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Dealing with large amplitude motion and large size systems with the effective field configuration interaction method P. Cassam-Chenaï a) and A. Ilmane The mean field configuration interaction (MFCI) method is a variational approximation method, which has been developed to solve the Schrödinger equation for molecular vibrations (VMFCI), for electrons (EMFCI), or for both:

Electron-Nucleus MFCI. The Rayleigh-Schrödinger perturbation theory generalized to eigen-operators in non-commutative rings has been proposed to solve the Schrödinger equation for molecular rotation-vibration degrees of freedom. These two approaches can be merged in a unified method, the perturbative ansatz at order more than one, giving a more general "effective field" (EF) than the order one "mean field". EF arising from the vibrational motion of semi-rigid molecules have proved useful to compute acurate rotational spectra at moderate computational cost. In the present paper, we argue that EF can also be taken advantage of to deal with systems presenting large amplitude motion such as HOOH and/or a large number of degrees of freedom such as naphtalene.
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I. INTRODUCTION

The idea of partitioning the vibrational degrees of freedom (DOF's) of a molecular system and to treat perturbationally the influence of one set onto the other can be traced back to Higgs' early works [1][2][3] . However, the idea of Higgs has not been pursued at that time. The partitioning of distinguishable DOFs reappeared in a purely variational context: (J = 0)-vibrational Hamiltonian were first diagonalized, and then, their eigenfunctions were used to build product basis sets to perform configuration interaction (CI) calculations (or "state interaction" 4 ), for the full rovibrational problem 5,6 . This method was often referred to as the "contraction method". It has been further developed by Tennyson and Sutcliffe, who included J-dependent contributions in the vibrational Hamiltonian to treat highly rotationally excited states of floppy molecules 7 . Within a discrete variable representation (DVR) of the angle coordinate of a triatomic molecule, Bačić and Light adapted the contraction method to a purely vibrational context 8 . They inaugurated the "adiabatic contracted method" by using 2D-sets of distributed Gaussians for the radial DOF's with different dimensions and/or truncations for different angle values, so, the resulting product basis set was not of the direct product type. This adiabatic contraction technique was later combined with Lanczos recursion procedure 9 , while Bramley and Carrington proposed the use of "simply contracted basis sets" 10 , obtained by diagonalizing reduced-dimension Hamiltonians, the latter being derived from the total Hamiltonian by fixing the value of geometric parameters at equilibrium [10][11][12][13][14] .

Further refinements were made by Yu, whose "diabatic contracted" basis for angular coordinates in his two-layer Lanczos algorithm were formed as the lowest eigenstates of a partial Hamiltonian derived by leaving out Coriolis coupling terms, averaging over rotational basis functions, and fixing radial coordinates at two sets of equilibrium reference values, one for the kinetic energy operator and one for the potential energy operator 15 .

The mean field configuration interaction (MFCI) method stemmed from the contraction method. It has been developed originally by Cassam-Chenaï and Liévin for molecular vibrations and was called vibrational MFCI (VMFCI) [16][17][18] . It takes advantage of the contraction technique within a mean-field approach and extends the vibrational self-consistent field (VSCF) approach [START_REF] Carney | Advances in Chemical Physics[END_REF][START_REF] Bowman | [END_REF] towards a direction pioneered by Bowman and Gasdy 21 . It has proved extremely powerful and flexible to solve the molecular, vibrational, stationary Schrödinger equation [22][23][24] . In parallel, we have developed a generalized perturbation theory 16,25,26 . The formulas ressemble those obtained from a contact transformation with a standard unitary transformation operator 32 . In addition to the abundant literature on effective Hamiltonians and contact transformations already cited in our previous works [33][START_REF] Kemble | Fundamentals of Quantum Mechanics[END_REF][START_REF][END_REF][36][37][38][39][START_REF] Yu | Perturbation Methods and Effective Hamiltonians in Molecular Spectroscopy[END_REF][START_REF] Fried | [END_REF][42][43][44] , we would like to mention the early work of Jorgensen and Pedersen 45 who first exploited the operator decomposition into an even and an odd part to simplify the perturbative expansion algebra. This was further developped by Shavitt 46 with an elegant use of formal series, and recently revisited from a geometric standpoint by Kvaal 47 and Jorgensen 48 , with the help of what is sometimes called the"Araki's angles" 49,50 and some subtle condition to extend the treatment to infinite dimensional quasi-degenerate spaces (Appendix B of 48 ). However, we will continue to omit the non less abundant literature aiming mainly at building effective ro-vibrational (or rovibronic) Hamiltonian to analyse experiments in the fashion of Shaffer et al. 51 . The specificity of our approach is that it takes explicitly advantage of the tensorial structure of the Hilbert space decomposed into a subsystem Hilbert space times the Hilbert space of the rest of the system: H = H A ⊗ H B . This was pionnered in the case of the partition into vibrational and rotational DOFs by Makushkin and co-workers [START_REF] Yu | Perturbation Methods and Effective Hamiltonians in Molecular Spectroscopy[END_REF][52][53][54][55] and exploited recently in the MIRS code 56 and the NITROGEN code 57 , for instance. Such a decomposition should not be confused with the decomposition of the Hilbert space into a direct sum H = H A ⊕ H B nicely treated by Löwdin 58 . Combined with this perturbation theory, VMFCI solutions give effective rotational observables, from which accurate rotational spectra are calculated 22,59,60 . More recently, this mixed approach has been extended towards quasi-degenerate reference states 61 and non-adiabatic electron-nucleus calculations 62 .

In short, the MFCI approach consists in building an effective Hamiltonian for a subset of degrees of freedom (DOF's) called "active", which accounts for the mean field effect of the other DOF's called "spectators", and then to diagonalize this Hamiltonian in a finite basis set. In previous works 59,60,62 , we have recognized in the effective Hamiltonian of a MFCI step, a generalized pertubation first order Hamiltonian. So, it was natural to propose a more general method, where one can adjust the order of perturbation to obtain an effective mean-field Hamiltonian of a targeted level of accuracy, assuming that the formal perturbative series of non necessarily commuting, effective operators, converges. The MFCI method is generalized in the sense that the mean-field due to spectator DOF's, used to build the partial Hamiltonian of the active DOF's, can include corrective terms of order greater than one, involving excitations to, or, from the reference spectator state. So, we will talk of "n th -order effective fields" and of the effective field configuration interaction (EFCI) method.

The EFCI method has increased flexibility, since not only one can build any hierarchy of DOF's partitions (called a "contraction-truncation scheme") as in the MFCI method, but one can also tune up the perturbation order at each MFCI step for each subset of DOF's. In the case of rotational DOF's, GMF of increasing orders due to the vibrational DOF's considered as spectators, give energy levels and wave functions of increasing accuracy as long as there is a significant energy gap between reference and excited spectator states compare to rotational energy differences 61 . The first purpose of the present study is to show that the same holds true for other DOF's types than rotational. Natural candidates are large amplitude motion DOF's whose energy level differences are expected to be orders of magnitude smaller than those of the small amplitude motion DOF's.

So far, GMF have only been used in the final step of a contraction-truncation scheme.

In fact, when using GMF at an intermediate step, the method is no longer variational. So, there is no guaranty that iterating the same partition of the DOF's will converge to an self-consistent solution. However, partial GMFCI eigenfunctions are expected to be of better quality than MFCI ones, so that basis sets for use in the next calculation step formed as a direct product of such functions, could be truncated more drastically without loss of accuracy. The second goal of this study is to assess how important this reduction can be at an intermediate step of a contraction-truncation scheme.

In addition to those already mentioned, many methods to solve the molecular rovibrational problem, can be related to the MFCI or GMFCI approaches. So, the short review that follows will not be exhaustive and will focus on works not sufficiently discussed in our previous papers. Let us start by mentioning the partially separated VSCF method of Wright and Gerber which contracts from the start (i.e. not at a chosen step in a hierarchy of partitions as in MFCI), groups of two or three DOF's while limiting the potential to pairwise interactions with inclusion of only a few triplewise coupling terms 63 . Sergeev and Goodson also generalized the VSCF approach to groups of DOF's (see Eq.( 9) and paragraph above in 64 ). However, in contrast with the GMF approach, their perturbation theory uses the harmonic reference and coupling terms are ordered with respect to the total power in the normal coordinate expansion of the Hamiltonian within the generalized SCF procedure. More recently, the vibrational active space self-consistent field (VASSCF) ansatz proposed by Mizukami and Tew 65 can be viewed VSCFCI (VMFCI iterated up to self-consistency) for a partition where the so-called "bath" DOF's are kept uncontracted. A precursor work conveying similar ideas to the one developed in this paper and initially designed to deal with large amplitude motion is that of Senent et al. 66 . These authors partition the system into two sets that they treat self-consistently in a process that can also be viewed as an VSCFCI calculation.

Then, on the top of that, they add perturbative corrections up to fourth order. Note that DOF's partitioning is different from configuration space partitioning 67 . However the later can also be used to improve the diagonalization efficiency of the CI matrices appearing in GMFCI calculations. Compared to adiabatic methods that have been developed for either floppy systems 8,68 or rotational DOF's 69,70 , the GMFCI method is simpler in the sense that only one reduced-dimension Hamiltonian diagonalization is required where many (in fact, as many as the number of inactive DOF grid points) need to be performed in adiabatic approaches, (even if they may be trivial in the case of the harmonic adiabatic approximation of Lauvergnat et al. 71,72 ). Furthermore the part played by active or slow DOF's and inactive or fast DOF's is dissymmetrical in the adiabatic approaches, whereas it can be symmetrical or not, depending on the choice of GMF order in the GMFCI method, because the active and inactive (i.e. spectator) DOF's exchange their parts in turn. The GMFCI approach can be seen as a variational approach to treat an Hamiltonian of pertubational origin. A dual approach which consists in starting from perturbation theory and to treat variationally the tightly coupled states has also been implemented in computer codes and proved successful in dealing with medium-to-large molecular systems [73][74][75][76] . Other hybrid variation-perturbation methods for solving the nuclear motion problem have appeared recently. Fábri et al. have proposed to treat the Coriolis coupling terms of the Eckart-Watson kinetic energy operator perturbationally on the top of a variational calculation 77 . Their algorithm has been implemented in the code DEWE 78 . Pavlyuchko et al. 79 in the code ANGMOL use approximate vibrational quantum number differences to partition the CI matrix, discard coupling elements when these differences are very large, and compute a second order pertubative correction to diagonal elements of the zero order blocks when the difference is less important. Of course, this relies on the quantum numbers being reasonably good approximate ones. A similar technique is employed when rotations are considered: the coupling between states having different vibrational quantum numbers are treated by a second order-like pertubative correction which can cope with degeneracy or quasi-degeneracy between of zero order diagonal values. The difference with respect to the purely vibrational case is that both the diagonal and off-diagonal Hamiltonian elements of order-zero blocks are corrected.

Let us mention also the idea of using perturbative formula to select the important configurations to include in a VCI 23,[80][81][82][83][84] in a manner reminiscent of the CIPSI algorithm for electronic calculations 85 . Another, promising basis set compression technique is the so-called "vibrational subspace" approach of Rey et al. 86,87 .

The article is organized as follows: We begin with a presentation of the main ideas and equations, the GMFCI method is based upon. Then, we consider the HOOH system and study different contraction schemes with or without rotational DOFs in conjonction with different mean field orders. We conclude on the accuracy that can be achieved and the prospect of using high order mean field for system with large amplitude motion.

II. THE GMFCI METHOD

A natural approximation strategy in physics, which follows Descartes second precept, consists in separating the system degrees of freedom into subgroups. In quantum physics, this translates in building the state space as a tensor product of DOF subgroup Hilbert spaces. However, physical wave functions are seldom exactly decomposable into a simple tensor product of factors pertaining to the different Hilbert subspaces, even when one disregards spin statistics or EPR correlations.

The MFCI method has been proposed to separate DOF and contract wave functions, according to a hierarchy of DOF partitions, designed to capture the physics of the system while controling computational costs. More precisely, the MFCI method consists in performing configuration interactions (CI) of some DOF in the mean field of the others.

The sizes of the finite basis sets used in successive CI, is kept within a manageable range, owing to a basis "truncation scheme" associated to the DOF partitioning or "contraction scheme". The power of the method comes from the mean field (MF) term added to the reduced-dimension Hamiltonians. In the GMFCI method, the expression of this MF term is extented to include corrective terms according to a pertubative expansion.

A. Partitions of DOF Consider a quantum system with N distinguishable DOF. A GMFCI step starts with a partition, P , of the N DOF into n P subsets :

P = (I 1 , I 2 , • • • , I n P ) = ({i 1 1 , i 1 2 , • • • , i 1 k 1 }, {i 2 1 , i 2 2 , • • • , i 2 k 2 }, • • • , {i n P 1 , i n P 2 , • • • , i n P kn P }) (1)
for which the Hamiltonian can be written as:

H = h 0 + n P γ 1 =1 h γ 1 (I γ 1 ) + 1≤γ 1 <γ 2 ≤n P h γ 1 ,γ 2 (I γ 1 )h γ 1 ,γ 2 (I γ 2 ) + • • • + h 1,2,••• ,n P (I 1 )h 1,2,••• ,n P (I 2 ) • • • h 1,2,••• ,n P (I n P ), (2) 
where h γ 1 ,γ 2 ,...,γ k (I γ l ) denotes an operator acting on DOF in subsets I γ l . In principle, H can always be decomposed formally in this way, however, the summations may be infinite. Such a decomposition is not necessary to implement the GMFCI idea, as shown in 62 , but it makes several steps in the implementation of the method computationnally cheaper.

Then, one defines an equal or coarser partition,

Q = (J 1 , J 2 , • • • , J n Q ), satisfying n Q ≤ n P and ∀γ ∈ {1, • • • , n P }, ∃α ∈ {1, • • • , n Q } such that I γ ⊆ J α .
For the GMFCI step under consideration, we call "contractions" the subsets J α , and "components of contraction J α " the subsets I γ such that I γ ⊆ J α . When successive GMFCI steps are performed, the components of one step are the contractions of the previous step.

B. Product basis sets

Let us assume that contraction J α has β α components :

J α = I γ 1 ∪ I γ 2 ∪ • • • ∪ I γ βα = i γ 1 1 , • • • , i γ 1 kγ 1 , • • • , i γ βα 1 , • • • , i γ βα kγ βα = j α 1 , • • • , j α lα with l α = k γ 1 + • • • + k γ βα . (3) 
For each component I γ , we suppose that we have a basis set of orthonormalized functions, {φ mγ Iγ } mγ ∈{0,...,dγ } , spanning an Hilbert subspace of dimension (d γ + 1). We further assume that these functions are eigenfunctions of some model Hamiltonian, H mod γ , associated to the eigenvalues, {E mγ Iγ } mγ ∈{0,...,dγ } , in increasing order, the indice m γ = 0 corresponding to the ground state of H mod γ . For contraction J α , we build a so-called "product basis set", {Φ Mα Jα } Mα , spanning an Hilbert subspace of dimension say, D α , by constructing product functions of the form:

Φ Mα Jα = Iγ ⊆Jα φ mγ Iγ (4) 
or more explicitly, writing variable dependencies:

Φ Mα Jα (q j α 1 , • • • , q j α lα ) = Iγ ⊆Jα φ mγ Iγ (q i γ 1 , • • • , q i γ kγ ),
where

M α = (m γ 1 , • • • , m γ βα )
, is the multiplet of the indices "m γ ", appearing on the right-hand side of the equation. So, M α = (0, ..., 0), will correspond to the product of ground state functions.

The dimension, D α , of the basis set for contraction J α can be different from the product of dimensions of its component's basis sets,

Iγ ⊆Jα (d γ + 1)
, because of possible basis function truncations, performed according to a set of energy criteria (indexed by j) of the form,

Iγ ⊆Jα λ j Iγ E mγ Iγ < E j Jα . (5) 
The E mγ Iγ 's are the energies of the components of the product functions Φ

(mγ 1 ,••• ,mγ βα ) Jα
, the λ j Iγ 's are positif real numbers, and the E j Jα 's are energy cutoff thresholds. Typically, we choose λ j Iγ = 1 for all I γ or, λ j Iγ = 0 for all I γ but one, and the E j Jα 's within gaps of the contraction or its components spectra.

C. Mean field Hamiltonian

Now, we consider a given contraction J α as "active", and call the other contractions "spectators". For the active contraction J α , we define a partial Hamiltonian, H α , by grouping all the terms in H involving the DOF in components I γ of J α :

H α = h 0 + γ 1 such that Iγ 1 ⊆Jα h γ 1 (I γ 1 ) + γ 1 <γ 2 such that Iγ 1 ,Iγ 2 ⊆Jα h γ 1 ,γ 2 (I γ 1 )h γ 1 ,γ 2 (I γ 2 ) + • • • + γ 1 <•••<γ βα such that Iγ 1 ,••• ,Iγ βα ⊆Jα h γ 1 ,••• ,γ βα (I γ 1 ) • • • h γ 1 ,••• ,γ βα (I γ βα ) (6) 
Then we consider an eigenvalue equation for J α :

[H ef f α -α ]Φ α = 0, (7) 
where H ef f α is an "effective" Hamiltonian determined according to perturbative expressions:

Order 0: Simple contraction method Hamiltonian

H ef f α = H α (8) 
Order 1: MFCI Hamiltonian 16-18

H ef f α = H α + Iγ Jα φ m 0 γ Iγ |H -H α | Iγ Jα φ m 0 γ Iγ (9) 
Order 2: second order GMFCI Hamiltonian

H ef f α = H α + Iγ Jα φ m 0 γ Iγ |H -H α | Iγ Jα φ m 0 γ Iγ + (mγ 1 ,••• ,mγ (n P -βα) ) =(m 0 γ 1 ,••• ,m 0 γ (n P -βα) ) f or γ 1 ,...,γ (n P -βα) such that Iγ l Jα Iγ Jα φ m 0 γ Iγ |H-Hα| Iγ Jα φ mγ Iγ Iγ Jα φ mγ Iγ |H-Hα| Iγ Jα φ m 0 γ Iγ γ / Iγ Jα E m 0 γ Iγ -E mγ Iγ , (10) 
and so on, up to an arbitrary order, for a non-degenerate reference spectator product

function associated to indices (m 0 γ 1 , • • • , m 0 γ (n P -βα)
). These expressions are those given by the generalized perturbation theory of Refs. ( 25,26,59 ). They can also be derived through equivalent approaches 32,[38][39][START_REF] Yu | Perturbation Methods and Effective Hamiltonians in Molecular Spectroscopy[END_REF] . Dirac bracket notation corresponds in these equations to integration over spectator variables only.

The summation on the m γ 's in Eq. ( 10) can be restricted according to constraints of the types given in expression (5). Note that, the mean field corrective terms correspond, here, to mean field effects of the approximate ground states of the spectator modes 18 , it is not suitable to use an excited state mean field, (and it holds as well for an excited state generalized mean field), if one intends to perform further GMFCI steps. In contrast, at the last step of a sequence of GMFCI calculations, one can modify the equations above to use a generalized mean field corresponding to an arbitrary spectator state. This is straightforward if the spectator approximate, reference state is non degenerate, that is to say, if it can be represented by 

(m 0 γ 1 , • • • , m 0 γ (n P -βα) ) = (0, • • • , 0). As explained in
γ 1 , • • • , m 0 γ (n P -βα) ), in the GMFCI Hamil- tonian summations over (m γ 1 , • • • , m γ (n P -βα) ).
In case of a k-fold degenerate or quasi degenerate excited spectator state, one should use a k-dimensional super-Hamiltonian for the active contraction, as explained elsewhere 61 .

A n th -order GMFCI calculation consists in solving the eigen-equation ( 7) for a n thorder generalized mean field Hamiltonian, by performing a "configuration interaction" in the product basis sets, Eq. ( 4), that is to say, by diagonalizing the representation of the Hamiltonian in this finite dimensional Hilbert subspace basis (Rayleigh-Ritz method 88 ). Thereby, we obtain for the active contraction a new basis set, {φ mα Jα } mα∈{0,...,dα} , of dimension (d α + 1), made of eigenvectors of the generalized mean field Hamiltonians.

So, the process can be iterated, the H mod γ of step n + 1 being the H ef f α of step n. The eigenvalues {E mα Jα } mα∈{0,...,dα} associated to the {φ mα Jα } mα∈{0,...,dα} will serve to truncate the product basis sets according to energy criteria (5).

In practice, (d α + 1) can be less than D α , as one needs not to calculate all the eigenpairs of H ef f α . This is so, when some high energy states will not be required at all for the construction of the product basis sets of the next step according to the anticipated truncation criteria to be applied. Note that, in the computer code CONVIV 89 , a GMFCI is performed for each contraction of the Q-partition before updating the H mod γ . That is to say, the n Q contractions of Q are treated simultaneously as active and the same n P sets of eigenstates {E mγ Iγ , φ mγ Iγ } mγ ∈{0,...,dγ } are used to build the spectator product functions appearing in the n Q GMFCI Hamiltonians. However, the orders of the n Q GMFCI Hamiltonians need not be the same, nor the truncation criteria for the spectator basis functions. Then, the n Q new sets of eigenstates, {E mα Jα , φ mα Jα } mα∈{0,...,dα} , are used to update the n P sets, {E mγ Iγ , φ mγ Iγ } mγ ∈{0,...,dγ } . In other words, CONVIV performs n Q GMFCI steps in parallel for each successive partition, instead of sequential GMFCI steps. This parallel treatment has been found more effective for vibrational MFCI calculations, whereas this is not the case for electronic MFCI 18 .

D. Calculation of observables

Whether one performs sequential or parallel GMFCI steps, after each step, one has to decide whether the Q-partition is sufficient, or if further contractions are necessary, to capture properly the important physical couplings between DOF's. If eventually, all the DOF's are contracted and Q = ({1, 2, • • • , N }), then the eigenfunctions obtained can be used to calculate in the standard way, observable expectation values or transition matrix elements for the full system. In contrast, if, at the last step, Q still contains more than one contraction, there are different ways to compute properties just as there are different orders to compute the effective Hamiltonian.

The eigenvalues of the effective Hamiltonian of each contraction can be interpreted as energy levels of the subsystems corresponding to the DOF pertaining to the contraction. Assuming that the observable, O, can be expanded in the same fashion as the Hamiltonian, Eq.( 2),

O = o 0 + n Q α 1 =1 o α 1 (J α 1 ) + 1≤α 1 <α 2 ≤n Q o α 1 ,α 2 (J α 1 )o α 1 ,α 2 (J α 2 ) + • • • + o 1,2,••• ,n Q (J 1 )o 1,2,••• ,n Q (J 2 ) • • • o 1,2,••• ,n Q (J n Q ), (11) 
it is tempting to compute its matrix element between two total states represented by the product functions,

α∈{1,...,n Q } φ mα Jα and α∈{1,...,n Q } φ m α
Jα according to the following equation,

α∈{1,...,n Q } φ mα Jα |O| α∈{1,...,n Q } φ m α Jα = o 0 α∈{1,...,n Q } δ mαm α + n Q α 1 =1 φ mα 1 Jα 1 |o α 1 (J α 1 )|φ m α 1 Jα 1 α∈{1,...,n Q } {α 1 } δ mαm α + 1≤α 1 <α 2 ≤n Q φ mα 1 Jα 1 |o α 1 ,α 2 (J α 1 )|φ m α 1 Jα 1 φ mα 2 Jα 2 |o α 1 ,α 2 (J α 2 )|φ m α 2 Jα 2 α∈{1,...,n Q } {α 1 ,α 2 } δ mαm α + • • • + α∈{1,...,n Q } φ mα Jα |o 1,2,••• ,n Q (J α )|φ m α Jα , (12) 
in particular, the expectation value over

α∈{1,...,n Q } φ mα Jα would be, α∈{1,...,n Q } φ mα Jα |O| α∈{1,...,n Q } φ mα Jα = o 0 + n Q α 1 =1 φ mα 1 Jα 1 |o α 1 (J α 1 )|φ mα 1 Jα 1 + 1≤α 1 <α 2 ≤n Q φ mα 1 Jα 1 |o α 1 ,α 2 (J α 1 )|φ mα 1 Jα 1 φ mα 2 Jα 2 |o α 1 ,α 2 (J α 2 )|φ mα 2 Jα 2 + • • • + α∈{1,...,n Q } φ mα Jα |o 1,2,••• ,n Q (J α )|φ mα Jα . (13) 
However, this is not necessarily consistent with the derivation of the φ mα Jα 's if some of the latter correspond to an order 2 GMF, or, to an order 1 MF for a spectator reference

state different from its counterpart in α∈{1,...,n Q } φ mα Jα or α∈{1,...,n Q } φ m α Jα .
A more rigorous expression can be derived when (m

1 , • • • , m n Q ) and (m 1 , • • • , m n Q )
differ by at most one component, say, without loss of generality, their first component.

That is to say, ∀α ∈ {2, . . . , n Q }, m α = m α , and, we denote by, m 0 α , this common value. (In fact, if this condition is not met, further contractions should be made to achieve it and avoid using Eqs.( 12) and (13) as such.) So, let us assume that the last GMFCI step corresponds to contraction 1 being active, with a spectator reference state equal to the product function α∈{2,...,n Q } φ m 0 α Jα . The effective Hamiltonians of section II C are related to effective wave operators, as described in 25 . For example, Eq.( 10), generalized for the spectator reference state, (m 0 2 , • • • , m 0 n Q ), is related to a first order effective wave operator, acting on J 1 -states, of the form,

φeff J 1 = Id J 1 ⊗ φ m 0 2 J 2 ⊗ • • • ⊗ φ m 0 n Q Jn Q + (m 2 ,••• ,mn Q ) =(m 0 2 ,••• ,m 0 n Q ) n Q α=2 φ mα Jα |H-H J 1 | n Q α=2 φ m 0 α Jα n Q α=2 E m 0 α Jα -E mα Jα ⊗ φ m 2 J 2 ⊗ • • • ⊗ φ mn Q Jn Q , ( 14 
)
where Id J 1 denotes the identity operator on J 1 -wave functions. Then, the matrix element of observable, O of Eq.( 11), between two total states represented by the multiplets

(m 1 , m 0 2 , • • • , m 0 n Q ) and (m 1 , m 0 2 , • • • , m 0 n Q ) is
, up to order 1 in the wave operator expansion,

φ m 1 J 1 φeff J 1 † |O| φeff J 1 φ m 1 J 1 = φ m 1 J 1 ⊗ φ m 0 2 J 2 ⊗ • • • ⊗ φ m 0 n Q Jn Q |O|φ m 1 J 1 ⊗ φ m 0 2 J 2 ⊗ • • • ⊗ φ m 0 n Q Jn Q + (m 2 ,••• ,mn Q ) =(m 0 2 ,••• ,m 0 n Q )    φ m 1 J 1 ⊗ φ m 0 2 J 2 ⊗ • • • ⊗ φ m 0 n Q Jn Q |O| n Q α=2 φ mα Jα |H-H J 1 | n Q α=2 φ m 0 α Jα φ m 1 J 1 n Q α=2 E m 0 α Jα -E mα Jα ⊗ φ m 2 J 2 ⊗ • • • ⊗ φ mn Q Jn Q + φ m 1 J 1 n Q α=2 φ mα Jα |H-H J 1 | n Q α=2 φ m 0 α Jα † n Q α=2 E m 0 α Jα -E mα Jα ⊗ φ m 2 J 2 ⊗ • • • ⊗ φ mn Q Jn Q |O|φ m 1 J 1 ⊗ φ m 0 2 J 2 ⊗ • • • ⊗ φ m 0 n Q Jn Q    ( 15 
)
where φeff

J 1 †
, (respectively, Ψ|H -H J 1 |Ψ † ), is the Hermitian conjugate of φeff J 1 , (respectively, Ψ|H -H J 1 |Ψ ) acting on the left on J 1 -wave functions. Note that each term in the left-hand side of Eq. ( 15) is of the form of the right-hand side of Eq. ( 12), so, it can be expanded according to this equation. If observable O, itself, is expressed as a perturbative series, then the terms retained in the expansion must be determined according to the required, total, expansion order. Just like for the Hamiltonian, the summation on components 2 to n Q basis functions can be truncated according to energy criteria, Eqs. (5).

III. INTERNAL MOTION SPECTRUM OF H 2 O 2 , A CASE STUDY

The theory outlined in the previous section, originally developed for the computation of rotation-vibration spectra of molecules, is directly applicable to any quantum system with distinguishable degrees of freedom. This theory is more general than what we have used in previous applications, since a GMF can be used at any step of a MFCI calculation, for any contraction. The calculation of the rotational spectra of methane in 59 was a particular case of GMFCI with a GMF of order more than 1 (up to 4), performed solely at the final step.

To study the use of GMF at intermediate contraction steps, we have chosen the case example of the hydrogen peroxyde molecule. This system is often used as a benchmark for assessing new theoretical developments 12,[90][91][92][93][94][95][96][97][98][99][100] , for it is one of the simplest molecule with a large amplitude DOF. We report hereforth the details of our calculations for this case study.

A. Potential Energy Surface of H 2 O 2

We used the CCSD(T)-F12b/aug-cc-pV5Z adiabatic Potential Energy Surface (PES) of Malyszek and Koput 108 , whose coefficients and geometry parameters are provided as supporting information with this reference. The PES includes corrections accounting for core-electron correlations, second-order Douglas-Kroll-Hess (DKH2) scalar relativistic contributions, higher-order valence-electron correlation, and diagonal Born-Oppenheimer (BO) non-adiabatic contributions. Note that, in addition, the equilibrium parameters, before corrections, were averaged over CCSD(T)-F12b/aug-cc-pV5Z and CCSD(T)/augcc-pV7Z results to approach the complete basis set (CBS) limit.

The potential is expanded in the form:

V (q 1 , q 2 , q 3 , q 4 , q 5 , ϕ) = ijklmn c ijklmn q i 1 q j 2 q k 3 q l 4 q m 5 cos(nϕ) where q 1 , q 2 and q 3 are SPF coordinates 107 corresponding resp. to r 1 , r 2 and R in Fig. 1;

q 4 = (θ 1 -θ 0 1
) and q 5 = (θ 2 -θ 0 2 ) where θ 0 1 and θ 0 2 are the angles in the reference geometry; ϕ is the torsional angle.

The global minimum (in the physically relevant domain) of the fitted PES was found to be at -0.474 cm -1 with geometric parameters (ϕ min = 113.189 • , R min = 2.742 Bohr, It shows the finite barriers which were taken into account to chose the modal basis sets: since the PES is not bounded from below, care must be taken to avoid basis functions with a too large extension in the unbounded region 18 . Le calcul de la masse réduite n'est généralement pas compliqué, il s'agit de la moitié de l'inverse du coefficient constant du terme P 2 ( 1 2m réduite P 2 ). Etant donné notre choix de ne développer en série que par rapport à deux variables, une des conséquences a été la non existence d'un terme constant devant les opérateurs P 2 θ 1 et P 2 θ 2 ce qui pose un problème car nous avons utilisé la masse réduite comme facteur d'échelle afin de redéfinir les paramètres de la base ce qui a permis la généralisation du calcul des intégrales en coordonnées autres que les coordonnées normales. Dans ce cas il peut être utile d'utiliser le critère de maximum de projection afin de fixer les bons paramètres de la base.

Dans la table sont résumés les différents paramètres utilisés pour le calcul du spectre vibrationnel. On peut observer que la fréquence de la base harmonique est très grande.

Cette valeur est toute à fait normale car la pondération par la masse a été prise en compte à ce niveau.

Mode

Type Dimension Paramètres de la base La partition initiale des DLs que nous avons utilisés :

I 1 = {ν 4 } Chebyshev C 1 30 = 30 - I 2 = {ν 3 } Kratzer C 1 
P = (I 1 , I 2 , I 3 , I 4 ) = ({ν 4 }, {ν 3 }, {ν 1 , ν 5 }, {ν 2 , ν 6 }) = ({ϕ}, {q 3 }, {q 4 , q 5 }, {q 1 , q 2 })
Le fait de contracter les deux pliages (q 2 , q 6 ) et les deux modes d'élongation (q 1 , q 5 ) permet de respecter la symétrie de l'hamiltonien entre (r 1 , θ 1 ) ↔ (r 2 , θ 2 ).

Le type de base a été choisi selon le type de terme apparaissant dans l'expression de la SEP et de l'opérateur cinétique afin d'avoir des intégrales connues de facon analytique ou exacte par méthodes de quadratures (du moins pour certaines).

Le mouvement de torsion est décrit par une série en cos(nθ). Ce type de terme s'intégre bien par la méthode de quadrature Gauss-Chebyshev. Les mouvements d'élongation sont décrits par les coordonnées SPF que nous avons développées afin de faire apparaître des termes du type 1 q n dont les intégrales sont connues de facon analytique dans une base de Kratzer. Pour ces deux types de mouvements, on voit apparaître dans l'expression exacte de l'opérateur cinétique les mêmes termes que dans la SEP. Ceci est un point positif car pour ces mouvements aucun développement en série de l'opérateur cinétique ne sera nécessaire et ainsi ils seront traités d'une facon exacte. Afin de mener cette étude nous avons utilisé un développement à l'ordre trois de l'opérateur cinétique, le jugeant suffisamment convergé. Nous avons réalisé, par la suite, différents calculs et pour différents schémas de contraction. Nous n'avons considéré que les contractions binaires car le but est de déterminer les modes fortement couplés.

Nous avons commencé notre calcul en effectuant neuf itérations VMFCI (voir figure 2 ) sans aucune troncature de la base. Ceci permet d'avoir des états bien convergés pour l'étude des contractions à réaliser par la suite. Ici nous substituons aux coordonnées q i une notation en fonction des modes de vibration suivant les conventions spectroscopiques.

Dans la suite on notera les contractions de la partition initiale par des chiffres de 1 à 4, i.e. P = (I 1 , I 2 , I 3 , I 4 ) = (1, 2, 3, 4). Dans la table II sont reportées les fréquences fondamentales de chaque mode obtenues pour les différentes contractions binaires ainsi que les fréquences obtenues pour le schéma de contraction présenté dans la figure 2.

Dans le première ligne du tableau, sont reportées les ZPE des différentes contractions que l'on comparera à celle du calcul MSP-VSCF. On peut voir que la ZPE ne baisse de manière significative (54.5 cm -1 ) que pour la contraction (2-4)=(élongation (OO)pliage (OOH) ) tandis que pour les autres contractions, elle baisse d'une valeur allant de 0,12 cm -1 jusqu'à 6.6 cm -1 . De plus, on observe la même chose pour ce qui concerne les fréquences fondamentales qui sont surtout affectées par la contraction (2-4).

On 

D. Comparison with other approaches

Pour la suite de l'étude nous utiliserons la configuration de référence de Malyszek.

Un calcul pour l'hamiltonien d'ordre trois développé à la référence de Malyszek suivant le schéma de contraction de la figure 2 avec troncature finale à 24000 cm -1 et un seuil de troncature sur la base produit des spectateurs de 14000 cm -1 servira de calcul de référence pour la suite de ce travail. 

{(1 -2), (3 -4)} {(1 -3), (2 -4)} {(1 -4), (2 -3)} {(1, (2 -4), 3} Mode MSP-VSCF (1-2) (3-4) (1-3) (2-4) (1-4) (2-3) (1) 
(2-4) Hamiltonian matrix we just have to diagonalize the eight blocks corresponding to the eight irreps. To do that, we made a python program, which find the good symmetry of every frequencies.

As said before, to build the vibrational Hamiltonian, we need a force field derived from electronic calculations. In our case, we used Falvo's data : third and fourth orders constants and harmonic frequencies, to make the anharmonic Hamiltonian. He performed electronic calculations by using the density functional theory (DFT), not explain here, with the basis TZ2P and the functional B97-1, by as implemented in the commercial software Gaussian.

We have written a python program, which transforms Falvo's data in the atomic units, and in a format, either compact or extended, readable by CONVIV. Since the cubic and quartic force constants were not symmetry adapted and were suffering from small numerical errors, we had to purify whose not allowed by symmetry, (in practice, we have retained in a first automatic screening the cubic constants superior than 5.2 10 ?7, and the quartic ones more than 3.8 10 ?8 in absolute values ). Then we have cleaned it manually, searching in the file, the constants in the range of 10 ?7 for the cubic ones and 10 ?8 for the quartic ones, checking if they were allowed by symmetry.

In order to have the spectrum, we also need intensities, so we made a python program which also transforms the first order and second order Falvo's constants of the three components of the dipole moment operator in a format acceptable by CONVIV.

After getting the Hamiltonian and the electric dipole momentum, we performed a VSCF calculation, that is to say, we iterated the partition of all vibrationnal normal modes into singleton until convergence the ZPE of every mode to the same value to machine precision. It took nine iterations to converge the ZPE to about 10 ?7 cm ?1 , and obtain a self-consistent set of reference functions for the normal modes.

At the 10 th step we had to start contracting modes together, so, we used a python program to test every possible contraction into a pair of modes. After, we collected the ZPE of all pairs, we sorted them in increasing order to see which contraction pairs were lowering the ZPE the more efficiently. We did it both for the Naphtalene, and its cation form. But, after the thirteenth step, there is not a big gap between the ZPE values of all posible pairs, and the ZPE lowering criterium is not sufficient to determine the best contractions to do. Therefore, we made a python program in order to compare the variation of the frequencies before and after contraction in pair, for all possible pairs, and up to the fifth excited state. So, we first compare the ZPE, and then we study excited states by excited state, the variation of the frequencies.

Note that for each contraction partition selected, we iterated the partition once. Then, the ZPE values of all the contractions were equal to within 10 ? 3 cm ? 1 . We considered that this convergence was enough and that the calculations within these steps could be legitimately called vibrational self consistent field configuration interaction (VSCFCI).

In the end, we did a vibrational configuration interaction (VCI) step, that is to say we contracted all modes (contracted before, or never contracted) together.

In the code CONVIV, we can choose the basis functions we want to use, and many eigenvectors we want to calculate and keep for the next step. As said before, here, we have chosen for the initial step a basis of harmonic oscillator eigenfunctions (there are other choices available in the CONVIV code, but for our calculations, harmonic eigenfunctions were suitable). In order to avoid missing levels "holes" under a certain energy in the spectrum, we took fifteen basis functions for the frequencies more than 1000 cm -1 , twenty basis functions for frequencies which are between 500 cm -1 and 1000 In the previous notation, we separated the important step by a "/", and we put the contractions made in "{}", and separated the component number and the associated constraint by a ";". As said before, the constraint is on the sum of the eigenenergies of the contracted components, except for the VCI step, where we put two constraints : the first on the sum of all the eigenenergies of all the components, and the second on the sum of the eigenenergies of all the components, except the first one, which contains the CH stretches.

Let us give more details about what we did exactly. First, we performed VSCF calculation which took nine steps to converge, then, we used a python program to test every possible contraction into a pair of modes, as explained before. Next, we did a VSCFCI calculation (called VSCFCI11), where we have contracted separately the modes 1, 17, 29, 37 with 36000 as constraint, and the modes 2, 30 with the same constraint, immediately followed by the VSCFCI13 calculation, where all CH stretches have been contracted together. For these two partitions, we used the ZPE criteria to determine the contractions we had to do and we can see in between the VSCF step and the thirteen one (VSCFCI13), with a maximum lowering of 118.7 cm -1 .

After these steps, we used another criteria : the variation of the frequencies (up to the fifth excited state) before and after contraction pair, by using a python program we have written. We did a VSCFCI step (called VSCFCI15) where we contracted the modes 11, 15 and 46 with the others already contracted (which form now a new partition of contractions, as explained in the theory part). We put 16800 cm -1 as a constraint threshold of the sum of the energy, and we also made two others contractions, the modes 5, 8 and the modes 26, 27, both without constraint. We can see in Whereas the other modes we contracted, such as ν 11 , decreased a lot (22.6 cm -1 ).

Then, we did a last VSCFCI calculation (VSCFCI17) where we contracted modes 10, 14, 25, {26, 27} (which are already contracted together), and 45. We put 9136 cm -1 as constraint threshold , because we wanted to have at least the first three excited states of the CH stretches. We also contracted separately the modes 3, {5, 8} (which were already contracted together), 19, 32, 33, 39, with 15160 as constraint, the modes 4, 6, 9, 40, 48 with 18800 cm -1 as threshold, and the modes 7, 13, 16, 28, 31, 35 with 10710 cm -1 as threshold. We can see in the TABLE III that the CH stretches continue to re-increase, for example, ν 30 which re-increase from 2955.0 cm -1 to 2970.8 cm -1 (15.8 cm -1 ). As before, the other modes newly contracted generally decreased, such as the mode ν 10 , which decreased from 1020.3 cm -1 to 976.9 cm -1 (43.4 cm -1 ).

To finish, we did a VCI step to contract all modes, with 4200 cm -1 as truncation threshold on the sum of all component energies, and 1650 as truncation threshold on the sum of all components expect the first (which contains CH stretches).

Even thought we did not use the ZPE lowering criterion after the VSCFCI13 step, we can see in TABLE III that the ZPE continue to decrease. Actually, it decreased from 32029.8 cm -1 (VSCF step) to 31866.0 cm -1 (VCI step).

We can see, when we compared experiment to our preliminary results in TABLE.

III that CH stretches are overestimated compared to experiment, the deviation is, in average (for the CH stretches only) about 61.6 cm -1 . We are aiming at a convergence to about 6 cm -1 .

D. Comparison between cation and neutral forms of naphtalene

In this last subsection, we will compare the results obtained for the cation and the neutral form of the naphtalene, comparing their spectra.

For the ionised form, we did : For the cation, following exactly the same process, we found that we had to contract the CH stretches first but not in the same order. Moreover, for the neutral form, we did eighteen steps, and for the ionised one we only did sixteen steps.

We can compare the cation FIG 4 and neutral FIG 5 form using their spectra. In fact, we can see nearly the same peaks, but not with the same intensity (the most intense peak is set to the maximum and the intensity of the others are scaled accordingly, for the neutral form, the peak which is around 3000 cm -1 is less intense than for the ionised form, where it is the most intense), and with a shift. For example, we observe a peak at 1776.5 cm -1 for the neutral naphtalene, and one at 1784.7 cm -1 for the ionised one. 

V. CONCLUSION

When strong resonances occur in a quantum system, perturbative approximations are usually inappropriate. Perturbative series are known to converge poorly even in some simple cases, where in addition, no resummation technique is able to cover efficiently the full range of the parameter space [START_REF] Arteca | Large Order Perturbation Theory and Summation Methods in Quantum Mechanics[END_REF]118 .

When small energy differences relative to total energy occur, that is to say, typically, when two well-separated energy scales are present in a physical problem, the CI method may encounter numerical instabilities, due to a possibly ill-conditionned CI matrix. However, in such a situation, one is usually able to find a small parameter amenable to a rapidly converging pertubative expansion. Perturbative approaches are also better suited when the Hamiltonian is not bounded from below, as is often the case in relativistic systems, but also in vibrational Hamiltonians, whenever the potential is fitted with polynomials 18 . Finally, of course, when a large number of eigenstates is sought after, the computational cost of a perturbation method can be more advantageous than that of CI, the latter scaling at best as the CI matrix dimension to the power 3.

The increased flexibility of the GMFCI method with respect to MFCI allows one to take the best of two worlds, the perturbative and the variational ones. Our implementation of what we had called the "generalized perturbation method to non-commutative rings", was in fact a particular case of GMFCI calculation with a GMF of order 4, as shown in section 3. The numerical results presented here, with an improved DMS, confirm the reliability of the predictions made with our approach.

In practice, beside the rotation-vibration DOF partitioning explored in this article, we expect GMFCI to perform better than the simple MFCI approach for floppy systems, with large amplitude motion, or more generally, when slow and rapid motions are coupled in the same system. Work is in progress on hydrogen peroxyde, where, beside rotational DOF, a torsional DOF is coupled to the bending and stretching internal motions. 0 0 1 0 0 0 866. 0. 866. 865.9 0 0 0 3 0 0 1001.9 0. 1001.9 1000.9
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 718 FIG.7. Évolution de la valeur de l'énergie de torsion en fonction de l'ordre de développement des différents termes de l'opérateur d'énergie cinétique..
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TABLE I .

 I Paramètres de la base modale.

	Dans la méthode ICCE, le principe général à respecter lors du choix des contractions
	est de mettre ensemble les modes qui sont fortement couplés. Dans ce cas, les énergies
	de chaque mode après contraction seront fortement influencées. Comme il a été mis en
	évidence par le passé, l'abaissement de l'énergie de point zéro sera utilisé comme critère
	de sélection.

  peut conclure que le mode d'élongation de la liaison (OO) est fortement couplé aux modes de pliage (OOH). Il est donc important de contracter ces modes ensemble.Reste alors les modes de torsion et d'élongation (OH) qui ne seront pas contractés car très peu couplés. Dans ce dernier cas ,il est préférable de les considérer séparément. Ceci allégera le calcul et conservera la qualité de la base MSP-VSCF.

Dans la figure 2 on donne le schéma de contraction optimale et les informations concernant les dimensions des bases pour les différentes étapes jusqu'à la contraction finale.

TABLE II .

 II Résumé des résultats de calcul en cm -1

	(2,1) 570.583715 570.604692 0.020977
	(2,4) 777.054603 777.082097 0.027494
	ν 3 865.974451 865.975976 0.001525
	ν 6 1264.195964 1264.196473 0.000509
	ν 2 1395.175366 1395.176062 0.000696
	ν 1 3610.827640 3610.828999 0.001359
	ν 4 3612.077612 3612.077927 0.000315
	pour différents schémas de contraction.

TABLE III .

 III Résumé des résultats de calcul en cm -1 du schéma de contraction optimale avec troncature à 12000 cm -1 pour différentes géométries de référence. L'état (0,1) correspond à l'état fondamental de HOOH. La dernière colonne représente les différences algébriquesE M inglobal -E ref.SEP .E. Influence de l'ordre de l'ICCE Nous allons nous intéresser à présent à l'influence du champ effectif d'ordre deux sur le spectre vibrationnel de HOOH. L'ordre deux permet de prendre en compte le couplage entre l'état fondamental et les états excités des spectateurs. Afin de garder un contrôle sur la taille de la base des spectateurs des seuils de troncature sur l'énergie ont été définis pour chaque spectateur ainsi qu'un seuil sur la somme des énergies des spectateurs. autres il est d'ordre deux, nous avons choisi d'utiliser un champ effectif d'ordre deux pour la torsion et un champ effectif d'ordre un pour les autres modes.

		ordre 1		ordre 2		ICCE
	troncature (cm -1 )	-	14000	20000	24000	24000
	(0,1)	5716.061532 5703.845563 5703.844638 5703.844609 5705.794849
	(0,4)	10.542326 11.312001 11.312030 11.312032 11.242203
	(1,1)	268.224896 255.197460 255.197327 255.197318 255.543418
	(1,4)	382.754297 371.522202 371.522184 371.522182 371.353725
	(2,1)	589.026024 570.412650 570.412612 570.412608 570.487003
	Nous allons restreindre cette étude à la deuxième itération après la première con-(2,4) 801.717104 777.121932 777.121910 777.121907 776.930930
	traction (voir figure 2) car nous estimons qu'une itération est suffisante pour avoir la
	convergence du processus MSP-MFCI pour cette contraction.		
	Nous avons testé différents seuils de troncature sur les fonctions de bases des modes
	spectateurs pour un même calcul, i.e. mêmes itérations précédentes et même seuils de
	troncature sur les bases des modes actifs.			
	dénominateurs de la série perturbative sont petits (pas de bonne séparation d'énergie
	entre le fondamental et les niveaux spectateurs correspondant à la torsion) et donc la
	série converge mal.					
	Nous constatons que même les seuils les plus bas sont suffisants pour obtenir une
	convergence au centième de cm -1 pour la contraction (OO-OOH) et beaucoup mieux
	pour les autres contractions.				

Les résultats des différents calculs sont résumés dans les tables IV, V et VI. Dans chaque table, sont reportées les fréquences fondamentales de la contraction que l'on pourra comparer aux fréquences obtenues par une calcul en champ effectif d'ordre un. Pour une contraction donnée, i.e. une table donnée, le seuil de troncature sur les spectateurs est donné en cm -1 sur la deuxième ligne. On peut déduire de ces tables que le champ effectif d'ordre deux a une influence non négligeable, que ca soit sur le fondamental ou sur les états excités. On observe également que la ZPE peut être plus basse que celle de la contraction finale. Ceci est tout à fait normal car avec un champ effectif d'ordre deux la méthode n'est plus variationnelle. On observe que pour la torsion les différences d'énergie entre états excités sont beaucoup plus proches des valeurs convergées. Ceci n'est pas le cas pour les autres contractions, où l'on observe la tendance contraire. Ce dernier résultat s'explique par le fait que les Pour la suite de l'étude, tenant compte des résultats des tables IV, V et VI et tenant compte du fait que dans un même calcul il est possible de mélanger le champ effectif d'ordre un et deux, i.e. pour certaines contractions, le champ effectif est d'ordre un et pour les

TABLE IV .

 IV Niveaux d'énergie de torsion (cm -1 ) en champ effectif d'ordre deux en fonction du seuil de troncature de la base produit des spectateurs. Le seuil de 24000 cm -1 représente le seuil de troncature sur la base des actifs pour la contraction finale. L'état (0,1) correspond à l'état fondamental de HOOH.

		ordre 1		ordre 2		ICCE
	troncature (cm -1 )	-	8000	10000	14000	24000
	ZPE	5716.065998 5667.692921 5667.692615 5667.683225 5705.794849
	ν 3	866.195408 854.361847 854.361769 854.359574 865.974776
	ν 6	1272.619163 1268.800577 1268.800557 1268.788979 1264.207193
	ν 2	1408.885441 1335.736788 1335.736777 1335.719131 1395.147434

TABLE V .

 V Fréquences fondamentales de la contraction (OO -OOH) (cm -1 ) en champ effectif d'ordre deux en fonction du seuil de troncature de la base produit des spectateurs. Le seuil de 24000 cm -1 représente le seuil de troncature sur la base les actifs pour la contraction finale.

		ordre 1		ordre 2		ICCE
	troncature (cm -1 )	-	14000	18000	20000	24000
	ZPE	5716.064665 5697.977870 5697.977870 5697.977870 5705.794849
	ν 1	3605.246606 3582.685777 3582.685777 3582.685777 3610.689125
	ν 4	3610.672233 3604.667245 3604.667245 3604.667245 3611.954087

TABLE VI .

 VI Fréquences fondamentales des modes d'élongation OH (cm -1 ) en champ effectif d'ordre deux en fonction du seuil de troncature de la base produit des spectateurs. Le seuil de 24000 cm -1 représente le seuil de troncature sur la base des actifs pour la contraction finale.Nous allons nous intéresser à présent aux résultats de la contraction finale i.e. l'interaction de configuration vibrationnelle (VCI). Comme on peut le voir dans la table VII, les différences entre les valeurs obtenues avec un champ effectif d'ordre un et celles obtenues avec un champ effectif d'ordre deux pour la torsion sont petites (de l'ordre du dixième de cm -1 ). De plus, comme on peut le voir dans la figure3, le ratio de la somme des projection sur la nombre d'état (voir la section ZZZ) pour la VCI après l'ordre deux est toujours supérieur à celui de la VCI après l'ordre un. Ceci montre que les fonctions d'ondes obtenues avec un champ effectif d'ordre deux sont meilleures que celles obtenues avec un champ effectif d'ordre un. Si l'on compare les valeurs de l'énergie obtenues en champ effectif d'ordre un et deux à celles de référence (voir table VII, on remarque que la configuration d'interaction précédée d'un champ effectif d'ordre deux avec un seuil troncature sur la base produit des actifs de 12000 cm -1 est très proche de la référence et meilleure que le calcul précédé d'un champ effectif d'ordre un, ce qui montre que l'influence du champ effectif d'ordre deux est plus importante que l'influence de la dimension de la base qui est quinze fois plus grande dans le calcul de référence. Ainsi avec une base d'ordre deux sur la torsion, la base produit de dimension réduite (environ 8000) donne un résultat sensiblement équivalent à la référence qui correspond à une VCI de dimension environ 124000. l'outil perturbatif introduit dans cette thèse pour la méthode ICCE est donc avantageux dans le cas d'une séparation d'échelle d'énergie entre deux familles de degrés de liberté. Naphtalene has the symmetry point group D2h, and we have to find the irreducible representation (irrep) of each normal mode and related harmonic frequencies, not only to reorder the modes in the conventional spectroscopic ordering, but also to take advantage of the symmetry in our calculations. That is to say, the Hamiltonian commuting with all the symmetry operation of the D2h group, it has a block-diagonal diagonal structure, each block corresponding to a different irreps. So, instead of diagonalizing the total

		3978.891546 0.225191 3978.842165 0.175810 3978.666355
	1.00	3988.896110 0.430051 3988.758789 0.292730 3988.466059
		3991.091183 0.570245 3990.656874 0.135936 3990.520938
		3999.040176 0.563655 3998.999829 0.523308 3998.476521
	0.95	3999.314672 0.431523 3999.009460 0.126311 3998.883149
	Ordre 1 0.014141 A titre indicatif, les RMS de l'ICCE ordre 1, l'ICCE ordre 2, l'ICCE de référence RMS -0.086328 --
	Ordre 2 TABLE VII. Spectre J = 0 de la molécule HOOH pour une même troncature finale après un par rapport aux valeurs observées sont resp. 1.59559, 1.51824 et 1.47324 . Cet écart
	champ effectif d'ordre un et deux. La dernière ligne représente la RMS par rapport à l'ICCE par rapport aux valeurs observées peut provenir du manque de précision de la SEP, du 0.90 de référence. choix de la géométrie de référence d'une mauvais paramétrisation de la base initiale,
	de l'ordre du développement choisi (ordre trois) ou de l'influence de la rotation de la
	molécule négligée dans ce calcul.	
	0.85			
	IV. APPLICATION TO NAPHTHALENE VIBRATIONAL SPECTRUM
			50	100	150	Nb States
			ICCE ord 1	ICCE ord 2	ICCE reference
		Troncature (cm -1 )	12000	12000	24000
		Nb functions	8056	8281	124029
		ZPE (cm -1 )	5705.822040 0.027191 5705.800104 0.005255	5705.794849
			11.263072 0.020869 11.242069 -0.000134	11.242203
			255.556462 0.013044 255.543926 0.000508	255.543418
			371.402667 0.048942 371.354445 0.000720	371.353725

R FIG. 3. Évolution du ratio de la somme des projection sur le nombre d'état en fonction du nombre d'état de la configuration vibrationnelle en champ effectif d'ordre un et deux. Le seuil de troncature sur la base produit des spectateurs est de 20000 cm -1 et le seuil de troncature sur la base produit des actifs est de 24000 cm -1 .

  B. Sensitivity to force field truncaturesCané et al. used exactly the same electronic method than Falvo that is B97-1/TZ2P DFT level of theory. However, Cané et al. retained only the largest force field constants, so Hamiltonian has about only 4000 terms whereas Falvo has about 10500 terms after cleaning which is about the same as Mackie Hamiltonian. So, performing exactly the same calculation for the Falvo and the Cané Hamiltonian will permit us to assess the sensitivity to the truncatures of the force field. As we can see inspecting the last colomn of TABLE. II, they can be large differences between the two calculations. In particular, the differences between ν 1 is 12.6 cm -1 and the RMS error is 4.7 cm -1 . The very good agreement between Cané's results and experiment is probably due to error compensations.

	For the neutral form, we did :
	VSCF/VSCFCI11({1,17,29,37};36000.0,{2,30};36000)/VSCFCI13({1,2,17,18,29,30,37,38};36000.0)/VSC
	11,15,17,18,29,30,37,38,46};16800.0,{5,8},{26,27})/VSCFCI17({1,2,10,11,14,15,17,18,25,26,27,29,30,37,38,4
	{3,5,8,19,32,33,39};15160.0,{4,6,9,40,48},18800.0,{7,13,16,28,31,35};10710)/VCI(4200;1650)

C. Naphtalene's neutral form : comparison between steps and with experiment

In this part, we compare between themselves ZPE and frequencies at different stages of the calculations. We also compare our final results to experiment.

  TABLE III that the ZPE decreased by 71.4 cm -1 . Moreover, the CH stretches frequencies decrease on average by 112.5 cm -1

  TABLE III that CH stretches generally re-increased as expected, such as ν 29 which increased by 6.8 cm -1 .

  VSCF/VSCFCI11({1,17,29,37};36000,{2,30,38};36000)/VSCFCI13({1,2,17,18,29,30,37,38};36000)/VSC 10,11,15,17,18,29,30,37,38,46}16800;,{3,7,12,23,32};22300,{4,5,8,16,39};21540,{6,13,34,36,48};11521,{9,19, 21590,{14,45,47},{22,42},{25,26,27,28};20940)/VCI(4500;1600)
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cm -1 , and we took thirty basis functions for frequencies less than 500 cm -1 .

For every new contractions we made, we had to do truncations, in order to control the growth of the size of the product basis as the number of contracted modes increases.

We made truncations on the sum of the eigenvalues. Moreover, we have to specify the number of eigenvectors we wanted to save at the end of each contraction, because saving all the vectors, if the basis set is large, takes too much RAM memory, and it is useless since these eigenvectors will not be used in the following step. In the next sections, we will particularly discuss the C-H stretches, because researchers think that they are responsible for the emission band observed at 3.3 µm (∼3000 cm -1 ) 132 .

A. The force field precision

In this part, we will compare the results obtained using the Falvo's force field 129 , and the Mackie one 130 , up to the thirteenth step (we made the same contractions up to this step, see below to details of the contraction), in order to discuss the force field precision. Since Falvo and Mackie did not use the same functional nor basis to make their calculations. This comparison will permit us to give us an order of magnitude of the precision we can expect. More precisely, Mackie used the functional B3LYP and the basis N07D, whereas Falvo used the functional B97-1 and the basis TZ2P. As we can see in the TABLE. II, the root mean square (RMS) error is smaller as we contract modes.

In fact, at the VSCF step, the RMS is 8.9 cm -1 , and after 2 VMFCI steps, the RMS is 7.4 cm -1 . On average, we can not expect a precision better than 7.4 cm -1 . However, the precision may depend on the frequency and/or the . Therefore, we have calculated the mean deviation between results obtained for stretches only and for other modes below and above 1000 cm -1 separetely to have a more detail idea of the maximal convergence we can expect. Therefore we not try to achive in our calculations a convergence better than 6 cm -1 for CH stretches, 3 cm -1 for ones over 1000 cm -1 and 1 cm -1 for modes less 1000 cm -1 . We used the Falvo's force field for our study because we wanted to compare the cation and the neutral forms, and only Falvo's made calculations for the ionised naphtalene.