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Abstract An expression for the square of the spin operator expectation value, 〈S2〉, is obtained for a

general complex Hartree-Fock (GCHF) wave function and decomposed into four contributions: The main

one whose expression is formally identical to the restricted (open-shell) Hartree-Fock expression. A spin

contamination one formally analogous to that found for spin unrestricted Hartree-Fock wave functions.

A noncollinearity contribution related to the fact that the wave function is not an eigenfunction of

the spin-Sz operator. A perpendicularity contribution related to the fact that the spin density is not

constrained to be zero in the xy-plane. All these contributions are evaluated and compared for the H2O
+

system. The optimization of the collinearity axis is also considered.
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1 Introduction

Particle-independent models based on single Slater determinant wave functions, have enjoyed consider-

able interest in quantum chemistry, since the pioneering works of Hartree, Slater and Fock [1–3].

When a quantum system is described by a spin-free Hamiltonian, which obviously commutes with

the spin operators Sz and S2, a spin-symmetry respectful way of using the Hartree-Fock method consists

in:

1) Using spin-orbitals of pure α- or β-spin, so that the HF optimized Slater determinant is an eigen-

function of Sz;

2) Imposing the spin-equivalence restriction [4], which means that paired α- and β-spin-orbitals are

formed from the same set of linearly independent orbitals. We have proved mathematically [5–7] that

this additional constraint is a necessary and sufficient condition to insure that a Slater determinantal

wave function is an eigenfunction of the spin operator S2. In other words, we have shown that relaxing

the S2-symmetry constraint exactly amounts to allow different “paired orbitals”, in the sense of Refs.

[8,9], to have different spins. This equivalence enabled us to characterize the variational space explored

by the restricted open-shell Hartree-Fock (ROHF) method [10], which precisely consists in optimizing

a Slater determinant subject to constraints 1) and 2) (plus spatial-symmetry constraints if any) [11].

The equivalence was also discovered independently [12] by optimizing a Slater determinant with a La-

grange multiplier, enforcing 〈S2〉 to be arbitrarily close to the ROHF value, instead of applying the

spin-equivalence restriction. Not surprisingly, the determinant was approaching the ROHF solution.

Similar to the spin-free case is the “complex-free” one: When a quantum system is described by a

real Hamiltonian, which obviously commutes with complex conjugation, one can restrict oneself to the

calculation of real eigenfunctions. Then, it is also possible to employ only real spin-orbitals to construct

the HF Slater determinant [13]. (However, difficulties may occur when the symmetry group of the

molecule cannot be represented over real numbers, and nonetheless, one wishes the spin-orbitals to be

adapted to spatial-symmetry).

However, it has been proposed by various authors to relax some or all of the above-mentioned

constraints, to gain variational freedom. For example, the different orbitals for different spins method

(DODS) of Refs. [14,15], (which is usually just called “unrestricted Hartree-Fock” (UHF), but in this

paper we use “DODS” to avoid confusions), relaxes the spin-equivalence restriction, hence the HF
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solution is no longer an eigenfunction of S2. Other authors [16–18] have advocated the use of general

spin-orbitals, mixing α-spin and β-spin parts, in conjunction with the use of projectors [19].

Along the same line of thought, the use of complex spin-orbitals has been proposed [17,20] to increase

variational freedom in the case of real Hamiltonian. Prat and Lefebvre went a step further with so-called

“hypercomplex” spin-orbitals to construct Slater determinants of arbitrary accuracy [21]. However, the

coefficients of their spin-orbitals were elements of a Clifford algebra of dimension 22n, that was not a

normed division algebra, also known as Cayley algebra, for arbitrary values of n. This was unfortunate,

since such a structure appears to be a minimal requirement for a quantum formalism, if, for example,

Born’s interpretation of the wave function is to hold firmly. For n = 1, the Clifford algebra of Prat et al.

was actually the non-commutative field of Quaternions, therefore, a fortiori, a normed division algebra.

The only larger normed division algebra is the Octonion algebra. It is a Clifford algebra of dimension

8, which has also been proposed in a quantum mechanical context [22], but this algebra is neither

commutative nor associative. The lack of these properties rises difficulties for its use for multipartite

quantum systems, nevertheless these difficulties can be overcome by keeping the product of octonion

coefficients in the form of a tensor product. So, octonion-unrestricted HF appears to be the largest

Cilfford algebra-unrestricted single determinantal method that can be considered in the spirit of Prat

and Lefebvre’s proposal. However, octonions seem incompatible with the desirable requirement that

the algebra of quantum observables be what is now called a formally real Jordan algebra [23] acting

on a vector space of arbitrarily large dimension. Octonions are also ruled out by the requirement of

orthomodularity in infinite dimension according to Solèr’s theorem [24,25], which restricts quantum

Hilbert spaces to be real, complex or at most quaternionic.

The first HF molecular calculations with general complex spin-orbitals, without projecting out the

symmetry-breaking part of the wave function, are maybe those of Ref. [26]. It was found on the BH

molecule around its equilibrium geometry that the general complex Hartree-Fock (GCHF) energy was

indeed lower than the DODS one, which itself was lower than the restricted Hartree-Fock (RHF) solu-

tion. So necessarily, the corresponding GCHF wave functions had S2-spin contamination and Sz-spin

contamination, that is to say, the expectation values of these operators were different from 0, the value

expected for a singlet ground state. (It is not clear whether complex numbers were used for this molecule,

but the authors did mention that they performed complex calculations for 2-electron systems.)

Relaxing the “Sz-constraint” hence the “collinearity constraint”, becomes perfectly legitimate when

hyperfine or spin-orbit couplings are considered, since the operator Sz no longer commutes with the
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Hamiltonian. As a matter of fact, real physical systems do exhibit either light [27,28] or strong [29,

30] noncollinearity of their spin densities. Similarly, the use of complex spin-orbitals is natural, when

considering relativistic corrections resulting in a complex Hamiltonian operator. So, in such a context,

one should use no less than general complex spin-orbitals in HF calculations [31]. The “spin-same-orbit”

coupling term used in these calculations does not commute with the S2-operator. Therefore, one cannot

strictly speak of “S2-spin contamination” in relativistic GCHF wave functions. However, calculating the

expectation value of S2, a bona fide quantum observable, can still provide valuable physical information

about the system.

A general expression for the expectation value of S2 has been obtained in the DODS case [8], and

has served as a measure of S2-spin contamination. However, as far as we are aware, no such formula has

been published in the case of a GCHF wave function. This gap will be filled in the next section.

Studying departure from collinearity is more difficult because of arbitrariness in the quantification

axis. One possible way to overcome the difficulty would be to apply an external magnetic field to fix

the z-axis but small enough not to perturb the GCHF solution. However, an elegant alternative has

been proposed recently by Small et al. [32]. It is based on studying the lowest eigenvalue of a (3 × 3)-

matrix built from expectation values of spin operator components and their products. In the GCHF

case, the authors provided the expressions required to compute the matrix elements in a compact

form. In the third section, we give a more extended formula in terms of molecular orbital overlap

matrix elements. We also illustrate the connections between spin contamination, noncollinearity and its

correlative: “perpendicularity” on the H2O
+ cation example. We sum up our conclusions in the last

section.

2 Spin contamination in GCHF

A General Complex Hartree Fock (GCHF) wave function

ΦGCHF = φ1 ∧ · · · ∧ φNe
(1)

is the antisymmetrized product (or wedge product, denoted by ∧) of orthonormal spinorbitals, or “two-

component spinors”,
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φi =





φiα

φiβ



 , (2)

〈φi|φj〉 = δi,j , (3)

where the scalar product 〈·|·〉 means integration over space variables and summation (i.e. taking the

trace) over spin variables. The same symbol will also be used for the scalar product between orbitals (i.e.

no trace taken). We define the “number of α-spin electrons” (respectively “number of β-spin electrons”)

as Nα :=
Ne
∑

i=1

〈φiα|φiα〉 (respectively, Nβ :=
Ne
∑

i=1

〈φiβ |φiβ〉). Note that they need not be integer numbers,

however, Nα +Nβ = Ne.

Let us work out the expectation value of the spin operator,

S2 = S2
z +

1

2
(S+S− + S−S+), (4)

on a general GCHF wave function.

The action of Sz is given by,

SzΦGCHF =
1

2

Ne
∑

i=1

Φ̂i
GCHF , (5)

where,

Φ̂i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ̂i ∧ φi+1 ∧ · · · ∧ φNe

, (6)

and,

φ̂i =





+φiα

−φiβ



 . (7)

Note that,

〈φ̂i|φ̂j〉 = 〈φi|φj〉 = δi,j . (8)

So, the expectation value of S2
z is,
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〈ΦGCHF |S
2
z |ΦGCHF 〉 = 〈SzΦGCHF |SzΦGCHF 〉

= 1

4

Ne
∑

i,j=1

〈Φ̂i
GCHF |Φ̂

j
GCHF 〉

= 1

4

(

Ne
∑

i=1

〈Φ̂i
GCHF |Φ̂

i
GCHF 〉+

∑

i6=j

〈Φ̂i
GCHF |Φ̂

j
GCHF 〉

)

= 1

4

Ne
∑

i=1

(

〈φ̂i|φ̂i〉+
∑

j 6=i

(−1)|〈φ̂i|φj〉|
2 + 〈φ̂i|φi〉〈φj |φ̂j〉

)

= 1

4

(

Ne +
Ne
∑

i=1

∑

j 6=i

(−1)|〈φiα|φjα〉 − 〈φiβ |φjβ〉|
2 + (〈φiα|φiα〉 − 〈φiβ |φiβ〉) (〈φjα|φjα〉 − 〈φjβ |φjβ〉)

)

= 1

4

(

Ne +
Ne
∑

i,j=1

(〈φiα|φiα〉 − 〈φiβ |φiβ〉) (〈φjα|φjα〉 − 〈φjβ |φjβ〉)− |〈φiα|φjα〉 − 〈φiβ |φjβ〉|
2

)

=
(

Nα

2
−

Nβ

2

)2

+ 1

4

(

Ne −
Ne
∑

i,j=1

|〈φiα|φjα〉 − 〈φiβ |φjβ〉|
2

)

. (9)

This equation reduces to
(

Nα

2
−

Nβ

2

)2

in the case of a DODS wave function. So, the second term on

the right-hand side (rhs), which is (〈ΦGCHF |S
2
z |ΦGCHF 〉 − 〈ΦGCHF |Sz|ΦGCHF 〉

2) is directly related to

relaxation of the Sz-constraint and will be called the “z-noncollinearity” contribution. Note, however,

that for a GCHF wave function, the first term on the rhs does not necessarily correspond to an eigenvalue

of S2
z , according to the definition of Nα and Nβ .

The action of S+ is given by,

S+ΦGCHF =

Ne
∑

i=1

Φ́i
GCHF , (10)

where,

Φ́i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ́i ∧ φi+1 ∧ · · · ∧ φNe

, (11)

and,

φ́i =





+φiβ

0



 . (12)

Similarly, the action of S− is given by,

S−ΦGCHF =

Ne
∑

i=1

Φ̀i
GCHF , (13)
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where,

Φ̀i
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φ̀i ∧ φi+1 ∧ · · · ∧ φNe

, (14)

and,

φ̀i =





0

+φiα



 . (15)

So, the expectation value of S−S+ is,

〈ΦGCHF |S
−S+|ΦGCHF 〉 = 〈S+ΦGCHF |S

+ΦGCHF 〉

=
Ne
∑

i,j=1

〈Φ́i
GCHF |Φ́

j
GCHF 〉

=
Ne
∑

i=1

〈Φ́i
GCHF |Φ́

i
GCHF 〉+

∑

i6=j

〈Φ́i
GCHF |Φ́

j
GCHF 〉

=
Ne
∑

i=1

(

〈φ́i|φ́i〉+
∑

j 6=i

(−1)|〈φ́i|φj〉|
2 + 〈φ́i|φi〉〈φj |φ́j〉

)

=
Ne
∑

i=1

(

〈φiβ |φiβ〉+
∑

j 6=i

(−1)|〈φiβ |φjα〉|
2 + 〈φiβ |φiα〉〈φjα|φjβ〉

)

= Nβ +
Ne
∑

i,j=1

〈φiβ |φiα〉〈φjα|φjβ〉 − 〈φiβ |φjα〉〈φjα|φiβ〉. (16)

Similarly, the expectation value of S+S− is,

〈ΦGCHF |S
+S−|ΦGCHF 〉 = 〈S−ΦGCHF |S

−ΦGCHF 〉

=
Ne
∑

i=1

(

〈φ̀i|φ̀i〉+
∑

j 6=i

(−1)|〈φ̀i|φj〉|
2 + 〈φ̀i|φi〉〈φj |φ̀j〉

)

=
Ne
∑

i=1

(

〈φiα|φiα〉+
∑

j 6=i

(−1)|〈φiα|φjβ〉|
2 + 〈φiα|φiβ〉〈φjβ |φjα〉

)

= Nα +
Ne
∑

i,j=1

〈φiα|φiβ〉〈φjβ |φjα〉 − 〈φiα|φjβ〉〈φjβ |φiα〉. (17)

Using Eq.(4) and putting together Eqs.(9), (16) and (17), one obtains the expectation value of S2,

〈ΦGCHF |S
2|ΦGCHF 〉 =

(

Nα

2
−

Nβ

2

)2

+
Nα

2
+

Nβ

2
+

1

4



Ne −

Ne
∑

i,j=1

|〈φiα|φjα〉 − 〈φiβ |φjβ〉|
2





+
Ne
∑

i,j=1

〈φiα|φiβ〉〈φjβ |φjα〉 − 〈φiα|φjβ〉〈φjβ |φiα〉. (18)
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The expression reduces to the known formula in the case of a DODS wave function. Assuming, without

loss of generality, that Nα ≥ Nβ , we rewrite Eq. (18) as,

〈ΦGCHF |S
2|ΦGCHF 〉 =

(

Nα

2
−

Nβ

2

)(

Nα

2
−

Nβ

2
+ 1

)

+
1

4



Ne −

Ne
∑

i,j=1

|〈φiα|φjα〉 − 〈φiβ |φjβ〉|
2





+

(

Nβ −
Ne
∑

i,j=1

〈φiα|φjβ〉〈φjβ |φiα〉

)

+ |
Ne
∑

i=1

〈φiβ |φiα〉|
2. (19)

In this formula we identify four contributions: The first term is formally identical to the ROHF expression

also found in the DODS case. However, care must be taken that it is actually different, because the

numbers of α- and β-electrons are not good quantum numbers in the GCHF case. The second term

on the first line is the “z-noncollinearity” contribution. The third term on the second line is formally

analogous to the “spin contamination” of a DODS wave function as defined in [7,8]. Finally, the last

term on the second line arises from the release of the Sz-constraint, which allows for the two components

of a given, general spin-orbital to be non zero. But it originates from S+S− and S−S+, and is maximal

when φiβ = exp(ıθ)φiα for all i, that is to say when the φi’s are eigenfunctions of cosθSx + sinθSy for

some angle θ. It is related to the emergence of a non-zero spin density in the x, y-plane, correlatively to

the loss of z-collinearity. We tentatively call this term the “x, y-perpendicularity” contribution.

The present formulas have been implemented in the code TONTO [33] and applied in a recent

article (third column of Tab. 4 in [34]). Let us discuss further the different contributions to S2 for a

H2O
+ GCHF calculation similar to that reported in [34]. The z-quantification axis was the axis per-

pendicular to the plane of the molecule. The results, see Tab. 1, shows that the main contribution to

〈ΦGCHF |S
2|ΦGCHF 〉 beside the reference expression (first term in eq.(19)) is the so-called spin contami-

nation contribution (we set ~ = 1 throughout the paper). The x, y-perpendicularity and z-noncollinearity

contributions are of the same order of magnitude and more than one order of magnitude smaller. Added

to
(

Nα

2
−

Nβ

2

)(

Nα

2
−

Nβ

2
+ 1
)

, they almost make up the reference value of +0.75. So, the spin contam-

ination value of 0.007033 amounts almost exactly to the difference between the exact expectation value

〈ΦGCHF |S
2|ΦGCHF 〉 and this reference “ROHF value”.
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3 Collinearity in GCHF

In the previous section, we have encountered a z-(non)collinearity measure, colz := (〈S2
z 〉− 〈Sz〉

2). This

quantity can be generalized to an arbitrary quantization direction defined by a unit vector u =











ux

uy

uz











of the unit sphere S2 of R3 by replacing Sz by u · S =
∑

µ∈{x,y,z}

uµSµ. Then, u-(non)collinearity is

measured by:

col(u) :=
∑

µ,ν∈{x,y,z}

uµuν(〈SµSν〉 − 〈Sµ〉〈Sν〉). (20)

Small et al. [32] defined a (non)collinearity measure by:

col := min
u∈S2

col(u), (21)

which corresponds to the lowest eigenvalue of the matrix A whose elements are given by,

Aµν = ℜ(〈SµSν〉)− 〈Sµ〉〈Sν〉, (22)

where ℜ(z) is the real part of z. The associated eigenvector gives the optimal collinearity direction.

Setting xφ̃ = 1

2
(φ́+ φ̀), yφ̃ = −ı

2
(φ́− φ̀) and zφ̃ = φ̂, we have in these notation,

∀µ, ν ∈ {x, y, z} Aµν = δµν
Ne

4
−

Ne
∑

i,j=1

〈µφ̃i|φj〉〈φj |
ν φ̃i〉, (23)

where δµν is the Krönecker symbol.

Returning to the H2O
+ example and applying these formulae, we obtain

A =











+0.253128 +0.000145 −0.009774

+0.000145 +0.253451 +0.003745

−0.009774 +0.003745 +0.000461











(24)

The diagonalization of the A-matrix gives the optimal collinear direction: u0
t = (+0.0385908,−0.014789,+0.999146),

which is only slightly tilted with respect to the z-direction, and the system is quasi-collinear in this di-

rection since col = 0.000028 is very close to zero. This shows that the noncollinearity contribution

to 〈ΦGCHF |S
2|ΦGCHF 〉 could be further reduced by more than one order of magnitude by selecting

the optimal quantization axis corresponding to u0 instead of the spatial z-axis. The perpendicularity

contribution would decrease accordingly.
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4 Conclusion

We have decomposed the expectation value of the spin operator S2 into (i) a term formally identical to

its expression for a ROHF reference wave function, (ii) a term called “spin contamination” because it is

formally analogous to that derived by Amos and Hall [8] for DODS wave functions, (iii) a noncollinear

contribution which can be minimized by following a procedure recently introduced [32], (iv) a term

called the “perpendicularity contribution” which arises from the release of the z-collinearity constraint

but which should rather be regarded as arising from the release of the “nonperpendicularity constraint”

on the spin-density. The collinearity and nonperpendicularity constraints are correlatives.

We have evaluated these four different contributions for a GCHF calculation on the H2O
+ cation.

Note that we used the IOTC relativistic Hamiltonian [36] so that the term “spin contamination” is

not really appropriate in this context, departure from the ROHF reference value being legitimate.

However, the so-called spin contamination contribution has been found to dominate the noncollinearity

and perpendicularity ones. This could be made even more so, by tilting the quantification axis to the

optimal collinearity direction.
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We acknowledge Dr. Lukáš Bučinský for drawing our attention to the problem of the derivation of GCHF

spin contamination, and to the fact that S2 does not commutes with the “spin-same-orbit” coupling

term, usually used in quantum chemistry. The referees and the editor are acknowledged for suggesting

many improvements to the manuscript. This article is a tribute to Prof. P. Surjàn and is also dedicated
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Nα +4.999546

Nβ +4.000454

(Nα

2
−

Nβ

2
)(Nα

2
−

Nβ

2
+ 1) +0.749091

z-noncollinearity +0.000461

x, y-nonperpendicularity +0.000427

spin contamination +0.007033

〈S2〉 +0.757013

Table 1 Expectation value of 〈S2〉 and related quantities for an H2O+ GCHF optimized wave function. The geometry

parameters were rOH = 0.99192Å, ĤOH = 101.411deg. The basis set consisted of the primitives Gaussian functions

left uncontracted of Dunning’s cc-pVDZ hydrogen and oxygen basis sets [35]. The infinite-order two-component (IOTC)

relativistic Hamiltonian of Barysz and Sadlej [36] was employed.


