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Techniques of invariant theory such as Molien generating functions and integrity bases offer math-
ematical tools for the efficient construction of symmetry–adapted polynomials in the symmetrized
coordinates of a molecular system. The present article is the prolongation of our previous work
[P. Cassam-Chenäı and F. Patras, J. Math. Chem., 44(4), 938–966 (2008).] to the case of polyno-
mials that transform as a non–totally symmetric irreducible representation of the symmetry group
G of the molecule. Such a covariant representation occurs with electric or magnetic properties,
for example with the electric dipole moment surface. The symmetrized coordinates span an initial
reducible representation from which polynomials transforming as an irreducible representation are
built. The number of linearly independent polynomials of degree k within this final representation
is given by the coefficient of degree k in the Taylor expansion of the associated Molien function.
This generating function is built from combination of elementary generating functions where both
the initial and final representations are irreducible. In parallel, Clebsch–Gordan coefficients of the
symmetry group G recursively couples the corresponding elementary integrity bases in order to build
the integrity bases for the initial representation associated to symmetrized coordinates. The method
is illustrated in detail on XY4 type of molecules for which the explicit integrity bases for the five
final irreducible representations are given.

I. INTRODUCTION

Microwave or infrared synthetic spectrum generation
requires the knowledge of the potential energy surface
(PES) and of the electric dipole moment surface (EDMS)
of the molecule under study. These two functions of inter-
nal coordinates do not have a known analytic expression.
This problem is often encountered in quantum chemistry
or computational spectroscopy and a typical strategy is
to expand these functions on a set of appropriate an-
alytical functions. The expansion coefficients are then
determined empirically or by fitting over experimental
or theoretical data. The molecular symmetry helps to
simplify the problem1–5 and favors the introduction of
symmetry–adapted coordinates when the function to be
expanded transforms according to an irreducible repre-
sentation of the symmetry group G of the molecule. In
particular, the PES transforms as the totally symmet-
ric (also called trivial) irreducible representation of the
group G while the components of the EDMS may carry
a non–trivial representation of the group.

The set of symmetrized internal coordinates usually
spans a reducible representation called the initial repre-
sentation Γi. Symmetry–adapted polynomials in these
variables are then considered. The polynomials that
transform according to the final irreducible representa-
tion Γf are called Γf–covariant polynomials.6 A Γf–
covariant polynomial is called an invariant polynomial
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if the Γf representation is the trivial representation of
the group.

The projector or Reynolds operator is a standard
method of group theory to generate invariant and Γf–
covariant polynomials. Marquardt7 and Schwenke8 ap-
plied this technique to compute the terms that appear
in the expansion of the PES of methane. The method
for the construction of invariants is applicable to ir-
reducible representations (irreps.) of dimension higher
than one through the introduction of projection opera-
tors together with transfer operators, see Hamermesh,9

Bunker,4 Lomont,10 and Taylor.11 The group–theoretical
methods based on projector operators are inherently in-
efficient because they ignore the number of linearly inde-
pendent symmetry-adapted polynomials of a given de-
gree k. So, in order to obtain a complete set, they
have to consider all possible starting polynomial “seeds”,
usually a basis set of monomials. The projection of
the latters often lead to the null polynomial or to a
useless linear combination of already known symmetry-
adapted polynomials. Furthermore, the dimension of the
space of symmetry-adapted polynomials becomes rapidly
formidable even at modest k and the list of polynomials
to tabulate becomes unnecessarily gigantic.

Another technique of construction of Γf–covariant
polynomials is based on the Clebsch–Gordan coefficients
of group G. A great deal of work has been dedicated
in particular to the cubic group.12–15 The coupling with
the Clebsch–Gordan coefficients of two polynomials give
a polynomial of higher degree and the set of symmetry–
adapted polynomials is built degree by degree. All possi-
ble couplings between (vector) basis sets of polynomials
of lower degrees must be considered to insure that one
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gets a complete list. As in the projector method, this re-
sults in many linearly dependent polynomials of a given
degree k that have to be eliminated.

The drawbacks of the two approaches evoked above
are circumvented by the theory of algebraic invariants.
In particular, the coefficients of the Taylor expansion
of the Molien generating function16,17 give information
about the number of linearly independent polynomials of
a given degree k carrying a given irreducible representa-
tion. The introduction of invariant theory in quantum
chemistry can be traced back to the works of Murrell
et al.18,19. Followers include Collins and Parsons,20 Is-
chtwan and Peyerimhoff,21 and, more recently, Braams
and Bowman.22 However, these studies were only con-
cerned with the totally symmetric representation in re-
lation to the expansion of a PES. Braams and Bowman
did consider expansions of an EDMS but they reduced
the problem to the totally symmetric case by restricting
themselves to a subgroup of the molecular point group,
which is not optimal.

An integrity basis for the Γf–covariant polynomials
is a finite set of polynomials with the special property
that any Γf–covariant uniquely decomposes as a poly-
nomial function in the elements of the integrity basis.
The integrity basis contains two partitions.16,23 The first
partition contains the so–called denominator or primary
polynomials.16,24 They are invariant polynomials and
their corresponding power in the decomposition of a Γf–
covariant can be any natural integer. The second subset
contains the numerator or secondary polynomials. They
transform as the Γf representation and their correspond-
ing power can only be zero or one. An integrity basis
being given, generating a list of linearly independent,
symmetry-adapted polynomials of an arbitrarily high de-
gree is a simple task requiring only multiplications be-
tween the finite number of basis polynomials. This is in
contrast with techniques already described, which first
consider large sets of polynomials and then project out
linearly dependent subsets and/or polynomials that do
not carry the proper irreducible representation.

Our previous paper17 considered the complete
permutation–rotation–inversion group of a XY4

molecule. An integrity basis for the invariant poly-
nomials was computed. The calculation was decomposed
into two steps and this decomposition was an important
feature of the method. First, we were dealing with
the rotation–inversion group O(3) and in a second step
with the finite permutation group. The structure of
covariants for the rotation–inversion group is interesting
on its own, since it raises specific problems related to the
fact that the modules of covariants are not necessarily
free for reductive continuous groups such as O(2) or
O(3).23,25,26 This is a remarkable difference with respect
to the algebraic structure of invariants. Forthcoming
articles will be devoted to the study of covariant modules
of the O(2) and O(3) groups.23,27

The focus of the present article is on the Γf–covariants
built from symmetrized coordinates in the tetrahedral

Td point group. As a matter of fact, various types
of such coordinates have appeared in the literature for
this system that are amenable to our treatment. We
can mention curvilinear internal displacements (bond
lengths and interbond angles),28,29 Cartesian normal
coordinates,28,30–34 symmetrized coordinates based on
Morse coordinates on Radau vectors for stretching modes
and cosines of valence bond angles for bending modes,8

haversines of bond angles,35 cosines of valence bond an-
gles times functions of bond lengths,36 symmetrized co-
ordinates based on bond lengths, interbond angles and
torsion angles,15 or interbond angles and bond lengths
times a gaussian exponential factor.37

The purpose of the present article is to show on the
explicit exemple of a XY4 molecule that the techniques
of invariant theory that were used to obtain a polynomial
basis set for totally symmetrical quantities17 are straight-
forwardly extended to quantities transforming according
to an arbitrary irreducible representation Γf of the sym-
metry group G. This is useful to obtain very efficiently
a basis set of F2–symmetry-adapted polynomials up to
any arbitrary degree, for example. Such a basis can be
used to fit the EDMS of methane. The F1–covariants
might be relevant to fit the magnetic dipole moment sur-
face (MDMS) while the E–covariants might be required
for the components of the quadrupole moment surfaces.
Various already existing algorithms could theoretically
be used for the same purpose such as those associated
to Gröbner basis computations (see e.g. Ref.38). How-
ever, on the one hand, existing methods of computa-
tional invariant theory24,39,40 are usually implemented in
available computer codes for invariants only, and on the
other hand, they do not seem to be able to treat high–
dimensional problems efficiently for intrinsic complexity
reasons, even in the case of invariants.
The article is organized as follows. In the next sec-

tion, we recall fundamental results of invariant theory.
Then, we show how the integrity basis of Γf–covariant
polynomials in the Td point group can be constructed
recursively for XY4 molecules, Γf ∈ {A1, A2, E, F1, F2}.
The resulting minimal generating families of symmetry–
adapted functions are listed in supplementary materi-
als41. In conclusion, we emphasize the points of our ap-
proach which are general and those that are specific to
the example chosen as an illustration.

II. SYMMETRY–ADAPTATION TO A FINITE

GROUP G

The theoretical framework to describe invariants in
polynomial algebras under finite group actions is well de-
velopped, both in mathematics and in chemical physics.
Classical references on the subject in mathematics are
the books by Benson42 and Stanley43. Schmelzer and
Murrell19 have had a pioneering influence as far as the
construction of a PES is concerned. Refs.16,44 give an
overview of the various possible applications to chemistry
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and physics.
We rely in the present section on a fundamental result

of commutative algebra and representation theory stat-
ing that G–invariant and G–covariant polynomials have
a general decomposition. We refer to Ref.43 for further
details and proofs regarding this result and other prop-
erties of finite group actions on polynomial algebras.

A. Hironaka decomposition

Let P denote the algebra of polynomials in k coor-
dinates, Q1, . . . , Qk, for the field of complex numbers,
P =

⊕

n≥0

Pn, where Pn is the vector space of polynomials

of degree n. We assume that the finite group G acts lin-
early on the vector space Q =< Q1, . . . , Qk > spanned
by Q1, . . . , Qk. This action extends naturally to P .
Let PΓf be the vector subspace of polynomials trans-

forming as the irreducible representation Γf . We write
[Γf ] for the dimension of Γf . The group action pre-
serving polynomial degrees, we have the decomposition

PΓf =
⊕

n≥0

PΓf
n , where PΓf

n = PΓf ∩ Pn is the vector

space of Γf -covariant polynomials of degree n for G.
When the representation is said “degenerate”, that is

to say, when [Γf ] > 1, it is convenient to assume for
forthcoming developments that the representation Γf has
a distinguished basis ψ1, ..., ψ[Γf ]. The polynomials P in

PΓf can then be decomposed further as a sum of poly-
nomials,

P =

[Γf ]
∑

i=1

Pi, (1)

each term behaving as a base function ψi, see e.g. Ref.
44

(Chap. 3). We will say that Pi is of type Γf , i and write

PΓf =
[Γf ]
⊕

i=1

PΓf ,i the corresponding decomposition of the

vector space of Γf–covariant polynomials.
An important mathematical result is that there exists

k basic invariant polynomials f1, . . . , fk and a finite num-

ber, pΓf
, of Γf -covariant polynomials, g

Γf

1 , . . . , g
Γf
pΓf

, such

that

PΓf = C[f1, ..., fk]g
Γf

1 ⊕ · · · ⊕ C[f1, ..., fk]g
Γf
pΓf

, (2)

where C[f1, ..., fk] is the algebra spanned by the
f1, . . . , fk polynomials. Such a decomposition is some-
times referred to as an Hironaka decomposition, and de-
fines a so-called Cohen-Macaulay module. In the partic-
ular case where Γf is the trivial representation (so that
Γf–covariants are simply invariants), this result shows
that PΓf ≡ PG is a Cohen–Macaulay algebra. The fi
are called the “primary”, “basic”, or “fundamental” in-

variant basis polynomials, while the g
Γf

j are called the
Γf–covariant basis polynomials. The same set of primary
invariants is used for all irreps.

It is convenient once again to take advantage of the
decomposition Eq.(1). The Γf–covariant basis polyno-
mials can be chosen as behaving as the basis functions
ψi under the action of G. For each i, 1 ≤ i ≤ [Γf ], there

are qΓf
=

pΓf

[Γf ]
Γf–covariant basis polynomials of type

i. Let us assume that the first qΓf
Γf–covariant basis

polynomials are of type 1: g
Γf ,1
1 , ..., g

Γf ,1
qΓf

. We will then

refer to the whole set {f1, ..., fk; gΓf ,1
1 , ..., g

Γf ,1
qΓf

} as an in-

tegrity basis of the module PΓf ,1 and to the particular

set, g
Γf ,1
1 , ..., g

Γf ,1
qΓf

, as the set of Γf–covariant basis poly-

nomials of type 1. Once these polynomials have been
constructed, universal formulas allow to construct part-
ner families of Γf–covariant polynomials of arbitrary type
i > 1, see e.g. Ref.44 (Sect. 3-18).
The elements of an integrity basis can always be

choosen homogeneous, and from now on, we will always
assume that this homogeneity property holds. Even with
this assumption, the number of basis polynomials is not
determined by the above construction. However, for a
given choice of primary invariants, the number of Γf–
covariant basis polynomials and their degrees are fixed
and determined by the so-called Molien series45.
By definition, the Molien series, MG (Γf ;Q; t), associ-

ated to the representation of G on Q for Γf–covariants
is

MG (Γf ;Q; t) =
1

[Γf ]

∑

n≥0

dimPΓf
n tn

=
∑

n≥0

dimPΓf ,i
n tn, (3)

where the second equality holds for all i ∈ {1, · · · , [Γf ]},
so in particular for i = 1. In other words, the coeffi-

cients of the Molien series, dimPΓf ,i
n , are the numbers of

linearly independent Γf , i polynomials of degree n.

Suppose that {f1, ..., fk; gΓf ,i

1 , ..., g
Γf ,i
qΓf

} is a given in-

tegrity basis, then it can be shown that, the correspond-
ing Molien series can be cast in the following form:

MG (Γf ;Q; t) =
tdeg(g

Γf ,i

1
) + ...+ t

deg(g
Γf ,i

qΓf
)

(1− tdeg(f1)) . . . (1− tdeg(fk))
, (4)

where deg (p) is the total degree of the multivariate poly-
nomial p, (the degrees are not necessarily distinct in this
expression). Hence, the common denomination of pri-
mary invariant basis polynomials as “denominator poly-
nomials”, and of covariant basis polynomials as “numer-
ator polynomials”. Once the degrees of the denominator
invariants are given and the Molien series calculated, the
number of Γf , i–covariant numerator polynomials of each
degree is given by the corresponding coefficient of the
polynomial MG (Γf ;Q; t) · (1− tdeg(f1)) . . . (1− tdeg(fk)).
The problem of generating PΓf ,i comes down to the com-
putation of a complete set of such Γf , i–covariant numer-
ator polynomials given a set of denominator invariants.
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B. Recursive construction

We considered in the previous section the action of a
finite group G on a polynomial algebra P over a vector
space Q. It is convenient to refine these results to the
case where the linear representation of G, Q, splits into
a direct sum of representations, Q = Qa1

⊕ ...⊕Qan
. We

write Pai
for the polynomial algebra generated by Qai

,
and write similarly with an ai index the various objects
and quantities associated to Qai

. So, the related Molien
series will be denoted MG (Γf ;Qai

; t). The polynomial
algebra generated by partial direct sum up to the ith-
component, Q[i] := Qa1

⊕ ... ⊕ Qai
, is written P [i]. We

write MG
(

Γf ;Q[i]; t
)

for the Molien series associated to

Γf–covariants on P [i].

Let us note cνΓα,Γβ
for the multiplicity of the irreducible

representation ν in the direct (or Kronecker) product
of the irreps. Γα and Γβ. The generating function for
a reducible, initial representation can be built by cou-
pling generating function for irreps. of the group16,46,47,
see Equation (46) of Ref.16, and Appendix. So, our
Molien series being such generating functions, they can
be built according to the following recursion formula:
∀i ∈ {2, · · · , [Γf ]}

MG
(

Γf ;Q[i]; t
)

=

∑

Γα,Γβ

c
Γf

Γα,Γβ
MG

(

Γα;Q[i−1]; t
)

MG (Γβ ;Qai
; t) , (5)

where the sum runs over all irreps Γα and Γβ . In case of

the Td point group, c
Γf

Γα,Γβ
= 0 or 1, see Ref.1.

The same recursion principle can be used to construct
an integrity basis for PΓf . Let {f1, ..., fk; gΓα

1 , ..., gΓα
pΓα

}
be an integrity basis for PΓα

a1
and {h1, ..., hl; jΓβ

1 , ..., j
Γβ
pΓβ

}
an integrity basis for PΓβ

a2
. {f1, ..., fk, h1, ..., hl} will con-

stitute a set of primary invariants for P [2]. The Clebsch-

Gordan coefficients allow to construct c
Γf

Γα,Γβ
numera-

tor polynomials of type Γf , 1 of P [2] from each pair

(gΓα
a , j

Γβ

b ), see Ref.44 (Sect. 5.6). We write these func-

tions m
Γf ,1
Γα,Γβ,a,b,i

, where i ≤ c
Γf

Γα,Γβ
. The integrity basis

for P [2]Γf ,1

is then given by the denominator polynomi-
als {f1, ..., fk, h1, ..., hl} and the set of Γf–covariants nu-

merator polynomials
⋃

Γα,Γβ

{mΓf ,1
Γα,Γβ ,a,b,i

, a ≤ qa1,Γα
, b ≤

qa2,Γβ
, i ≤ c

Γf

Γα,Γβ
}. As already mentionned, an integrity

basis for P [2]Γf
is easily generated from one of P [2]Γf ,1

see
Ref.44 (Sect. 3-18). The process is iterated by substitut-

ing P [2]Γα
to PΓα

a1
and PΓβ

a3
to PΓβ

a2
, and so on recursively.

III. APPLICATION TO THE CONSTRUCTION

OF INTEGRITY BASES FOR XY4 MOLECULES

Our main goal is to generate in the most economi-
cal way, integrity bases for representations of symmetry
groups on vector spaces spanned by molecular internal
degrees of freedom. We focus, from now on, on the ex-
ample of XY4 molecules, but the following method holds
in general.

We consider coordinates for the internal degrees of
freedom adapted to the Td symmetry point group of
the molecule, which is isomorphous to the permuta-
tion group S4. For example, they can be the usual
Td–adapted coordinates used in many studies on XY4

molecules28, denoted by S1, S2a, S2b, S3x, S3y, S3z, S4x,
S4y, and S4z. S1 transforms as the irreducible represen-
tation A1, the pair S2a, S2b transforms as E, while both
triplets S3x, S3y, S3z and S4x, S4y, and S4z transform
as F2. So, the representation of Td on the vector space
Q := R < S1, S2a, ..., S4z > generated by S1, S2a, ..., S4z

splits into a direct sum of irreps.:

Q = R < S1 > ⊕R < S2a, S2b > ⊕R < S3x, S3y, S3z >

⊕R < S4x, S4y, S4z > .(6)

An extra coordinate S5 has to be added to map bi-
univoquely the whole nuclear configuration manifold, if
the coordinates are O(3)-invariant (such as linear com-
binations of bond distances and bond angles, and no di-
hedral angle)17. In this case, polynomials involved in
the computation of the PES, the DMS and other phys-
ically relevant quantities have to be expressed as P =
P0+P1S5+P2S

2
5+P3S

3
5 , where the Pi are polynomials in

the coordinates S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z.

However, since S5 can be chosen to carry the A1

representation, this extra-coordinate can be handled
independently of the computation of Γf -covariants.
The same remark applies to S1: General Γf -
covariants can be expressed as P0R0 + P1R1S5 +
P2R2S

2
5 + P3R3S

3
5 , where the Ri are arbitrary poly-

nomials in S1 and the Pi are Γf -covariant polyno-
mials of S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z. This al-
lows us to reduce the problem to the study of
PΓf , where P is the polynomial algebra generated by
S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z .

The octahedral group O and the group Td both belong
to the category of cubic point groups and share similar
properties. Integrity bases related to the Molien generat-
ing functions M (Γf ; Γi; t) (Γi and Γf irreps.) are known
for O, see47 and Appendix. The denominator and nu-
merator polynomials of these integrity basis will be the
building blocks of the construction of the integrity ba-
sis for the initial reducible representation, Q′ := R <
S2a, S2b > ⊕R < S3x, S3y, S3z > ⊕R < S4x, S4y, S4z > of
the tetrahedral group Td.
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A. Denominator polynomials of the integrity bases

Denominator polynomials of the integrity basis of a
reducible representation is just the union of the denomi-
nator polynomials of its irreducible subrepresentations.
The form of the 8 denominator polynomials f2, ..., f9
(the shift in the indexing is motivated by the conven-
tion f1 := S1) for Q′ is familiar17. they consist in two
denominator polynomials of the module of Td-invariant
polynomials in S2a, S2b, R[S2a, S2b]

Td , three denominator
polynomials of R[S3x, S3y, S3z]

Td and of three denomina-
tor polynomials of R[S4x, S4y, S4z]

Td . We list them below
by degrees of increasing order:

1. Degree 2:

f2 :=
S2
2a + S2

2b√
2

(7)

f3 :=
S2
3x + S2

3y + S2
3z√

3
(8)

f4 :=
S2
4x + S2

4y + S2
4z√

3
(9)

2. Degree 3:

f5 :=
−S3

2a + 3S2
2bS2a

2
(10)

f6 := S3xS3yS3z (11)

f7 := S4xS4yS4z (12)

3. Degree 4:

f8 :=
S4
3x + S4

3y + S4
3z√

3
(13)

f9 :=
S4
4x + S4

4y + S4
4z√

3
. (14)

B. Numerator polynomials of the integrity bases

The Molien series for the action of Td on Q′ can be
directly computed using Burnside’s generalization48 of
the Molien’s results45. However, it is computationally
more efficient to use Eq. (5) to construct Molien gener-

ating functions and integrity bases. A non–zero c
Γf

Γα,Γβ

in the sum of Eq. (5) relates to a term in the numera-
tor of MG (Γf ;Qa1

⊕ ...⊕Qai
; t) and the corresponding

polynomial is built by coupling previously obtained poly-
nomials with Clebsch–Gordan coefficients of the group
Td.

As an example, using t3 and t4 to distinguish notation-
ally the copies of t arising from the two Molien series in
right hand side of Eq.(5),

MTd (E;F2 ⊕ F2; t3, t4)

= MTd (A1;F2; t3)M
Td (E;F2; t4)

+MTd (E;F2; t3)M
Td (A1;F2; t4)

+MTd (A2;F2; t3)M
Td (E;F2; t4)

+MTd (E;F2; t3)M
Td (A2;F2; t4)

+MTd (E;F2; t3)M
Td (E;F2; t4)

+MTd (F1;F2; t3)M
Td (F1;F2; t4)

+MTd (F1;F2; t3)M
Td (F2;F2; t4)

+MTd (F2;F2; t3)M
Td (F1;F2; t4)

+MTd (F2;F2; t3)M
Td (F2;F2; t4)

=
1

D (F2; t3)D (F2; t4)

{

t24 + t44 + t23 + t43

+t63t
2
4 + t63t

4
4 + t23t

6
4 + t43t

6
4

+t23t
2
4 + t23t

4
4 + t43t

2
4 + t43t

4
4

+t33t
3
4 + t33t

4
4 + t43t

3
4 + t33t

5
4 + t43t

4
4 + t53t

3
4 + t43t

5
4 + t53t

4
4 + t53t

5
4

+t33t4 + t33t
2
4 + t43t4 + t33t

3
4 + t43t

2
4 + t53t4 + t43t

3
4 + t53t

2
4 + t53t

3
4

+t3t
3
4 + t3t

4
4 + t23t

3
4 + t3t

5
4 + t23t

4
4 + t33t

3
4 + t23t

5
4 + t33t

4
4 + t33t

5
4

+t3t4 + t3t
2
4 + t23t4 + t3t

3
4 + t23t

2
4 + t33t4 + t23t

3
4 + t33t

2
4 + t33t

3
4

}

with

D (F2; t) =
(

1− t2
) (

1− t3
) (

1− t4
)

.

In total, the number of E, 1–covariant basis polynomials
for the initial representation F2 ⊕ F2 is 48. More pre-
cisely, the first two lines of the first equality lead to the
first line of the second equality which says that two of
the required E, 1–covariant basis polynomials associated
to the numerator of MTd (E;F2 ⊕ F2) are built by cou-
pling through Clebsch–Gordan coefficients the numerator
polynomial of degree zero in the integrity basis associ-
ated toMTd (A1;F2; t3) with the numerator polynomials
of degree two and four in the integrity basis associated to
MTd (E;F2; t4) and two others are obtained by reversing
the part of MTd (A1;F2; t3) and MTd (E;F2; t4). Simi-
larly, the 4 terms of the second line of the second equality
correspond to the 4 E–covariant numerator polynomials
arising from the product A2 and E numerator polynomi-
als of the integrity basis of the F2 irreducible representa-
tion. The following lines of the second equality gather the
contributions of the succesive lines of the first equality,
respecting their order.
This method has the advantage that only the integrity

bases for initial irreps., see Appendix, and the Clebsch–
Gordan are required. In practice we couple first the two
symmetrized F2 coordinates S3x, S3y, S3z and S4x, S4y,
S4z. We then couple the results with the coordinates S2a

and S2b, and finally with the coordinate S1.
The fully coupled generating function for the F2 final

irreducible representation reads:
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MTd (F2;Q′; t) =
N (F2;Q′; t)

(1− t2)3(1− t3)3(1− t4)2
, (15)

with

N (F2;Q′; t)

= 2t+ 5t2 + 12t3 + 23t4 + 41t5 + 60t6 + 71t7 + 71t8

+60t9 + 45t10 + 27t11 + 12t12 + 3t13.

The Molien series numerator coefficients for all irreps.
are given in Table I.
As far as the F2 representation is concerned, there are

432 F2-covariants of type “z” (we use this notation in-
stead of “1” used in the section II because it refers to
the usual basis set labelling for F2-representation in a

geometrical context), gF2,z
1 , ..., g

F2,z
432 of which 2 are of de-

gree one, 5 of degree two, 12 of degree three, and so on.
We finally obtain that an arbitrary F2–covariant of type
m ∈ {x, y, z} in the algebra spanned by the S1, . . . , S4z

coordinates will identify with a unique linear combina-
tion of monomials:

f
j1
1 f

j2
2 ...f

j9
9 g

F2,m
k (j1, . . . j9) ∈ N

9, 1 ≤ k ≤ 432. (16)

Lists of numerator polynomials for all irreps. and all
types are provided as supplementary material41. They
have been derived in a few seconds of CPU time on a
laptop by using the symbolic algebra code MAPLE49.
The knowledge of the polynomials in our integrity

bases is sufficient to generate all the polynomials up
to any degree, only multiplications between denomina-
tor polynomials and one numerator polynomial are nec-
essary. The gain with respect to classical methods of
group theory already shows up at degree 4: we only need
the 9 basic invariants and the 16 A1-covariants (i.e. sec-
ondary invariants) up to degree 4, to generate all 33 lin-
early independent invariants of degree 4 for representa-
tion Q, see Tab.I and compare with Ref.7. In this ar-
ticle, only a 6-dimensional representation is considered
(the S3x, S3y, S3z coordinates are left out). In fact, an in-
tegrity basis of 6 basic invariants and 3 secondary invari-
ants can generate 11 linearly independent A1–invariants
of degree 4, which will span the same vector space as
those tabulated in the last table of Ref.7. Similar re-
marks apply to the covariants. The gain becomes rapidly
more spectacular as the degree increases. PES of order
10 have already been calculated for methane15,32. There
are 1998 linearly independent invariants of degree 10 for
representation Q. They can be generated with only the 9
basic invariants and 132 secondary invariants. Similarly,
EDMS for methane of order 6 have already appeared in
the literature37,50. The 9 basic invariants and 143 F2, z-
covariant numerator polynomials of degree less or equal
to 6 (see Tab.I) are enough to generate the 400 linearly in-
dependent polynomials required to span the vector space
of F2, z-covariant polynomials of sixth degree.

IV. CONCLUSION

We have determined for the first time integrity bases
of the Γf–covariants of the group Td acting on the sym-
metrized internal coordinates of a XY4 molecule. They
are composed of nine algebraically independent denomi-
nator polynomials and a finite number of Γf–covariant
numerator polynomials given in supplementary mate-
rial41. We have taken advantage of symmetry–adapted
internal coordinates spanning the reducible representa-
tion A1⊕E⊕F2⊕F2 of Td to construct an integrity basis
for each final representation Γf . Integrity basis sets are
first determined for each single, possibly degenerate, irre-
ducible representation of the group. These integrity bases
are coupled successively in a second step by using the
Clebsch–Gordan coefficients of the group Td. This strat-
egy to derive the Γf–covariants is general since the Γf–
covariant polynomials admit a Hironaka decomposition43

for any finite group G. In fact, our approach makes
available for the study of global PES and other func-
tions of nuclear geometric configurations the recent tools
of ring and invariant theory such as Cohen–Macaulay–
type properties and the effective computational tools of
modern commutative algebra38, which go far beyond the
classical Molien series approach in quantum chemistry.
Finally, our method based on integrity bases is more effi-
cient than classical methods of group theory based on the
construction degree by degree of the symmetry–adapted
terms to be included in the potential energy surface or
the electric dipole moment surface. All the required poly-
nomials up to any order are generated by simple multi-
plications between polynomials in the integrity bases of
this paper.
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Appendix: Generating functions and corresponding

integrity bases for irreducible representations of Td

The Td point group has five irreps.: A1, A2, E, F1 and
F2. The irreducible representation E is doubly degener-
ate, while the F1 and F2 irreps. are triply degenerate.
The procedure detailed in the main text is based on the

knowledge of the generating functions MTd (Γf ; Γi; t),
where Γi and Γf are irreps. of the group Td. The co-
efficient cn in the Taylor expansion c0 + c1t + c2t

2 + · · ·
of the generating function gives the number of linearly
independent Γf–covariant polynomials of degree n that
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TABLE I: Numbers n
Γf

k of Γf–covariant numerator polynomials of degree k and dimensions dimP
Γf ,i

k , 1 ≤ i ≤ [Γf ], of the

vector spaces of Γf , i–covariants numerator polynomials of degree k, Γf ∈ {A1, A2, E, F1, F2}. The total number
∑

15

k=0
n
Γf

k of
Γf–covariant numerator polynomials is equal to [Γf ]× Πjdj/|G|, where [Γf ] is the dimension of the irreducible representation
Γf , |G| = 24 is the order of the group Td, and Πjdj = 3456 is the product of the degrees of the nine denominator polynomials.
This result is a generalized version of proposition 2.3.6 of Ref.24. It suffices to multiply the left–hand side of Eq. (2.3.4) by the
complex conjugate of the character of π and to notice that this equals to [Γf ] for π = Id, see also Proposition 4.9 of Ref.43.

Γf : A1 A2 E F1 F2

Degree k nA1

k dimPA1

k nA2

k dimPA2

k nE
k dimPE,i

k nF1

k dimPF1,i
k nF2

k dimPF2,i
k

0 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 2 2

2 1 5 0 0 4 5 3 3 5 7

3 5 13 4 4 6 14 12 15 12 25

4 9 33 8 12 16 45 27 51 23 69

5 12 72 15 39 28 111 45 141 41 177

6 18 162 26 101 39 257 60 342 60 400

7 21 319 24 226 50 545 71 752 71 848

8 24 620 21 470 50 1090 71 1528 71 1672

9 26 1132 18 918 39 2040 60 2920 60 3140

10 15 1998 12 1680 28 3678 41 5298 45 5610

11 8 3384 9 2946 16 6330 23 9210 27 9654

12 4 5587 5 4973 6 10545 12 15418 12 16022

13 0 8912 1 8098 4 17010 5 24998 3 25822

14 0 13912 0 12818 1 26730 2 39388 0 40472

15 0 21185 1 19771 0 40935 0 60536 0 61960

n > 15 0 0 0 0 0 0

Total 144 ∞ 144 ∞ 288 ∞ 432 ∞ 432 ∞
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can be constructed from the objects in the initial Γi rep-
resentation.

Each generating function MTd (Γf ; Γi; t) is the ratio of
a numerator N (Γf ; Γi; t) over a denominator D (Γi; t):

MTd (Γf ; Γi; t) =
N (Γf ; Γi; t)

D (Γi; t)
=

N
∑

k=1

tνk

D
∏

k=1

(1− tδk)

, (A.1)

with νk ∈ N and δk ∈ N\ {0}. The polynomial associ-
ated to a

(

1− tδk
)

term in the denominator is an invari-
ant called a denominator polynomial of degree δk and
is noted I(δk) (Γi). The polynomial associated to a tνk

term in the numerator is a Γf–covariant called a numer-

ator polynomial of degree νk and is noted E(νk) (Γf ; Γi)

(when Γf is degenerate, E(νk) (Γf ; Γi) will be a vector
gathering all the Γf , i–covariant numerator polynomials
of degree νk for i ∈ {1, [Γf ]}). Inspection of A.1 indi-
cates that D denominator polynomials and N numera-
tor polynomials are associated to the generating function
MTd (Γf ; Γi; t).

The notation for denominator and numerator poly-
nomials using α, β, γ symbols for a chosen basis of the
irreps. closely follows the paper of Patera, Sharp and
Winternitz47. However, their table for octahedral ten-
sors contains two errors for the degree eight E(8) (Γ4,Γ4)
and degree seven E(7) (Γ5,Γ4) numerator polynomials.
With the definitions of polynomials given in paper47, the
following relation hold:

E(8) (Γ4,Γ4)i = I(2) (Γ4)E
(6) (Γ4,Γ4)i

−1

2
I(2) (Γ4)

2
E(4) (Γ4,Γ4)i

+
1

2
I(4) (Γ4)E

(4) (Γ4,Γ4)i , (A.2)

where the index i stands either for x, y or z. The rela-
tion (A.2) indicates that the polynomial of degree eight
E(8) (Γ4,Γ4) has a decomposition in terms of polynomials
that are elements of the integrity basis ofMTd (Γ4; Γ4; t).
As a consequence, E(8) (Γ4,Γ4) does not enter the in-
tegrity basis.

The same is true for E(7) (Γ5,Γ4) and the integrity
basis of MTd (Γ5; Γ4; t) due to relation (A.3).

E(7) (Γ5,Γ4)i = I(2) (Γ4)E
(5) (Γ5,Γ4)i

−1

2
I(2) (Γ4)

2
E(3) (Γ5,Γ4)i

+
1

2
I(4) (Γ4)E

(3) (Γ5,Γ4)i . (A.3)

A complete list of tables of both denominator and nu-
merator polynomials for all the initial Γi and final Γf

irreps. is given in the next sections.

1. Γi = A1 irreducible representation

The denominator is D (A1; t) = 1 − t. The cor-
responding denominator polynomial of degree one is
I(1) (A1) = α. The only non–zero numerator polynomial
is N (A1;A1; t) = 1.

2. Γi = A2 irreducible representation

The denominator is D (A2; t) = 1 − t2. The cor-
responding denominator polynomial of degree two is
I(2) (A2) = α2. Two numerator polynomials are non–
zero: N (A1;A2; t) = 1 and N (A2;A2; t) = t. The A2–
covariant numerator polynomial of degree one is

E(1) (A2;A2) = α.

3. Γi = E irreducible representation

The denominator is D (E; t) =
(

1− t2
) (

1− t3
)

. The

denominator polynomial of degree two is I(2) (E) =
α2+β2

√
2

and the denominator polynomial of degree three

is I(3) (E) = −α3+3αβ2

2 . Three numerator polynomials

are non–zero: N (A1;E; t) = 1, N (A2;E; t) = t3, and
N (E;E; t) = t+ t2. The A2–covariant numerator poly-
nomial of degree three is

E(3) (A2;E) =
−3α2β + β3

2
,

and the two E–covariant numerator polynomials of de-
gree one and two are

E(1) (E;E) =

(

α

β

)

E(2) (E;E) =
1√
2

(

−α2 + β2

2αβ

)

4. Γi = F1 irreducible representation

The denominator is D (F1; t) =
(

1− t2
) (

1− t4
) (

1− t6
)

. The denominator poly-

nomial of degree two is I(2) (F1) = α2+β2+γ2

√
3

,

the denominator polynomial of degree four is

I(4) (F1) = α4+β4+γ4

√
3

and the denominator polyno-

mial of degree six is I(6) (F1) = α6+β6+γ6

√
3

. The

numerator polynomials are N (A1;F1; t) = 1 + t9,
N (A2;F1; t) = t3 + t6 N (E;F1; t) = t2 + t4 + t5 + t7

N (F1;F1; t) = t + t3 + t4 + t5 + t6 + t8, and
N (F2;F1; t) = t2 + t3 + t4 + t5 + t6 + t7. The
invariant numerator polynomial of degree nine is

E(9) (A1;F1) =
1√
6
αβγ

(

α2 − β2
) (

β2 − γ2
) (

γ2 − α2
)

,



9

the two A2–covariant numerator polynomials of degree
three and six are

E(3) (A2;F1) = αβγ

E(6) (A2;F1) =
1√
6

(

α2 − β2
) (

β2 − γ2
) (

γ2 − α2
)

,

the four E–covariant numerator polynomials of degree
two, four, five, and seven are:

E(2) (E;F1) =
1√
6

(

α2 + β2 − 2γ2√
3
(

−α2 + β2
)

)

E(4) (E;F1) =
1√
6

(

α4 + β4 − 2γ4√
3
(

−α4 + β4
)

)

E(5) (E;F1) =
1√
6
αβγ

( √
3
(

α2 − β2
)

α2 + β2 − 2γ2

)

E(7) (E;F1) =
1√
6
αβγ

( √
3
(

α4 − β4
)

α4 + β4 − 2γ4

)

,

the six F1–covariant numerator polynomials of degree
one, three, four, five, six, and eight are

E(1) (F1;F1) =







α

β

γ







E(3) (F1;F1) =







α3

β3

γ3







E(4) (F1;F1) =
1√
2







(

β2 − γ2
)

βγ
(

γ2 − α2
)

γα
(

α2 − β2
)

αβ







E(5) (F1;F1) =







α5

β5

γ5







E(6) (F1;F1) =
1√
2







(

β4 − γ4
)

βγ
(

γ4 − α4
)

γα
(

α4 − β4
)

αβ







E(8) (F1;F1) =
1√
2
αβγ







(

β4 − γ4
)

α
(

γ4 − α4
)

β
(

α4 − β4
)

γ






,

the six F2–covariant numerator polynomials of degree
two, three, four, five, six, and seven are

E(2) (F2;F1) =







βγ

γα

αβ







E(3) (F2;F1) =
1√
2







(

β2 − γ2
)

α
(

γ2 − α2
)

β
(

α2 − β2
)

γ







E(4) (F2;F1) = αβγ







α

β

γ







E(5) (F2;F1) =
1√
2







(

β4 − γ4
)

α
(

γ4 − α4
)

β
(

α4 − β4
)

γ







E(6) (F2;F1) = αβγ







α3

β3

γ3







E(7) (F2;F1) =
1√
2
αβγ







(

β2 − γ2
)

βγ
(

γ2 − α2
)

αγ
(

α2 − β2
)

αβ







5. Γi = F2 irreducible representation

The denominator is D (F2; t) =
(

1− t2
) (

1− t3
) (

1− t4
)

. The denominator polynomial

of degree two is I(2) (F2) = α2+β2+γ2

√
3

, the denomi-

nator polynomial of degree three is I(3) (F2) = αβγ
and the denominator polynomial of degree four

is I(4) (F2) = α4+β4+γ4

√
3

. The numerator polyno-

mials are N (A1;F2; t) = 1, N (A2;F2; t) = t6,
N (E;F2; t) = t2 + t4, N (F1;F2; t) = t3 + t4 + t5, and
N (F2;F2; t) = t+ t2 + t3. The A2–covariant numerator
polynomial of degree six is

E(6) (A2;F2) =
1√
6

(

α2 − β2
) (

β2 − γ2
) (

γ2 − α2
)

,

the two E–covariant numerator polynomials of degree
two and four are

E(2) (E;F2) =
1√
6

(

α2 + β2 − 2γ2√
3
(

−α2 + β2
)

)

E(4) (E;F2) =
1√
6

(

α4 + β4 − 2γ4√
3
(

−α4 + β4
)

)

,

the four F1–covariant numerator polynomials of degree
three, four and five are

E(3) (F1;F2) =
1√
2







(

β2 − γ2
)

α
(

γ2 − α2
)

β
(

α2 − β2
)

γ







E(4) (F1;F2) =
1√
2







(

β2 − γ2
)

βγ
(

γ2 − α2
)

γα
(

α2 − β2
)

αβ







E(5) (F1;F2) =
1√
2







(

β2 − γ2
)

α3

(

γ2 − α2
)

β3

(

α2 − β2
)

γ3






,
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the three F2–covariant numerator polynomials of degree
one, two, and three are

E(1) (F2;F2) =







α

β

γ







E(2) (F2;F2) =







βγ

γα

αβ







E(3) (F2;F2) =







α3

β3

γ3






.
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[27] P. Cassam-Chenäı F. Patras G. Dhont, B. Zhilinskii. in
preparation.

[28] D.L. Gray and A.G. Robiette. The anharmonic force
field and equilibrium structure of methane. Mol. Phys.,
37(6):1901–1920, 1979.

[29] T. J. Lee, J. M. L. Martin, and P. R. Taylor. An accurate



11

ab initio quartic force field and vibrational frequencies for
CH4 and isotopomers. J. Chem. Phys., 102(1):254–261,
1995.

[30] J.L. Duncan and I.M. Mills. The calculation of force
constants and normal coordinates–IV XH4 and XH3

molecules. Spectrochim. Acta, 20(3):523–546, 1964.
[31] C. Oyanagi, K. Yagi, T. Taketsugu, and K. Hirao. Highly

accurate potential-energy and dipole moment surfaces
for vibrational state calculations of methane. J. Chem.
Phys., 124(6):064311, 2006.
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