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Abstract

We introduce the electron-nuclei general mean field configuration interaction (EN-

GMFCI) approach. It consists in building an effective Hamiltonian for the electrons

taking into account a general mean field due to the nuclear motion and, conversely,

in building an effective Hamiltonian for the nuclear motion taking into account a

general mean field due to the electrons. The eigenvalue problem of these Hamilto-

nians are solved in a basis set giving partial eigensolutions for the active degrees

of freedom (dof), that is to say, either for the electrons or for the nuclear motion.

The process can be iterated. If first-order effective Hamiltonians, averaged over the

ground state (GS) of the non-active or “spectator” dof, are chosen at every step

of the process, the total energy corresponding to the product of the electronic GS

wave functions by the nuclear motion GS wave function, can only decrease. The

EN-GMFCI is a new paradigm for quantum chemistry that bypasses the tradi-

tional Born-Oppenheimer (BO) reduction of the molecular Schrödinger equation to

an electronic problem and a nuclear poblem. In the EN-GMFCI method, electron

and nuclei are treated on the same footing. In contrast with the BO or adiabatic

decoupling schemes, the electronic potential for the nuclei is known exactly and

analytically from a single electronic calculation. So there is no need to perform elec-

tronic calculations for a large grid of nuclear configurations and to fit a PES. The

method is illustrated on diatomic molecules.
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1 Introduction

The Born-Oppenheimer (BO) potential energy surface (PES) is one of the main paradigm

of quantum chemistry since its origin [1]. It has proved very successful in solving many

molecular spectroscopy and molecular dynamics problems. The BO approximation has

been found more accurate than one could expect due to some error compensation between

the adiabatic correction and mass polarisation contributions [2]. However, they are a

number of conceptual and practical problems with the BO PES approach. To quote a few:

Its mathematical justification is not yet completely satisfactory [3]. The generalisation

of the PES concept to a non-adiabatic context hits the difficulty that a PES should not

be regarded as an observable but rather as a quotient of observables [4]. The number

of points needed to described accurately a full-dimensional PES grows dramatically as

the number of nuclei increases, and the number of electronic Schrödinger equations to

be solved grows accordingly. The represention of a full-dimensional PES, only known at

a discrete set of points, by a continuous function, is also an issue for the actual use of

a PES in many applications. Many technical choices must be adressed such as how to

select the nuclear configurations where the PES is evaluated, should the derivatives at

these points be calculated or not, if using finite differences what should be the stepsize,

should one use an interpolation scheme or a global analytical function, how to insure the

correct asymptotical behaviour, how to estimate the goodness of the fit...

The purpose of the present article is to show that the construction of a BO PES can be

bypassed and that one can still obtain very accurate vibronic energy levels.

Existing methods to deal with non-BO systems usually starts with the BO approach and

then couples BO excited electronic states. These methods are limited to small systems

and a limited number of BO excited electronic states, since they require the computa-

tion of one PES per electronic state. Very few groups worldwide have developed methods

dealing on an equal footing with electron and nuclei degrees of freedom. There is essen-

tially one and the same method developed under different names by different groups:

- The FVMO (full variational treatment of molecular orbital) method of Tachikawa et

2



al. [5], later called with a different name, DEMO (dynamic extended molecular orbital)

method [6], later called NOMO (nuclear orbital molecular orbital by Nakai et al. [7];

- The CMFT-GCM (coupled mean-field theory- generator coordinate method) of Shigeta

et al. [8] who later turned towards non-BO DFT;

- The NEO (nuclear-electronic orbital) method [9].

More recently, a method based on explicitly correlated geminal Gaussian basis function,

inspired by the pioneering work of Cafiero and Adamowicz [10] has been proposed by

Matyus and Reiher [11]. So far, the success of all these methods has been limited, mainly

because the coordinates and/or the basis sets used for the nuclear degrees of freedom

were not amenable to describe sufficiently excited vibrational states. Furthermore, these

approaches usually start from a global single determinantal wave function for all degrees

of freedom. That is to say, they have to recover electronic correlation, vibrational corre-

lation and electron-vibration correlation all at once. These drawbacks will be avoided in

the GMFCI approach.

The MFCI method [12–15] is a general approach that has proved very effective to solve

the vibrational Schrödinger equation. It consists in successive couplings of groups of

degrees of freedom called “active” in the mean field of the other degrees of freedom

called “spectators”. After each step, the eigenstates corresponding to energy eigenvalues

that are too high to be useful to the description of the physical states of interest, are

discarded. This way, the size of the configuration space can remain tractable regardless

of the number of atoms in the molecule. Recently, the use of more general mean field

expressions arising from perturbation theory has been proposed [16], giving increased

flexibility: the so-called “GMFCI” method.

Here, we propose to generalize the GMFCI ideas to a set of both electrons and nuclei.

Rotational dof will be omitted from now on, to simplify the discussion, although they

could be included in a similar fashion as vibrational dof. This issue will be discussed in

conclusion. First, we will obtain a basis set of vibrational wave functions by diagonalizing

a mean field vibrational Hamiltonian. The latter will only require a realistic zero order

fundamental electronic wave function. It will not require a BO PES as in the traditional
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approach but a mean field PES. Provided Gaussian type orbitals (GTO) are used to

describe the electronic wave function, this mean field PES admits an analytical expression

in terms of confluent hypergeometric functions. However, such an expression is not even

needed in practice, only its integrals over vibrational basis functions are required. When

traditional harmonic oscillator (HO) basis functions are used to describe the vibratonal

wave functions, double Rys quadrature [17–20] is a very practical way to calculate the

required integrals.

Similarly, we will need to obtain a basis set of electronic wave functions by diagonalizing

an electronic Hamiltonian averaged over the vibrational ground state. Here again, special

functions may appear in this mean field Hamiltonian. Numerical quadrature integration

will be used to compute efficiently the integrals as for the vibrational degrees of freedom.

Finally, the new integrals appearing in the GMFCI step contracting vibrational and

electronic degrees of freedom together, will be of the same nature, despite the fact that

they will involve excited state basis functions in addition to fundamental state basis

functions. The same quadrature routines will be used again.

The article is organized has follows: First the general frame of the GMFCI method for

electrons and nuclei is presented. Then, we provide some technical but essential details

on the calculation of integrals required in the Hamiltonian matrix element evaluations

for the case of a diatomic molecule. Finally, we conclude on the prospects of the method.

2 The GMFCI method for electrons and nuclei

Although the degrees of freedom (dof) are entangled in a quantum world, from an opera-

tional point of view, i.e. for all practical purposes, they appear dynamically autonomous.

It thus makes sense physically to consider them independently in the mean field of the

others in first approximation, and then if this approximation proves too rough, to couple

some dof to refine the description.
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2.1 General setting

Let us consider a molecule made of p electrons and N nuclei. We denote collectively

by ~Re := (~r e
1 , ~r e

2 , . . . , ~r e
p ), the electronic position variables with respect to the center

of nuclear mass, by ~Rn := (~r n
1 , ~r n

2 , . . . , ~r n
N ), the nuclear position variables in the same

frame, and by ~Q := (Q1, Q2, . . . , Qq) mass-weighted Cartesian normal coordinates, with

q = 3N − 5 or q = 3N − 6 depending upon the molecule being linear or not. The ~Q are

related to displacements, ∆ ~Rn = ~Rn − ~R0, with respect to a reference nuclear geometry,

~R0 = (~r 0
1 , ~r 0

2 , . . . , ~r 0
N ), in an Eckart frame [21] by two linear operators,

~Q = L̂Ĝ∆ ~Rn. (1)

Ĝ is represented by a (3N × 3N) diagonal matrix containing the square roots of the

nuclear masses, and L̂ by a (q×3N) matrix whose lines are orthonormals. So, at nuclear

configurations where the translation and rotation mass-weighted Cartesian coordinates

are zero (or considered as zero) the above formula can be inverted as

~Rn = Ĝ−1L̂T ~Q+ ~R0, (2)

where L̂T is the transposed of L̂. In particular,

~r n
a = Ĝ−1

a L̂T ~Q+ ~r 0
a , (3)

Ĝ−1
a being the (3× 3N) submatrix of Ĝ−1 corresponding to nucleus a.

We decompose the molecular Hamiltonian into three parts:

a purely electronic one,

Ĥ( ~Re) = −1

2

p
∑

i=1

∆ ~re
i
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ , (4)

a purely vibrational one,

Ĥ( ~Q) = −1

2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a − ~r 0

b + Ĝ−1
a L̂T ~Q− Ĝ−1

b L̂T ~Q‖
, (5)
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and a coupling term,

Ĥ( ~Re, ~Q) = −
p
∑

i=1

N
∑

a=1

Za

‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖

. (6)

Eq. (3) allows one to recognise Coulomb potential terms on the right-hand side of Eqs.(5)

and (6).

It is out of the scope of the present article to review the involved procedure that one

has to follow in order to derive such an Hamiltonian from the usual Coulomb Hamilto-

nian for nuclei and electrons [3,22]. We will not attempt to justify the omission of many

terms that are not included in Eqs. (4) to (6) for the sake of simplifying the presenta-

tion. Eliminating translations [2], for example, introduces mass-polarization terms and

reduced-mass corrections that are neglected here. The separation of rotational motion

for electronic dofs also imposes the neglect of terms involving the electronic angular mo-

menta [23,24]. The full rovibrational Eckart-Watson Hamiltonian [25,26,21] could have

been introduced, however, here, as in many studies limited to vibrational motion, rota-

tional dof and Coriolis couplings are omitted.

2.2 General Mean field Hamiltonian for the electrons

Let us call φ
(0)
~0
( ~Q) a zero-order approximation of the vibrational GS. We build a first

order mean field Hamiltonian for the electrons according to

Ĥeff ( ~Re) = Ĥ( ~Re) + 〈φ(0)
~0
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~0
( ~Q)〉 ~Q

= −1

2

p
∑

i=1

∆ ~re
i
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ −
p
∑

i=1

N
∑

a=1

〈φ(0)
~0
( ~Q)| Za

‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖

|φ(0)
~0
( ~Q)〉 ~Q

+〈φ(0)
~0
( ~Q)| − 1

2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a − ~r 0

b + Ĝ−1
a L̂T ~Q− Ĝ−1

b L̂T ~Q‖
|φ(0)

~0
( ~Q)〉 ~Q, (7)

where 〈|〉 ~Q means that integration is carried out only for vibrational coordinates. So, the

last bracket on the right-hand side is just a constant.
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The clamped nuclei approximation can be seen as a particular case, where

φ
(0)
~0
( ~Q) =

q
⊗

i=1
δ0(Qi), the tensor product of Dirac distributions centered at zero, provided

that the nuclear kinetic energy, which is ill-defined in this case, is left out,

Ĥcn( ~Re) = −1

2

p
∑

i=1

∆ ~re
i
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ −
p
∑

i=1

N
∑

a=1

Za

‖~r e
i − ~r 0

a ‖ +
∑

1≤a<b≤N

ZaZb

‖~r 0
a − ~r 0

b ‖ .

(8)

Alternatively, one can choose φ
(0)
~0
( ~Q) =

q
⊗

i=1
φi
0(Qi), a product of GS eigenfunctions of

some one-dimensional model Hamiltonians, as a guess to initiate the EN-GMFCI process.

Then, approximate excited states represented by, φ
(0)
~K
( ~Q) =

q
⊗

i=1
φi
ki
(Qi), ~K = (k1, . . . , kq),

that is to say, products of kth
i -excited functions, can be used to build a more general MF

Hamiltonian, for instance, a second order GMF Hamiltonian [16],

Ĥeff ( ~Re) = Ĥ( ~Re) + 〈φ(0)
~0
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~0
( ~Q)〉 ~Q

+
∑

~K 6=(0,··· ,0)

〈φ(0)
~0
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~K
( ~Q)〉 ~Q〈φ

(0)
~K
( ~Q)|Ĥ( ~Q) + Ĥ( ~Re, ~Q)|φ(0)

~0
( ~Q)〉 ~Q

E
(0)
~0

− E
(0)
~K

,

(9)

where the energy difference, E
(0)
~0

− E
(0)
~K

= −
q
∑

i=1
(Ei

ki
− Ei

0), is the opposite of the sum

of 1D model Hamiltonian excitation energies. Such an expression is reminiscent of that

of Bunker and Moss [27] obtained by contact transformation, which account for non

adiabatic corrections to the electronic energy.

2.3 General Mean field Hamiltonian for the vibrational dof

Assuming that a GMF Hamiltonian, Eq.(8) for example, has been chosen to start the

EN-GMFCI process, one can solve the Schrödinger stationary equation by any electronic

calculation method, such as Hartree-Fock [28–31], configuration interaction [32], geminal-

MFCI [13,33,34], or other available ansätze. Let us call, φ
(1)
~0
( ~Re), an approximate solution

for the electronic ground state. It can be used in turn to obtain an effective, first order,
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vibrational Hamiltonian,

Ĥeff ( ~Q) = Ĥ( ~Q) + 〈φ(1)
~0
( ~Re)|Ĥ( ~Re) + Ĥ( ~Re, ~Q)|φ(1)

~0
( ~Re)〉 ~Re

= −1

2

q
∑

i=1

∆Qi
+

∑

1≤a<b≤N

ZaZb

‖~r 0
a − ~r 0

b + Ĝ−1
a L̂T ~Q− Ĝ−1

b L̂T ~Q‖

+〈φ(1)
~0
( ~Re)| − 1

2

p
∑

i=1

∆ ~re
i
+

∑

1≤i<j≤p

1

‖~r e
i − ~r e

j ‖ −
p
∑

i=1

N
∑

a=1

Za

‖~r e
i − ~r 0

a − Ĝ−1
a L̂T ~Q‖

|φ(1)
~0
( ~Re)〉 ~Re ,

(10)

where 〈|〉 ~Re means that integration is carried out only for electronic coordinates. If one

manages to obtain excited electronic wave functions, then, a higher order, effective Hamil-

tonian, similar to Eq.(9), can also be considered. However, sticking to first order MF

Hamiltonians, averaged over spectator ground states, the GS energy of the active set

always corresponds to the total energy of the product of GS wave functions. So, if one

alternates the resolution of electronic and vibrational MF Hamiltonians by using a vari-

ational method, which can only lower the energy, one can expect to converge towards a

self-consistent solution, as in the vibrational mean field configuration interaction (VM-

FCI) method [14,15].

In such an iterative process, at even iteration number (m = 2l) one solves an electronic

problem (eigenvalue equation for the Hamiltonian given by Eq. (7) with φ
(0)
~0
( ~Q) substi-

tuted by φ
(2l)
~0

( ~Q)). One obtains an electronic GS wave function, φ
(2l+1)
~0

( ~Re). In turn, this

wave function is used to build the vibrational MF Hamiltonian (according to Eq. (10)

with φ
(1)
~0
( ~Re) replaced by φ

(2l+1)
~0

( ~Re)) for the next iteration.

In contrast with NOMO and NEO approaches, electronic correlation can be taken into

account from the start, if one uses a correlated method to obtain φ
(1)
~0
( ~Re). The same is

true for vibrational motion correlation. However, electron-nuclei coupling is only included

in a MF fashion. If, eventually, it appears necessary to have a more accurate description

of electron-nuclei correlation, then one can contract electronic and vibrational dof.
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3 Integrals for diatomics

Let us first consider the case of a diatomic molecule and standard MFCI, that is to say

order 1 GMFCI, equations. ~Q reduces to one scalar component that we denote simply

by Q, dropping the component index. Assuming that the molecule lies along the z-axis

of a body-fixed frame, Q will be the Cartesian displacement along z weighted by the

reduced mass of the nuclei, µab =
mamb

ma+mb
,

Q =
√
µab(raz − r0az − rbz + r0bz), (11)

that is to say,

L̂ = (0, 0,+

√
mb√

ma +mb

, 0, 0,−
√
ma√

ma +mb

). (12)

Its range is ]− ξ0ab,+∞[, where ξ0ab = ‖√µab(~r
0

a − ~r 0
b )‖. It follows easily that,

Ĝ−1
a L̂T ~Q =

























0

0

+
√
µabQ

ma

























, Ĝ−1
b L̂T ~Q =

























0

0

−√
µabQ

mb

























.

So, Eq. (10) becomes,

Ĥeff (Q) = −1

2

q
∑

i=1

∆Qi
+

√
µabZaZb

|ξ0
ab

+Q|
+ 〈φ(1)

~0
( ~Re)| − 1

2

p
∑

i=1

∆ ~re
i

+
∑

1≤i<j≤p

1

‖~r e
i

− ~r e
j
‖

−
p
∑

i=1

Za
√

(re
ix
)2 + (re

iy
)2 + (re

iz
− r0az

−
√

µabQ

ma
)2

+
Zb

√

(re
ix
)2 + (re

iy
)2 + (re

iz
− r0

bz
+

√
µabQ

mb
)2

|φ(1)
~0

( ~Re)〉 ~Re , (13)

and Eq. (7) becomes,

Ĥeff ( ~Re) = −1

2

p
∑

i=1

∆ ~re
i

+
∑

1≤i<j≤p

1

‖~r e
i

− ~r e
j
‖ + 〈φ(0)

0 (Q)| − 1

2
∆Q +

√
µabZaZb

|ξ0
ab

+Q|

−
p
∑

i=1

Za
√

(re
ix
)2 + (re

iy
)2 + (re

iz
− r0az

−
√

µabQ

ma
)2

+
Zb

√

(re
ix
)2 + (re

iy
)2 + (re

iz
− r0

bz
+

√
µabQ

mb
)2

|φ(0)
0 (Q)〉Q. (14)

Let us consider first the latter equation. In general, the vibrational GS wave function,

φ0(Q), will be expressed in terms of a model Hamiltonian eigenfunction basis set. In the
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diatomic case, a harmonic model potential is not suitable, since the nuclear Coulomb

integrals will diverge. So, we choose a Kratzer potential basis set, which is not only more

accurate but also leads convergent nuclear Coulomb integrals.

φ0(Q) =
nmax
∑

i=0

c0iφ
kra
i (Q), (15)

where φkra
i (Q) is the ith eigenfunction of a Hamiltonian with Kratzer potential,D

(

Q

Q+ξ0
ab

)2

[35,36]. However, to initiate the MFCI process, this expansion will be limited to the term

i = 0 [36],

φ
(0)
0 (Q) =

[2(λ− 1)]λ+
1
2

√

ξ0abΓ[2λ+ 1]

(

1 +
Q

ξ0ab

)λ

Exp

[

(1− λ)(1 +
Q

ξ0ab
)

]

, (16)

where Γ[x] is the gamma function and λ is a constant,

λ =
1

2
+

√

1

4
+ 2D ξ0ab

2
. (17)

The normalization factor assumes integration on dQ over ]− ξ0ab,+∞[.

For H2 in its GS, a reasonable set of parameters would be λ = 36.7734 au and ξ0ab =

42.4422 au. Given µab = mH

2
= 918.576 au, one gets D = 0.365148 hartree, not really

close to the dissociation energy De = 0.166107 hartree. However, with these parameters

the zero point energy is, D−E0 = 2179.31 cm−1 , as obtained from spectroscopic analysis

[37].

Given this choice of wave function, the integrals over Q in Eq.(14) are calculated to be,

〈φ(0)
0 (Q)| − 1

2
∆Q|φ(0)

0 (Q)〉Q =
(λ− 1)2

2 (2λ− 1) ξ0ab
2, (18)

〈φ(0)
0 (Q)|

√
µabZaZb

|ξ0ab +Q| |φ
(0)
0 (Q)〉Q =

(λ− 1)
√
µabZaZb

λ ξ0ab
,

(19)

10



which shows that the nuclear repulsion energy is damped by a factor λ−1
λ

by convolution

with nuclear motion. Note that considering rotational motion would just add an addi-

tional constant, 〈φ(0)
0 (Q)|µabJ(J+1)

|ξ0
ab
+Q|2 |φ(0)

0 (Q)〉Q to Eq.(14). These matrix elements can be

calculated analytically for a general wave function, Eq.(15), with the help of the formulas

of Ref. [36], implemented in the code CONVIV [14,38].

So, coming back to the H2 example and J = 0, the constant in Eq.(14) would be about

0.699578 au.

It remains to evaluate the last two symmetrical one-electron integrals of Eq.(14), which

gives an effective attractive potential for the electrons. However, in practice this potential,

which corresponds to an attractive Coulomb potential convoluted with nuclear motion,

needs not be calculated explicitly. One only needs to calculate matrix elements between

pairs of one-electron orbital basis functions of the form,

Ie−n[ZI , r
0
Iz
, η] = 〈φ(0)

0 (Q)χ1(~re)|
ZI

√

(rex)
2 + (rey)

2 + (rez − r0Iz + ηQ)2
|φ(0)

0 (Q)χ2(~re)〉.

(20)

We will consider the case of primitive Gaussian functions

χi(~re) = Ni(r
e
x)

li(rey)
ki(rez − r0iz)

jiExp
[

−ζi
(

(rex)
2 + (rey)

2 + (rez − r0iz)
2
)]

, (21)

where Ni is a normalization factor. Then, setting,

Ie−n[ZI , r
0
Iz
, η] =

ZIN1N2 [2(λ− 1)]2λ+1

Γ[2λ+ 1]
Ĩe−n[r

0
Iz
+ ηξ0ab, ηξ

0
ab]

(22)

we have to calculate,
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Ĩe−n[r̃
0
Iz
, η̃] =

∫ +∞

0
dα α2λExp [2(1− λ)α]

∫ +∞

−∞
drex

∫ +∞

−∞
drey

∫ +∞

−∞
drez

×Exp
[

−(ζ1 + ζ2)(r
e
x)

2
]

Exp
[

−(ζ1 + ζ2)(r
e
y)

2
]

Exp
[

−ζ1(r
e
z − r01z)

2 − ζ2(r
e
z − r02z)

2
]

×(rex)
l1+l2(rey)

k1+k2(rez − r01z)
j1(rez − r02z)

j2

√

(rex)
2 + (rey)

2 + (rez − r̃0Iz + η̃α)2

=
∫ +∞

0
dα α2λExp [2(1− λ)α]

∫ +∞

0

dβ√
πβ

∫ +∞

−∞
drex(r

e
x)

l1+l2Exp
[

−(ζ1 + ζ2 + β)(rex)
2
]

×
∫ +∞

−∞
drey(r

e
y)

k1+k2Exp
[

−(ζ1 + ζ2 + β)(rey)
2
]

∫ +∞

−∞
drez(r

e
z − r01z)

j1(rez − r02z)
j2

×Exp
[

−ζ1(r
e
z − r01z)

2 − ζ2(r
e
z − r02z)

2 − β(rez − r̃0Iz + η̃α)2
]

=
δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√
π

Γ

[

k1 + k2 + 1

2

]

Γ

[

l1 + l2 + 1

2

]

Exp

[

− ζ1ζ2

ζ1 + ζ2
(r01z − r02z)

2

]

×
∫ +∞

0
dα α2λExp [2(1− λ)α]

∫ +∞

0
dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2

2
−1

×Exp



− (ζ1 + ζ2)β

ζ1 + ζ2 + β

(

ζ1r
0
1z + ζ2r

0
2z

ζ1 + ζ2
− r̃0Iz + η̃α

)2




∫ +∞

−∞
drez(r

e
z − r01z)

j1(rez − r02z)
j2Exp



−
(

ζ1 + ζ2 + β)(rez −
ζ1r

0
1z + ζ2r

0
2z + β(r̃0Iz − η̃α)

ζ1 + ζ2 + β

)2




=
δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√
π

Γ

[

k1 + k2 + 1

2

]

Γ

[

l1 + l2 + 1

2

]

Exp

[

− ζ1ζ2

ζ1 + ζ2
(r01z − r02z)

2

]

×
j1
∑

i1=0

j2
∑

i2=0

(−1)j1+j2−i1−i2
j1!j2!(r

0
1z)

j1−i1(r02z)
j2−i2

i1!i2!(j1 − i1)!(j2 − i2)!
δ
[2]
0,i1+i2

Γ
[

i1 + i2 + 1

2

]

×
∫ +∞

0
dα α2λExp [2(1− λ)α]

∫ +∞

0
dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2+i1+i2+3

2

×Exp



− (ζ1 + ζ2)β

ζ1 + ζ2 + β

(

ζ1r
0
1z + ζ2r

0
2z

ζ1 + ζ2
− r̃0Iz + η̃α

)2


 , (23)

where δ
[2]
0,k is 0 or 1 according to k being odd or even. Let us consider first the integral

over β,

Iβ[i1, i2, α] =
∫ +∞

0
dβ β− 1

2 (ζ1 + ζ2 + β)−
k1+k2+l1+l2+i1+i2+3

2

×Exp



− (ζ1 + ζ2)β

ζ1 + ζ2 + β

(

ζ1r
0
1z + ζ2r

0
2z

ζ1 + ζ2
− r̃0Iz + η̃α

)2


 , (24)

and make the change of variable β → γ = β
ζ1+ζ2+β

,

12



Iβ[i1, i2, α] = (ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2

∫ +1

0
dγ γ− 1

2 (1− γ)+
k1+k2+l1+l2+i1+i2

2

×Exp





−
(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2
γ





 , (25)

where we recognize the confluent hypergeometric function 1F1[a, c; x] [39],

Iβ[i1, i2, α] = (ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2
Γ[1

2
]Γ[k1+k2+l1+l2+i1+i2+2

2
]

Γ[k1+k2+l1+l2+i1+i2+3
2

]

× 1F1







1

2
,
k1 + k2 + l1 + l2 + i1 + i2 + 3

2
;−
(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2





 .

(26)

However, it is probably more practical to integrate numerically using Rys quadrature

after a new change of variable, γ → τ =
√
γ,

Iβ[i1, i2, α] = 2(ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2

∫ +1

0
dτ (1− τ 2)

k1+k2+l1+l2+i1+i2
2

×Exp





−
(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2
τ 2





 . (27)

the δ[2] functions in Eq.(23) insure that the Rys quadrature will be exact, since k1+k2+l1+l2+i1+i2
2

will always be an integer. The minimum number of quadrature points or “roots” to have

an exact quadrature, is the smallest integer larger than half the degree of the polynomial

in factor of the Gaussian functions, that is to say, in the present case:

n
Rys
roots =

k1 + k2 + l1 + l2 + i1 + i2

2
. (28)

So, setting,

ν(α) =

(

ζ1r
0
1z + ζ2r

0
2z − (ζ1 + ζ2)(r̃

0
Iz
− η̃α)

)2

ζ1 + ζ2
, (29)

we can rewrite exactly Iβ[i1, i2, α] as a discretized Rys sum:

Iβ[i1, i2, α] = 2(ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2

∑

p

wRys
p [ν(α)](1− τp[ν(α)]

2)
k1+k2+l1+l2+i1+i2

2

(30)

13



where the τp[ν(α)]’s are the roots of the Rys polynomials, and wRys
p [ν(α)]’s the Rys

“weights”. Clearly, this can only be evaluated for a finite set of α-values. So, the integral

over α has to be integrated numerically too, and Laguerre-Gauss quadrature seems the

most appropriate scheme:

Ĩe−n[r̃
0
Iz
, η̃] =

δ
[2]
0,k1+k2

δ
[2]
0,l1+l2√
π

Γ

[

k1 + k2 + 1

2

]

Γ

[

l1 + l2 + 1

2

]

Exp

[

− ζ1ζ2

ζ1 + ζ2
(r01z − r02z)

2

]

×
j1
∑

i1=0

j2
∑

i2=0

(−1)j1+j2
j1!j2!(r

0
1z)

j1−i1(r02z)
j2−i2

i1!i2!(j1 − i1)!(j2 − i2)!
δ
[2]
0,i1+i2

Γ
[

i1 + i2 + 1

2

]

2(ζ1 + ζ2)
− k1+k2+l1+l2+i1+i2+2

2

[2(λ− 1)]2λ+1

×
∑

p

∑

q

wLag
q wRys

p [ν(
κq

2(λ− 1)
)]κ2λ

q (1− τp[ν(
κq

2(λ− 1)
)]2)

k1+k2+l1+l2+i1+i2
2 , (31)

where κq are Laguerre polynomials roots and wLag
q Laguerre-Gauss weight.

Inserting Eq.(31) into Eq.(22) gives the required integrals for performing an electronic

calculation, in the MF of the vibrational dof GS. (Electron kinetic energy and electron

repulsion integrals are already calculated in all quantum chemistry package). Solving the

eigenvalue problem for the Hamiltonian of Eq.(14), one obtains a wave function φ
(1)
~0
( ~Re)

which can be used in Eq.(13) to obtain a new MF Hamiltonian for the vibration dof. The

derivation of the integrals required follows the same pattern, in particular the electron-

vibration coupling integrals can be obtained by quadrature, between pairs of possibly

excited Kratzer basis functions. The only real complication will be the evaluation of

confluent hypergeometric functions at quadrature points. Then, performing a CI for the

newMF vibrational Hamiltonian, a basis set φ
(2)
k (Q) will be obtained. One can iterate this

process or decide to diagonalize the total Hamiltonian in a possibly truncated, product

basis φ
(1)
~K
( ~Re) ⊗ φ

(2)
k (Q). The only unusual integrals required to compute Hamiltonian

matrix elements are those of the coupling term, Eq.(6), and we have seen, how to deal

with them with the double quadrature method.
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4 Conclusion

The EN-GMFCI approach remedy to the drawbacks encountered in previous endeavour

to treat electrons and nuclei on an equal footing. First, the basis sets used to describe

the vibrational states are expressed in terms of appropriate vibrational basis functions,

as used in vibrational codes. This avoids the shortcomings of the Gaussian basis sets

with limited angular quantum number values used in NOMO or NEO codes.

Second, the EN-GMFCI method only couples the electronic and nuclear degrees of free-

dom in a CI calculation after having obtained properly correlated vibrational and elec-

tronic wave functions. So the crucial GMFCI step contracting all dof has mainly to deal

with electron-vibration correlation. Of course, the purely electronic and purely vibra-

tional correlations are affected too, because the Hamiltonian in the last GMFCI step is

the full Hamiltonian and not partial mean field Hamiltonians that have served to obtain

the correlated basis functions. However, the partial general mean field Hamiltonian can

be realistic enough to capture the dominant purely electronic and purely vibrational

correlations.

The energy expression for diatomic EN-GMFCI calculations limited to a one-dimensional

vibrational nuclear dof has been fully worked out. Dealing with rotational dof adds no

particular difficulty in the diatomic case. However, dealing with more nuclear dofs will

result in integrals being not separable in the general case. One will have to use numerical

techniques as already developed for purely ro-vibrational calculations [40,41].

However, the method is general and not limited to the special form of Hamiltonian used

in this article. Other general curvilinear coordinates can be used to describe nuclear

motion, and the terms neglected such as mass polarization terms, coupling terms between

electronic angular momentum and total angular momentum can in principle be taken into

account, we just wanted here to expose the principle of the method avoiding unnecessary

technical complications.
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