
HAL Id: hal-00737040
https://hal.univ-cotedazur.fr/hal-00737040v3

Preprint submitted on 5 Nov 2014 (v3), last revised 18 Oct 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXACT SAMPLING USING BRANCHING
PARTICLE SIMULATION

Christophe Andrieu, Nicolas Chopin, Arnaud Doucet, Sylvain Rubenthaler

To cite this version:
Christophe Andrieu, Nicolas Chopin, Arnaud Doucet, Sylvain Rubenthaler. EXACT SAMPLING
USING BRANCHING PARTICLE SIMULATION. 2012. �hal-00737040v3�

https://hal.univ-cotedazur.fr/hal-00737040v3
https://hal.archives-ouvertes.fr

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION

CHRISTOPHE ANDRIEU, NICOLAS CHOPIN, ARNAUD DOUCET, AND SYLVAIN RUBENTHALER

Abstract. Particle methods, also known as Sequential Monte Carlo methods, are a popular
set of computational tools used to sample approximately from non-standard probability distri-
butions. A variety of convergence results ensure that, under weak assumptions, the distribution
of the particles converges to the target probability distribution of interest as the number of
particles increases to infinity. Unfortunately it can be difficult to determine practically how
large this number needs to be to obtain a reliable approximation. We propose here a procedure
which allows us to return exact samples. The proposed algorithm relies on the combination of
an original branching variant of particle Markov chain Monte Carlo methods and dominated
coupling from the past.

1. Introduction

We are given spaces E1, E2, . . . , M1 a probability measure on E1, for each k ≥ 2 a transitition
kernel Mk from Ek−1 to Ek and potentials (Gk)k≥1 (Gk : Ek → R+). All densities and kernels are
supposed to have a density with respect to some reference measures µk on Ek (k = 1, 2, . . . , T).
Moreover, in the following, densities on enumerable sets will always be taken with respect to the
counting measure. In the case we write a density on a space defined as a product of spaces Ei and
enumerable spaces, the reference measure will be the product of the measures mentionned above.
We want to draw samples according to the law (on paths of length T) defined for any measurable
function f by

(1.1) π(f) =
E
(
f(X1, . . . , XT)

∏T−1
k=1 Gk(Xk)

)

E
(∏T−1

k=1 Gk(Xk)
)

where (Xk)k≥1 is Markov with initial law M1 and transitions (Mk)k≥2 (for all k ≥ 1, Xk takes

values in Ek). For all n ∈ N∗, we note [n] = {1, . . . , n}. We set ZT = E
(∏T−1

i=1 Gi(Xi)
)
. Then π

has the following density at (x1, . . . , xT) ∈ E1 × · · · × ET :

(1.2) π(x1, . . . , xT) =
1

ZT
M1(x1)

T−1∏

k=1

Gk(xk)Mk+1(xk, xk+1) .

2. Densities of branching processes

2.1. Branching process. We first introduce some definitions concerning the elements of (N∗)k

for k = 1, 2, If 1 ≤ q ≤ n and i = (i1, . . . , in) ∈ (N∗)n, we define i(q) = (i1, . . . , iq) and we
say that i(q) is an ancestor of i and we denote this relation by i(q) ≺ i; we will also say that
i is a descendant of i(q). We introduce the notation: if i = (i1, . . . , ik) ∈ (N∗)k and j ∈ N∗,
(i, j) = (i1, . . . , ik, j) ∈ (N∗)k+1.

We now define a branching process. We start with n1 particles, i.i.d. with law M1 (n1 is a fixed
number). We then proceed recursively through time to build a genealogical tree. At time 1, the
particles are denoted by X1

1 , . . . , Xn1

1 . We set

(2.1) S1 = {1, 2, . . . , n1} .

Date: 5th November 2014.
Key words and phrases. Coupling from the past, Exact simulation, Particle methods, Particle Markov chain

Monte Carlo Methods.

1

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 2

At time k, the particles are denoted by (X i
k)i∈Sk

, where Sk is a finite subset of (N∗)k, and the
number of particles is Nk = #Sk (the cardinality of Sk). For i ∈ Sk, we say that X i

k is the position
of the particle indexed by i, or, in a shorter way, the position of i. In an abuse of notation, in the

case j ≺ i (j ∈ Sq), we also say that X j
q is an ancestor of X i

k and that X i
k is a descendant of X j

k.

Starting from the particles at time k ≤ T − 1 with particles (X i
k)i∈Sk

(Sk ⊂ (N∗)k), the system
evolves in the following manner:

• For each i ∈ Sk, the number of children of i is a random variable N i
k+1 with law fk+1 such

that :

P(N i
k+1 = j

∣∣X i
k) = fk+1(Gk(X

i
k), j) .

Here, fk+1 is a law with a parameter Gk(X
i
k), we will define this law precisely later. We

suppose that

(2.2) fk+1(Gk(x), 0) = 1− αk+1Gk(x)

for some αk+1 ≥ 0. This will remain true trough all the paper. The variables N i
k+1

(1 ≤ i ≤ Nk) are independent. The total number of particles at time k + 1 is then
Nk+1 =

∑
i∈Sk

N i
k.

• If Nk+1 6= 0, we draw σk+1 uniformly in SNk+1
(the Nk+1-th symmetric group). If

Nk+1 = 0, we use the convention SNk+1
= ∅ and the system stops here.

• We order Sk alphanumerically: Sk = {i1, . . . , iNk
}. For r ∈ [Nk], we set Cr

k+1 = {1 +∑r−1
l=1 N il

k , . . . ,
∑r

l=1 N
il
k }. We set

Sk+1 = ∪Nk

r=1 ∪j∈σk+1(Cr
k+1

) (ir, j) .

For r ∈ [Nk], j ∈ σk+1(C
r
k+1), we draw X

(ir,j)
k+1 ∼ Mk+1(X

ir
k , .) in Ek+1. To simplify

the notation, we write C(ir) = Cr
k+1 for all r ∈ [Nk] and C(i) = C(ir) if i = ir ∈ Sk.

We can then write that, for i ∈ Sk, the descendants of i at time k + 1 are the (i, j) for
j ∈ σk+1(C(i)).

Such a system has a density on the space

E = En1

1 × ∪ni

2
,i∈S1

{ni
2, i ∈ S1} × En2

2 ×Sn2

× ∪ni

3
,i∈S2

{ni
3, i ∈ S2} × En3

3 ×Sn3
× . . .

· · · × ∪ni

T
,i∈ST−1

{ni
T , i ∈ ST−1} × EnT

T ×SnT
.

where we recall that n1 is given, S1 = [n1] and for k ∈ {1, . . . , T − 1}, nk =
∑

i∈Sk−1
ni
k, Sk =

{i1, . . . , ink
}, Cr

k+1 = {1 +∑r−1
l=1 nil

k , . . . ,
∑r

l=1 n
il
k }, Sk+1 = ∪nk

r=1 ∪j∈σk+1(Cr
k+1

) (ir, j). A random

variable on the space E will be called a branching process. At a point (xi
k, n

i
k, σk) ∈ E, xi

k ∈
Ek (1 ≤ k ≤ T, i ∈ Sk), ni

k ∈ N (2 ≤ k ≤ T, i ∈ Sk−1), σk ∈ Snk
(2 ≤ k ≤ T), this density is given

by

(2.3) q((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk

, (σk)k∈{2,...,T}) =

∏

i∈S1

M1(x
i
1)

T−1∏

k=1




∏

i∈Sk

fk+1(Gk(x
i
k), n

i
k+1)×

1

nk+1!
×
∏

i∈Sk

∏

j∈σk+1(C(i))

Mk+1(x
i
k, x

(i,j)
k+1)



 .

In the following, we write the shortcut notation ((xi
k), (n

i
k), (σk)) for a point in E. For χ ∈ E,

we write Sk(χ), k ∈ [T] for the corresponding subsets of (N∗)k, k ∈ [T], we write Nk(χ) for the
number of particles at each timestep k ∈ [T]. We will use the same notations for a point χ ∈ E′

(E′ defined below).

2.2. Proposal distribution. We introduce the space

E′ = E × (N∗)T .

Suppose we draw a branching process ((X i
k), (N

i
k), (σk)) with law q and then draw B uniformly in

ST if NT ≥ 1 , and set B = (1, 1, . . . , 1) if NT = 0. This random variable takes values in E′ and, at

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 3

a point ((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk

, (σk)k∈{2,...,T},b) with ((xi
k), (n

i
k), (σk)) ∈ E such that

nT ≥ 1, b ∈ ST (ST ⊂ (N∗)T deduced from ((xi
k), (n

i
k), (σk)) ∈ E), it has the density

(2.4) q̂((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk

, (σk)k∈{2,...,T},b)

= q((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk

, (σk)k∈{2,...,T})×
1

nT
.

We call this the proposal distribution. One can view the space E′ as the space of branching
processes where a particular trajectory is singled out, we will call it the colored trajectory. At

a point ((xi
k), (n

i
k), (σk),b), what we call the colored trajectory is (x

b(1)
1 , . . . , x

b(T)
T) in the case

nT ≥ 1; in the case nT = 0, the colored trajectory is (x1
1, x

(1,1)
2 , . . . , x

(1,...,1)
q) where q = max{k :

nk ≥ 1}.

2.3. Target distribution. Let us denote by f̂(g, .) the law f(g, .) conditionned to be ≥ 1, that
is: for all g ≥ 0, i ≥ 1, k ≥ 1,

(2.5) f̂k(g, i) =
fk(g, i)

1− fk(g, 0)
.

This quantity is not defined in the case g = 0 but we will no need it in this case. An al-
ternative way of building a branching process with a colored trajectory is to draw a traject-
ory with law π, say that is is the colored trajectory and then build a branching process con-
ditionned to contain this trajectory. The indexes of the colored trajectory embeded in the
branching process are denoted by a random variable B. The first coordinate B(1) is chosen
uniformly in [n1]. The other coordinates are deduced from the branching process in the fol-
lowing way: suppose that, at time k + 1, the random permutation of the branching process
is σk+1 and the numbers of children are (N i

k+1)i∈Sk
, we set Bk+1 = σk+1(min{C(B(k))}) and

B(k + 1) = (B(k),Bk+1). We thus introduce what we call the target distribution. Its support is
contained in {((xi

k)k∈[T],i∈Sk
, (ni

k)k∈{2,...,T},i∈Sk
, (σk)k∈{2,...,T},b) ∈ E′ : nT ≥ 1} and it has the

density:

(2.6) π̂((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk−1

, (σk)k∈{2,...,T},b)

=
1

n1
π
(
x
b(1)
1 , ..., x

b(T)
T

) ∏

i∈S1

M1(x
i
1)

×
T−1∏

k=1






 ∏

i∈Sk,i6=b(k)

fk+1(Gk(x
i
k), n

i
k+1)


 × f̂k+1(Gk(x

b(k)
k), n

b(k)
k+1)×

1

nk+1!

×


 ∏

i∈Sk,i6=b(k)

∏

j∈σk+1(C(i))

Mk+1(x
i
k, x

(i,j)
k+1)




 ∏

j∈σk+1(C(b(k))\min{C(b(k))}

Mk+1(x
b(k)
k , x

(i,j)
k+1)





 ,

where the term f̂k+1(Gk(x
b(k)
k), n

b(k)
k+1) corresponds to the simulation of the number of offsprings

of the particle x
b(k)
k . Using (1.2). (2.2) and (2.5), we can rewrite π̂ into

(2.7) π̂((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk−1

, (σk)k∈{2,...,T},b)

=
1

n1
×

n1∏

i=1

M1(x
i
1)×

T∏

k=2




∏

i∈Sk−1


fk(Gk−1(x

i
k−1), n

i
k)×

∏

j∈[ni

k
]

Mk(x
i
k−1, x

(i,j)
k)








× 1

ZTα1 . . . αT−1
.

2.4. Ratio of densities. We deduce from (2.3), (2.4) and (2.7), that at a point in the support
of π̂, the ratio of π̂ and q̂ is equal to

(2.8)
π̂((xi

k)k∈[T],i∈Sk
, (ni

k)k∈{2,...,T},i∈Sk−1
, (σk)k∈{2,...,T},b)

q̂((xi
k)k∈[T],i∈Sk

, (ni
k)k∈{2,...,T},i∈Sk−1

, (σk)k∈{2,...,T},b)
=

nT

n1ZTα1 . . . αT−1
.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 4

3. A Markov chain on E1 × · · · × ET

We now define a Markov kernel Q on E1 × · · · × ET . We start from a path (x1, . . . , xT) ∈
E1 × · · · × ET . We will move to a new path in several steps.

(1) Draw of a conditionnal forest. We sample a random variable χ with law π̂ conditionnaly on

(X
B(1)
1 , . . . , X

B(T)
T) = (x1, . . . , xT) . We use for this the expression (2.6). Such a sampling

can be done recursively in k ∈ [T] in the following way.
• We take B(1) = B1 uniformly in [n1]. We take (X i

1)i∈S,i6=B1
i.i.d. with law M1.

• Suppose we have sampled ((X i
q)1≤q≤k,i∈Sq

, (N i
q)2≤q≤k,i∈Sq−1

, Sk) for k ≤ T − 1. For

i ∈ Sk, we take N i
k+1 with law fk+1(Gk(X

i
k), .) if i 6= B(k) and N

B(k)
k+1 with law

f̂k+1(Gk(X
B(k)
k), .). We set Nk+1 =

∑
i∈Sk

N i
k. We draw σk+1 uniformly in SNk+1

.

We set Bk+1 = σk+1(min{C(B(k))}), B(k + 1) = (B(k),Bk+1). We set Sk+1 =
∪i∈Sk

∪j∈σk+1(C(i)) (i, j).

– For i ∈ Sk , i 6= B(k), j ∈ σk+1(C(i)), we take X
(i,j)
k+1 with law Mk+1(X

i
k, .).

– For i = B(k), j ∈ σk+1(C(i)), j 6= Bk+1, we take X
(i,j)
k+1 with law Mk+1(X

i
k, .).

(2) Proposal. We draw a proposal χ = ((X
i

k)1≤k≤T,i∈Sk
, (N

i

k)k∈{2,...,T},i∈Sk−1
, (σk)k∈{2,...,T},)

with law q̂. It contains a colored trajectory (X
B(1)

1 , . . . , X
B(T)

T).

(3) Accept/reject step. We move to (X
B(1)

1 , . . . , X
B(T)

T) with probability min
(
1, NT (χ)

NT (χ)

)
and

we stay in (x1, . . . , xT) with probability 1−min
(
1, NT (χ)

NT (χ)

)
.

Theorem 3.1. The law π is invariant for the kernel Q.

Proof. Suppose we start with a random variable (X1, . . . , XT) with law π. Going through step 1
of the construction above, we get a random variable

χ = ((X i
k)k∈[T],i∈Sk

, (N i
k)k∈{2,...,T},i∈Sk−1

, (σk)k∈{2,...,T},B)

in E′ such that (X
B(1)
1 , . . . , X

B(T)
T) = (X1, . . . , XT). By (2.6), χ has the law π̂. We draw a random

variable χ with law q̂ as in step 2 above. We then proceed to the step 3 above. Let U be a uniform
variable in [0, 1]. We set

χ̂ =

{
χ if U ≤ min

(
1, NT (χ)

NT (χ)

)
,

χ otherwise.

The result of the random move by the Markov kernel Q is the colored trajectory of χ. By (2.8),
we have that

NT (χ)

NT (χ)
=

π̂(χ)q̂(χ)

q̂(χ)π̂(χ)
,

and so χ̂ is of law π̂, which finishes the proof. �

4. Algorithms

4.1. Simulation of a branching process. One might be worried wether a process of law q0
might be such that NP is very big or equal to 0 with a high probability. Such events are undesirable
in our simulations, as it will be seen later. For all k ≥ 1, g ∈ [0; ‖Gk‖∞], we want fk+1(g, 0) =
1− αk+1g (for some parameter αk+1 ≤ 1/‖Gk‖∞). Suppose we take the following simple law:

(4.1) fk+1(g, i) =
αk+1g

qk+1
for i ∈ {1, 2, . . . , qk+1}

and fk+1(g, i) = 0 for i ≥ qk+1 + 1, for some integer qk+1 to be chosen. Suppose we have built a
branching process up to time k. We define a measure πk on Ek by its action on test functions:

πk(f) =
E(f(Xk)

∏k−1
i=1 Gi(Xi))

E(
∏k−1

i=1 Gi(Xi))
,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 5

where (X1, . . . , XT) is a non-homogeneous Markov chain with initial law M1 and transitions
M2,M3, . . . ,MT . Suppose we make a simulation of a branching process up to time k. The particles
at time k are denoted by (X i

k)i∈Sk
. One could show that for Nk big enough, the empirical measure

1
Nk

∑Nk

i=1 δXi
k

is a fairly good approximation πk. We want the expected number of children of the

k−th generation to be approximatively Nk, that is:

1

Nk

Nk∑

i=1

qk+1∑

j=1

j
αk+1Gk(X

i
k)

qk+1
=

1

Nk

Nk∑

i=1

(qk+1 + 1)

2
αk+1Gk(X

i
k) ≈ 1 .

This should be the case if (qk+1+1)
2 αk+1πk(Gk) = 1. Suppose now we have approximated πk by an

empirical measure 1
N

∑N
i=1 Y

i
k with some particles (Y i

k)1≤i≤N coming from a SMC scheme (with
N particles). Then we achieve our goal by taking qk to be the closest integer to

2N

αk+1

∑N
i=1 Gk(X

i

k)
− 1 .

We have here described a way of choosing the integers (qk)k∈{2,...,T} before making a simulation
of the branching process. The arguments given a purely heuristic. Other ways of calibrating
(qk)k∈{2,...,T} are possible, the only important thing is that these integers should be fixed before
running the perfect simulation algorithm described below. No proof is needed as we only need
that in practice, the number of particles in the branching process remains stable in time.

4.2. Representation of the Markov transition. Suppose we have a trajectory (x1, . . . , xT) ∈
E1 × · · · × ET . We want to sample a random variable of law Q((x1, . . . , xT), .). In practice, we
do not have to make a simulation of the random permutations appearing in the Markov transition
Q. We can simply run a simulation of the positions of the particles and forget about their indexes.
The permutations are only here to make the proof of Lemma 3.1 easier. Having said this, we can
change the way we index the particles.

We take functions (mk)1≤k≤T , (ϕk)k≤2≤T , (ϕ̂k)2≤k≤T such that m1 : [0, 1] → E1 for all k ∈
{2, . . . , T }, n ∈ N∗, mk : Ek−1 × [0, 1] → Ek, ϕk : R+ × [0, 1] → N, ϕ̂k : R+ × [0, 1] → N and for a
random variable U of uniform law on [0, 1],

m1(U) is of law M1 ,

and for any k ∈ [T − 1], x ∈ Ek, g ∈ R+, j ∈ N,

(4.2) mk+1(x, U) is of law Mk+1(x, .) ,

P(ϕk+1(Gk(x), U) = j) = fk+1(Gk(x), j) ,

P(ϕ̂k+1(Gk(x), U) = j) = f̂k+1(Gk(x), i) .

For k ∈ [T − 1], x ∈ Ek, u ∈ [0, 1] 7→ ϕk+1(Gk(x), u) is the pseudo-inverse of the cumu-
lative distribution function of the random variable of law fk+1(Gk+1(x), .), and u ∈ [0, 1] 7→
ϕ̂k+1(Gk(x), u) is the pseudo-inverse of the cumulative distribution function of the random vari-

able of law f̂k+1(Gk+1(x), .).
Suppose now we are given a random variable Θ = (Ui, U

′
i , Vi, V

′
i ,W1,W2)i∈Nn,n≥0 made of a

family of i.i.d. random variables of uniform law on [0, 1]. We denote by O the space in which Θ
takes its value (O is in bijection with [0, 1]N). Using these variables and the functions above, we
can build a random variable of law Q((x1, . . . , xT), .). We start with a recursive construction of
the conditionnal forest.

• We set B = (1, 1, . . . , 1) ∈ NT . We set X
B(1)
1 = x1. We set X i

1 = m1(Ui) for i ∈
{2, . . . , n1}. We set S1 = [n1].

• Suppose we have Sk ⊂ (N∗)k of cardinality Nk , containing B(k), and particles (X i
k)i∈Sk

.

For all i ∈ Sk\B(k), we set N i
k+1 = ϕk+1(Gk(X

i
k), Vi), and for j ∈ [N i

k], we set X
(i,j)
k+1 =

mk+1(X
i
k, U(i,j)). We set N

B(k)
k+1 = ϕ̂k+1(Gk(X

B(k)
k), Vi), X

B(k+1)
k+1 = xk+1, and for j ∈

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 6

{2, . . . , NB(k)
k+1 }, we set X

(B(k),j)
k+1 = mk+1(X

B(k)
k , U(B(k),j)). We set Sk+1 = ∪i∈Sk

∪j∈[N i

k+1
]

(i, j). We set Nk+1 = #Sk+1.

Hypothesis 1. At each time-step k ∈ [T−1], there exists a dominating potential G̃k : Nk×Ek×O →
R such that, for all x ∈ Ek, i ∈ Nk, Θ ∈ O, Gk(x) ≤ G̃k(i, x,Θ) ≤ ‖Gk‖∞.

Using the same random variables as the ones we used above, we can build a bigger conditionnel
forest, again recursively.

• We take the same B as above. For i ∈ [n1], we set X̃ i
1 = X i

1. We set S̃1 = S1.

• Suppose we have S̃k ⊂ (N∗)k of cardinality Ñk , containing B(k), and particles (X̃ i
k)i∈Sk

.

For all i ∈ S̃k\B(k), we set

(4.3) Ñ i
k+1 =

{
ϕk+1(G̃k(i, X̃

i
k), Vi,Θ) if i is a descendant of B(1), B(2), . . . or B(k),

ϕk+1(Gk(X̃
i
k), Vi) otherwise,

and for j ∈ [Ñ i
k], we set X̃

(i,j)
k+1 = mk+1(X̃

i
k, U(i,j)). We set Ñ

B(k)
k+1 = ϕ̂k+1(G̃k(B(k), X̃

B(k)
k ,Θ), Vi),

X̃
B(k+1)
k+1 = xk+1, and for j ∈ {2, . . . , ÑB(k)

k+1 }, we set X̃
(B(k),j)
k+1 = mk+1(X̃

B(k)
k , U(B(k),j)).

We set S̃k+1 = ∪
i∈S̃k

∪j∈[N i

k+1
] (i, j). We set Ñk+1 = #S̃k+1.

One could show recursively on k that for all k ∈ [T], Sk ⊂ S̃k, for all i ∈ Sk, X i
k = X̃ i

k,

N i
k+1 ≤ Ñ i

k+1 (almost surely in ω). We then build a proposal forest in a similar way, recursively
on k.

• We set S1 = [n1]. For i ∈ S1, We set X
i

1 = m1(U
′
i).

• Suppose we have Sk ⊂ (N∗)k of cardinality Nk and particles (X
i

k)i∈Sk
. For all i ∈ Sk, we

set N
i

k+1 = ϕk+1(Gk(X
i

k), V
′
i), and for j ∈ [N

i

k], we set X
(i,j)

k+1 = mk+1(X
i

k, U
′
(i,j)). We set

Sk+1 = ∪i∈Sk
∪
j∈[N

i

k+1]
(i, j). We set Nk+1 = #Sk+1.

Then we order ST alphanumerically: ST = {i1, . . . , iNT
}. We set

B⋆
T = ir if W1 ∈

[
r − 1

NT

,
r

NT

)
.

The accep/reject step then goes in the following way:

if W2 ≤ min

(
1,

NT

NT

)
, move to (X

B⋆(1)

1 , . . . , X
B⋆(T)

T) ,

otherwise, stay in (x1, . . . , xT). We will sometimes insist on the dependance of the variables on Θ,

x1, . . . , xT by writing ÑT = ÑT (Θ, (x1, . . . , xT)), NT = NT (Θ), W2 = W2(Θ), . . .

Remark 4.1. For each of the branching processes in this subsection, for all k, q ∈ [T], i ∈ (N∗)k,
j in (N∗)q, if i is not an ancestor of j and j is not an ancestor of i, then, conditionnaly on

(X i
k, X

j
q) (resp. (X̃ i

k, X̃
j
q), (X

i

k, X
j

q)), the descendants of X i
j are independant of the descendants

of X j
q. In the same way, when we sample a conditionnal forest (resp. a bigger conditionnal forest)

conditionnaly to (x1, . . . , xT), for all k ∈ [T − 1], the descendants of X
B(k)
k (resp. X̃

B(k)
k) with

indexes i /∈ {B(k + 1), . . . ,B(T)} depend only on Θ and xk.

4.3. Backward coupling. Suppose we are given i.i.d. random variables (Θ0,Θ1,Θ2, . . .) having
the same law as Θ (all of them are defined on a probability space (Ω,F ,P). Any of these random
variables is sufficient to perform a simulation of the Markov transition Q. The following result is
a consequence of Theorem 3.1 of [FT98] (the original result can be found in [PW96]).

Theorem 4.2. If τ is a stopping time with respect to the filtration (σ(Θ0, . . . ,Θn))n≥0 such that

for all (x1, . . . , xT), (x
′
1, . . . , x

′
T) in E1 × · · · × ET ,

FΘ0
◦ FΘ1

◦ · · · ◦ FΘτ
(x1, . . . , xT) = FΘ0

◦ FΘ1
◦ · · · ◦ FΘτ

(x′
1, . . . , x

′
T) ,

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 7

Algorithm 1 Perfect simulation

for n in N repeat until n = τ
draw Θn, and store it
test wether n = τ or not

pick any trajectory (x1, . . . , xT) ∈ E1 × · · · × ET

set ξ(−1) = (x1, . . . , xT)
for n = 0 to τ repeat

ξ(n) = FΘτ−n
(ξ(n− 1))

return ξ(τ)

then, for any (x1, . . . , xT) in E1 × · · · × ET ,

FΘ0
◦ FΘ1

◦ · · · ◦ FΘτ
(x1, . . . , xT) is of law π .

We suppose we have dominating potentials G̃k, k ∈ [T − 1] as in Subsection 4.2 above. We
write Θn = (Un,i, U

′
n,i, V

′
n,i, V n,i,Wn,1,Wn,2) . In our simulations, we will use a stopping time of

the following kind

(4.4) τ = min

{
n : Wn,2 ≤ min

(
1,

NT (Θn)

ÑT (Θn, (x1, . . . , xT))

)
, ∀(x1, . . . , xT) ∈ E1 × · · · × ET

}

= min

{
n : W2,n ≤ min

(
1,

NT (Θn)

sup(x1,...,xT)∈E1×···×ET
ÑT (Θn, (x1, . . . , xT))

)}

This stopping time satisfies the assumptions of the above Proposition. Algorithm 1 is thus a
perfect simulation of the law π. At this point, this algorithm is merely theoretical. The following
two remarks will make it implementable, at least in some cases.

• We need to be able to compute max{ÑT (Θ(ω), (x1, . . . , xT)), (x1, . . . , xT) ∈ E1×· · ·×ET}
for a fixed ω. The easiest case is where E1, E2, . . . , ET are finite. We will see below how
to reduce the problem to this case in cases where E1, E2 . . . are not finite. If E1 is finite,

we can look for x1 ∈ E1 maximizing the descendants of X̃1
1 at time T (using Θ(ω) to

make the simulation), and so on. As we said in Remark 4.1, once X̃1
1 , . . . , X̃

(1,...,1)
T are

fixed, their descendants are independant, this is what makes the use of branching processes
interesting.

• In Algorithm 1, we first sample Θ0(ω),Θ1(ω), . . . until τ . And then we need the same
realisations of the variables (Θ0(ω), Θ1(ω), . . .) to compute ξ(0), . . . , ξ(τ). The obejct
Θ0(ω) is an infinite collection of numbers so it is impossible to store. We set E(ω) to be
the subset of indexes i ∈ ∪n∈[T](N

∗)n such that Un,i(ω) or Vn,i(ω) is used when computing

sup(x1,...,xT)∈E1×···×ET
ÑT (Θn(ω), (x1, . . . , xT)). We notice that, for all n, we do not need

to store the whole Θn(ω); having stored the number of descendants of X̃2
1 (ω), . . . , X̃

n1

1 (ω)
(these are the starting points in the building of the “bigger conditionnal forest above”),

NT (Θn(ω)), (X
B⋆(1)

1 , . . . , X
B⋆(T)

T)(ω) (this is the colored trajectory in the proposal above)
and

(4.5) {(Ui(ω), Vi(ω),W2(ω))i∈(N∗)n,n∈[T] : i(1) = 1, i ∈ E(ω)}

is enough to compute FΘn(ω)(ξ) for any ξ in E1 × · · · × ET . The collection of numbers in
(4.5) contains the number which might be needed when we compute the descendance of
X1

1 (ω), X
1
2 (ω), . . . , X1

T−1(ω) in what is called above the “bigger conditionnal forest”, and
we do not need any other numbers. Another point is that we can code the simulation in
such a way that we sample these variables in the alphanumerical order at each time step.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 8

So, instead of storing these variables, we can store random seeds. For example, instead of
storing U (1,1,1)(ω), U (1,1,2)(ω), U (1,1,3)(ω), . . . , we can store a single random seed1.

We are now able to explain the purpose of Subsection 4.1. It is clear that when simulating a
branching process, wether it is a conditionnal forest or a proposal forest, we do not want the
number of particles to grow up. Such a growth would be exponential in T , which would be very
bad for the complexity of our algorithm. On the other hand, if our branching processes become
extinct before time T , it will be often the base that NT (Θn) = 0, leading to τ 6= n, and thus the
first loop of Algorithm 1 could go on for a very long time. Again, this would be very bad for the
complexity of our algorithm.

5. Examples

5.1. Self-avoiding random walks in Z2.

5.1.1. Description of the model. We take E1 = Z2, E2 = Z2 × Z2, . . . , ET = (Z2)T and for all
n ∈ [T], (z1, . . . , zn) ∈ (Z2)n,

(5.1) Gn(z1, . . . , zn) =

{
1 if zi 6= zj for all i, j ∈ [n], i 6= j,

0 otherwise.

We take M1 = δ(0,0) (the Dirac mass at the origin of Z2). For all n ∈ [T − 1], (z1, . . . , zn) ∈ (Z2)n,
we take

(5.2) Mn+1(z1, . . . , zn), (z1, . . . , zn, zn + (0, 1)) = Mn+1(z1, . . . , zn), (z1, . . . , zn, zn + (0,−1))

= Mn+1(z1, . . . , zn), (z1, . . . , zn, zn + (1, 0)) = Mn+1(z1, . . . , zn), (z1, . . . , zn, zn + (−1, 0)) =
1

4
.

Then the marginal of π on ET−1 is the uniform law on the set of paths (z1, z2, . . . , zT−1) ∈ Z2

such that z1 = (0, 0), ‖zi − zi+1‖ = 1 for all i (‖ . . . ‖ being the Euclidean norm), for i, j ∈ [T − 1]
with i 6= j, zi 6= zj (the path does not intersect with itself, one also says that it is self-avoiding).

5.1.2. Stopping time. We set B = (1, 1, . . . , 1) ∈ NT . For k ∈ [T], i ∈ Nk, q ∈ [k] such that

i(q) = B(q) and i(q + 1) 6= B(q + 1), we set, for all x = (z1, . . . , zk) ∈ Ek, Θ ∈ O, G̃k(i, x) =
Gk−q(zq, zq+1, . . . , zk) in other words

G̃k(i, x) =

{
1 if (zq, . . . , zk) is self-avoiding,

0 otherwise

(as G̃k does not depend on Θ in this example, we replace G̃k(i, x,Θ) by G̃k(i, x)). We do not need

to define G̃ in the remaining cases. As we said in Subsection 4.3, we sample variables Θ0, Θ1, . . .
and we look for the stopping time τ defined in (4.4). For fixed n, Θn, and k ∈ [T − 1], xk ∈ Ek, if

we sample a bigger conditionnal forest with X̃
B(k)
k = xk, we introduce the following notation:

ÑT (Θn, xk) = #{i ∈ S̃T (Θn), i 6= B(T),B(k) ≺ i} .
We do not need the values X̃

B(q)
q for q 6= k to compute the above quantity. Due to the fact

that the descendants of B(k) are generated using the potentials G̃. (see formula (4.3)), the set

#{i ∈ S̃T (Θn), i 6= B(T),B(k) ≺ i} depends only on Θn. So

for all xk ∈(Z2)k, ÑT (Θn, xk) = ÑT (Θn, ((0, 1), . . . , (0, k))) .

We set
˜̃
NT (Θn, k) = ÑT (Θn, ((0, 1), . . . , (0, k))). Now we have, for all (x1, . . . , xT) ∈ E1×· · ·×ET ,

(5.3) ÑT (Θn, (x1, . . . , xT)) =
˜̃
NT (Θn) := #{i ∈ S̃T (Θn), ∄k : B(k) ≺ i}+ 1+

T−1∑

k=1

˜̃
NT (Θn, k) .

1We recall here that when the user asks for random variables U (1,1,1)(ω), U (1,1,2)(ω), U (1,1,3)(ω), . . . , a computer
will return numbers picked in a non-random list. So instead of storing theses random variables, we can store only
the starting point in the list (the so-called “random seed”)

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 9

Figure 5.1. Self-avoiding random walk in Z2.

T 100 200 300 350 400

C(T) 14.90 28.45 19.89 23.28 30.48

Table 1. C(T) for the self-avoiding random walk

Figure 5.2. Log-log graph of complexity versus time in the case of the self-
avoiding random walk.

This equation means that the supremum in (4.4) is easy to find. And so, by Remark 4.1

τ = min

{
n ≥ 0 : W2,n ≤ min

(
1,

NT (Θn)

˜̃
NT (Θn)

)}
.

5.1.3. Complexity of the algorithm. We take here the following law for the simulation of the number
of children

for all k, fk+1(0, 0) = 1 , fk+1(1, 1) = pk+1 , fk+1(1, 2) = pk+1 ,

for some sequences (pk)2≤k≤T taking values in (0, 1). We now look at a branching process in E1,
E2, . . . ,ET based on the potential defined in (5.1), the transitions defined in (5.2) and the above
reproduction law. A sensible way of choosing the constants (pk)’s is to choose them such that
a branching process starting with n1 particles will have a random number Nk of descendants of
the same order of magnitude as n1 (this requires some pre-processing). These numbers Nk are
random but the law of large numbers makes them not too fluctuant. It turns that a good tuning
is to have the (pk)’s almost constant. By doing so, we are able to draw a trajectory with law π by
a matter of minutes if T ≤ 1000 and by a matter of one hour if T ≤ 5000 (see Figure 5.1). Here,
we ran a program in C. We used parallelization to make it faster (with the OpenMP library). The
program uses around five cores simulteanously. Laptops are multi core nowadays, so the limiting
factor is not the number of cores but the management of the memory. Indeed, the genealogies
we build in our algorithm can take a lot of space, if the code is not written properly. An basic
calculation shows that n1 should be chosen as n1 = C(T) × T , with C(T) depending on T (see
the Appendix for details). We estimate C(T) by Monte-Carlo for T ∈ {100, 200, 300, 350, 400}
(see the Appendix for details, we use 1000 samples for each expectation and variance we have to
estimate). We can then compare T and C(T) (see Table 1). A simple least square regression in
log-log scale gives a slope of 0.27. So it seems sensible to take n1 proportionnal to T or T 3/2.

We then estimate the average number of particles at each generation (on a 1000 sample) when
we run a simulation of a bigger conditionnal forest, assuming, we take n1 = T 3/2. For a fixed
T , the average complexity of drawing one sample of a bigger conditionnal forest is the sum on
all generations of the average number of particles at each generation times the number of the
generation (this is the cost of computing the potential). With this choice of dependency between
n1 and T , this complexity is the average complexity of our algorithm (see the end of the Appendix
and (5.3)).

Using again a Monte-Carlo method with 1000 samples for each expectation we have to estimate,
we are able to draw in Figure 5.2 the log of the expected complexity against log(T) (T ∈ [400])
with n1 = T 3/2. We draw a linear regression on the same graph. The estimated slope is 3.85. So
the complexity seems to be polynomial in T .

5.2. Filter in R3.

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 10

5.2.1. Description of the model. We are given the following signal/state ((Xn)n≥1) and observa-
tions ((Yn)n≥1) in R3: {

Xn+1 = AXn + Vn+1 , ∀n ≥ 1 ,
Yn = Xn +Wn , ∀n ≥ 1 ,

with X1 following a law M1 and (Vn)n≥2 independant of (Wn)n≥1, the Vn’s are i.i.d. with a law of
density f and the Wn’s are i.i.d. with a law of density g (with respect to the Lebesgue measure).
The coefficient A is a 3 × 3 real matrice. We suppose we have functions F and G such that, for
all U ∈ [0, 1], F (U) is a random variable in R3 of law of density f , G(U) is a random variable in
R3 of law of density g.

We are interested in L(XT |Y1, . . . , YT−1) for some T ∈ N∗. From now on, we will suppose that
the sequence Y1, Y2, . . . is fixed. We set, for all k ∈ N∗, Gk(x) = g(Yk − x). We denote by M2 =
M3 = · · · = M the transition kernel of the Markov chain (Xn)n≥1. We set E1 = E2 = · · · = R3.
Then L(XT |Y1, . . . , YT−1) coincides with π defined in (1.1). We make the following hypotheses.

Hypothesis 2. The matrix A is invertible. For all x, y ∈ R3, ‖Ax− Ay‖ ≤ α‖x− y‖ (‖. . . ‖ is the
Euclidean norm) with α ∈ [0, 1).

Hypothesis 3. We have g(x) −→
‖x‖→+∞

0.

5.2.2. Computing the stopping time. We take mk introduced in (4.2) to be, for all x ∈ R3, U ∈
[0, 1],

mk(x, U) = Ax + F (U) .

We fix δ > 0. For x = (x1,x2,x3) ∈ R3, we set

Lδ(x) =
[
δ
⌊x1

δ

⌋
, δ
⌊x1

δ

⌋
+ δ
)
×
[
δ
⌊x2

δ

⌋
, δ
⌊x2

δ

⌋
+ δ
)
×
[
δ
⌊x3

δ

⌋
, δ
⌊x3

δ

⌋
+ δ
)
.

We set B = (1, 1, . . . , 1) ∈ NT . We suppose we are given a random variable Θ as in Subsection
4.2. We consider k ∈ [T], x ∈ R3, i ∈ Nk such that there exists q ∈ [k] satisfying i(q) = B(q),
i(q + 1) 6= B(q + 1). There exists one and only one sequence (xq , xq+1, . . . , xk) such that

xq+1 = mq+1(xq, Ui(q+1)) ,

xq+2 = mq+2(xq+1, Ui(q+2)) ,

. . .

x = xk = mk(xk−1, Ui) .

For y ∈ R3, we introduce the notations defined recursively:

mq,q+1(y) = mq+1(y, Ui(q+1)) ,

mq,q+2(y) = mq+2(mq,q+1(y), Ui(q+2)) ,

. . .

mq,k(y) = mk(mq,k−1(y), Ui) .

We set

(5.4) G̃k(i, x,Θ) = sup
y∈Lδ(xq)

Gk(mq,k(y)) .

This implies that Gk(x) ≤ G̃k(i, x,Θ). The idea here is to bound the potential Gk(x) by its sup
on subset of R3 containing x. Due to Hypothesis 2, the diameter of {mq,k(y) : y ∈ Lδ(xq)} in

(5.4) is bounded by (δ
√
3)k−q . Under the additional assumption that g is continuous, it will make

that Gk(x) is not too far from G̃k(i, x,Θ) in the above bound. And so, the number of descendants

of X̃
B(k)
k should not explode when T − k becomes big. Of course, these are only heuristics and we

will study the complexity of the algorithm based on these G̃. below.
As we said in Subsection 4.3 and in the previous example, we sample variables Θ0, Θ1, . . . and

we look for the stopping time τ defined in (4.4). For fixed n, Θn and k ∈ [T − 1], xk ∈ R3, we

sample a bigger conditionnal forest with X̃
B(k)
k = xk, we introduce the following notation

ÑT (Θn, xk) = #{i ∈ S̃T (Θn), i 6= B(T),B(k) ≺ i} .

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 11

T 5 10 15 20

C(T) 165.6 466.4 634.1 766.5

Table 2. C(T) in a filtering case

We do not need the values X̃
B(q)
q , q 6= k to compute the above quantity. We define

(5.5)
˜̃
NT (Θn, k) = sup

xk∈R3

ÑT (Θn, xk) .

Because of Remark 4.1, for all n,
˜̃
NT (Θn) defined by

˜̃
NT (Θn) := sup(x1,...,xT)∈(R3)T ÑT (Θn, (x1, . . . , xT))

satisfies

˜̃
NT (Θn) = #{i ∈ S̃T (Θn), ∄k : B(k) ≺ i}+ 1 +

T−1∑

k=1

˜̃
NT (Θn, k) .

For fixed n, Θn and k ∈ [T − 1], suppose xk, x
′
k ∈ R3 are such that Lδ(xk) = Lδ(x

′
k) then

the descendants of X̃
B(k)
k in the bigger conditionnal forest are the same wether X̃

B(k)
k = xk or

X̃
B(k)
k = x′

k. Suppose Θn = (Un,i, U
′
n,i, Vn,i, V

′
n,i,Wn,1,Wn,2)i∈Nn,n≥1. The number of children

of X̃
B(k)
k is Ñ

B(k)
k+1 = ϕ̂k+1(G̃k(X̃

B(k)
k , Vn,i), which is equal to zero if ‖X̃B(k)

k − Yk‖ is big enough

under Hypothesis 3. So, the number of operations needed to compute ÑT (Θn, k) is finite for all
k, Θn. So, once we are given Θ0, Θ1, . . . the stopping time τ can be computed in finite time.

5.2.3. Complexity of the algorithm: a case study. We suppose A = 0.5 × Id(3), the (Vn)’s follow
the law N (0, (0.2)2), the (Wn)

′s follow the law N (0, (0.5)2), δ = 0.1. We take here the laws
of the number of children of an individual to be the same as in Subsection 4.1, (4.1) (for all k,
αk+1 = 1/‖Gk‖∞). We made a simulation of a sequence (Yk)1≤k≤T and stored it. Here the codes
were written in python and are thus relatively slow to execute. Nevertheless, it takes a few minutes
to sample a trajectory of length 50. Using the calculations of the Appendix, we see that we should
choose n1 = C(T) × T , with C(T) depending on T . We estimate C(T) for T ∈ {1, 2, . . . , 20}
using Monte-Carlo (for each T , we used 10000 samples for the estimation of µ1, σ

2
1 defined in the

Appendix, we used 100 samples for the estimation of each E(ÑT (Θ, k)) appearing in the definition
of µ2, µ2 begin defined in the Appendix). We can then compare T and C(T) see Table 2 for
T ∈ {5, 10, 15, 20}). A simple least square regression in log-log scale gives a slope of 1.21. So it
seems sensible to take n1 proportionnal to T or T 3/2.

We now want to estimate the complexity of the whole algorithm. Due to the remark at the end
of the Appendix, this complexity is of the same order of the complexity of sampling a branching

process and finding ÑT (Θ, k) for each k. Let us fix k. When we compute ÑT (Θ, k), we need

to compute ÑT (Θ, xk) for a finite number of xk in a ball around Yk (see equation (5.5)). This
number is, in expectation, proportionnal to δ−3. Taking n1 =

⌊
T 3/2

⌋
, the complexity of the

algorithm for a fixed T is of order less than T 3/2µ1(T) + δ−3
∑T

i=1 µ2(T). We use the above

estimates of µ1(T) , µ2(T) for T ∈ {1, 2, . . . , 20}. We compare T 3/2µ1(T) and
∑T

i=1 µ2(T) to T .
A least square regression in log-log scale gives us a slope less than 2 in both cases. This means
the complexity, as a function of T , grows like T 2. We know that the coefficient of proportionnality
between the complexity and T 2 includes δ−3, so the algorithm is dimension dependent (it will be
δ−d in dimension d). What is the optimal choice of δ with respect to the complexity is not clear.

6. Appendix

We show here how to choose n1 as a function of T (it applies to the examples of Subsection
5.1 and 5.2). We set µ1 = E(NT (Θ)) and σ2

1 = V(NT (Θ)) in the case n1 = 1 and we set

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 12

µ2 =
E(1+

∑T−1

k=1

˜̃
NT (Θ,k))

T . We then choose n1 such that

(6.1) n1 − 1 ≥ 16σ2
1

µ2
1

.

It implies that (remember that NT (Θ) is a sum of n1 i.i.d. variables)

P
(
NT (Θ) ≤ n1µ1

2

)
≤ P

(
NT (Θ)− n1µ1 ≤ −n1µ1

2

)

≤ 4σ2
1

n1µ2
1

≤ 1

4
,(6.2)

and (remember that #{i ∈ S̃T (Θn), ∄k : B(k) ≺ i} is a sum of n1 − 1 i.i.d. variables

P
(
#{i ∈ S̃T (Θn), ∄k : B(k) ≺ i} ≥ 2µ1(n1 − 1)

)
≤ σ2

1

(n1 − 1)µ2
1

≤ 1

4
.(6.3)

We have

(6.4) P

(
1 +

T−1∑

k=1

˜̃
NT (Θ, k) ≥ 4Tµ2

)
≤ 1

4
.

We choose n1 such that it also satisfies

(6.5) n1µ1 ≥ Tµ2 .

So, NT (Θ) ≥ n1µ1

2 and #{i ∈ S̃T (Θn), ∄k : B(k) ≺ i} ≤ 2µ1(n1 − 1) and 1 +
∑T−1

k=1
˜̃
NT (Θ, k) ≤

4Tµ2 implies

NT (Θ)

˜̃
NT (Θ)

≥
(
n1µ1

2

)

2µ1(n1 − 1) + 4Tµ2

≥ n1µ1

8Tµ2
≥ 1

8
.

We have

P

(
NT (Θ) ≥ n1µ1

2
,#{i ∈ S̃T (Θn), ∄k : B(k) ≺ i} ≤ 2µ1(n1 − 1), 1 +

T−1∑

k=1

˜̃
NT (Θ, k) ≤ 4Tµ2

)

≥ 1− P
(
NT (Θ) ≥ n1µ1

2

)
− P (∄k : B(k) ≺ i} ≤ 2µ1(n1 − 1))

− P

(
1 +

T−1∑

k=1

˜̃
NT (Θ, k) ≤ 4Tµ2

)
,

and using (using (6.2), (6.3), (6.4)), we see this last quantity is bigger than 1
4 . So

P

(
NT (Θ)

˜̃
NT (Θ)

≥ 1

8

)
≥ 1

4
.

This means that the expected number of steps in the “repeat” loop of Algorithm 1 is bounded
independently of T , provided n1 satisfies (6.1) and (6.5).

EXACT SAMPLING USING BRANCHING PARTICLE SIMULATION 13

References

[FT98] S. G. Foss and R. L. Tweedie, Perfect simulation and backward coupling, Comm. Statist. Stochastic Models
14 (1998), no. 1-2, 187–203, Special issue in honor of Marcel F. Neuts. MR 1617572 (99f:60123)

[PW96] James Gary Propp and David Bruce Wilson, Exact sampling with coupled Markov chains and applications

to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and
Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223–252. MR 1611693 (99k:60176)

C. Andrieu, Department of Mathematics, University of Bristol, University Walk, Bristol BS8

1TW, United Kingdom.

E-mail address: c.andrieu@bris.ac.uk

N. Chopin, C.R.E.S.T., Timbre J350 3, Avenue Pierre Larousse, 92240 MALAKOFF, France.

E-mail address: Nicolas.Chopin@ensae.fr

A. Doucet, Department of Statistics, 1 South Parks Road Oxford, OX1 3TG, United Kingdom.

E-mail address: doucet@stats.ox.ac.uk

S. Rubenthaler, Laboratoire J. A. Dieudonné, Université Nice Sophia Antipolis, Parc Valrose,

06108 Nice cedex 2, France.

E-mail address: rubentha@unice.fr

