3 (5) 
with

S 2 = -cu (1) 2 -du (1)3 -2ωD 0 D 1 u (1)
and

S 3 = -2cu (1) u (2) -3du (1)2 u (2) -2ωD 0 D 2 u (1) -D 2 1 u (1) -2ωD 0 D 1 u (2) -ǫR(ǫ, r, u (1) , u (2) ), with R(ǫ, r, u (1) , u (2) ) = 2D 1 D 2 u (1) + 2ωD 0 D 2 u (2) + D 2 1 u (2) + cu (2)2 + 2cru (1) + 3du (1) u (2)2 + 3du (1)2 r + D 3 r + ǫ D 2 2 u (1) + 2D 1 D 2 u (2) + ǫD 2 2 u (2) + ǫρ(u (1) , u (2) , r, ǫ)
and with ρ, a polynomial in r:

ρ(u (1) , u (2) , r, ǫ) = 2cru (2) + du (2)3 + +6du (1) u (2) r + ǫ(cr 2 + 3du (2)2 r + 3du (1) r 2 ) + ǫ 2 [3du (2) r 2 + ǫdr 3 ].
For convenience, we perform the change of variable θ(T 0 , T 1 , T 2 ) = T 0 + β(T 1 , T 2 ); we notice that D 0 θ = 1; D 1 θ = D 1 β and D 2 θ = D 2 β; we solve the first equation of (5) with D 0 u (1) (0) = 0, we get:

u (1) = a(T 1 , T 2 ) cos(θ). ( 6 
)
Remark 2.2. We notice that a and β are not constants but functions of time scales T 1 and T 2 because u depends on these times scales. The dependence of these functions with respect to T 1 and T 2 will be determined by solving the equations of the following orders and eliminating the so-called secular terms.

First, we determine the dependence on T 1 ; with simple manipulation of the second equation of (5), we obtain

S 2 = - ca 2 2 (cos(2θ) + 1) - da 3 4 cos(3θ) + cos(θ) -3da 3 4 + 2ωaD 1 β + 2ωD 1 a sin(θ)
we gather terms at angular frequency ω:

S 2 = - 3da 3 4 cos(θ) + 2ω [D 1 a sin(θ) + aD 1 βcos(θ)] + S ♯ 2 where S ♯ 2 = -ca 2 2 (1 + cos(2θ)) - da 3 4 cos(3θ)
It appears some terms at the frequency of the system, these terms provide a solution u (2) of the equation (73) which is non periodic and non bounded over long time intervals. We will eliminate these so-called secular terms by imposing:

D 1 a = 0 and D 1 β = 3da 2 8ω (7)
the solution of the second equation of (5), is:

u (2) = -ca 2 2ω 2 + ca 2 6ω 2 cos(2θ) + da 3 32ω 2 cos(3θ). ( 8 
)
Remark 2.3. We have omitted the term at frequency ω which is redundant with u (1) ; however this choice is connected to the value of the initial condition; see Remark 2.5.

For the third equation of (5), the unknown is r; this equation includes non linearities; we do not solve it but we show that the solution is bounded on an interval dependent on ǫ. We use the values of u (1) , u (2) in S 3 . Intermediate computations:

u (1) u (2) = -5ca 3 12ω 2 cos(θ) + ca 3 12ω 2 cos(3θ) + da 4 64ω 2 (cos(2θ) + cos(4θ)). (u (1) ) 2 u (2) = -5ca 4 24ω 2 + da 5 128ω 2 cos(θ) - ca 4 6ω 2 cos(2θ) + da 5 64ω 2 cos(3θ) + ca 4 24ω 2 cos(4θ) + da 5 128ω 2 cos(5θ)
The right hand side, after some manipulations is:

S 3 = sin(θ) 2ωD 2 a + 2D 1 aD 1 β + aD 2 1 β + cos(θ) 2ωaD 2 β -D 2 1 a + a(D 1 β) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 + S ♯ 3 -ǫR(r, ǫ, u (1) , u (2) )
with

S ♯ 3 = 5dca 4 8ω 2 + sin(2θ) 4ca 3ω D 1 a + cos(2θ) 4ca 2 3ω D 1 β + 15cda 4 32ω 2 + sin(3θ) 9da 2 16ω D 1 a + cos(3θ) -c 2 a 3 6ω 2 - 3d 2 a 5 64ω 2 + 9da 3 16ω D 1 β + cos(4θ)( -5cda 4 32ω 2 ) + cos(5θ)( -3d 2 a 5 128ω 2 ).
By imposing

2ωD 2 a + 2D 1 aD 1 β + aD 2 1 β = 0 2ωaD 2 β -D 2 1 a + a(D 1 β) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 = 0 we get that S 3 = S ♯ 3 -ǫR(ǫ, u (1) 
, u (2) , r) no longer contains any term at frequency ω.

As D 1 a = 0 and D 1 β = 3da 2 8ω , we obtain 2ωaD 2 β + a 9d 2 a 4 64ω 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 = 0. So, D 2 a(T 2 ) = 0 and D 2 β(T 2 ) = (- 5c 2 a 2 12ω 3 - 15d 2 a 4 256ω 3 ). ( 9 
)
As a and β do not depend on T 0 , we note that:

     da dt = ǫD 1 a + ǫ 2 D 2 a + O(ǫ 3 ) dβ dt = ǫD 1 β + ǫ 2 D 2 β + O(ǫ 3 ), (10) 
thus taking into account (7) and to (9), we obtain:

da dt = 0 and dβ dt = ǫ 3da 2 8ω + ǫ 2 ( -5c 2 a 2 12ω 3 - 15d 2 a 4 256ω 3 ) (11)
therefore, the solution of these equations is:

a = cte and β(t) = ǫ 3da 2 8ω + ǫ 2 (- 5c 2 a 2 12ω 3 - 15d 2 a 4 256ω 3 ) t. ( 12 
)
The constant of integration is chosen to be zero as the initial velocity satisfies u(0) = ′(ǫ 3 ).

In order to show that, r is bounded, after eliminating terms at angular frequency ω, we go back to the t variable in the third equations of (5).

d 2 r dt 2 + ω 2 r = S3 (13) with S3 = S ♯ 3 (t, ǫ) -ǫ R(r, ǫ, u (1) , u (2) )
where

S ♯ 3 (t, ǫ) = 5dca 4 8ω 2 + cos(2(ωt + β(t))) 15cda 4 32ω 2 + cda 4 2ω 2 + sin(2(ωt + β(t)))( cda 4 2ω 2 ) + cos(3(ωt + β(t))) -c 2 a 3 6ω 2 - 3d 2 a 5 64ω 2 + 27d 2 a 5 128ω 2 + sin(3(ωt + β(t)))( 9d 2 a 5 128ω 2 ) + cos(4(ωt + β(t)))( -3cda 4 32ω 2 ) + cos(5(ωt + β(t)))( -3d 2 a 5 128ω 2 ) and R = R(ǫ, r, u (1) , u (2) ) -D 3 r.
in which the remainder R, the functions u (1) , u (2) and their partial derivatives with respect to T 1 , T 2 are expressed with the variable t.

Proposition 2.1. There exists γ > 0 such that for all t ≤ t ǫ = γ ǫ 2 , the solution ũ = ǫu of (1) has the following expansion,

   ũ(t) = ǫa cos(ν ǫ t) + ǫ 2 -ca 2 2ω 2 + ca 2 6ω 2 cos(2ν ǫ t) + da 3 32ω 2 cos(3ν ǫ t) + ǫ 3 r(ǫ, t) ũ(0) = ǫa + ǫ 2 ( -ca 2 3ω 2 + da 3 32ω 2 ) + O(ǫ 3 ), u(0) = O(ǫ 2 ) (14) with ν ǫ = ω + ǫ 3da 2 8ω + ǫ 2 - 5c 2 a 2 12ω 3 - 15d 2 a 4 256ω 3 + O(ǫ 3 ) ( 15 
)
and r is uniformly bounded in C 2 (0, t ǫ ).

Proof. Let us use lemma 5.1 with equation (13); set S = S ♯ 3 ; as we have enforced (11), it is a periodic bounded function orthogonal to e ±it , it satisfies lemma hypothesis; similarly set g = R; it is a polynomial in variable r with coefficients which are bounded functions, so it is a lipschitzian function on bounded subsets and satisfies lemma hypothesis.

Remark 2.4. We notice that if we increase c, there is a change of convexity of the mapping a → ν ǫ ; this is an effect which cannot be noticed by just obtaining a first order approximation of the frequency with a double scale approximation of the solution as in [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF]. See numerical results at the end of subsection 2.3. Remark 2.5. We can notice that we can also derive the solution which satisfies u(0) = ǫa by adding to the solution -ǫ 2 ( 

-ca 2 3ω 2 + da 3 32ω 2 ) cos(ν ǫ t)

Numerical Results

In the figure 1, we find plots of the Fourier transform of solutions; on the left, the linear case, we notice one frequency and on the right, three frequencies in the non linear case. the Fourier transform displays the frequencies, ν 1 = 0.164; 2ν 1 = 0.329; 3ν 1 = 0.493 We notice good correlation between analytical results of asymptotic expansion and an integration step by step (with Scilab program ODE and numerical fast Fourier transform).

Forced vibration, triple scale expansion up to second order

Derivation of the expansion

Here we consider a similar system with a sinusoidal forcing at a frequency close to the free frequency; in the linear case without damping, it is well known that the solution is no longer bounded when the forcing frequency goes to the free frequency. Here, we consider the mechanical system of previous section but with periodic forcing and we include some damping term; the scaling of the forcing term is chosen so that the expansion works properly; this is a known point, for example see [START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF].

ü + ω 2 ũ + ǫλ ˙u + cũ 2 + d ǫ ũ3 = ǫ 2 F m cos( ωǫ t), (16) 
where F m = F m with the mass m; we assume positive damping, λ > 0 and excitation frequency ω is close to an eigenfrequency of the linear system in the following way:

ωǫ = ω + ǫσ. ( 17 
)
Remark 2.6.

• We look for a small solution with a triple scale expansion; as for the free vibrations, we consider a change of function ũ = ǫu and obtain the transformed equation ü + ω 2 u + ǫλ u + ǫcu 2 + ǫdu 3 = ǫF m cos( ωǫ t).

• To simplify the computations, the fast scale T 0 is chosen to be ǫ dependent.

We set:

T 0 = ωǫ t, T 1 = ǫt and T 2 = ǫ 2 t, therefore D 0 u = ∂u ∂T 0 , D 1 u = ∂u ∂T 1 and D 2 u = ∂u ∂T 2 , so du dt = ωǫ D 0 u + ǫD 1 u + ǫ 2 D 2 u and d 2 u dt 2 = ω2 ǫ D 2 0 u + 2ǫω ǫ D 0 D 1 u + 2ǫ 2 D 0 D 2 u + ǫ 2 D 2 1 u + 2ǫ 3 D 1 D 2 u + ǫ 4 D 2 2 u. (18) 
With ( 17), (18) and the following ansatz, we look for a small solution:

u(t) = u(T 0 , T 1 , T 2 ) = u (1) (T 0 , T 1 , T 2 ) + ǫu (2) (T 0 , T 1 , T 2 ) + ǫ 2 r(T 0 , T 1 , T 2 ) ( 19 
)
we obtain:

du dt = du (1) dt + ǫ du (2) dt + ǫ 2 dr dt = du (1) dt + ǫ du (2) dt + ǫ 2 D 0 r + ǫ 2 ( dr dt -D 0 r) = [(ω + ǫσ)D 0 u (1) + ǫD 1 u (1) + ǫD 2 u (1) ] + ǫ[(ω + ǫσ)D 0 u (2) + ǫD 1 u (2) + ǫ 2 D 2 u (2) ] + ǫ 2 ωD 0 r + ǫ 2 ( dr dt -ωD 0 r)
where we remark that dr dt -ωD 0 r = ǫD 1 r + ǫ 2 D 2 r is of degree 1 in ǫ. For the second derivative, as for the case without forcing, we introduce

D 3 r = 1 ǫ ( d 2 r dt 2 -ω 2 D 2 0 r) = 2ωD 0 D 1 r + ǫ 2ωD 0 D 2 r + D 2 1 r + 2ǫD 2 D 1 r + ǫ 3 D 2 2 r
and we get

d 2 u dt 2 = d 2 u (1) dt 2 + ǫ d 2 u (2) dt 2 + ǫ 2 d 2 r dt 2 = d 2 u (1) dt 2 + ǫ d 2 u (2) dt 2 + ǫ 2 ω2 D 2 0 r + ǫ 3 D 3 r = ω2 D 2 0 u (1) + ǫ 2ωD 0 D 1 u (1) + ω2 D 2 0 u (2) + ǫ 2 2ωD 0 D 2 u (1) + D 2 1 u (1) + 2ωD 0 D 1 u (2) + ω2 D 2 0 r + ǫ 3 2D 1 D 2 u (1) + 2ωD 0 D 2 u (2) + D 2 1 u (2) + D 3 r + ǫ 4 D 2 2 u (1) + 2D 1 D 2 u (2) + ǫD 2 2 u (2) .
We plug previous expansions into (16); we obtain:

D 2 0 u (1) + u (1) = 0 ω 2 D 2 0 u (2) + u (2) = S 2 ω 2 D 2 0 r + r = S 3 (20) 
with

S 2 = -cu (1) 2 -du (1)3 -2ωD 0 D 1 u (1) -λωD 0 u (1) -2ωσD 2 0 u (1) + F m cos(T 0 ) and (21) 
S 3 = -2cu (1) u (2) -3du (1)2 u (2) -2ωD 0 D 2 u (1) -D 2 1 u (1) -2ωD 0 D 1 u (2) -σ 2 D 2 0 u (1) -2σD 0 D 1 u (1) (22) -2ωσD 2 0 u (2) -λωD 0 u (2) -λD 1 u (1) -λσD 0 u (1) -ǫR(ǫ, r, u (1) , u (2) ) (23) 
with revoir

R(ǫ, r, u (1) , u (2) ) = 2D 1 D 2 u (1) + 2ωD 0 D 2 u (2) + D 2 1 u (2) + cu (2)2 + 2cu (1) r + 3du (1) u (2)2 + 3du (1)2 r + λ(ωD 0 r + D 2 u (1) + D 1 u (2) + ǫD 2 u (2) ) + ǫ D 2 2 u (1) + 2D 1 D 2 u (2) + ǫD 2 2 u (2) + D 3 r + λ( dr dt -ωD 0 r) + ǫρ(u (1) , u (2) , r, ǫ)
and

ρ(u (1) , u (2) , r, ǫ) = 2cru (2) + du (2)3 + +6du (1) u (2) r + ǫ(cr 2 + 3du (2)2 r + 3du (1) r 2 ) + ǫ 2 [3du (2) r 2 + ǫdr 3 ].
We solve the first equation of (20):

u (1) = a(T 1 , T 2 ) cos θ (24) 
where we have set θ(T 0 , T 1 , T 2 ) = T 0 + β(T 1 , T 2 ); we use cos(T 0 ) = cos(θ) cos(β) + sin(θ) sin(β) and we obtain

S 2 = - ca 2 2 (cos(2θ) + 1) - da 3 4 cos(3θ) + sin(θ) [2ωD 1 a + λωa + F m sin(β)] + cos(θ) 2ωaD 1 β - 3da 3 4 + 2ωaσ + F m cos(β) or S 2 = cos(θ) -3da 3 4 + F m cos(β) + 2ω[D 1 a sin(θ) + a(D 1 β + σ) cos(θ)] + sin(θ) [λωa + F m sin(β)] + S ♯ 2 with S ♯ 2 = - ca 2 2 (cos(2θ) + 1) - da 3 4 cos(3θ).
By imposing

2ωD 1 a + λωa = -F m sin(β) 2ωaD 1 β + 2ωaσ -3da 3 4 = -F m cos(β), (25) 
the solution of the second equation of ( 20) is:

u (2) = -ca 2 2ω 2 + ca 2 6ω 2 cos(2θ) + da 3 32ω 2 cos(3θ) (26) 
where we have omitted the term at the frequency ω is which redundant with u (1) .

The third equation of (20) includes non linearities, the unknown is r, we do not solve it, but we show that the solution is bounded on an interval which is ǫ dependent; the right hand side is:

S 3 = sin θ 2ωD 2 a + λaD 1 β + 2D 1 aD 1 β + aD 2 1 β + 2σD 1 a + λaσ + cos θ 2ωaD 2 β -λD 1 a -D 2 1 a + a(D 1 β) 2 + σ 2 a + 2σaD 1 β + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 + S ♯ 3 -ǫR(ǫ, r, u (1) , u (2)
) where revoir

S ♯ 3 = 5cda 4 8ω 2 + sin 2θ 4ca 3ω D 1 a + λ ca 2 3ω + cos 2θ 4ca 2 3ω D 1 β + 15cda 4 32ω 2 + sin 3θ 9da 2 16ω D 1 a + 3λda 3 16ω + cos 3θ 9da 3 16ω D 1 β - c 2 a 3 6ω 2 - 3d 2 a 5 64ω 2 + cos 4θ -3cda 4 32ω 2 - 3d 2 a 5 128ω 2 cos 5θ (27)
To eliminate the secular terms, we impose:

2ωD 2 a + λaD 1 β + 2D 1 aD 1 β + aD 2 1 β + 2σD 1 a + λaσ = 0 2ωaD 2 β -λD 1 a -D 2 1 a + a(D 1 β) 2 + σ 2 a + 2σaD 1 β + 5c 2 a 3 6ω 2 - 3d 2 a 5
128ω 2 = 0.

(28)

In the system (25) the expression of D 1 a, D 1 β can be extracted:

D 1 a = -Fm sin(β) 2ω -λa 2 D 1 β = -σ -Fm cos(β) 2aω + 3da 2 8ω (29)
As the functions a and β do not depend on T 0 , the following relations hold:

da dt = ǫD 1 a + ǫ 2 D 2 a + ′ǫ 3 ) ( 30 
)
dβ dt = ǫD 1 β + ǫ 2 D 2 β + ′ǫ 3 ). ( 31 
)
We are going to express da dt , dβ dt as functions of a, β. We manipulate equation (28

) 2ωD 2 a + (λa + 2D 1 a)(σ + D 1 β) -aD 2 1 β = 0 2ωaD 2 β -λD 1 a -D 2 1 a + a(σ + D 1 β) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5
128ω 2 = 0 then, we replace D 1 a, D 1 β by their expression in (29), we get

2ωD 2 a -Fm sin(β) ω (σ + D 1 β) -aD 2 1 β = 0 -2ωaD 2 β -λD 1 a -D 2 1 a + a(σ + D 1 β) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 = 0 and 2ωD 2 a -Fm sin(β) ω (-Fm cos(β) 2aω + 3da 2 8ω ) -aD 2 1 β = 0 -2ωaD 2 β -λ(-Fm sin(β) 2ω -λa 2 ) -D 2 1 a + a( Fm cos(β) 2aω - 3da 2 8ω ) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω2 = 0. ( 32 
)
On the other hand, we can determine D 2 1 a and D 2 1 β by differentiating (29);

D 2 1 a = - F m cos(β)D 1 β 2ω - λD 1 a 2 D 2 1 β = F m sin(β)D 1 β 2aω + F m cos(β) 2a 2 ω + 3da 4ω D 1 a
or with (29)

D 2 1 a = - F m cos(β) 2ω -σ - F m cos(β) 2aω + 3da 2 8ω - λ 2 - F m sin(β) 2ω - λa 2 D 2 1 β = F m sin(β) 2aω -σ - F m cos(β) 2aω + 3da 2 8ω + F m cos(β) 2a 2 ω + 3da 4ω - F m sin(β) 2ω - λa 2 or D 2 1 a = σF m cos(β) 2ω + F 2 m cos 2 (β) 4aω 2 - 3da 2 F m cos(β) 16ω 2 + λF m sin(β) 4ω + λ 2 a 4 D 2 1 β = - σF m sin(β) 2aω - F 2 m sin(β) cos(β) 2a 2 ω 2 - 3daF m sin(β) 16ω 2 - λF m cos(β) 4aω - 3dλa 2 8ω .
Then, in (32) we use previous formula

             2ωD 2 a -Fm sin(β) ω (-Fm cos(β) 2aω + 3da 2 8ω ) +a -σFm sin(β) 2aω - F 2 m sin(β) cos(β) 2a 2 ω 2 -3daFm sin(β) 16ω 2 -λFm cos(β) 4aω -3dλa 2 8ω = 0 2ωaD 2 β -λ(-Fm sin(β) 2ω -λa 2 ) -σFm cos(β) 2ω + F 2 m cos 2 (β) 4aω 2 -3da 2 Fm cos(β) 16ω 2 + λFm sin(β) 4ω + λ 2 a 4 +a( -Fm cos(β) 2aω + 3da 2 8ω ) 2 + 5c 2 a 3 6ω 2 - 3d 2 a 5 128ω 2 = 0 we manipulate 2ωD 2 a -9da 2 Fm sin(β) 16ω 2 -σFm sin(β) 2ω -λFm cos(β) 4ω -3dλa 3 8ω = 0 2ωaD 2 β + λFm sin(β) 4ω + λ 2 a 4 -σFm cos(β) 2ω -3da 2 Fm cos(β) 16ω 2 - 15d 2 a 5 128ω 2 + 5c 2 a 3 6ω 2 = 0
and we obtain:

   D 2 a = 3dλa 3 16ω 2 + σFm sin β 4ω 2 + λFm cos β 8ω 2 + 9da 2 Fm sin β 32ω 3 D 2 β = -λ 2 8ω - 15d 2 a 4 256ω 3 - 5c 2 a 2 12ω 3 + σFm cos β 4ω 2 a + 3daFm cos β 32ω 3 -λFm sin β 8ω 2 a . (33) 
Now we return to (30) introducing ( 29) and (33), we obtain:

                   da dt = ǫ -Fm sin(β) 2ω -λa 2 +ǫ 2 3dλa 3 16ω 2 + σFm sin β 4ω 2 + λFm cos β 8ω 2 + 9da 2 Fm sin β 32ω 3 + O(ǫ 3 ) dβ dt = ǫ -σ + 3da 2 8ω -Fm cos(β) 2aω + ǫ 2 -λ 2 8ω - 15d 2 a 4 256ω 3 - 5c 2 a 2 12ω 3 + σFm cos β 4ω 2 a + 3daFm cos β 32ω 3 -λFm sin β 8ω 2 a + O(ǫ 3 ) (34) 
Orientation: amplitude and phase equation. Equations (34) ensure that S ♯ 3 has no term at frequency of ω 1 or which goes to ω 1 . This will allow us to justify this expansion in certain conditions; before we need to consider the stationnary solution of the system (34) and the stability of the solution close to the stationary solution. This equation ( 34) is an extension for triple scale analysis of a similar equation introduced in a preliminary work with double scale analysis in [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF].

Remark 2.7. In this approach, we are using the method of reconstitution; this term has been introduced in 1985 in [START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF] in order to resolve a discrepancy between higher order approximation solutions obtained by multi scales method on the one hand and generalised averaging method on the other hand; it has been discussed in [START_REF] Vestroni | A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system[END_REF] and from the engineering point of view, the controversy has been resolved in [START_REF] Nayfeh | Resolving controversies in the application of the method of multiple scales and the generalized method of averaging[END_REF]; however the present mathematical proof of convergence seems new.

Remark 2.8. The previous equations are of importance to derive the solution of the equation (1); their stationary solution will provide an approximate periodic solution of (1).

Stationnary solution and stability

Let us consider the stationary solution of(34), it satisfies:

g 1 (a, β, σ, ǫ) = 0, g 2 (a, β, σ, ǫ) = 0 (35) with            g 1 = ǫ(-Fm sin(β) 2ω -λa 2 )+ ǫ 2 ( 3dλa 3 16ω 2 + σFm sin β 4ω 2 + λFm cos β 8ω 2 + 9da 2 Fm sin β 32ω 3 ) + O(ǫ 3 ) g 2 = ǫ(-σ + 3da 2 8ω -Fm cos(β) 2aω ) +ǫ 2 (-λ 2 8ω - 15d 2 a 4 256ω 3 - 5c 2 a 2 12ω 3 + σFm cos β 4ω 2 a + 3daFm cos β 32ω 3 -λFm sin β 8ω 2 a ) + O(ǫ 3 ). (36) 
Now, we study the stability of the solution of (36) in a neighbourhood of this stationary solution noted (ā, β); set a = ā + ã and β = β + β, the linearised system is written :

dã dt d β dt = J ã β with the jacobian matrix J = ∂ ā g 1 ∂ β g 1 ∂ ā g 2 ∂ β g 2
we compute the partial derivatives:

∂ ā g 1 = ǫ(- λ 2 ) + O(ǫ 2 ) ∂ ā g 2 = ǫ 3dā 4ω + F m cos(β) 2a 2 ω + O(ǫ 2 ) ∂ β g 1 = -ǫ F m cos(β) 2ω + O(ǫ 2 ) ∂ β g 12 = ǫ F m sin(β) 2aω + O(ǫ 2 )
or:

∂ ā g 1 = ǫ(- λ 2 ) + O(ǫ 2 ) ∂ ā g 2 = ǫ( σ ā + 9dā 8ω ) + O(ǫ 2 ) ∂ γ g 1 = ǫ(σā - 3dā 3 8ω ) + O(ǫ 2 ) ∂ γ g 2 = ǫ(- λ 2 ) + O(ǫ 2 )
The matrix trace is tr(J) = -λǫ and the determinant is

det(J) = ǫ 2 - λ 2 4 + σ 2 - 3dσā 2 2ω + 27d 2 ā4 64ω 2 + O(ǫ 3 ) (37)
the two eigenvalues are negative for ǫ is small enough; when

σ ≤ 3dā 2 4ω - 1 2 9d 2 ā4 16ω 2 -λ 2
then the solution of the linearised system goes to zero; with the theorem of Poincaré-Lyapunov (look in the appendix for the theorem 5.1) when the initial data is close enough to the stationary solution, the solution of the system (34), goes to the stationary solution.

Proposition 2.2. When

σ ≤ 3dā 2 4ω - 1 2 9d 2 ā4 16ω 2 -λ 2
and ǫ small enough, the stationary solution (ā, β) of (34) is stable in the sense of Lyapunov (if the dynamic solution starts close to the stationary solution of (36), it remains close to it and converges to it ); to the stationary case corresponds the approximate solution ũapp = ǫu app of (16

) ũapp = ǫā cos(ω ǫ t + β) + ǫ 2 -cā 2 2ω 2 + cā 2 6ω 2 cos(2(ω ǫ t + β)) + dā 3 32ω 2 cos(3(ω ǫ t + β)) with ωǫ = ω + ǫσ
It is periodic up to the order two.

Remark 2.9. The expression of u app uses the remark

u (1) = a cos(T 0 + β) = a cos(ω ǫ t + β)
and similarly for u (2) .

With this result of stability, we can state precisely the approximation of the solution of (16)

Convergence of the expansion

Proposition 2.3. Consider the solution ũ = ǫu of (16) with initial conditions

ũ(0) = ǫa 0 cos(β 0 ) + ǫ 2 [ -ca 2 0 2ω 2 + ca 2 0 6ω 2 cos(2β 0 ) + da 3 32ω 2 ] cos(3β 0 ) + O(ǫ 3 ), (38) 
u(0) = -ǫωa 0 sin(β 0 ) + ǫ 2 [ -ca 2 0 2ω 2 sin(2β 0 ) - da 3 0 32ω 2 sin(3β 0 )] + O(ǫ 3 ) (39)
with (a 0 , β 0 ) close of the stationary solution (ā, β);

|a 0 -ā| ≤ ǫ 2 C 1 , |β -β| ≤ ǫ 2 C 1 when σ ≤ 3dā 2 4ω -1 2 9d 2 ā4
16ω 2 -λ 2 and ǫ small enough, there exists ς > 0 such that for all t < t ǫ = ς ǫ 2 , the following expansion of ũ = ǫu is satisfied

ũ(t) = ǫa(t) cos(ω ǫ t + β(t))+ ǫ 2 [ -ca 2 2ω 2 + ca 2 6ω 2 cos(2(ωt + β(t))) + da 3 32ω 2 cos(3(ωt + β(t)))] + ǫ 3 r(ǫ, t) (40) 
with ωǫ = ω + ǫσ and r uniformly bounded in C 2 (0, t ǫ ) and with a, β solution of (34)

Proof. Indeed after eliminating terms at frequency ν 1 , we go back to the variable t for the third equation (20).

d 2 r dt 2 + ω 2 r = S3 with S3 = S ♯ 3 (t, ǫ) -ǫ R(u (1) , u (2) , r, ǫ) with R = R -D 3 r -λ( dr dt -D 0 r
) with all the terms expressed with the variable t. We express S ♯ 2 in (27) by inserting D 1 a, D 1 β by their expressions in (25) and using θ = ωǫ t + β; this function is not periodic but is close to a periodic function S ♯ 3 by replacing β by β. As the solution of (34) is stable, for t ≤ ς ǫ 2 :

|β(ǫt, ǫ 2 t) -β| ≤ ǫ 2 C 1 , |a(ǫt, ǫ 2 t) -ā| ≤ ǫ 2 C 2 and |S ♯ 3 -S ♮ 3 | ≤ ǫ 2
C 3 so this difference may be included in the remainder R. We use lemma 5.1 of Appendix (already introduced in [BR13]); with S = S ♮ 3 ; it satisfies lemma hypothesis; similarly, we use R = R; it satisfies the hypothesis because it is a polynomial in the variables r, u 1 , ǫ,with coefficients which are bounded functions, so it is lipschitzian on bounded subsets.

Remark 2.10. The previous proposition states that for well prepared data close to the stationary solution, the triple scales approximation converges in the sense that the difference between the solution and its approximation is equal to ǫ 3 r where r is a function which remains bounded in C 2 (0, t ǫ ) with t ǫ = γ ǫ , for some constant γ, with ǫ going to 0.

Maximum of the stationary solution, primary resonance

We consider the stationary solution of (34), it satisfies,

g 1 (a, β, σ, ǫ) = 0, g 2 (a, β, σ, ǫ) = 0 (41)
with formulae (36). We are going to find an expansion of a, β, σ with respect to the small parameter ǫ when σ → a reaches a maximum. The idea is that the functions (σ, ǫ) → (a, β) are defined implicitly by the previous equations; the jacobian matrix is

g 1a , g 1β g 1σ g 1ǫ g 2a g 2β g 2σ g 2ǫ
and its sub matrix J aβ is:

J(a, β) = g 1a g 1β g 2a g 2β
in paragraph 2.3.2, we have proved previously that when σ, ǫ are small enough, J aβ = 0 and so with the implicit function theorem, in a neighbourhood of the stationary solution, there exists a regular function (σ, ǫ) -→ (a, β).

We first transform (35) (36) in the following way

g 1 (a, β, σ, ǫ) = (- F m sin(β) 2ω - λa 2 ) + ǫA 1 (a, β, σ) + O(ǫ 2 ) = 0 (42) g 2 (a, β, σ, ǫ) = (-σ - 3da 2 8ω - F m cos(β) 2aω ) + ǫA 2 (a, β, σ) + O(ǫ 2 ) = 0 (43) with A 1 (a, β, σ) = 3dλa 3 16ω 2 + σF m sin β 4ω 2 + λF m cos β 8ω 2 + 9da 2 F m sin β 32ω 3 A 2 (a, β, σ) = - λ 2 8ω - 15d 2 a 4 256ω 3 - 5c 2 a 2 12ω 3 + σF m cos β 4ω 2 a + 3daF m cos β 32ω 3 - λF m sin β 8ω 2 a
We derive a first approximation of sin β and cos β by neglecting terms of order one in ǫ:

Fm sin β 2ω = -λa 2 + O(ǫ) Fm cos β 2ω = 3da 3 8ω -σa + O(ǫ) (44) 
Using dg1 dσ = 0, we get

F m cos(β) 2ω ∂β ∂σ - λ 2 ∂a ∂σ + ǫ dA 1 dσ + O(ǫ) = 0 ( 45 
)
When a is maximum with respect to σ, we get another equation ∂a ∂σ = 0; with previous equation, we get a third equation g 3 = 0 with

g 3 (a, β, σ, ǫ) = F m cos(β) 2ω ∂β ∂σ + ǫ dA 1 dσ + O(ǫ)
We have for ǫ = 0, ∂g3 ∂a = 0, ∂g3 ∂σ = 0; we denote a * 0 , β * 0 , σ * 0 the solution of the 3 equations for ǫ = 0. We differentiate (44) with respect to σ; when ∂a ∂σ = 0, we obtain for the first approximation

Fm cos(β * 0 ) ω ∂β * 0 ∂σ = 0, - Fm sin(β * 0 ) 2ω ∂β * 0 ∂σ + a * 0 = 0 (46)
and so cos(β * 0 ) = 0, sin(β * 0 ) = ±1; if we use (42), we notice that a change of sign of sin(β * 0 ) changes the sign of a; so we choose sin(β * 0 ) = -1 and a 0 has the sign of F m ; then with (42), (43), the following equalities hold:

a * 0 = F m λω , σ * 0 = 3da * 2 0 8ω = 3dF 2 m 8λ 2 ω 3 ; (47)
with ( 46), we get also

∂β * 0 ∂σ = 2ωa * 0 Fm = 2 λ .
We remark that c is not involved in these formulas. Then we can compute for ǫ = 0, ∂g3 ∂a = 0; ∂g3 ∂β = -Fm sin(β) 2ω ∂β ∂σ = -Fm λω ; ∂g3 ∂σ = 0. So we obtain that the determinant of the extended matrix

J ♣ (a, β, σ) =   g 1a g 1β g 1,σ g 2a g 2β g 2,σ g 3a g 3β g 3,σ   is not zero for (a * 0 , β * 0 , σ * 0 )
; so once more, we can use the implicit function theorem to define differentiable functions ǫ -→ (a * , β * , σ * )

where we denote a * , β * , σ * the solution of the 3 equations.

After this first approximation, we look for an expansion of these functions: ǫ -→ (a * , β * , σ * );

a * = a * 0 + ǫa * 1 + O(ǫ 2 ), β * = β * 0 + ǫβ * 1 + O(ǫ 2 ), σ * = σ * 0 + ǫσ * 1 + O(ǫ 2 ). ( 48 
)
We perform some preliminary computations of

A * 1,0 = A 1 (a * 0 , β * 0 , σ * 0 ), A * 2,0 = A 2 (a * 0 , β * 0 , σ * 0 ); A * 1,0 = 3dλa * 3 0 16ω 2 + σ * 0 F m sin(β * 0 ) 4ω 2 + 9da * 2 0 F m sin β * 0 32ω 3 A * 2,0 = - λ 2 8ω - 15d 2 a * 4 0 256ω 3 - 5c 2 a * 2 0 12ω 3 - λF m sin β * 0 8ω 2 a 0
then, we use the values of (47) and we get

A * 1,0 = - F m σ * 0 2ω 2 = - λa * 0 σ * 0 2ω , ∂A * 1,0 ∂σ = F m sin(β * 0 ) 4ω 2 = - a * 0 λ 4ω A * 2,0 = - 15d 2 a * 4 0 256ω 3 - 5c 2 a * 2 0 12ω 3 = - 5σ * 2 0 12ω - 5c 2 a * 2 0 12ω 3 , ∂A * 2,0 ∂σ = -F m cos(β * 0 ) 4ω 2 a = 0 (49) ∂A * 1,0 ∂β = σF m cos(β * 0 ) 4ω 2 - λF m sin(β * 0 ) 8ω 2 + 9da 2 F m cos(β * 0 ) 32ω 3 = λF m 8ω 2 = λ 2 a * 0 8ω (50) ∂A * 2,0 ∂β = - σ * 0 F m sin(β * 0 ) 4ω 2 a * 0 - 3da * 0 F m sin(β * 0 ) 32ω 3 - λF m cos(β * 0 ) 8ω 2 a (51) = σ * 0 F m 4ω 2 a * 0 + 3da * 0 F m 32ω 3 = σ * 0 F m 2ω 2 a * 0 = σ * 0 λ 2ω ; (52) 
On the other hand, we notice that sin(

β 0 + ǫβ 1 + O(ǫ 2 )) = -1 + O(ǫ 2
) and with (47), we expand formula (42) to obtain at second order

λa * 1 2 = A * 1,0 = - λa * 0 σ * 0 2ω
and therefore

a * 1 = - a * 0 σ * 0 ω (53) 
We compute

∂g * 1,0 ∂σ = ǫ ∂A * 1,0 ∂σ + O(ǫ 2 ) = -ǫ λa 0 4ω + O(ǫ 2 ) (54) ∂g * 1,0 ∂β = F m cos(β) 2ω + ǫ ∂A * 1,0 ∂β + O(ǫ 2 ) = -ǫ F m β * 1 2ω -ǫ λ 2 a * 0 8ω + O(ǫ 2 ); (55) 
where we have used cos(

β 0 + ǫβ 1 + O(ǫ 2 )) = -ǫβ 1 + O(ǫ 2
) and ∂a ∂σ = 0

dg 1 dσ = ∂g * 1,0 ∂σ + ∂g * 1,0 ∂β ∂β ∂σ + ∂g * 1,0 ∂β ∂a ∂a + O(ǫ 2 ) = ǫ - λa * 0 4ω + - F m β * 1 2ω - λ 2 a * 0 8ω - 2 λ + O(ǫ 2 ) = -ǫa * 0 (β * 1 + λ 2ω ) + O(ǫ 2 ) ( 56 
)
as dg1 dσ = 0, we get

β * 1 = - λ 2ω . ( 57 
)
We use these approximations in the second equation ( 43) to obtain

-(σ * 0 + ǫσ * 1 ) + 3da * 2 0 8ω + 6ǫ da * 0 a * 1 8ω + F m β * 1 2a * 0 ω + ǫA * 2,0 + O(ǫ 2 ) = 0 ( 58 
)
and hence

σ * 1 = 3da * 0 a * 1 4ω + F m β * 1 2a * 0 ω + A * 2,0 (59) 
= 3da * 0 4ω -a * 0 σ * 0 ω + F m 2a * 0 ω -λ 2ω + A * 2,0 = -2 σ 2 0 ω - λ 2 4ω + A * 2,0 = -29 σ * 2 0 12ω - 5c 2 a 2 0 12ω 3 - λ 2 4ω ( 60 
)
We can check the computations by using another way, see Appendix in subsection 5.3 We remark that we get a frequency slightly different of the free vibration frequency associated to the same amplitude.

We have obtained the following important result.

Proposition 2.4. The stationary solution of (34) satisfies

( Fm sin(β) 2ω -λa 2 ) + ǫA 1 (a, β, σ) + O(ǫ 2 ) = 0 (σ -3da 2 8ω + Fm cos(β) 2aω ) + ǫA 2 (a, β, σ) + O(ǫ 2 ) = 0 (61) with A 1 (a, β, σ) = 3dλa 3 16ω 2 + σF m sin β 4ω 2 + λF m cos β 8ω 2 + 9da 2 1 F m sin β 32ω 3 A 2 (a, β, σ) = - λ 2 8ω - 15d 2 a 4 256ω 3 - 5c 2 a 2 1 12ω 3 + σF m cos β 4ω 2 a 1 + c 3daF m cos β 32ω 3 - λF m sin β 8ω 2 a 1
this stationary solution reaches its maximum amplitude for

σ = σ * 0 + ǫσ * 1 + O(ǫ 2 ), a * = a * 0 + ǫa * 1 + O(ǫ 2 ), β * = β * 0 + ǫβ * 1 + O(ǫ 2 ) with a * 0 = F m λω , σ * 0 = 3da * 2 0 8ω = 3F 2 m 8λ 2 ω 3 , β * 0 = - π 2 ( 62 
)
and

σ * 1 = - 29 12ω σ * 2 0 - 5c 2 a * 2 0 12ω 3 - λ 2 4ω = - 87d 2 a 4 0 256ω 3 - 5c 2 a * 2 0 12ω 3 - λ 2 4ω , β * 1 = -λ 2ω , a * 1 = - a * 0 σ * 0 ω
the periodic forcing is at the angular frequency

ωǫ = ω + ǫσ * 0 + ǫ 2 σ * 1 + O(ǫ 2
) it is slightly different of the approximate angular frequency ν ǫ of the undamped free periodic solution associated to the same amplitude. (15); for this frequency, the approximation (of the solution ũ = ǫu of (16) up to the order ǫ 2 ) is periodic:

     ũ(t) = ǫa * cos(ω ǫ t + β * t) +ǫ 2 [ -ca * 2 2ω 2 + ca * 2 6ω 2 cos(2(ω ǫ t + β * )) + da * 3 32ω 2 cos(3(ω ǫ t + β * ))] + ǫ 3 r(ǫ, t) ũ(0) = ǫa * + ǫ 2 [ -ca * 2 3ω 2 + da * 3 32ω 2 ] + O(ǫ 3 ), u(0) = O(ǫ 3 ) (63) with r bounded in C 2 (0, t ǫ )
Remark 2.11. We remark that, for ǫ small enough, this value of σ * is indeed smaller than the maximal value that σ may reach in order that the previous expansion converges as indicated in proposition 2.3. Remark 2.12. We have obtained an expansion of ωǫ up to order ǫ 2 to be compared with the expansion with a double scale analysis (see in [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF]); in particular the amplitude dependence on the frequency of the applied force depends on the ratio of c and d; see numerical results below.

We have justified the basic behaviour of a primary resonance; many other phenomena may appear like subharmonic resonances, see for example [START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF]. In figure 2, we use ǫ = 0.01, λ = 1/2, c = 1, d = 1, ω = 1, F = 1. On the left, the solid line displays the amplitude of the solution of this equation with respect to values of the frequency; we have solved (41) with the routine fsolve of Scilab; it implements a variant of the hybrid method of Powell. In proposition 2.2, the solution is stable when sigma is small enough; the routine fsolve fails to solve the equation when σ is too large; then we have exchanged the use of σ and a. The dotted line plots the amplitude of the free solution with respect to its frequency. On the right, the phase γ = -β is plotted with respect to the frequency; it is also obtained by solving (41) with the routine fsolve.

In figure 3, we use ǫ = 0.01, λ = 1/2, c = 6, d = 1/4, ω = 1, F = 1. On the left the solid line displays the amplitude of the solution with respect to values of the frequency; on the right the phase γ is plotted. We notice that the behaviour is quite different of the previous plots.

Remark 2.13. We emphasise that the behaviour of the last plots is linked to the ration of c and d; this type of behaviour cannot be obtained with double scale expansion ; see [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF]. 

Free vibrations, triple scale expansion up to second order

We consider a system of several vibrating masses attached to springs:

M ü + K ũ + Φ(ũ, ǫ) = 0 ( 64 
)
The mass matrix M and the rigidity matrix K are assumed to be symmetric and positive definite. We assume that the non linearity is local, all components are zero except for two components p -1, p which correspond to the end points of some spring assumed to be non linear:

Φ p-1 (ũ) = c(ũ p -ũp-1 ) 2 + d ǫ (ũ p -ũp-1 ) 3 , Φ p = -Φ p-1 (65) 
In order to get an approximate solution, we are going to display the equation in the generalised eigenvector basis:

Kφ k = ω 2 k M φ k , with φ T k M φ l = δφ kl , k, l = 1 . . . , n (66) 
So we perform the change of functions:

ũ = n k=1 ỹk φ k ; K ũ = n k=1 ỹk Kφ k = n k=1 ỹk ω 2 k M φ k ; M ü = n k=1 ÿk M φ k (67) we obtain ÿk + ω 2 k ỹk + φ T k Φ( n i=1 ỹi φ i , ǫ) = 0, k = 1 . . . , n
As Φ has only 2 components which are not zero, it can be written

ÿk + ω 2 k ỹk + (φ k,p-1 -φ k,p ) Φ p-1 ( n i=1 ỹi φ i , ǫ) = 0, k = 1 . . . , n or more precisely ÿk + ω 2 k ỹk + (φ k,p-1 -φ k,p ) c n i=1 ỹi (φ i,p -φ i,p-1 ) 2 + d ǫ n i=1 ỹi (φ i,p -φ i,p-1 ) 3 = 0, k = 1 . . . , n (68) 
Remark 3.1. As we intend to look for a small solution, we consider a change of function ỹk = ǫy k and we obtain the transformed equation:

ÿk + ω 2 k y k + (φ k,p-1 -φ k,p ) ǫc n i=1 y i (φ i,p -φ i,p-1 ) 2 + ǫd n i=1 y i (φ i,p -φ i,p-1 ) 3 = 0, k = 1 . . . , n (69) 

Derivation of an asymptotic expansion

As for the 1 degree of freedom case, we use a triple scale expansion to compute an approximate small solution; more precisely, we look for a solution close to a normal mode of the associated linear system; we denote this mode by subscript ω 1 ; obviously by permuting the coordinates, this subscript could be anyone (different of p, this case would give similar results with slightly different formulae); we set

T 0 = ω 1 t, T 1 = ǫt, T 2 = ǫ 2 t hence D 0 y k = ∂y k ∂T 0 , D 1 y k = ∂y k ∂T 1 and D 2 y k = ∂y k ∂T 2 (70) 
and we use the ansatz:

y k (t) = y k (T 0 , T 1 , T 2 ) = y (1) k (T 0 , T 1 , T 2 ) + ǫy (2) k (T 0 , T 1 , T 2 ) + ǫ 2 r k (T 0 , T 1 , T 2 ) (71)
So we have:

d 2 y k dt 2 = ω 2 1 D 2 0 y (1) k + ǫ 2ω 1 D 0 D 1 y (1) k + D 2 0 y (2) k + ǫ 2 2ω 1 D 0 D 2 y (1) k + D 2 1 y (1) k + 2ω 1 D 0 D 1 y (2) k + D 2 0 r + ǫ 3 2D 1 D 2 y (1) k + 2ω 1 D 0 D 2 y (2) k + D 2 1 y (2) k + D 3 r k + ǫ 4 D 2 2 y (1) k + 2D 1 D 2 y (2) k + ǫD 2 2 y (2) k (72) 
with

D 3 r k = 1 ǫ d 2 r k dt 2 -ω 2 1 D 2 0 r k = 2ω 1 D 0 D 1 r k + ǫ[2ω 1 D 0 D 2 r k + D 2 1 r k ] + 2ǫ 2 D 1 D 2 r k + ǫ 3 D 2 2 r k
We plug previous expansions (71) and ( 72) into (69); by identifying the coefficients of the powers of ǫ in the expansion of (69), we get:

     ω 2 1 D 2 0 y (1) k + ω 2 k y (1) k = 0 , k = 1 . . . , n ω 2 1 D 2 0 y (2) k + ω 2 k y (2) k = S 2,k , k = 1 . . . , n ω 2 1 D 2 0 r k + ω 2 k r k = S 3,k , k = 1 . . . , n (73) 
where S 2,k , S 3,k are defined below; to simplify the manipulations, we set δφ kp = (φ k,p -φ k,p-1 );

S 2,k = -cδφ kp   l,m y (1) l δφ lp y (1) m δφ mp   -dδφ kp   g,l,o
y (1) g y

(1)

l δφ lp y (1) o δφ gp δφ op   -2ω 1 D 0 D 1 y (1) k S 3,k = -cδφ kp   l,j y (1) l y 
(2)

j δφ lp δφ jp   -dδφ kp   h,g,l y (1) 
h y (1) g y

(2)

l δφ hp δφ gp δφ lp   -2ω 1 D 0 D 2 y (1) k -D 2 1 y (1) k -2ω 1 D 0 D 1 y (2) k -ǫR k (y (1) 1 , y (2) 
1 , r k , ǫ) with R k (ǫ, r k , y (1) 
k , y

(2)

k ) = 2D 1 D 2 y (1) k + 2ω 1 D 0 D 2 y (2) k + D 2 1 y (2) k + cδφ kp   l,j y (2) j y 
(2)

j δφ lp δφ jp   + cδφ kp   l,j y (1) j r l δφ jp δφ lp   + dδφ kp   h,g,l y (1) 
h y (2) g y

(2)

l δφ hp δφ gp δφ lp   + dδφ kp   h,g,l y (1) h y (1) g r l δφ hp δφ gp δφ lp   + D 3 r k + ǫ(D 2 2 y (1) k + 2D 1 D 2 y (2) k + ǫD 2 2 y (2) k ) + ǫρ(y (1) k , y (2) 
k , r k , ǫ)

and with a polynomial in the variables r n with coefficients y

(1)

l , y (2) m , ρ(y (1) 
k , y

(2) We set θ(T 0 , T 1 , T 2 ) = T 0 + β 1 (T 1 , T 2 ); we note that

k , r k , ǫ) = cδφ kp   l,j y (2) 
D 0 θ = 1, D 1 θ = D 1 β and D 2 θ = D 2 β 1 ;
we solve the first set of equations ( 73), imposing O(ǫ 3 ) initial Cauchy data for k = 1 and D 0 y

(1) 1 (0) = 0; we get:

y (1) 1 = a 1 (T 1 , T 2 ) cos(θ) y (1) k = 0, k = 2 . . . n (75) 
Remark 3.2. We note that a 1 and β 1 are not constants but functions of times T 1 and T 2 because u depends on these times scales. The dependence of these functions with respect to T 1 and T 2 will be determined by solving the equations of the following orders and eliminating secular terms.

First, we determine the dependence in T 1 ; we manipulate the right hand sides:

S 2,1 = -δφ 1p ca 2 1 2 (1 + cos(2θ))δφ 2 1p + da 3 1 4 (cos(3θ) + 3 cos(θ))δφ 3 1p + 2ω 1 [a 1 D 1 β 1 cos(θ) + D 1 a 1 sin(θ)] S 2,k = -δφ kp ca 2 1 2 (1 + cos(2θ))δφ 2 1p + da 3 1 4 (cos(3θ) + 3 cos(θ))δφ 3 1p , for k = 1
In S 2,1 , we gather the terms at angular frequency ω 1 ;

S 2,1 = -3 da 3 1 4 cos(θ))δφ 4 1p + 2ω 1 [a 1 D 1 β 1 cos(θ) + D 1 a 1 sin(θ)] + S ♯ 2 (76) with S ♯ 2,1 = -δφ 1p ca 2 1 2 (1 + cos(2θ))δφ 2 1p + da 3 1 4 cos(3θ)δφ 3 1p
It appears some terms at the frequency of the system, these terms provide a solution y

(2) 1

of the equation (73) which is non periodic and non bounded over long time intervals. We will eliminate these terms by imposing:

D 1 a 1 = 0 D 1 β 1 = 3dδφ 4 1p a 2 1 8ω1 (77) 
and if we assume that ω 2 1 is a simple eigenvalue and ω 2 k = 9ω 2 1 , ω 2 k = 4ω 2 1 (no internal resonance), the solution of the second equation ( 73) is:

   y (2) 1 = δφ 3 1p [- ca 2 1 2ω 2 1 + ca 2 1 6ω 2 1 cos(2θ)] + δφ 4 1p da 3 1 32ω 2 1 cos(3θ) y (2) k = δφ kp δφ 2 1p [- ca 2 1 2ω 2 k + ca 2 1 2(4ω 2 1 -ω 2 k ) cos(2θ)] + δφ kp δφ 3 1p da 3 1 4(9ω 2 1 -ω 2 k ) cos(3θ), k = 2, . . . , n.
(78) where we have omitted the term at angular frequency ω 1 which is redundant with y

(1) 1 . For the third set of equations of (73), r is the unknown, this equation contains non-linearities, we do not solve it but we show that the solution is bounded on an interval dependent of ǫ. The right hand side, after some manipulations is:

S 3,1 = sin(θ) 2ω 1 D 2 a 1 + 2D 1 a 1 D 1 β 1 + a 1 D 2 1 β 1 cos(θ) 2ω 1 a 1 D 2 β 1 -D 2 1 a 1 + a 1 (D 1 β 1 ) 2 + 5c 2 δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ 8 1p a 5 1 128ω 2 1 + S ♯ 3,1 -ǫR 1 (r 1 , ǫ, y (1) 
1 , y

where

S ♯ 3,1 = 5cdδφ 7 1p a 4 1 8ω 2 1 + sin 2θ 4cδφ 3 1p a 1 3ω 1 D 1 a 1 + cos 2θ 4cδφ 3 1p a 2 1 3ω 1 D 1 β 1 + 15cdδφ 7 1p a 4 1 32ω 2 1 + sin 3θ 9dδφ 4 1p a 2 1 16ω 1 D 1 a 1 + cos 3θ - c 2 δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ 8 1p a 5 1 64ω 2 1 + 9da 3 1 δφ 4 1p 16ω D 1 β 1 + cos 4θ - 5cdδφ 7 1p a 4 1 32ω 2 1 - 3d 2 δφ 8 1p a 5 1 128ω 2 1 cos 5θ (79)
and

S 3,k = cos(θ) 5c 2 δφ kp δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ kp δφ 8 1p a 5 1 128ω 2 1 + S ♯ 3,k -ǫR k (r k , ǫ, y (1) 
1 , y

where

S ♯ 3,k = 5cdδφ kp δφ 6 1p a 4 1 8ω 2 1 +sin 2θ 4cδφ kp δφ 2 1p a 1 3ω 1 D 1 a 1 +cos 2θ 4cδφ kp δφ 2 1p a 2 1 3ω 1 D 1 β 1 + 15cdδφ kp δφ 6 1p a 4 1 32ω 2 1 +sin 3θ 9dδφ kp δφ 3 1p a 2 1 16ω 1 D 1 a 1 +cos 3θ - c 2 δφ kp δφ 5 1p a 3 1 6ω 2 1 - 3d 2 δφ kp δφ 7 1p a 5 1 64ω 2 1 + 9dδφ kp δφ 3 11 a 3 1 16ω 1 D 1 β 1 + cos 4θ - 5cdδφ kp δφ 6 1p a 4 1 32ω 2 1 - 3d 2 δφ kp δφ 7 1p a 5 1 128ω 2 1 cos 5θ By imposing 2ω 1 D 2 a 1 + 2D 1 a 1 D 1 β 1 + a 1 D 2 1 β 1 = 0 2ω 1 a 1 D 2 β 1 -D 2 1 a 1 + a 1 (D 1 β 1 ) 2 + 5c 2 δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ 8 1p a 5 1 128ω 2 1 = 0 we get that S 3,1 = S ♯ 3,1 -ǫR 1 (r 1 , ǫ, y (1) 
1 , y

(2) 1 ) contains no terms at the frequency of the system. As D 1 a 1 = 0 and

D 1 β 1 = -3dδφ 4 1p a 2 1 8ω1
, we obtain

2ω 1 a 1 D 2 β 1 + a 1 3dδφ 4 1p a 2 1 8ω 1 2 + 5c 2 δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ 8 1p a 5 1 128ω 2 1 = 0 so: D 2 a 1 (T 2 ) = 0 and D 2 β 1 (T 2 ) = - 5c 2 δφ 6 1p a 2 1 12ω 3 1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 (80)
As a, β do not depend on T 0 ,

da1 dt = ǫD 1 a 1 + ǫ 2 D 2 a 1 + O(ǫ 3 ) dβ dt = ǫD 1 β + ǫ 2 D 2 β + O(ǫ 3 ) (81)
and taking into account (77) and (80),we obtain:

da 1 dt = 0 and dβ 1 dt = ǫ 3dδφ 4 1p a 2 1 8ω 1 + ǫ 2 -5c 2 δφ 6 1p a 2 1 12ω 3 1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 (82)
As a result, the solution of these equations is:

a 1 = cte and β 1 = ǫ 3dδφ 4 1p a 2 1 8ω 1 + ǫ 2 - 5c 2 δφ 6 1p a 2 1 12ω 3 1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 t (83) 
In order to show that r 1 is bounded, after eliminating the secular terms, we can go back to the variable t in the equation of r k , we get:

d 2 r 1 dt 2 + ω 2 1 r 1 = S3,1 with S3,1 = S ♯ 3,1 (t, ǫ) -ǫ R1 (r 1 , ǫ, y (1) 
1 , y

(2) 1 ) d 2 r k dt 2 + ω 2 1 r k = S3,k with S3,k = S ♯ 3,k (t, ǫ) -ǫ Rk (r k , ǫ, y (1) 
k , y

(2)

k ) k = 2, . . . , n
where S ♯ 3,1 is in (79) where all time scales T 0 , T 1 , T 2 are expressed with the time variable t.

R1 = R 1 (ǫ, r 1 , y (1) 
1 , y

(2) 1 ) -D 3 r 1

After these manipulations, we can state a proposition which will be easily proved with technical lemmas of the Appendix.

Proposition 3.1. We assume that ω 2 1 is a simple eigenvalue and ω 2 k -9ω 2 1 = 0, ω 2 k -4ω 2 1 = 0 (no internal resonance), then it exists ς > 0 such that for all t ≤ t ǫ = ς ǫ 2 , the solution ỹk = ǫy k of (68) with the initial data

ỹ1 (0) = ǫa 1 + ǫ 2 (- č1 a 2 1 3ω 2 1 + ď1 a 3 1 32ω 2 1 ) + ǫ 3 r 1 (ǫ, 0), ẏ1 (0) = O(ǫ) ỹk (0) = ǫ 2 [- čk a 2 1 2ω 2 k + čk a 2 1 2(4ω 2 1 -ω 2 k ) + ďk a 3 1 4(9ω 2 1 -ω 2 k ) ] + ǫ 3 r k (ǫ, 0), ẏk (0) = O(ǫ) (84) 
has the following expansion:

   ỹ1 (t) = ǫa 1 cos(ν ǫ t) + ǫ 2 [-č1a 2 1 2ω 2 1 + č1a 2 1 6ω 2 1 cos(2(ν ǫ t)) + ď1a 3 1 32ω 2 1 cos(3(ν ǫ t))] + ǫ 3 r 1 (ǫ, t) ỹk (t) = ǫ 2 [-čk a 2 1 2ω 2 k + čk a 2 1 2(4ω 2 1 -ω 2 k ) cos(2(ν ǫ t)) + ďk a 3 1 4(9ω 2 1 -ω 2 k ) cos(3(ν ǫ t))] + ǫ 3 r k (ǫ, t) (85) 
with r k uniformly bounded in C 2 (0, t ǫ 2 ) for k = 1, . . . n and the angular frequency

ν ǫ = ω 1 + ǫ( 3 ď1 a 2 1 8ω 1 ) + ǫ 2 -5č 2 1 a 2 1 12ω 3 1 - 15 ď2 1 a 4 1 256ω 3 1 + O(ǫ 3 ) ( 86 
)
with δφ 1p = (φ 1,p -φ 1,p-1 ), δφ kp = (φ k,p -φ k,p-1 ), č1 = c(δφ 1p ) 3 , ď1 = d(δφ 1p ) 4 and čk = c(δφ 1p ) 2 δφ kp , ďk = d(δφ 1p ) 3 δφ kp Corollary 3.1. The solution of (64) with initial conditions

t φ 1 ũ(0) = ǫa 1 + ǫ 2 (- ča 2 1 3ω 2 1 + ďa 3 1 32ω 2 1 ) + ǫ 3 r 1 (ǫ, 0), t φ 1 u(0) = O(ǫ 2 ) t φ k ũ(0) = ǫ 2 [- čk a 2 1 2ω 2 k + čk a 2 1 2(4ω 2 1 -ω 2 k ) + ďk a 3 1 4(9ω 2 1 -ω 2 k ) ] + ǫ 3 r k (ǫ, 0), t φ k u(0) = O(ǫ 2 ) (87) is ũ(t) = n k=1 ỹk (t)φ k + ǫ 3 r(t, ǫ) (88) 
with the expansion of y k of previous proposition.

Proof. For the proposition, we use lemma 5.4; set S 1 = S3,1 , S k = S 3,k for k = 1, . . . n; as we have enforced (83), the functions S k are periodic, bounded, and are orthogonal to e ±it , we have assumed that ω k and ω 1 are Z independent for k = 1; then S satisfies satisfies the lemma hypothesis. Similarly, set g = R, its components are polynomials in r with coefficients which are bounded functions, so it is lipschitzian on the bounded subsets it satisfies the hypothesis of the lemma and so the proposition is proved. The corollary is an easy consequence of the proposition and the change of function (67)

Remark 3.3.

1. We have obtained a periodic asymptotic expansion of a solution of system (64); they are called non linear normal modes in the mechanical community ([KPGV09, JPS04]. If the initial condition is close to an eigenvector Φ 1 up to second order, the component of the solution on this eigenvector has an approximation which has the same form as for the single degree of freedom system; the other components remain small. 2. The frequency shift is given by a similar formula with c replaced by č = c(φ 1,p -φ 1,p-1 ) 3 , d replaced by ď = d(φ 1,p -φ 1,p-1 ) 4 ; so the frequency shift depends on the position of non-linearity with respect to the components of the associated eigenvector.

3. In the spirit of inverse problems, this previous point opens a way to localise the non-linearity.

4. We do not study the periodicity of the solution itself but as the system is Hamiltonian, it could be obtained from general results, for example see [START_REF] Meyer | Hall Introduction to Hamiltonian dynamical systems and the N-Body problem[END_REF].

5. In the next section, under the assumption of no internal resonance, we shall derive that the frequencies of the normal mode are close to resonant frequencies for an associated forced system, the so called primary resonance; with some changes, secondary resonance could be derived along similar lines.

Numerical results

We consider numerical solution of (64) with (65); we have chosen M = I; u = 0 at both ends, so ; C = λI with λ = 1/2; for numerical balance, we have computed u ǫ ; with the choice p = 1 we have Φ 1 = ǫ[cu 2 1 + du 3 1 ] with c = 1, d = 1. In figure 3.1.2, for 29 degrees of freedom, we find the Fourier transform of the components; some components have the same transform; the graphs are slightly non symmetric; we find also several curves in phase space for some components of the system.

K is the classical matrix k       2 -1 . . . . . . . . . . . . . -1 2 -1 . . . . . . . . 0 
We remark that up to numerical integration errors, all frequencies are equal and the components are periodic. All these characteristics are coherent with the results obtained by asymptotic expansions: an approximation of a non linear normal mode which is a continuation with respect to ǫ of a linear normal mode.

Forced, damped vibrations, triple scale expansion

Derivation of an asymptotic expansion

We consider a similar system of forced vibrating masses attached to springs with some damping and submitted to a periodic forcing: with the same assumptions as in subsection 3.1. We assume that the non linearity is local, all components are zero except for two components p -1, p which correspond to the endpoints of some spring assumed to be non linear. As for free vibrations, we perform the change of function

M ü + ǫC u + Ku + Φ(ũ, ǫ) = ǫ 2 F cos ωǫ t (89) 
ũ = n k=1 ỹk φ k (90) 
with φ k , the generalised eigenvectors of (66). However, the distribution of damping is almost always unknown and it is usually necessary to make an assumption about its distribution; a simple and widely used hypothesis is to choose a modal damping ( hypothesis of Basile in french terminology):

C = ǫ M M + ǫ K K Therefore ÿk + ǫλ k ẏk + ω 2 k ỹk + t φ k Φ( n i=1 ỹi φ i , ǫ) = ǫ 2 f k cos ωǫ T 0 , k = 1 . . . , n with ǫ M + ǫ K ω 2 k = λ k and t φ k F = f k
As for the free vibration case, Φ has only 2 components which are not zero, so the system can be written:

ÿk + ǫλ k ẏk + ω 2 k ỹk + (φ k,p-1 -φ k,p ) c n i=1 ỹi (φ i,p -φ i,p-1 ) 2 + d ǫ n i=1 ỹi (φ i -φ i,p-1 ) 3 = ǫ 2 f k cos ωǫ T 0 , for k = 1 . . . , n (91) 
Remark 3.4. As we intend to look for a small solution, we consider a change of function ỹk = ǫy k and we obtain the transformed equation:

ÿk + ǫλ k ẏk + ω 2 k y k + (φ k,p-1 -φ k,p ) ǫc n i=1 y i (φ i,p -φ i,p-1 ) 2 + ǫd n i=1 y i (φ i -φ i,p-1 ) 3 = ǫf k cos(ω ǫ t) for k = 1 . . . , n (92) 
We will highlight a link between the frequency of the free solution of the preceding paragraph and the amplitude of the steady state forced solution; it is assumed that the excitation frequency is close to the natural frequency of the linear system

ωǫ = ω 1 + ǫσ (93) 
As in the previous case, we look for a small solution with a triple scale expansion, more precisely, we look for a periodic solution close to an eigenmode of the linear system, for example, we consider mode y 1 (by permuting the indexes it could be any mode); we set:

T 0 = ωǫ t, T 1 = ǫt, T 2 = ǫ 2 t hence D 0 y k = ∂y k ∂T 0 , D 1 y k = ∂y k ∂T 1 and D 2 y k = ∂y k ∂T 2 with S 2,k = -cδφ kp   l,m y (1) 
l δφ lp y (1) m δφ mp   -dδφ kp g,n,o y (1) g δφ gp y (1) n δφ np y (1) o δφ op -2ω 1 D 0 D 1 y (1) k -λ k ω 1 D 0 y (1) 
k -2ωσD 2 0 y

(1)

k + f k cos(T 0 ), S 3,k = -cδφ kp   l,j y (1) l y 
(2)

j δφ lp δφ jp   -dδφ kp   h,g,n y (1) h y (1) g y (2) n δφ hp δφ gp δφ np   -2ω 1 D 0 D 2 y (1) k -D 2 1 y (1) k -2ω 1 D 0 D 1 y (2) k -σ 2 D 2 0 y (1) k -2ω 1 σD 2 0 y (1) k -2σD 0 D 1 y (1) k -2ω 1 σD 2 0 y (2) k -λ k D 1 y (1) k --λ k σD 0 y (1) k -λ k ω 1 D 0 y (2) k -ǫR k (ǫ, r k , y (1) 1 , y (2) 
1 ) where δφ kp = (φ k,p -φ k,p-1 ) and with

R k (ǫ, r k , y (1) k , y (2) k ) = 2D 1 D 2 y (1) k + 2ω 1 D 0 D 2 y (2) k + D 2 1 y (2) k + cδφ kp   l,j y (2) j y 
(2)

j δφ lp δφ jp   + cδφ kp   l,j y (1) j r l δφ jp δφ lp   + dδφ kp   h, g,n y (1) 
h y (2) g y (2) n δφ hp δφ gp δφ np   + dδφ kp   h, g,n y (1) 
h y (1) g r n δφ hp δφ gp δφ np   λ k (ω 1 D 0 r + D 2 y (1) k + D 1 y (2) k + ǫD 2 y (2) k ) + D 3 r + ǫ D 2 2 y (1) k + 2D 1 D 2 y (2) k + ǫD 2 2 y (2) k + λ k ( dr dt -ω 1 D 0 r) + ǫρ(y (1) k , y (2) 
k , r k , ǫ)

and the polynomial ρ displayed in (74). We solve the first set of equations (97) imposing initial Cauchy data for k = 1 of order O(ǫ 2 ) and D 0 y

(1) 1 (0) = 0 we get:

y (1) 1 = a 1 (T 1 , T 2 ) cos(θ) y (1) k = 0, k = 2, . . . , n (98) 
with θ(T 0 , T 1 , T 2 ) = T 0 + β(T 1 , T 2 ) for which we have D 0 θ = 1, D 1 θ = D 1 β 1 ; we put terms involving y 1 k , k ≥ 2 into R k ; so we obtain:

S 2,1 = -δφ 1p ca 2 1 2 (1 + cos(2θ))δφ 2 1p + da 3 1 4 (cos(3θ) + 3 cos(θ))δφ 3 1p + 2ω 1 (D 1 a 1 sin(θ) + a 1 (D 1 β 1 + σ) cos(θ)) + λ 1 a 1 ω 1 sin(θ) + f 1 (cos(θ) cos(β 1 ) + sin(θ) sin(β 1 )) S 2,k = -δφ kp ca 2 1 2 (1 + cos(2θ))δφ 2 1p + da 3 1 4 (cos(3θ) + 3 cos(θ))δφ 3 1p + f k (cos(θ) cos(β 1 ) + sin(θ) sin(β 1 )), k = 1, . . . , n.
We will eliminate the terms at angular frequency ω 1 hence the functions a 1 (T 1 , T 2 ) and β 1 (T 1 , T 2 ) satisfy:

2ω 1 D 1 a 1 + λ 1 a 1 ω 1 = -f 1 sin(β 1 ) 2ω 1 a 1 D 1 β 1 + 2ω 1 aσ - 3dδφ 4 1p a 3 1 4 = -f 1 cos(β 1 )
and the solution of the second equation of( 97) is:

   y (2) 1 = δφ 1p ( -ca 2 1 2ω 2 1 + ca 2 1 6ω 2 1 cos(2θ))δφ 2 1p + da 3 1 32ω 2 1 cos(3θ)δφ 3 1p y (2) k = δφ kp - ca 2 1 2(ω 2 k -ω 2 1 ) + ca 2 1 2(4ω 2 1 -2ω 2 k ) cos(2θ))δφ 2 1p + da 3 1 4(9ω 2 1 -ω 2 k ) cos(3θ)δφ 3 1p ( 99 
)
where we have omitted the term at frequency ω 1 which is redundant with y

(1) 1

For the third equation of (97), the unknown is r k ; we do not solve it but we show that the solution is bounded on an interval dependent on ǫ. After some manipulations, the right hand side is:

S 3,1 = + sin θ 2ω 1 D 2 a 1 + λ 1 a 1 D 1 β 1 + 2D 1 a 1 D 1 β 1 + a 1 D 2 1 β 1 + 2σD 1 a 1 + λ 1 a 1 σ +cos θ 2ω 1 a 1 D 2 β 1 -λ 1 D 1 a 1 -D 2 1 a 1 + a 1 (D 1 β 1 ) 2 + σ 2 a 1 + 2σa 1 D 1 β 1 + 5c 2 δφ 6 1p a 3 1 6ω 1 - 3δφ 8 1p d 2 a 5 1 128ω 1 + S ♯ 3 -ǫR(ǫ, r, u (1) , u (2) )
where

S ♯ 3,1 = 5cdδφ 7 1p a 4 1 8ω 2 1 + sin 2θ 4cδφ 3 1p a 1 3ω 1 D 1 a 1 + λ 1 cδφ 3 1p a 2 1 3ω 1 + cos 2θ 4cδφ 3 1p a 2 1 3ω 1 D 1 β 1 + 15cdδφ 7 1p a 4 1 32ω 2 1 + sin 3θ 9dδφ 4 1p a 2 1 16ω 1 D 1 a 1 + 3λ 1 dδφ 4 1p a 3 1 16ω 1 + cos 3θ 9dδφ 4 1p a 3 1 16ω 1 D 1 β 1 - c 2 δφ 6 1p a 3 1 6ω 2 1 - 3d 2 δφ 8 1p a 4 1 64ω 2 1 + cos 4θ - 3cdδφ 7 1p a 4 1 8ω 2 1 -cos 5θ 3d 2 δφ 8 1p a 5 1 128ω 2 1
and a similar expression for S ♯ 3,k . To eliminate the secular terms, we impose,

2ω 1 D 2 a 1 + λ 1 a 1 D 1 β 1 + 2D 1 a 1 D 1 β 1 + a 1 D 2 1 β 1 + 2σD 1 a 1 + λ 1 a 1 σ = 0 2ω 1 a 1 D 2 β 1 -λ 1 D 1 a 1 -D 2 1 a 1 + a 1 (D 1 β 1 ) 2 + σ 2 a 1 + 2σa 1 D 1 β 1 + 5c 2 δφ 6 1p a 3 1 6ω 2 1 - 3δφ 8 1p d 2 a 5 1 128ω 2 1 = 0
As a 1 and β 1 do not depend on T 0 , the following relations hold:

    da 1 dt = ǫD 1 a 1 + ǫ 2 D 2 a 1 + O(ǫ 3 ) dβ 1 dt = ǫD 1 β 1 + ǫ 2 D 2 β 1 + O(ǫ 3 ) (100)
On the other hand, we can determine the expression of D 2 a 1 and D 2 β, like for one degree of freedom:

         D 2 a 1 = 3dλ1δφ 4 1p a 3 1 16ω 2 1 + σf1 sin γ 4ω 2 1 + λ1f1 cos γ 8ω 2 1 + 9dδφ 4 1p a 2 1 f1 sin γ 32ω 3 1 D 2 γ = - λ 2 1 8ω1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 - 5c 2 δφ 6 1p a 2 1 12ω 3 1 + σf1 cos γ 4ω 2 1 a1 + 3dδφ 4 1p a1f1 cos γ 32ω 3 1 -λ1f1 sin γ 8ω 2 1 a1 (101) 
now we return to (100) introducing ( 99) and (101), we obtain:

da 1 dt = ǫ - f 1 sin(β) 2ω 1 + λ 1 a 1 2 + ǫ 2 3dλ 1 δφ 4 1p a 3 1 16ω 2 1 + σf 1 sin β 4ω 2 1 + λ 1 f 1 cos β 8ω 2 1 + 9dδφ 4 1p a 2 1 f 1 sin β 32ω 3 1 + O(ǫ 3 ) dβ dt = ǫ -σ + 3dδφ 4 1p a 2 1 8ω 1 - f 1 cos(β) 2ω 1 a 1 + ǫ 2 - λ 2 1 8ω 1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 - 5c 2 δφ 6 1p a 2 1 12ω 3 1 + σf 1 cos β 4ω 2 1 a 1 + 3dδφ 4 1p a 1 f 1 cos β 32ω 3 1 - λ 1 f 1 sin β 8ω 2 1 a 1 + O(ǫ 3 ) (102)
Remark 3.5. In this approach, like for one free degree of freedom, we are using the method of reconstitution. We notice these equations are similar to (34) Remark 3.6. S ♯ 3 + R(ǫ, r, u (1) , u (2) ) has no term at frequency ω 1 or which goes to ω 1 . This will allow us to justify this expansion in certain conditions, before we consider the stationary solution of the system (102) and the stability of the solution close to the stationary solution.

Stationary solution and stability

Let us consider the stationary solution of (102), it satisfies:

g 1 (a 1 , β 1 , σ, ǫ) = 0, g 2 (a 1 , β 1 , σ, ǫ) = 0 (103) with              g 1 = ǫ(-f1 sin(β) 2ω1 + λ1a1 2 )+ ǫ 2 ( 3dλ1δφ 4 1p a 3 1 16ω 2 1 + σf1 sin β 4ω 2 1 + λ1f1 cos β 8ω 2 1 + 9dδφ 4 1p a 2 1 f1 sin β 32ω 3 1 ) + O(ǫ 3 ) g 2 = ǫ(-σ + 3dδφ 4 1p a 2 1 8ω1 -f1 cos(β) 2ω1a1 ) +ǫ 2 (- λ 2 1 8ω1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 - 5c 2 δφ 6 1p a 2 1 12ω 3 1 + σf1 cos β 4ω 2 1 a1 - 3dδφ 4 1p a1f1 cos β 32ω 3 1 -λ1f1 sin β 8ω 2 1 a1 ) + O(ǫ 3 ) ( 104 
)
The situation is very close to the 1 d.o.f. case; except the replacement of c by č = cδφ 3 1p and d by of ď = dδφ 4 1p , the system (104) is the same as (36); the other components are zero. We state a similar proposition.

2ω 2 1 + č1 a 2 10 6ω 2 1 cos(2β 0 ) + ď1 a 3 10 32ω 2 1 cos(3β 0 ) + ǫ 3 r(0, ǫ), ỹk (0) = ǫ 2 -č 1 a 2 10 2(ω 2 k -ω 2 1 ) + č1 a 2 10 2(4ω 2 1 -ω 2 k ) cos(2β 0 ) + ď1 a 3 10 4(9ω 2 1 -ω 2 k ) cos(3(β 0 )) + ǫ 3 r(0, ǫ),
with similar expressions for ẏ1 (0), ẏk (0) and with (a 10 , β 0 ) close to the stationary solution (ā 1 , β)

|a 10 -ā1 | ≤ ǫ 2 C 1 , |β 0 -β| ≤ ǫ 2 C 1
has the following expansion

ỹ1 = ǫa 1 cos(ω ǫ t+β(t))+ǫ 2 [(( -č 1 a 2 1 2ω 2 1 + č1 a 2 1 6ω 2 1 cos(2(ω ǫ t+β(t)))+ ď1 a 3 1 32ω 2 1 cos(3(ω ǫ t+β(t))))]+ǫ 3 r 1 (t) ỹk = ǫ 2 ( -č k a 2 1 2(ω 2 k -ω 2 1 ) + čk a 2 1 2(4ω 2 1 -ω 2 k ) cos(2(ω ǫ t+β(t)))+ ďk a 3 1 4(9ω 2 1 -ω 2 k ) cos(3(ω ǫ t+β(t))) +ǫ 3 r k (t)
with a 1 , β solution of (102) and with r k uniformly bounded in C 2 (0, t ǫ ) for k = 1, . . . n and ω 1 , φ 1 are the eigenvalue and eigenvectors defined in (66), with δφ 1p = (φ 1,p -φ 1,p-1 ), δφ kp = (φ k,p -φ k,p-1 ), č1 = c(δφ 1p ) 3 , ď1 = d(δφ 1p ) 4 and čk = c(δφ 1p ) 2 δφ kp , ďk = d(δφ 1p ) 3 δφ kp as in proposition 3.1.

Corollary 3.2. The solution of (89) with

φ T 1 ũ(0) = ǫa 1 + ǫ 2 -č 1 a 2 10 2ω 2 10 + -č 1 a 2 10 6ω 2 1 cos(2γ 0 ) + ď1 a 3 10 32ω 2 1 cos(3γ 0 ) + ǫ 3 r 1 (0, ǫ), φ T k ũ(0) = ǫ 2 -č 1 a 2 10 2(ω 2 k -ω 2 1 ) + č1 a 2 10 2(4ω 2 1 -ω 2 k ) cos(2γ 0 ) + ď1 a 3 10 4(9ω 2 1 -ω 2 k ) cos(3(γ 0 )) + ǫ 3 r k (0, ǫ),
with similar expressions for φ T 1 u(0), φ T k u(0) and with ω k , φ k the eigenvalues and eigenvectors defined in (66).

is ũ(t) = n k=1 ỹk (t)φ k (107)
with the expansion of y k of previous proposition.

Proof. We follow a similar route as for one degree of freedom, we use lemma 5.4. Set S 1 = S ♯ 31 , S k = S 3,k for k = 1, . . . n; as we have enforced (104), the functions S k are not periodic but close to a periodic function, bounded and are orthogonal to e ±it , we have assumed that ω k and ω 1 are Z independent for k = 1; so S satisfies the lemma hypothesis. Similarly, set g = R, it is a polynomial in r with coefficients which are bounded functions , so it is lipschitzian on the bounded subsets of R, it satisfies the hypothesis of lemma 5.4 and so the proposition is proved. The corollary is an easy consequence of the proposition and the change of function (90)

Maximum of the stationary solution

We can state results similar to the case of one degree of freedom.

Proposition 3.4. The stationary solution of (102) satisfies

(-f1 sin(β) 2ω1 + λ1a1 2 ) + ǫA 1 (a 1 , β, σ) + O(ǫ 2 ) = 0 (-σ + 3dδφ 4 1p a 2 1 8ω1 -f1 cos(β) 2a1ω1 ) + ǫA 2 (a 1 , β, σ) + O(ǫ 2 ) = 0 (108) with A 1 (a, β, σ) = 3dδφ 4 1p λ 1 a 3 1 16ω 2 1 + σf 1 sin β 4ω 2 1 + λf 1 cos β 8ω 2 1 + 9dδφ 4 1p a 2 1 f 1 sin β 32ω 3 1 A 2 (a, β, σ) = - λ 2 1 8ω 1 - 15d 2 δφ 8 1p a 4 1 256ω 3 1 - 5c 2 δφ 6 1p a 2 1 12ω 3 1 + σf 1 cos β 4ω 2 1 a 1 + 3dδφ 4 1p a 1 f 1 cos β 32ω 3 1 - λ 1 f 1 sin β 8ω 2 1 a 1
this stationary solution reaches its maximum amplitude for σ

= σ * 0 + ǫσ * 1 + O(ǫ 2 ) with a * 1,0 = f 1 λ 1 ω 1 , σ * 0 = 3 ďa * 2 1,0 8ω 1 = 3 ďf 2 1 8λ 2 1 ω 3 1 , β * 0 = - π 2 (109) 
and

σ * 1 = - 87 ď2 a * 4 1,0 256ω 3 1 - 5č 2 a * 2 1,0 12ω 3 1 - λ 2 1 4ω 1 , β * 1 = - λ 1 2ω 1 , a * 1,1 = - a * 1,0 σ * 0 ω 1
the periodic forcing is at the angular frequency

ωǫ = ω 1 + ǫσ * 0 + ǫ 2 σ * 1 + O(ǫ 2 )
up to the term involving the damping ratio λ 1 , it is slightly different of the approximate angular frequency ν ǫ of the undamped free periodic solution (86); for this frequency, the approximation (of the solution ỹ = ǫy of (91) up to the order ǫ 2 ) is periodic:

             ỹ1 (t) = ǫā * 1 cos(ω ǫ t + β * ) + ǫ 2 [( -č1ā * 2 1 2ω 2 1 + č1ā * 2 1 6ω 2 1 cos(2(ω ǫ t + β * ))) + ď1ā * 3 1 32ω 2 1 cos(3(ω ǫ t + β * )] + ǫ 3 r 1 (ǫ, t) ỹk (t) = ǫ 2 [( -č k ā * 2 1 2(ω 2 k -ω 2 1 ) -čk ā * 2 1 2(ω 2 k -4ω 2 1 ) cos(2(ω ǫ t + β * ))) -ďk ā * 3 1 4(ω 2 k -9ω 2 1 ) cos(3(ω ǫ t + β * )] + ǫ 3 r k (ǫ, t) (110) 
and initial conditions like in proposition 3.1.

Conclusion

For some differential systems modelling spring-masses vibrations with non linear springs, we have derived and rigorously proved an asymptotic approximation of periodic solution of free vibrations (so called non linear normal modes); for damped vibrations with periodic forcing with frequency close (but different) to free vibration frequency ( the so called primary resonance case), we have obtained an asymptotic expansion and derived that the amplitude is maximal close to the frequency of the non linear normal mode. We emphasize that the use of three time scales provides a more accurate value of the link between frequency and amplitude (so called backbone) of a non linear mode but it yields also a new insight in the behavior of the solution which was not provided by a double-scale analysis: the influence of the ratio of c over d on the shape of the backbone and the amplitude of the forced response to an harmonic force as is clearly displayed in figure 2 and3.

As an opening to a related problem, we can notice that such non linear vibrating systems linked to a bar generate acoustic waves; an analysis of the dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave, with a smooth model of the crack may be carried over with a delay differential equation, [START_REF] Junca | Dilatation of a one dimensional nonlinear crack impacted by a periodic elastic wave[END_REF].
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Appendix

Technical lemmas

All these lemmas are recalled here for convenience of the reader; they already have been proposed in [START_REF] Brahim | Double scale analysis of periodic solutions of some non linear vibrating systems[END_REF].

Lemma 5.1. Let w ǫ be solution of w" + w = S(t, ǫ) + ǫg(t, w, ǫ) w(0) = 0, w ′ (0) = 0 (111)

If the right hand side satisfies the following conditions 1. S is a sum of periodic bounded functions:

(a) for all t and for all ǫ small enough, S(t, ǫ) ≤ M

(b)

2π 0 e it S(t, ǫ)dt = 0, 2π 0 e -it S(t, ǫ)dt = 0 uniformly for ǫ small enough 2. for all R > 0, there exists k R such that for |u| ≤ R and |v| ≤ R, the inequality |g(t, u, ǫ)g(t, v, ǫ)| ≤ k R |u -v| holds and |g(t, 0, ǫ)|is bounded; in other words g is locally lipschitzian with respect to u.

then, there exists γ > 0 such that for ǫ small enough, w ǫ is uniformly bounded in C2 (0, T ǫ ) with

T ǫ = γ ǫ
Proof. The proof is close to the proof of lemma 6.3 of [START_REF] Junca | The method of strained coordinates for vibrations with weak unilateral springs[END_REF]; but it is technically simpler since here we assume g to be locally lipschitzian with respect to u whereas it is only bounded in [START_REF] Junca | The method of strained coordinates for vibrations with weak unilateral springs[END_REF].

1. We first consider

w 1 " + w 1 = S(t, ǫ) w 1 (0) = 0, w ′ 1 (0) = 0 ( 112 
)
as S is a sum of periodic functions which are uniformly orthogonal to e it and e -it , w 1 is bounded in C 2 (0, +∞)

2. Then we perform a change of function: w = w 1 + w 2 the following equalities hold with g 2 which satisfies the same hypothesis as g:

for all R > 0, there exists k R such that for |u| ≤ R and |v| ≤ R, the following inequality holds |g 2 (t, u, ǫ) -g 2 (t, v, ǫ)| ≤ k R |u -v|. Using Duhamel principle, the solution of this equation satisfies:

w 2 = ǫ t 0 sin(t -s)g 2 (s, w 2 (s), ǫ)ds from which |w 2 (t)| ≤ ǫ t 0 |g 2 (s, w 2 (s), ǫ) -g 2 (s, 0, ǫ)|ds + ǫ t 0 |g 2 (s, 0, ǫ)|ds so if |w| ≤ R, hypothesis of lemma imply |w 2 (t)| ≤ ǫ t 0 k R |w 2 |ds + ǫCt
A corollary of lemma of Bellman-Gronwall, see will enable to conclude. It yields

|w 2 (t)| ≤ C k R (exp(ǫk R t) -1) Now set T ǫ = sup{t||w| ≤ R}, then we have R ≤ C k R (exp(ǫk R t) -1)
this shows that there exists γ such that |w 2 | ≤ R for t ≤ T ǫ , which means that it is in L ∞ (0, T ǫ ) for T ǫ = γ ǫ ; also, we have w in C(0, T ǫ ) then as w is solution of (111), it is also bounded in C 2 (0, T ǫ ).

Lemma 5.2. (Bellman-Gronwall, [START_REF] Bellman | Encyclopedia of Mathematics[END_REF][START_REF] Bellman | Perturbation techniques in mathematics, physics, and engineering[END_REF]) Let u, ǫ, β be continuous functions with β ≥ 0,

u(t) ≤ ǫ(t) + t 0 β(s)u(s)ds for 0 ≤ t ≤ T then u(t) ≤ ǫ(t) + t 0 β(s)ǫ(s) exp( t s β(τ )dτ ds
Lemma 5.3. ( a consequence of previous lemma, suited for expansions, see [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]) Let u be a positive function, δ 2 ≥ 0, δ 1 > 0 and

u(t) ≤ δ 2 t + δ 1 t 0 u(s)ds then u(t) ≤ δ 2 δ 1 (exp(δ 1 t) -1) Lemma 5.4. Let v ǫ = [v ǫ 1 , . . . , v ǫ N ]
T be the solution of the following system:

ω 2 (v ǫ k )" + ω 2 k v ǫ k = S k (t) + ǫg k (t, v ǫ ) (114) 
If ω and ω k are Z independent for all k = 2 . . . N and the right hand side satisfies the following conditions with M > 0, C > 0 prescribed constants:

1. S k is a sum of bounded periodic functions, |S k (t)| ≤ M which satisfy the non resonance conditions:

2. S 1 is orthogonal to e ±it , i.e. 1. We first consider the linear system ω 2 1 (v k,1 )" + ω 2 k v k,1 = S k v k,1 (0) = 0 and (v k,1 ) ′ = 0 (115)

For k = 1, with hypothesis 1.a, S 1 is a sum of bounded periodic functions; it is orthogonal to e ±it , there is no resonance. For k = 1, there is no resonance as ω k ω1 / ∈ Z with hypothesis 1.b.

So v k,1 belongs to C (2) for k = 1, ..., n 2. Then we perform a change of function

v ǫ k = v k,1 + v ǫ k,2
and v ǫ k,2 are solutions of the following system :

ω 2 1 (v k,2 )" + ω 2 k v k,2 = ǫg k,2 (t, v k,2 , ǫ), k = 1, . . . , N v ǫ k,2 (0) = 0, (v ǫ k,2 ) ′ = 0, k = 1, . . . , N

with g k,2 (t, ...., v ǫ k,2 , ....) = g k (t, ..., v k,1 + v ǫ k,2 , ....) where g k,2 satisfies the same hypothesis as g k : for all R > 0 there exists k R such that for u k ≤ R, v k ≤ R, the following inequality holds for k = 1, . . . , N : this shows that there exists γ such that |v ǫ k,2 | ≤ R for t ≤ T ǫ , which means that it is in L ∞ (0, T ǫ ) for T ǫ = γ ǫ ; also, we have v k in C(0, T ǫ ) then as v k is solution of (111), it is also bounded in C 2 (0, T ǫ ).

g k,2 (t, u k , ǫ) -g k,2 (t, v k , ǫ) ≤ k R u k -v k ( 
Theorem 5.1. ( of Poincaré-Lyapunov, for example see [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]) Consider the equation ẋ = (A + B(t))x + g(t, x), x(t 0 ) = x 0 , t ≥ t 0 where x, x 0 ∈ R n , A is a constant matrix n × n with all its eigenvalues with negative real parts; B(t) is a matrix which is continuous with the property lim t→+∞ B(t) = 0. The vector field is continuous with respect to t and x is continuously differentiable with respect to x in a neighbourhood of x = 0; moreover g(t, x) = o( x ) when x → 0 uniformly in t. Then, there exists constants C, t 0 , δ, µ such that if x 0 < δ C

x ≤ C x 0 e -µ(t-t0) , t ≥ t 0 holds

Numerical computations of Fourier transform

Assuming a function f to be almost-periodic, the Fourier coefficients are :

α n = lim T →+∞ T 0 f (t)e -iλnt dt (118) 
where λ n are countable Fourier exponents of f . (for example, see Fourier coefficients of an almostperiodic function in http://www.encyclopediaofmath.org/). For numerical purposes, we chose T large enough and with a fast Fourier transform, we compute numerically the Fourier coefficients of a function of period T equal to f in this interval.

Another way of computing the maximum amplitude

This is another way of computing some results of § 2.3.4. Eliminating β at first order in (61) , we get that a is solution of f (a, β, σ, ǫ) = 0 with

f = -F 2 m 4ω 2 + (- λa 2 + ǫA 1 ) 2 + 3da 3 8ω -σa + ǫaA 2 2 + O(ǫ 2 )
We look for a maximum with respect to σ; it will be reached at a value denoted σ * which depends on ǫ. We use (47) and the lower order term cancels;

∂f ∂σ = -2ǫa * 0 9da * 2 0 a * 1 8ω -a * 0 σ * 1 -σ * 0 a * 1 + ǫλ 2 a * 2 0 4ω -2ǫa * 2 0 A * 2,0 + O(ǫ 2 ) = -2ǫa * 0 (3σ * 0 a 1 -a * 0 σ * 1 -σ * 0 a * 1 ) + ǫλ 2 a * 2 0 4ω -2ǫa * 2 0 A * 2,0 + O(ǫ 2 ) = ǫa * 0 -2 (2σ * 0 a 1 -a * 0 σ * 1 ) + λ 2 a 0 4ω -2a 0 A * 2,0 + O(ǫ 2 ) = ǫa * 0 2a * 0 σ * 1 -4σ * 0 a 1 + λ 2 a 0 4ω -2a 0 A * 2,0 + O(ǫ 2 ).
We compute the derivative with respect to β; 

0 4ω + O(ǫ 2 ) = ǫa * 0 2a * 0 σ * 1 -4σ * 0 a 1 + λ 2 a 0 2ω -2a 0 A * 2,0 + O(ǫ 2 ) = 2ǫa * 0 a * 0 σ * 1 -2σ * 0 a 1 + λ 2 a 0 4ω -a 0 A * 2,0 + O(ǫ 2 ) = 2ǫa * 2 0 σ * 1 -2 σ * 0 a 1 a 0 + λ 2 4ω -A * 2,0 + O(ǫ 2 ).
So we obtain 

σ * 1 = 2 σ * 0 a 1 a 0 - λ 2 4ω + A * 2,0 (125) 

Figure 1 :

 1 Figure 1: Dynamic frequency shift(fft) linear(left) and a non linear element with two methods(numerical(blue), asymptotic expansion( red))

Figure 2 :

 2 Figure 2: Left: amplitude versus frequency of stationary forced solution in blue and magenta; amplitude of free solution in red. Right: phase versus frequency of stationary forced solution

Figure 3 :

 3 Figure 3: Left: amplitude versus frequency of stationary forced solution in blue and magenta; amplitude of free solution in red. Right: phase versus frequency of stationary forced solution
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Figure 4 :

 4 Figure 4: Absolute value of the Fourier transform for (fft) (left); phase portrait(right)

2π 0 S

 0 1 (t)e ±it dt = 0 uniformly for ǫ going to zero 3. for all R > 0 there exists k R such that for u ≤ R, v ≤ R, the following inequality holds for k = 1, . . . , N :|g k (t, u, ǫ) -g k (t, v, ǫ)| ≤ k R u -vand |g k (t, 0, ǫ)| is bounded then there exists γ > 0 such that for ǫ small enough v ǫ is bounded in C 2 (0, T ǫ ) with T ǫ = γ ǫ Proof.

  ) (120) we simplify for a = a * 0 + O(ǫ), σ = σ * 0 + O(ǫ)

  of A 1 , A 2 are computed at a = a * 0 , β = β * 0 , we get: 120), (124) in (119); this last equation defines implicitly σ * as a function of ǫ; we use the expansions (48), and we get∂f ∂σ + ∂f ∂β ∂β ∂σ = ǫa * 0 2a * 0 σ * 1 -4σ * 0 a 1 + λ 2 a 0 4ω -2a 0 A * 2,0 + ǫ λ 2 a * 2

  By differentiating, we get that

										∂a ∂σ	= -	∂f ∂σ + ∂f ∂β ∂f ∂a	∂β ∂σ
	So σ * is solution of			∂f ∂σ	+	∂f ∂β	∂β ∂σ	= 0 with	∂f ∂a	= 0;	(119)
	we compute the terms involved in the previous equation;
		∂f ∂σ	= 2ǫ(-	λa * 2	+ ǫA 1 )	∂A 1 ∂σ	+ 2	3da * 3 8ω	-σ ∂A 2 ∂σ	+ O(ǫ 2 )
	or								
	∂f ∂σ	= -2ǫ(	λa * 2	)	∂A 1 ∂σ	-2a * (	3da * 3 8ω	-σ

* a * + ǫa * A 2 -a * + ǫa * * a * ) -2ǫa * 2 A 2 + 2ǫ( 3da * 3 8ω -σ * a * )a * ∂A 2 ∂σ + O(ǫ 2

" + w 2 = ǫg 2 (t, w 2 , ǫ) w 2 (0) = 0, w ′ 2 (0) = 0(113)

Derivatives of y k may be expanded:

we use the ansatz

we get:

For the second derivative, as in the case of free vibration, we introduce:

We plug previous expansions (94), ( 96) and (95) of y k into (92); by identifying the coefficients of the powers of ǫ, we get:

Proposition 3.2. When

and ǫ small enough, the stationary solution (ā 1 , β1 ) of (102) is stable in the sense of Lyapunov (if the dynamic solution starts close to the stationary one, it remains close and converges to it); to the stationary case corresponds the approximate solution of (92)

it is periodic.

With this result of stability, we can state precisely the approximation of the solution of (89)

Convergence of the expansion

In order to prove that r k is bounded, after eliminating terms at frequency ν 1 , we go back to the variable t for the third set of equations of (97) .

1 , r 1 , ǫ) and for k = 1

1 , y

where Rk (ǫ, r k , y

1 , y

1 , y

with all the terms expressed with the variable t.

Proposition 3.3. Under the assumption that ω 2 k = 4ω 2 1 , ω 2 k = 9ω 2 1 and ω 2 1 a simple eigenvalue (no internal resonance) for k = 1, there exists ς > 0 such that for all t ≤ t ǫ = ς ǫ 2 , the solution ỹ = ǫy of (91) with initial data ỹ1 (0) = ǫa 1 + ǫ 2 -č 1 a 2