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OPTIMAL HEDGING IN DISCRETE TIME

, we present discrete time formulas minimizing the mean square hedging error for multidimensional assets. In particular, we give explicit formulas when a regime-switching random walk or a GARCH-type process is utilized to model the returns. Monte Carlo simulations are used to compare the optimal and delta hedging methods.
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Introduction

In many applications, one is interested in finding a discrete-time dynamically traded portfolio so that its value at maturity is as close as possible to a target function of the underlying assets. When the target function is a payoff, this can be interpreted as option pricing and hedging. However, sometimes the target function is not a payoff as it happens when one tries to replicate hedge funds or create synthetic funds [START_REF] Papageorgiou | Replicating the properties of hedge fund returns[END_REF]. Assuming that the error measure is the average quadratic hedging error, [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF] solved the hedging problem for one risky asset. He showed that the initial value of the portfolio, which can be interpreted as the "value" of the option, is the average, under the "real probability measure", of the discounted payoff, multiplied by a martingale, which is not necessarily positive. In the latter case, the martingale cannot be used as the density of an equivalent martingale measure.
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Even if the hedging problem has been solved quite generally by [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF] in the one-dimensional case, it seems to have been ignored or forgotten, e.g., [START_REF] Bouchaud | Back to basics: historical option pricing revisited[END_REF] or [START_REF] Cornalba | Option pricing and hedging with temporal correlations[END_REF]. More troubling, delta hedging, based on the Black-Scholes-Merton model, is still used in practice even if it has been shown that the geometric Brownian motion model is an inadequate model for the underlying assets [START_REF] Kat | Who needs hedge funds? A copula-based approach to hedge fund return replication[END_REF]. Even when the geometric Brownian motion model is adequate, the hedging error in discrete time is not zero, converging only to zero as the number of hedging periods tends to infinity. See, e.g., [START_REF] Boyle | Discretely adjusted option hedges[END_REF], Wilmott (2006, Chapters 46-47). In addition, when the market is not complete but there is no arbitrage, there are infinitely many equivalent martingale measures (EMM). One then has to choose the "best" martingale measure with respect to some utility criterion. There is a huge literature on this subject. Indeed, when a NGARCH process is utilized to model the log-returns, [START_REF] Duan | The GARCH option pricing model[END_REF] proposes a solution to the EMM problem. Unfortunately, Duan also suggests a delta hedging strategy, which has been shown to be wrong by [START_REF] Garcia | A note on hedging in ARCH and stochastic volatility option pricing models[END_REF].

Motivated by applications in hedge fund replication, [START_REF] Papageorgiou | Replicating the properties of hedge fund returns[END_REF] proposed a locally optimal solution minimizing the average quadratic hedging error at each period for the general multidimensional asset case. They erroneously claimed that it was globally optimal, which is only true if the discounted underlying assets are martingales. A first motivation for the present paper is to correct that mistake and give explicit formulas for the results in [START_REF] Černý | On the structure of general mean-variance hedging strategies[END_REF] and generalizing those of [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF]. A second motivation is to show that, when regime-switching random walks and GARCH processes are used to model the returns, the optimal solution of the hedging problem yields superior results to those obtained by delta hedging.

The optimal solution of the discrete time hedging problem is described in Section 2, giving explicit expressions for the results of [START_REF] Černý | On the structure of general mean-variance hedging strategies[END_REF]. It is worth noting that when the asset value process is Markovian, or a component of a Markov process, the optimal solution can be implemented using approximation techniques of dynamic programming. Two such cases are considered. Finally, in Section 3, simulations are used to compare optimal hedging with delta hedging for geometric random walks and NGARCH models.

Optimal hedging strategy in discrete time

Denote the price process by S, i.e., S k is the value of the d underlying assets at period k and let F = {F k , k = 0, . . . , n} be a filtration under which S is adapted.

Assume that S is square integrable. Set ∆ k = β k S k -β k-1 S k-1 , where the discounting factors β k are predictable, i.e. β k is F k-1 -measurable for k = 1, . . . , n.
The aim of this section is to find an initial investment amount V 0 and a pre-

dictable investment strategy -→ φ = (φ k ) n k=1 such that φ ⊤ k ∆ k is square integrable and which minimizes the expected quadratic hedging error E G V 0 , - → φ 2
, where

G = G V 0 , - → φ = β n C -V n , and V k = V 0 + k j=1 φ ⊤ j ∆ j , k = 0, . . . , n.
The existence of an optimal solution was proven first in the univariate case by [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF]. [START_REF] Motoczyński | Multidimensional variance-optimal hedging in discrete-time model-a general approach[END_REF] considered a multivariate setting without furnishing explicit solutions. Finally, [START_REF] Černý | On the structure of general mean-variance hedging strategies[END_REF] treated a much more general case. However, in the discrete time case, it is faster and easier to find directly the explicit formulas than trying to recover them from their results.

2.1. Offline computations. Once a dynamic model is chosen for the asset prices, one must start with some computations that are necessary for the implementation.

Set P n+1 = 1, γ n+1 = 1, and for k = n, . . . , 1, define

A k = E ∆ k ∆ ⊤ k P k+1 |F k-1 , µ k = E (∆ k P k+1 |F k-1 ), b k = A -1 k µ k , P k = n j=k 1 -b ⊤ j ∆ j , and γ k = E(P k |F k-1
), provided these expressions exist. Under some extra assumptions given below, it can be shown that they are indeed well defined. The proof is given in Appendix A.1.

Lemma 2.1.1. Suppose that E(γ k+1 |F k-1 )A k -µ k µ ⊤
k is invertible P-a.s., for every k = n, . . . , 1. Then γ k ∈ (0, 1] and A k is invertible for all k = 1, . . . , n. In addition

(γ k+1 ) n k=0 is a positive submartingale.
Remark 2.1.2. In the univariate case, [START_REF] Schweizer | Variance-optimal hedging in discrete time[END_REF] states sufficient conditions for the validity of the assumptions of Lemma 2.1.1. It is not obvious how they could be generalized to the multivariate case. Therefore, in most applications, one has to verify these conditions, often using brute force calculations.

2.2.

Optimal solution of the hedging problem.

Theorem 2.2.1. Under the assumptions of Lemma 2.1.1, the solution

V 0 , - → φ of the minimization problem is V 0 = E(β n CP 1 )/γ 1 , and φ k = α k -V k-1 b k , where α k = A -1 k E (β n C∆ k P k+1 |F k-1 ), k = n, . . . , 1.
The proof is given in Appendix A.2.

2.2.1. Option value. Let C k be the optimal investment at period k, so that the value of the portfolio at period n is as close as possible to C, in terms of mean square error. One could then interpret C k as the value of the option at period k, for any k = 0, . . . , n. It then follows from Theorem 2.2.1 that C k is given by (2.2.1)

β k C k = E(β n CP k+1 |F k ) E(P k+1 |F k ) , k = 0, . . . , n, so one can write (2.2.2) β k-1 C k-1 = 1 γ k E β k C k 1 -b ⊤ k ∆ k γ k+1 |F k-1 = E (β n CU k • • • U n |F k-1 ) ,
where

U k = E(P k |F k ) E(P k |F k-1 ) , k = 1, . . . , n + 1, while an alternative expression for α k is (2.2.3) α k = A -1 k E (β k C k ∆ k γ k+1 |F k-1 ) . Remark 2.2.2. Setting Z 0 = 1 and Z k = k j=1 U j , k = 1, . . . , n, one obtains that (Z k , β k C k Z k , β k S k Z k ) n
k=0 are martingales. However, in most applications, Z does not define a change of measure unless it takes only positive values.

2.2.2. Implementation issues. If the process S is Markov and

C n = C n (S n ), then C k = C k (S k ), α k = α k (S k-1 ), and b k = b k (S k-1
). It follows that all these functions can be approximated using the methodology developed in [START_REF] Papageorgiou | Replicating the properties of hedge fund returns[END_REF].

Another interesting case is when S k is not a Markov process but (S k , h k ) is, even if h k is not observable, as in GARCH and regime-switching models. In this case, if

C n = C n (S n ), then C k = C k (S k , h k ), α k = α k (S k-1 , h k-1 ), b k = b k (S k-1 , h k-1
), and .

γ k = γ k (S k-1 , h k-1
), for k = 1, . . . , n + 1. All these functions can be approximated using the methodology developed in [START_REF] Rémillard | Option Pricing and Dynamic Discrete Time Hedging for Regime-Switching Geometric Random Walks Models[END_REF] for the regime-switching case. Implementation of the hedging strategy then requires predicting h t .

Remark 2.2.3. One could suggest to use the smallest filtration to get rid of the unobservable process h but in this case, all conditional expectations based on F k would depend on all past values S 0 , . . . , S k , making it impossible to implement in practice.

Verification of the assumptions of Lemma 2.1.1.

In what follows, we consider some interesting models used in practice, for which it is possible to show that the assumptions of Lemma 2.1.1 hold true and that the optimal solution can be computed via a dynamic program.

2.3.1. Regime-switching geometric random walks. An interesting model, which includes geometric random walk models, is to consider a regime-switching geometric random walk. Theses models can display serial dependence in the log-returns and may account for changing volatility over time. For implementation issues, including estimation and goodness-of-fit tests, see, e.g., [START_REF] Rémillard | Option Pricing and Dynamic Discrete Time Hedging for Regime-Switching Geometric Random Walks Models[END_REF].

To define the process, suppose that τ is a finite homogeneous Markov chain with transition matrix Q with values in {1, . . . , l} representing the non-observable regimes and set

β k S i k = S i 0 k t=1 {1 + ξ i t }, i = 1, . . . , d
, where, given τ 1 = i 1 , . . . , τ n = i n , ξ 1 , . . . , ξ n are independent with ξ j ∼ P i j , j = 1, . . . , n, E i (ξ j ) = E(ξ j |τ j = i) = m(i),

and E i ξ j ξ ⊤ j = B(i).
The interpretation of the model is easy: At a given period t, a regime τ t is chosen at random, according to the Markov chain model, and given τ t = i, ξ t is chosen at random according to distribution P i . When there is only one regime, one obtains a geometric random walk where all ξs are independent.

We assume that the B(i) -m(i)m(i) ⊤ is invertible for any i = 1, . . . , l. Setting 

X k = β k S k , one gets ∆ k = X k -X k-1 = D(X k-1 )ξ k , k = 1, . . . ,
= γ k (τ k-1 ), γ k (i) ∈ (0, 1], A k = A k (S k-1 , τ k-1 ) and b k = b k (S k-1 , τ k-1 ), where (2.3.1) A k (s, i) = β 2 k-1 D(s) l j=1 Q ij γ k+1 (j)B(j) D(s), (2.3.2) b k (s, i) = D -1 (β k-1 s)ρ k+1 (i), (2.3.3) γ k (i) = l j=1 Q ij γ k+1 (j) 1 -ρ k+1 (i) ⊤ m(j) , with ρ k+1 (i) = l j=1 Q ij γ k+1 (j)B(j) -1 l j=1 Q ij γ k+1 (j)m(j) . If in addition C = C(S n ), then C k = C k (S k , τ k ) and α k = α k (S k-1 , τ k-1
), where

C k-1 (s, i) = β k β k-1 l j=1 Q ij γ k+1 (j) γ k (i) × C k β k-1 β k D(s)(1 + y), j 1 -ρ k+1 (i) ⊤ y P j (dy), α k (s, i) = β k β k-1 D -1 (s) l j=1 Q ij γ k+1 (j)B(j) -1 l j=1 Q ij γ k+1 (j) × C k β k-1 β k D(s)(1 + y), j yP j (dy).
2.3.2. GARCH-type models. Here, one assumes that 

∆ k = β k S k -β k-S k-1 = β k-1 S k-1 ξ k , with ξ k = π 1 (h k-1 , ǫ k ), and h k = π 2 (h k-1 , ǫ k )
= γ k (h k-1 ) and A k (s, h) = β 2 k-1 s 2 B k (h), b k (s, h) = m k (h) sβ k-1 B k (h) , where B k (h) = π 2 1 (h, y)γ k+1 {π 2 (h, y)} ν(dy), m k (h) = π 1 (h, y)γ k+1 {π 2 (h, y)} ν(dy), and γ k (h) = 1 -m k (h) B k (h) π 1 (h, y) γ k+1 {π 2 (h, y)} ν(dy). Also, if C = C n (S n ), then C k-1 (s, h) = β 1 γ k (h) C k s β 1 {1 + π 1 (h, y)}, π 2 (h, y) ×γ k+1 {π 2 (h, y)} 1 - m k (h) B k (h) π 1 (h, y) ν(dy), α k (s, h) = β 1 sB k (h) C k s β 1 {1 + π 1 (h, y)}, π 2 (h, y) ×γ k+1 {π 2 (h, y)} π 1 (h, y)ν(dy).
Hence, the optimal solution can be written as a dynamic program.

Examples of application

In this section we consider pricing and hedging of European calls for two geometric random walk models, when the returns are i.i.d. Gaussian and i.i.d. differences of Laplace distributions, and for a NGARCH model. It follows from the previous sections that optimal hedging solutions exist for these cases, and the optimal solution can be written as a dynamic program associated with functions of a finite number of variables.

For solving such dynamic programs, we discretize the state space into a finite grid and we compute approximations of expectations using Monte Carlo simulations at every point of the grid. Linear interpolations are used for points outside the grid at each time step. Since the expectations are always with respect to the same probability measure, only one sequence of random numbers may be used, using the ideas in Del [START_REF] Del Moral | Monte Carlo approximations of American options[END_REF][START_REF] Del Moral | Monte Carlo Approximations of American Options that Preserve Monotonicity and Convexity[END_REF].

3.1. Geometric random walk models. Here we consider discretized versions of the Black-Scholes (BS) and Variance Gamma (VG) models for the underlying asset over 23 periods. In each case, the 22 periodic returns are i.i.d., so that the mean and volatility at maturity are respectively 9% and 6%. For the BS model, the returns are Gaussian, while for the VG model, the returns are differences of i.i.d. Gamma variates, so that the distribution at maturity is Laplace (double exponential). These models are particular cases of regime-switching models with only one regime. We do not consider regime-switching models since it has been done in [START_REF] Rémillard | Option Pricing and Dynamic Discrete Time Hedging for Regime-Switching Geometric Random Walks Models[END_REF], where the daily log-returns of the S&P 500 are analyzed.

We are going to price and hedge a call with strike K = 100 and maturity 1 year, using 22 replication periods and a 2000 points discretization of the asset values over the interval [80,120]. The annual rate is 5%. A sequence of 10000 random points were used for the computation of functions α k and A k , while 10000 paths were used to compute the hedging errors. Delta hedging is optimal in the continuous time limit for the BS model, but not for the VG model. As expected, according to Figures 12, the values of the call C 0 and initial investment strategy φ 1 , obtained from the optimal hedging, are close to those obtained using the Black-Scholes formula (even with 22 hedging periods), while they differ for the VG model. This is also reflected in the distribution of the hedging errors, as illustrated in Figure 3. Descriptive statistics of the hedging errors are given in Table 1. Simulations can also be used to show that as the number of hedging periods increases, the hedging error tends to zero for the BS model, while it is never 0 for the VG model. Note that the RMSE of the optimal hedging is always less than the one of the delta hedging. 

ξ k -1 = r + λ h k-1 -1 2 h k-1 + h k-1 ε k , and h k = α 0 + α 1 h k-1 ε 2 k + β 1 h k-1
, with ε k ∼ N(0, 1) and parameters α 0 = 1.524 × 10 -5 , α 1 = 0.1883, β 1 = 0.7162 and λ = 7.452 × 10 -3 . Under the EMM, we have e

ξ k -1 = r + -1 2 h k-1 + h k-1 ε k and h k = α 0 + α 1 h k-1 (ε k -λ) 2 + β 1 h k-1 .
We price and hedge a call with strike K = 100 and maturity 30 days using daily replication, using a grid of 500 points for the asset on [60,140], while the grid for the volatility consists in 90 points of the interval [.00005, .0007]. The annual rate is 0%. In what follows, B&S hedging means delta hedging using the B&S formulas, while Duan's methods consists in picking his suggested EMM and taking the delta of the option. The value of the option and the initial number of asset are displayed in Figure 4, while descriptive statistics of the 10000 hedging errors are given in Table 2 for the three hedging methodologies, showing that the errors are more concentrated about 0 for the optimal hedging. 

Conclusion

In this paper we presented the optimal solution for a discrete time hedging portfolio. When the underlying process is Markov or a component of a Markov process, the optimal hedging strategy depends on deterministic functions that can be approximated. We also find explicit formulas for two interesting models. Finally, numerical simulations show that optimal hedging is preferable to delta hedging.

µ ⊤ n A -1 n µ n = µ ⊤ n Σ -1 n µn 1+µ ⊤ n Σ -1
n µn , so γ n = A.2. Proof of Theorem 2.2.1. Using the proof of Lemma 2.1.1, one can easily check that a k , b k and φ k make sense and that φ ⊤ k ∆ k is square integrable. Next, it is easy to check that a necessary and sufficient condition for V 0 , -→ φ to minimize

E G V 0 , -→ φ 2 is that E G V 0 , -→ φ = 0 and E G V 0 , - → φ ∆ k |F k-1 = 0 for
all k = 1, . . . , n. The necessity comes from the fact that for any event O ∈ F k-1 , one must have 0 = d dǫ ǫ=0 E G V 0 ,

- → φ -ǫI O ∆ k 2 = -2E G V 0 , - → φ ∆ k I O ,
which is equivalent to the condition E G V 0 , -→ φ ∆ k |F k-1 = 0, while the condition E G V 0 , -→ φ = 0 comes from the fact that for any θ, one must have

0 = d dǫ ǫ=0 E G V 0 + ǫθ, -→ φ 2 = -2E G V 0 , - → φ .
To see that the conditions are sufficient, it suffices to check that

E G V 0 + θ 0 , ---→ φ + ψ 2 = E G V 0 , - → φ 2 + E    θ 0 + n k=1 ψ ⊤ k ∆ k 2    .
The proof that -→ φ is the solution is based on the following equation, which can be easily proven by induction.

(A.2.1)

E(V n |F k ) = V k E(P k+1 |F k ) + E {β n C(1 -P k+1 )|F k } , k = 1, . . . , n.
To complete the proof of theorem, note that from (A. 

  n, where D(s) is the diagonal matrix constructed from vector s. Note that S is not a Markov process in general but (S, τ ) is a Markov process. The validity of the assumptions of Lemma 2.1.1 follows from the next result, proved in Appendix A.3. Proposition 2.3.1. For any k = 1, . . . , n and i = 1, . . . , l, γ k

Figure 1 .

 1 Figure 1. Call option value C 0 for the Black-Scholes (left panel) and Variance Gamma models (right panel) with 22 periods of hedging.

Figure 2 .

 2 Figure 2. Initial investment strategy φ 1 in the underlying asset for the Black-Scholes (left panel) and Variance Gamma models (right panel) with 22 periods of hedging.

Figure 3 .

 3 Figure 3. Estimated densities of the hedging error G for the Black-Scholes (left panel) and Variance Gamma models (right panel) with 22 periods of hedging.

Figure 4 .

 4 Figure 4. Optimal hedging call option value C 0 and initial investment strategy φ 1 for the NGARCH model with 30 periods.

n

  µn ∈ (0, 1]. As a result, γ n ≤ E(γ n+1 F n ) = 1.The rest of the proof follows easily by reverse induction, using Proposition B.0.1 with the mean and covariance matrix of ∆ k under the probability distribution Q k , withQ k (O) = E(I O γ k+1 |F k-1 )/E(γ k+1 |F k-1 ), O ∈ F k , for k = n -1, . . . , 1.

  2.1), (A.2.2) E G V 0 , -→ φ |F k = E(β n CP k+1 |F k ) -V k E(P k+1 |F k ), k = 0, . . . , n.

Table 1 .

 1 Statistics of hedging errors (Payoff-Portfolio) for the Black-Scholes and Variance Gamma models.

		Black-Scoles	Variance Gamma
	Stats	Optimal	Delta Optimal	Delta
	Average	-0.0065 0.0076	0.0151 0.0518
	Median	-0.0014 0.0029 -0.1543 -0.2886
	Volatility	0.2537 0.2774	1.0510 1.2529
	Skewness	1.3781 0.5515	6.1479 6.0965
	Kurtosis	22.0975 8.8391 63.3897 60.9747
	Minimum	-1.7986 -1.7578 -4.4372 -1.5160
	Maximum	3.5389 2.2978 18.5163 23.6422
	VaR(99%)	0.8231 0.9244	4.6976 5.9450
	VaR(99.9%)	1.9576 1.5779 11.7905 12.2222
	RMSE	0.2538 0.2775	1.0511 1.2540
	3.2. NGARCH model. As in Duan (1995), we consider the NGARCH model
	where e			

Table 2 .

 2 Statistics of hedging errors (Payoff-Portfolio) for the NGARCH model.

	Stats	Optimal	Delta	Duan
	Average	-0.0159 -0.0954 0.0085
	Median	-0.1549 -0.2094 -0.1297
	Volatility	0.8568 0.8951 0.9032
	Skewness	1.7205 2.7558 2.9171
	Kurtosis	10.5790 29.3709 29.9947
	Minimum	-1.9966 -2.2302 -2.0789
	Maximum	9.9114 17.4873 17.7232
	VaR(99%)	2.7698 2.8613 3.0831
	VaR(99.9%)	5.4893 6.3574 6.5070
	RMSE	0.8569 0.9001 0.9033

Appendix A. Proofs of the main results

A.1. Proof of Lemma 2.1.1. First, we will show that γ k ∈ (0, 1] and A k is invertible for all k = 1, . . . , n. By hypothesis, E(γ k+1 |F k-1 )A k -µ k µ ⊤ k is invertible for all k = 1, . . . , n. In particular, it is true for k = n, yielding that Σ n = A n -µ n µ ⊤ n is invertible, which is the conditional covariance matrix of ∆ n given F n-1 . It then follows from Proposition B.0.1 that A n is invertible. Without loss of generality, one may assume that A n is diagonal. Otherwise, we diagonalize it in the form

A.3. Proof of Proposition 2.3.1. The result is obviously true for k = n + 1.

Suppose it is true for k + 1. For i given, set

. By hypothesis, π 1 , . . . , π l are probabilities adding to 1, so if X ∼ P j with probability π j , then γ k (i) = D 1 -µ ⊤ B -1 µ , where µ = E(X) and B = E XX ⊤ . Let Σ be the covariance matrix of X. It is non singular since the covariance of X under P j is non singular. It then follows from Proposition B.0.1 that

Since D > 0 by hypothesis, one may conclude that γ k (i) > 0. As a by-product we get that γ k (i) ≤ 1 if γ k+1 (j) ≤ 1 for all j = 1, . . .. Since that is true for γ n+1 ≡ 1, one may conclude that for all k = 1, . . . , n, γ k (i) ≤ 1.

The rest of the proof is easy.

Appendix B. Auxiliary results

Proposition B.0.1. Suppose A = Σ+bb ⊤ where Σ is symmetric and invertible. Then A is invertible, and
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