L. Arthur, J. L. Besse, and . Kazdan, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas, 1978.

[. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math, vol.305, pp.805-808, 1987.

[. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, pp.375-417, 1991.
DOI : 10.1002/cpa.3160440402

]. E. Car26 and . Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France, vol.54, pp.214-264, 1926.

]. E. Car27 and . Cartan, Sur une classe remarquable d'espaces de Riemann. II, Bull. Soc. Math. France, vol.55, pp.114-134, 1927.

J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, 1975.
DOI : 10.1090/chel/365

I. Chavel, On Riemannian symmetric spaces of rank one, Advances in Mathematics, vol.4, issue.3, 1972.
DOI : 10.1016/0001-8708(70)90025-3

R. J. Crittenden, Minimum and conjugate points in symmetric spaces. Canad, J. Math, vol.14, pp.320-328, 1962.

P. Delanoë and Y. Ge, Locally nearly spherical surfaces are almost-positively $c$-curved, Methods and Applications of Analysis, vol.18, issue.3, 2010.
DOI : 10.4310/MAA.2011.v18.n3.a2

P. Delanoë and Y. Ge, Regularity of optimal transport on compact, locally nearly spherical, manifolds, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2010, issue.646, pp.65-115, 2010.
DOI : 10.1515/crelle.2010.066

P. Delanoë and G. Loeper, Gradient estimates for potentials of invertible gradient???mappings on the sphere, Calculus of Variations and Partial Differential Equations, vol.487, issue.3, pp.297-311, 2006.
DOI : 10.1007/s00526-006-0006-4

M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian submersions and related topics, 2004.
DOI : 10.1142/9789812562333

A. Figalli, L. Rifford, and C. Villani, Nearly Round Spheres Look Convex, American Journal of Mathematics, vol.134, issue.1, 2009.
DOI : 10.1353/ajm.2012.0000

URL : https://hal.archives-ouvertes.fr/hal-00923321

[. Gluck, F. Warner, and W. Ziller, The geometry of the Hopf fibrations, Enseign. Math, vol.32, issue.2, pp.3-4173, 1986.

[. Helgason, Differential geometry, Lie groups, and symmetric spaces, of Pure and Applied Mathematics, 1978.
DOI : 10.1090/gsm/034

H. Karcher, A geometric classification of positively curved symmetric spaces and the isoparametric construction of the Cayley plane On the geometry of differentiable manifolds, Astérisque, vol.163164, pp.111-135, 1986.

[. Klingenberg, Riemannian geometry, 1982.
DOI : 10.1515/9783110905120

[. Kim and R. J. Mccann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2012, issue.664, 2008.
DOI : 10.1515/CRELLE.2011.105

[. Kim and R. J. Mccann, Continuity, curvature, and the general covariance of optimal transportation, Journal of the European Mathematical Society, vol.12, issue.4, pp.1009-1040, 2010.
DOI : 10.4171/JEMS/221

S. Kobayashi and K. Nomizu, Foundations of differential geometry, 1963.

S. Kobayashi and K. Nomizu, Foundations of differential geometry, II. Interscience Tracts in Pure and Applied Mathematics, 1969.

G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Mathematica, vol.202, issue.2, pp.241-283, 2009.
DOI : 10.1007/s11511-009-0037-8

G. Loeper, Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna, Archive for Rational Mechanics and Analysis, vol.20, issue.3, pp.269-289, 2011.
DOI : 10.1007/s00205-010-0330-x

J. Robert and . Mccann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal, vol.11, issue.3, pp.589-608, 2001.

[. Ma, N. S. Trudinger, and X. Wang, Regularity of Potential Functions of the Optimal Transportation Problem, Archive for Rational Mechanics and Analysis, vol.13, issue.2, pp.151-183, 2005.
DOI : 10.1007/s00205-005-0362-9

S. Neil, X. Trudinger, and . Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.8, issue.51, pp.143-174, 2009.

[. Villani, Optimal transport. Old and new, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00974787