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Abstract

An expression for the square of the spin operator expectation value, 〈S2〉, is obtained

and analysed for a general complex Hartree-Fock (GCHF) wave function.
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Particle-independent models based on single Slater determinant wave functions, have en-

joyed considerable interest in quantum chemistry, since the pioneering works of Hartree,

Slater and Fock [1–3].

When a quantum system is described by a spin-free Hamiltonian, which obviously com-

mutes with the spin operators Sz and S2, a spin-symmetry respectful way of using the

Hartree-Fock method consists in:

1) Using spin-orbitals of pure α- or β-spin, so that the HF optimized Slater determinant

is an eigenfunction of Sz;

2) Imposing the spin-equivalence restriction [4], which means that paired α- and β-spin-

orbitals are formed from the same set of linearly independent orbitals. We have proved

mathematically [5–7] that this additional constraint is a necessary and sufficient con-

dition to insure that a Slater determinantal wave function is an eigenfunction of the

spin operator S2. In other words, we have shown that relaxing the S2-symmetry con-

straint exactly amounts to allow different “paired orbitals”, in the sense of Refs. [8,9],

to have different spins. This equivalence enabled us to characterize the variational space

explored by the restricted open-shell Hartree-Fock (ROHF) method [10], which precisely

consists in optimizing a Slater determinant subject to constraints 1) and 2) (plus spatial-

symmetry constraints if any) [11]. The equivalence was also discovered independently [12]

by optimizing a Slater determinant with a Lagrange multiplier, enforcing 〈S2〉 to be ar-

bitrarily close to the ROHF value, instead of applying the spin-equivalence restriction.

Not surprisingly, the determinant was approaching the ROHF solution.

Similar to the spin-free case is the “complex-free” one: When a quantum system is

described by a real Hamiltonian, which obviously commutes with complex conjugation,

one can restrict oneself to the calculation of real eigenfunctions. Then, it is also possible

to employ only real spin-orbitals to construct the HF Slater determinant [13]. (However,

difficulties may occur when the symmetry group of the molecule cannot be represented

over real numbers, and nonetheless, one wishes the spin-orbitals to be adapted to spatial-

symmetry).
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However, it has been proposed by various authors to relax some or all of the above-

mentioned constraints, to gain variational freedom. For example, the different orbitals for

different spins method (DODS) of Refs. [14,15], (which is usually just called “unrestricted

Hartree-Fock” (UHF), but in this paper we use “DODS” to avoid confusions), relaxes

the spin-equivalence restriction, hence the HF solution is no longer an eigenfunction of

S2. Other authors [16–18] have advocated the use of general spin-orbitals, mixing α-spin

and β-spin parts, in conjunction with the use of projectors [19].

Along the same line of thought, the use of complex spin-orbitals has been proposed

[17,20] to increase variational freedom in the case of real Hamiltonian. Prat and Lefeb-

vre went a step further with so-called “hypercomplex” spin-orbitals to construct Slater

determinants of arbitrary accuracy [21]. However, the coefficients of their spin-orbitals

were elements of a Clifford algebra of dimension 22n, that was not a normed division

algebra, also known as Cayley algebra, for arbitrary values of n. This was unfortunate,

since such a structure appears to be a minimal requirement for the quantum formalism,

if, for example, Born’s interpretation of the wave function is to hold firmly. For n = 1,

the Clifford algebra of Prat et al. was actually the non-commutative field of Quaternions,

therefore, a fortiori, a normed division algebra. The only larger normed division algebra

is the Octonion algebra. It is a Clifford algebra of dimension 8, which has also been

proposed in a quantum mechanical context [22], but this algebra is neither commutative

nor associative. The lack of these properties rises difficulties for its use for multipartite

quantum systems, nevertheless these difficulties can be overcome by keeping the product

of octonion coefficients in the form of a tensor product. So, octonion-unrestricted HF

appears to be the largest Cilfford algebra-unrestricted single determinantal method that

can be considered in the spirit of Prat and Lefebvre’s proposal. However, octonions seem

incompatible with the desirable requirement that the algebra of quantum observables

be what is now called a formally real Jordan algebra [23] acting on a vector space of

arbitrarily large dimension. Octonions are also ruled out by the requirement of ortho-

modularity in infinite dimension according to Solèr’s theorem [24,25], which restricts

quantum Hilbert spaces to be real, complex or at most quaternionic.
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The first HF molecular calculations with general complex spin-orbitals, without project-

ing out the symmetry-breaking part of the wave function, are maybe those of Ref. [26].

It was found on the BH molecule around its equilibrium geometry that the general com-

plex Hartree-Fock (GCHF) energy was indeed lower than the DODS one, which itself

was lower than the restricted Hartree-Fock (RHF) solution. So necessarily, the corre-

sponding GCHF wave functions had S2-spin contamination and Sz-spin contamination,

that is to say, the expectation values of these operators were different from 0, the value

expected for a singlet ground state. (It is not clear whether complex numbers were used

for this molecule, but the authors did mention that they performed complex calculations

for 2-electron systems.)

Relaxing the “Sz-constraint” as in [26], becomes perfectly legitimate when hyperfine

or spin-orbit coupling are considered, since the operator Sz no longer commutes with

the Hamiltonian. Similarly, the use of complex spin-orbitals is natural, when considering

relativistic corrections resulting in a complex Hamiltonian operator. So, in such a context,

one should use no more but no less than general complex spin-orbitals in HF calculations

[27]. The “spin-same-orbit” coupling term used in these calculations does not commute

with the S2-operator. Therefore, one cannot strictly speak of “S2-spin contamination”

in relativistic GCHF wave functions. However, calculating the expectation value of S2, a

bona fide quantum observable, can still provide valuable physical information about the

system.

A general expression for the expectation value of S2 has been obtained in the DODS

case [8], and has served as a measure of spin contamination. However, as far as we are

aware, no such formula has been published in the case of a GCHF wave function.

A General Complex Hartree Fock (GCHF) wave function

ΦGCHF = φ1 ∧ · · · ∧ φNe (1)

is the antisymmetrized product (or wedge product, denoted by ∧) of orthonormal spinor-
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bitals, or “two-component spinors”,

φi =


φiα

φiβ

 , (2)

〈φi|φj〉 = δi,j, (3)

where the scalar product 〈·|·〉 means integration over space variables and summation

(i.e. taking the trace) over spin variables. The same symbol will also be used for the

scalar product between orbitals (i.e. no trace taken). We define the “number of α-spin

electrons” (respectively “number of β-spin electrons”) as Nα :=
Ne∑
i=1
〈φiα|φiα〉 (respectively,

Nβ :=
Ne∑
i=1
〈φiβ|φiβ〉). Note that they need not be integer numbers, however, Nα+Nβ = Ne.

Let us work out the expectation of the spin operator,

S2 = S2
z +

1

2
(S+S− + S−S+), (4)

on a general GCHF wave function.

The action of Sz is given by,

SzΦGCHF =
1

2

Ne∑
i=1

Φî
GCHF , (5)

where,

Φî
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φî ∧ φi+1 ∧ · · · ∧ φNe , (6)

and,

φî =


+φiα

−φiβ

 . (7)
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Note that,

〈φî|φĵ〉 = 〈φi|φj〉 = δi,j. (8)

So, the expectation value of S2
z is,

〈ΦGCHF |S2
z |ΦGCHF 〉 = 〈SzΦGCHF |SzΦGCHF 〉

=
1

4

Ne∑
i,j=1

〈Φî
GCHF |Φ

ĵ
GCHF 〉

=
1

4

Ne∑
i=1

〈Φî
GCHF |Φî

GCHF 〉+
∑
i 6=j
〈Φî

GCHF |Φ
ĵ
GCHF 〉


=

1

4

Ne∑
i=1

〈φî|φî〉+
∑
j 6=i

(−1)|〈φî|φj〉|
2 + 〈φî|φi〉〈φj|φĵ〉


=

1

4

Ne +
Ne∑
i=1

∑
j 6=i

(−1)|〈φiα|φjα〉 − 〈φiβ|φjβ〉|2 + (〈φiα|φiα〉 − 〈φiβ|φiβ〉) (〈φjα|φjα〉 − 〈φjβ|φjβ〉)


=

1

4

Ne +
Ne∑
i,j=1

(〈φiα|φiα〉 − 〈φiβ|φiβ〉) (〈φjα|φjα〉 − 〈φjβ|φjβ〉)− |〈φiα|φjα〉 − 〈φiβ|φjβ〉|2


=
(
Nα

2
− Nβ

2

)2

+
1

4

Ne −
Ne∑
i,j=1

|〈φiα|φjα〉 − 〈φiβ|φjβ〉|2
 . (9)

This equation reduces to
(
Nα
2
− Nβ

2

)2
in the case of a DODS wave function. The second

term on the right-hand side (rhs) is related to what can be called “spin-S2
z contamination

of the GCHF wave function”, in cases where S2
z is a constant of motion. Note, however,

that, the first term on the rhs may also be related to S2
z -contamination, since it does not

necessarily correspond to an eigenvalue of S2
z , according to the definition of Nα and Nβ.

The action of S+ is given by,

S+ΦGCHF =
Ne∑
i=1

Φí
GCHF , (10)

where,

Φí
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φí ∧ φi+1 ∧ · · · ∧ φNe , (11)
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and,

φí =


+φiβ

0

 . (12)

Similarly, the action of S− is given by,

S−ΦGCHF =
Ne∑
i=1

Φì
GCHF , (13)

where,

Φì
GCHF = φ1 ∧ · · · ∧ φi−1 ∧ φì ∧ φi+1 ∧ · · · ∧ φNe , (14)

and,

φì =


0

+φiα

 . (15)

So, the expectation value of S−S+ is,

〈ΦGCHF |S−S+|ΦGCHF 〉 = 〈S+ΦGCHF |S+ΦGCHF 〉

=
Ne∑
i,j=1

〈Φí
GCHF |Φ

j́
GCHF 〉

=
Ne∑
i=1

〈Φí
GCHF |Φí

GCHF 〉+
∑
i 6=j
〈Φí

GCHF |Φ
j́
GCHF 〉

=
Ne∑
i=1

〈φí|φí〉+
∑
j 6=i

(−1)|〈φí|φj〉|
2 + 〈φí|φi〉〈φj|φj́〉


=

Ne∑
i=1

〈φiβ|φiβ〉+
∑
j 6=i

(−1)|〈φiβ|φjα〉|2 + 〈φiβ|φiα〉〈φjα|φjβ〉


= Nβ +

Ne∑
i,j=1

〈φiβ|φiα〉〈φjα|φjβ〉 − 〈φiβ|φjα〉〈φjα|φiβ〉. (16)
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Similarly, the expectation value of S+S− is,

〈ΦGCHF |S+S−|ΦGCHF 〉 = 〈S−ΦGCHF |S−ΦGCHF 〉

=
Ne∑
i=1

〈φì|φì〉+
∑
j 6=i

(−1)|〈φì|φj〉|
2 + 〈φì|φi〉〈φj|φj̀〉


=

Ne∑
i=1

〈φiα|φiα〉+
∑
j 6=i

(−1)|〈φiα|φjβ〉|2 + 〈φiα|φiβ〉〈φjβ|φjα〉


= Nα +

Ne∑
i,j=1

〈φiα|φiβ〉〈φjβ|φjα〉 − 〈φiα|φjβ〉〈φjβ|φiα〉. (17)

Using Eq.(4) and putting together Eqs.(9), (16) and (17), one obtains the expectation

value of S2,

〈ΦGCHF |S2|ΦGCHF 〉 =
(
Nα

2
− Nβ

2

)2

+
Nα

2
+
Nβ

2
+

1

4

Ne −
Ne∑
i,j=1

|〈φiα|φjα〉 − 〈φiβ|φjβ〉|2


+
Ne∑
i,j=1

〈φiα|φiβ〉〈φjβ|φjα〉 − 〈φiα|φjβ〉〈φjβ|φiα〉. (18)

The expression reduces to the known formula in the case of a DODS wave function.

Assuming, without loss of generality, that Nα ≥ Nβ, we rewrites Eq. (18) as,

〈ΦGCHF |S2|ΦGCHF 〉 =
(
Nα

2
− Nβ

2

)(
Nα

2
− Nβ

2
+ 1

)
+

1

4

Ne −
Ne∑
i,j=1

|〈φiα|φjα〉 − 〈φiβ|φjβ〉|2


+

Nβ +
Ne∑
i,j=1

〈φiα|φiβ〉〈φjβ|φjα〉 − 〈φiα|φjβ〉〈φjβ|φiα〉

 . (19)

This shows that, compared to the DODS spin contamination formula [8], besides the

term coming from 〈S2
z 〉 on the first line, there is an extra term (middle term on the

second line) arising from the possible non-orthogonality of the two components of a

given, general spin-orbital. However, care must be taken that the first term, which is

formally identical to the DODS case, is actually different, since the numbers of α- and

β-electrons are not good quantum numbers in the GCHF case.

The present formulas have been implemented in the code TONTO [28] and applied in a
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recent article [29].
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